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ABSTRACT 

 

DEVELOPMENT AND COMPARISON OF HIGHLY 

DIRECTIONAL LOUDSPEAKERS 

 

Gordon R. Dix 

Department of Physics and Astronomy 

Master of Science 

 

Highly directive loudspeakers have long been important tools for sound system 

designers, experimental acousticians, and many other professionals in the audio industry.  

They allow sound engineers to more easily manipulate the radiation pattern of their 

loudspeakers to accommodate the purpose of the venue.  Many commercially available 

products, while exhibiting good directivity at mid and high frequencies, generally lack 

control in the low frequency range.  A new method for controlling the radiation pattern of 

a loudspeaker at low frequencies has been developed and modeled extensively.  

Prototypes have been built and tested in an anechoic chamber.  Results from computer 

modeling and experimental measurements will be presented and compared in this thesis. 
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CHAPTER 1 

INTRODUCTION 

 

 Highly directional loudspeakers have long been important tools for sound system 

designers, acousticians, and many other professionals in the audio industry.  They allow 

them to more easily control the radiation patterns of loudspeaker systems and 

accommodate the purposes of given venues.  Museum displays, CD listening stations, 

and computer kiosks are a few commercial audio applications that have taken advantage 

of highly directional sound sources.  Small loudspeaker arrays, loudspeakers mounted 

inside large domes or parabolic reflectors, and horns are typically the only cost-effective 

options available to professionals in order to achieve any substantial degree of directivity 

in these applications.  These types of products exhibit good directivity control for mid 

and high frequencies, but generally lack control at lower frequencies.  They are thus 

unacceptable for many applications wherein it is necessary to reproduce the entire audible 

frequency range. 

The union of digital signal processing (DSP) and large arrays of loudspeakers to 

obtain high degrees of directional control has recently been accepted by the professional 

audio industry for many sound reinforcement applications.  Passive arrays of 

loudspeakers naturally exhibit a more directional radiation pattern due to the basic 

physical principles involved in their radiation.  However, once DSP was properly applied 

to those arrays, it gave audio professionals the ability to optimize control of radiation 

patterns and adjust them to meet specific needs and applications.  Once again, these 

arrays can be very directional in the high and mid frequency ranges, but the amount of 
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control achieved at lower frequencies is proportional to the size of the array.  Thus, more 

control in the bass region of the audio spectrum requires a much larger and undoubtedly 

more expensive array.  The required size and cost of such arrays prevent many 

professionals from using them in their designs. 

 One might ask why control of the radiation at low frequencies is so desirable.  

There are several reasons.  First, lower tones more easily mask higher tones.  This is due 

to the mechanics of the ear, or more specifically, the method by which the cochlea 

responds to the sound waves incident upon the ear drum.  If a sound field has an excess 

of low frequency energy, then higher frequency bands will likely be masked and clarity 

will suffer.  For example, consider a museum that has two displays, each of which plays 

an audio track intended to be confined to a small listening area directly in front of it.  If 

the low-frequency content of one source is not controlled, leakage to adjacent sound 

fields occurs, resulting in this masking phenomenon. 

Second, in a given sound field, sound pressure waves can interact with each other, 

resulting in constructive and destructive interference.  The likelihood of undesirable 

interference may be increased by the failure to use highly directional loudspeakers. 

Outdoor noise control is yet another problem in which a solution can be found in 

highly directional sound sources.  An example of this problem is outdoor concert venues.  

These performance areas are commonly found near residential neighborhoods.  Mid and 

high frequencies can easily be focused only on the listening areas using traditional 

techniques, but uncontrolled low-frequency sound is allowed to leak into adjacent 

residential areas if no steps are taken to direct this energy towards the audience. 

2 



Along those same lines, sound in an enclosed space can seem too reverberant, or 

“boomy”, if low-frequency energy is not directed toward a defined listening position as 

opposed to radiating omnidirectionally.  This results in undesirable room resonance 

effects causing interference and masking for the listener. 

All these problems point to a need for a low-cost highly directional loudspeaker 

that performs well at low frequencies.  This industry need served as our motivation for 

this research. 

 

1.1 Objectives 

 The primary goals of this research were to design, model, construct and 

experimentally evaluate a low-cost highly directional loudspeaker that performs well in 

the low frequency region where control is most difficult.  A passive end-fire array or 

“shotgun” loudspeaker was eventually chosen as the focus of the research.  A 

mathematical model of the device was created and predictions of the performance were 

extracted and compared to physical measurements.  Current audio industry standards use 

the 6 dB down points on either side of the on-axis response to define the beamwidth of a 

directional device.  This measure was chosen to gauge the directivity of the models and 

prototypes.  It should be noted, however, that the levels of side lobes can also have an 

impact on the perceived ability of a device to contain sound and should not be completely 

ignored.  Nevertheless, this research primarily uses the industry-standard beamwidth and 

on-axis frequency response to evaluate performance. 

The designs and prototypes were intended to be inexpensive and reasonably 

compact, while maintaining many desirable characteristics of larger and much more 
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expensive commercially available systems.  Simplicity in design and manufacturing were 

of primary importance. 

A secondary goal of the research was to compare the performance of the 

prototypes to the performance of relatively low-cost directional loudspeakers of the 

parabolic reflector variety.  The intent was to create a new design that outperformed these 

existing loudspeakers while reducing manufacturing costs. 

 

1.2 Literature Review 

A thorough literature search on past publications and patents relating to the topic 

of interest was completed as part of the research project.  The searches branched out into 

other related fields and became an excellent method of collecting useful information.  

Articles on directional microphones [1-4] gave great insight on unique procedures for 

manipulating sound waves.  Many of the techniques could be applied in reverse for 

controlling the radiation of loudspeakers.  Because specific microphone designs are well 

guarded by microphone manufacturers, very few references are available that go into 

much detail.  However, some excellent references by Ted N. Carnes [1] and Harry F. 

Olson [2] were found to be very helpful in understanding how the devices functioned. 

Another motive for carrying out the literature search was to understand and 

become aware of all previous attempts to create directional low-frequency loudspeakers.  

Marinus M. Boone [5] and Harry F. Olson [6] published two well-known methods to 

accomplish this.  They are each unique in their implementation, but are based on the 

same basic physical principles to achieve their goals.  Both methods can produce dipole, 

cardioid and hypercardioid directivity functions, as opposed to an omnidirectional 
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directivity function (or monopole) that is characteristic of most commercial products at 

low frequencies.  Boone uses two drivers and feeds each a unique amplitude weighted 

signal.  The weighting function can be changed to obtain a desired directivity function.  

Olson simply changes the effective positions of the two drivers by adding delays to 

achieve the same directivity functions.   

Each of these two designs focuses on control of the lower frequency bands in the 

audible spectrum and demonstrates substantial improvements over what was currently 

commercially available.  Although they did not achieve the level of control we wished to 

attain, their methods and theory could help us in creating and evaluating our own models. 

Perhaps the most interesting paper that surfaced in the search was one authored by 

Holland and Fahy [7].  They developed a low-cost directional sound source that was 

similar to the shotgun loudspeaker proposed in this research.  Their device used many of 

the same principles as our own prototypes, but there are many differences in the 

modeling procedure and frequency ranges of interest.  Much of this research overlaps 

with theirs, but it also goes well beyond their conclusions and investigates many areas 

left untouched by their analysis. 

 

1.3 Plan of Development 

 The chapters in this thesis will proceed as follows.  Chapter 2 will outline the 

governing physical principles, advantages, and disadvantages of several directional 

devices and explain the reason for selecting the basic design we chose.  Chapter 3 will 

focus on the physics of the shotgun microphone and shotgun loudspeaker, and discuss the 

assumptions made in our model.  The mathematical model for the shotgun loudspeaker 
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will then be presented in Chapter 4 and the analysis of the system will be detailed.  

Chapter 5 will discuss the numerical model results and describe the effect that shotgun 

tube characteristics have on the resulting beamwidth.  Chapter 6 will discuss the 

prototypes that were built, measured, and compared to modeling results, and then draw 

several conclusions from the measurements.  Improvements to the numerical model will 

be detailed in Chapter 7 and again compared to the measured data.  Refined conclusions 

are also presented.  Chapter 8 looks into several further investigations for the shotgun 

tube.  Finally, Chapter 9 will compare the final shotgun tube design with existing 

products and draw some general conclusions for the research.  Possibilities for future 

work will also be discussed. 
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CHAPTER 2 

PROTOTYPE SELECTION 

 

As indicated earlier, many existing products exhibit reasonable directivity control 

at mid and high frequencies, but generally lack control in the lower frequency range.  It is 

this lack of control that has lead to this investigation for a new inexpensive loudspeaker 

that maintains many desirable characteristics of larger and much more expensive 

commercially available systems.  This chapter will discuss the theory behind several 

loudspeakers that were considered (but not selected as the final design) and the benefits 

and drawbacks of each.  It also discusses certain principles that are pertinent to the 

shotgun loudspeaker discussed in Chapter 3. 

 

2.1 Domes 

 Sound focusing domes, such as the device shown in Fig. 2.1, are frequently found 

in low-budget installations where isolation of sound is desired at a given location.  

Common venues where these devices are found include information booths or tradeshow 

kiosks.  They attempt to beam sound directly below the dome to prevent “bleeding” into 

adjacent listening areas.  This is done by placing a small loudspeaker beneath the dome.  

It faces upward into the dome, which reflects the sound back down toward the listener. 

Many different done shapes have been developed, each claiming to reach different 

levels of performance due to design innovations.  The two most common types are 

parabolic and hemispherical.  The parabolic domes place the driver at the focal point of 

the reflector to form a “beam” or “pillar” of sound directly beneath the dome, as shown in 
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Fig. 2.2 (a).  The hemispherical dome, on the other hand, places the driver off-center in 

an attempt to create an area where the sound is focused down to a single point, as shown 

in Fig. 2.2 (b). 

 

 

 
 

Figure 2.1.  Commercial sound focusing domes (Soundtube FP6030).  Used with permission from 
Soundtube Entertainment. 
 

 
 

                 

(b) (a) 

 
Figure 2.2.  Sound focusing dome schematics.  (a) Parabolic dome.  (b) Hemispherical dome. 
 

We obtained three commercial domes for testing.  Each dome was taken into the 

anechoic chamber and the far-field pressure was measured and plotted for many different 
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frequencies.  This was done by fabricating a stand (shown in Fig. 2.3) that mounted to a 

turntable and held the domes horizontally.  This setup was centered in the center of a 

stationary arc of 19 microphones, giving an angular resolution of 5 degrees.  The 

turntable was rotated every 5 degrees and the full arc of 19 microphones recorded the 

frequency dependant pressure amplitude at each position. 

 

 

 
Figure 2.3.  Dome measurement stand mounted to the turntable. 

 

Figures 2.4 through 2.9 are a few example balloon plots that show the behavior of 

each design at two frequencies.  These figures show the upper hemisphere of the radiated 

sound measured around the devices.  The length of the radius from the origin to the 
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balloon plot surface is proportional to the level (in dB) of the measured sound.  The wire 

mesh surrounding each surface corresponds to a perfect hemisphere with amplitude equal 

to the maximum value of the surface, or the on-axis value.  This is done to more clearly 

illustrate the omnidirectional characteristics of these devices.  Simple inspection of the 

plots shows that at 300 Hz, the devices are quite omnidirectional while at higher 

frequencies, a frontal lobe begins to form increasing the directionality of the device. 

 

   
Figure 2.4.  Dome #1: A dual-parabolic dome beam pattern for 300 Hz. 
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Figure 2.5.  Dome #1: A dual-parabolic dome beam pattern for 1500 Hz. 
 

 

     
Figure 2.6.  Dome #2: A hemispherical dome beam pattern for 300 Hz. 
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Figure 2.7.  Dome #2: A hemispherical dome beam pattern for 1500 Hz. 
 

 

     
Figure 2.8.  Dome #3: A parabolic dome beam pattern for 300 Hz. 
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Figure 2.9.  Dome #3: A parabolic dome beam pattern for 1500 Hz. 
 

Figures 2.10, 2.11, and 2.12 are the same three domes, but now the horizontal 

polar plots for three different frequencies are shown.  This is done to show how the 

radiation pattern evolves over frequency.  Notice that the horizontal polar plots in these 

figures correspond to the footprint of the previous balloon plots. 

 

 

(b) (c) (a) 

Figure 2.10.  Dome #1: a dual-parabolic dome.  (a) 300 Hz.  (b) 800 Hz.  (c) 1500 Hz. 
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(a) (b) (c) 

Figure 2.11.  Dome #2: a hemispherical dome.  (a) 300 Hz.  (b) 800 Hz.  (c) 1500 Hz. 
 

 

(a) (b) (c) 

Figure 2.12.  Dome #3: a parabolic dome.  (a) 300 Hz.  (b) 800 Hz.  (c) 1500 Hz. 
 

 Domes such as these have several advantages.  First and foremost, they employ a 

single driver in most cases.  The plastic or acrylic domes are very lightweight and are 

easily molded.  Both of these attributes contribute in keeping the cost relatively low. 

 The domes also have significant disadvantages.  The concept of a reflective 

device assumes that most or all of the acoustic energy radiated by the loudspeaker is 

actually hitting the reflector.  This is essentially true at high frequencies.  However, at 

low frequencies, the loudspeakers become more omnidirectional.  Sound is therefore not 

directed where it was intended to be, directional control is reduced, and sound then spills 
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to adjacent listening areas.  As the loudspeaker excites the dome, it too becomes an 

omnidirectional source at these low frequencies (i.e. when the dome becomes small 

compared to wavelength).  As can be seen by the measurements above, the domes are 

consistently omnidirectional at 300 Hz, while they perform well at mid and high 

frequencies. 

 

2.2 Cardioid Loudspeakers 

 Another simple directional device is the cardioid loudspeaker.  A typical cardioid 

polar response is shown in Fig. 2.13. 

 
Figure 2.13.  Cardioid polar response at 500 Hz. 
 

This response can be achieved by using two loudspeakers spaced close together 

relative to the wavelength of interest [8], as shown in the diagram in Fig. 2.14.  The 
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polarity of one of the drivers is reversed and delayed proportional to the spacing of the 

loudspeakers.  The required delay is given by, 

 
c
L

=τ , (2.1) 

where L is the spacing between the loudspeakers and c is the speed of sound. 

 

 
 

Figure 2.14.  Cardioid loudspeaker diagram. 
 

 There are two main problems with this design.  First, it lacks the capability to be 

adapted very well to a variety of applications.  The only variables are the delay and the 

spacing between the loudspeakers.  Correct calculation of these variables can give the 

cardioid pattern at any frequency, but once set the beam pattern is not independent of 

frequency.  There is still a large null in the rear for frequencies below that for which the 

parameters were set, but at higher frequencies the pattern begins to take on the form of a 

dipole.  Second, there is a definite lack of a narrow main lobe.  While it is true that a 
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cardioid response is much better than the omnidirectional response exhibited by the 

domes, the beamwidth is still much too broad for our application. 

 

2.3 Linear and Planar Arrays 

 Linear and planar arrays are also very common devices used to control the 

directivity of radiation.  Arrays of in-phase and equivalent amplitude loudspeakers 

naturally exhibit a directional radiation pattern due to the basic physical principles of 

constructive and deconstructive interference.  Examples of these resulting radiation 

patterns will be shown in this chapter.  When DSP is applied to weight the signals 

feeding the drivers in the arrays, the ability to electronically optimize their directivity 

control is available, but it increases the overall cost.  These arrays can be very directional 

in the high and mid frequency ranges, but the amount of control achieved at lower 

frequencies is limited by the size of the array. 

 In order to keep the cost of the device low, this project only considered passively 

controlled arrays as a possibility.  When passive components, such as common resistors, 

are used to vary the amplitude of each element in an array, the result is called amplitude 

shading.  It is well known that the common windowing functions used in Fourier analysis 

(such as rectangular, Hamming, and Blackman windows) can be used to model the effect 

that amplitude shading has on the far-field radiation pattern for a given array due to the 

space-time duality [9].  Figure 2.15 shows three windowing functions that are very 

common in Fourier analysis. 
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Figure 2.15.  Common windowing functions.  Rectangular window (dashed trace), Hamming window, 
(solid trace), and the Blackman window (dot-dash trace). 
 

Applying these function values to the amplitudes of corresponding elements in an 

array will result in radiation patterns like those in Figs. 2.16 and 2.17.  These figures 

show four examples of amplitude shading on a 2 meter line array of nine elements for 

two frequencies (Fig. 2.16 is computed at 500 Hz and Fig. 2.17 is computed at 1 kHz).  In 

these plots, the vertical axis of the array results in horizontal main lobes along a line 

normal to the axis. 
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(a) (b)

Figure 2.16.  Effect of amplitude shading arrays at 500 Hz.  (a) Rectangular window shading.  (b) 
Hamming window shading. 
 

 

(a) (b)

Figure 2.17.  Effect of amplitude shading arrays at 1000 Hz.  (a) Rectangular window shading.  (b) 
Hamming window shading. 
 

 These figures demonstrate one of the main disadvantages of using a linear array.  

In order to get a reasonable amount of control in the low frequency region, the array must 

have considerable size.  Figure 2.18 shows the same array configuration used in the 

previous two figures with the Hamming windowing function applied, but the length has 
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been increased from two to four meters.  Here, a drastic narrowing of the main lobe is 

obvious when compared to Fig. 2.16 and is remarkably similar to Fig. 2.17.  This is again 

due to the space-time duality where a doubling in frequency behaves in the same manner 

as a doubling in the length of the array [9]. 

 
Figure 2.18.  Hamming window shading with an array length of 4 meters for 500 Hz. 
 

 There are several other disadvantages of using linear arrays.  First, there is a large 

trade-off when using different windowing functions between the width of the main lobe 

and the level of the side lobes.  This is very clear in Figs. 2.16 and 2.17 where a narrower 

main lobe can be seen when the rectangular windowing function is used, as opposed to 

the Hamming window.  The cost of this narrower main lobe manifests itself in the level 

of the side lobes which are approximately 20 dB higher for the Rectangular window 
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result than in the Hamming window result.  This phenomenon is well understood [9] and 

was an expected outcome of these models. 

 A second disadvantage is that each element in the array is another loudspeaker.  

The more elements employed in the array, the more expensive the device becomes.  

Given that one of the goals for this project was to ensure that cost would not be out of 

reach for common commercial use, this design was not chosen as our prototype.  

Furthermore, this is the reason we did not look any further into planar arrays, where 20 or 

more individual loudspeakers could possibly be needed, rendering such devices very 

unrealistic for our goals. 

 Finally, linear arrays cannot distinguish between the front and back of the array.  

In Fig. 2.18 it is clear that the response is symmetric about the axis of the array.  If many 

of these devices were positioned over areas where isolation of sound from one area to the 

next was desired, an equal amount of energy would be directed toward the ceiling of the 

room as towards the listeners.  The sound could therefore be reflected back into the 

surrounding areas.  While the level of the reflected sound may be much lower than the 

direct sound, this phenomenon is still undesirable. 

 

2.4 End-fire Arrays 

 An end-fire array is simply a linear array where a delay has been introduced 

between each element of the array [8].  As the delay between sources increases (within 

bounds), the beam is increasingly steered in the direction of the delay.  When the delay is 

equal to the time it takes for the sound to travel from one element to the next, as defined 
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in Eq. (2.1), the array becomes an end-fire array; the sound is then beamed along the axis 

of the array. 

 The next three figures were created to show the effect these time delays have on 

the radiated sound field for an array of point sources.  Figure 2.19 shows a plot of the 

sound field around an array of nine point sources with no delay applied to any single 

element.  This was calculated by assuming each element in the array was a point source, 

or monopole.  Spherical spreading was assumed and the complex pressure field 

calculated for each source.  The principle of superposition was then used to sum together 

the contributions from each source and finally plotting the pressure magnitude over the 

field. 

 

 

 
 

Figure 2.19.  Sound field for a nine element array with τ = 0.  Arrows show the direction of main lobes. 
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It is clear that the main lobes are normal to the axis of the array (running from left 

to right), as shown by the arrows, as was seen in the plots for the line array previously.  

Note that the axes of these arrays are rotated 90 degrees from those seen in Figs. 2.16 and 

2.17. 

Figure 2.20 is a plot of the sound field around the same array, but now a delay of 

c
L
2

=τ   has been applied between each consecutive element.  This results in two beams 

that have been steered to approximately 60 degrees from the normal as indicated by the 

arrows. 

 

 

 

 
 

Figure 2.20.  Sound field for a nine element array with τ = L/(2c). 
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 Finally, Fig. 2.21 is a plot of the sound field around the same array wherein the 

delay has been increased to 
c
L .  This clearly shows a main lobe along the axis of the 

array pointing in the direction of the delay. 

 

 

 
 

Figure 2.21.  Sound field for a nine element array with τ = L/c. 
 

 Kinsler and Frey derived a simple equation for the polar response of an array of N 

elements spaced d apart [10].  The result can be expressed as, 
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where θ is the angle measured from the normal to the array axis.  If delays are applied to 

the elements to steer the main front beam to an angle other than 0=θ , the equation 

becomes, 
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where θo is the direction the main lobe is to be steered..  Using Eq. (2.3), the polar 

response in Fig. 2.22 can be calculated at 500 Hz. 

 
Figure 2.22.  End-fire array polar response at 500 Hz. 
 

 While the end-fire array has the disadvantage of requiring multiple drivers as do 

linear and planar arrays, it has a significant advantage over these conventional arrays.  
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Adding the delay between neighboring elements not only allows the beam of sound to be 

steered away from the normal direction to the array, but when the beam is aimed along 

the axis (to create the end-fire condition), the rear lobe is drastically reduced.  In Fig. 

2.18, it is clear that an amplitude shaded linear array does not have the ability to 

distinguish between the front and back of the array, as we have already seen.  However, 

the end-fire array shown in Fig. 2.22 demonstrates the reduction of the rear lobe of 

approximately 25 dB relative to the front lobe.  This made the end-fire array a very good 

choice for our design.  However, the hurdle was the fact that multiple drivers are required 

to achieve the end-fire condition. 

Through searching related literature, it was found that shotgun microphones attain 

the end-fire directivity in their pick-up pattern through a passive approach which only 

requires a single receiver.  In the analogous case of a shotgun loudspeaker, only one 

driver would be required.  This concept led to a deeper investigation into shotgun 

microphone theory and the idea of a shotgun loudspeaker. 
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CHAPTER 3 

SHOTGUN MICROPHONE AND LOUDSPEAKER THEORY 

 

 In order to successfully convert the design of a shotgun microphone into a 

shotgun loudspeaker, a good understanding of the theory behind the shotgun microphone 

is needed.  This chapter consequently begins with a thorough description of shotgun 

microphone theory.  It then applies these concepts to a shotgun loudspeaker. 

 

3.1 Shotgun Microphones 

 A typical shotgun microphone is simply a plane-wave tube with holes along its 

axis, where acoustic waves are allowed to enter the tube, and rigid terminations on both 

ends of the tube.  Once inside the tube, the pressure wave created at each hole interacts 

with the sound field created by adjacent holes in a way that creates a directional response.  

A simple diagram of a shotgun microphone is shown in Fig. 3.1. 

 

 

Holes 

Microphone Element 
(Transducer) 

 
Figure 3.1.  Typical shotgun microphone. 
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 In order to investigate the behavior of the shotgun microphone, we first assume a 

point source is in the far-field of the microphone.  Figure 3.2 shows the geometry used in 

this section. 

 

 
 

Figure 3.2.  Shotgun microphone geometry. 
 

We can write a simple expression for the complex pressure amplitude as 

 jkre
r
Ap −=
ˆ

ˆ 0  (3.1) 

where Â  is the complex monopole amplitude, r is the large distance of propagation from 

the source, and k is the wave number.  If we assume that the magnitude 0p̂  is 
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approximately equal for all holes in the tube (i.e. the wave fronts are locally planer), we 

can simply compensate for the additional distance traveled and propagation time delay by 

the wave front to get to successive holes.  The additional distance for the mth hole can be 

given as 

 , (3.2) ( )θcos
0

⎥
⎦

⎤
⎢
⎣

⎡
= ∑

=

m

i
im dg

where θ is the angle of arrival for the wave front with respect to the axis of the tube and di 

is the spacing between the holes [11].  The propagation delay for the mth hole is then 

 
c

gm
m =τ , (3.3) 

the phase shift for a given frequency ω is   

 mm ωτφ = , (3.4) 

and the pressure phase factor becomes 

 . (3.5) mjkge−

This accounts for the phase difference between the wave front reaching the first hole and 

that reaching the mth hole.  Given the phase shift, the pressure at each hole is written as 

 ( ) mjkg
m epp −≈ 0ˆ,ˆ θω . (3.6) 

Once the wave has entered the tube, a second delay needs to be accounted for as the 

excited plane wave travels from the hole to the end of the tube, ultimately arriving at the 

microphone element.  We thus employ another phase factor 

  (3.7) mijkae−

where ami is defined for the mth hole by 

 . (3.8) ∑
=

−=
m

i
imi dLa

0
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L is the length of the tube and di is the spacing between neighboring holes.  The pressure 

from each hole arriving at the microphone element is then 

  (3.9) mim jkajkg eep −−
0ˆ

and the total pressure  from all holes seen by the microphone element is Tp̂
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After substituting Eqs. (3.2) and (3.8) into Eq. (3.10), we then obtain 

 . (3.11) ( )
( )

∑
−

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−− ∑∑

= ==
1

0

cos

0
00ˆ,ˆ

N

m

ddLjk

T

m

i
i

m

i
i

epp
θ

θω

This then simplifies to 
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which is in a generalized form for a non-uniform hole spacing.  If the spacing between 

adjacent holes is assumed to be equal along the length of the tube, Eq. (3.12) reduces to 

  (3.13) ( ) ( )[∑
−

=

−−−=
1

0

1cos
0ˆ,ˆ

N

m

jkmdjkL
T eepp θθω

where d is the hole spacing.  The normalized directivity function of a system is defined as 

 ( ) ( )
( )θω
θω

θω
,

,,
max,T

T

P
PD = , (3.14) 

which has a maximum value at θ = 0˚ for a shotgun microphone configuration, as 

opposed to θ = 90˚ for a similarly oriented broadside linear array described previously in 

Chapter 2.  Another useful measure of the directivity is the beam pattern which is given 

by, 

 ( ) ( )[ ]θωθω ,log20, DB = . (3.15) 
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The two plots in Fig. 3.3 show the beam patterns for a model of a shotgun 

microphone using Eqs. (3.13), (3.14) and (3.15).  This model has 15 holes spaced 1 cm 

apart from each other and is computed for both 5 kHz and 10 kHz. 

 

 

(a) (b) 

Figure 3.3.  Shotgun microphone beam patterns.  (a) 5 kHz.  (b) 10 kHz. 
 

 As discussed earlier, one of the drawbacks of the end-fire array was the 

requirement of multiple transducers in the design, which increases the manufacturing and 

maintenance costs.  The shotgun microphone achieves the directional behavior of an end-

fire array of microphones, but with only a single microphone at the end of a long tube 

with carefully placed holes.  Each hole essentially acts as an individual receiver in the 

array.  The summation of the pressures seen by the holes is done inside the tube by way 

of the superposition principle as they reach the microphone. 

This implies that a shotgun loudspeaker might be constructed using only a single 

loudspeaker at the end of a tube with holes along the axis to act as radiating elements in 

an array.  It decreases the number of required loudspeakers and cost of the device, and 
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allows a designer to adjust the length and number of holes in the tube for specific 

applications. 

 

3.2 Shotgun Loudspeakers 

 The basic design of the shotgun loudspeaker is quite simple.  Figure 3.4 shows a 

diagram of the device.  A single loudspeaker is mounted in a sealed box that has been 

somewhat optimized over the audio bandwidth for a flat far-field frequency response for 

the particular driver being used.  An exact optimization of the volume required in the 

enclosure for a given driver is difficult because the loading on the loudspeaker cone is 

much different once the loudspeaker is mounted to the tube, as opposed to radiating into 

free space.  The box must be sealed to ensure that all the energy is being delivered down 

the tube and not out a port external to the tube.  An external port would create undesirable 

interference effects and likely degrade the directivity performance of the device. 

 

 

Holes 

Loudspeaker 
(Source) 

Tube 
Termination

Figure 3.4.  Typical shotgun loudspeaker diagram. 
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 As the wave fronts travel down the tube from the loudspeaker and encounter each 

hole, a discrete source is created that radiates into the far-field acoustic space.  As seen in 

Chapter 2, if the delay between elements is given by 

 
c
d

=τ  (3.16) 

where τ is the delay, d is the spacing between the elements of the array, and c is the speed 

of sound, then the resulting radiation pattern will be focused in the direction of the delay 

or, in our case, along the axis of the tube.  The delay cd  is exactly equal to the time it 

takes a sound wave to propagate a distance d.  Therefore, this passive setup will result in 

an end-fire configuration. 

The number of holes, radius of the holes and tube, and the acoustic properties of 

the termination all have an effect on the polar response of the shotgun loudspeaker.  

Reflections from both the tube termination and the impedance discontinuities at each hole 

complicate the model and change the radiated pressure at each hole.  These phenomena, 

and their effects on the performance of the device, are all discussed in detail in the next 

chapter, where the analytical model is described. 

 

3.3 Model Assumptions 

 Some basic assumptions used in developing a detailed analytical model for this 

shotgun loudspeaker require mention previous to that discussion.  First, only plane wave 

propagation is assumed to exist inside the tube.  In practice, this limits the useful 

frequency range (related to the radius of the tube) when making measurements of the 

prototypes.  The smaller the radius, the higher the cutoff frequency beyond which the 
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physical model breaks down.  The actual calculation for the cutoff frequency will be 

discussed in Chapter 5. 

 Second, radiated field measurement points are assumed to be in the geometric and 

acoustic far field relative to the shotgun loudspeaker.  Third, we assume that the wave 

amplitudes are small enough to use linear theory.  Finally, our initial model assumes that 

there is no external coupling between holes of the tube to simplify the model.  In Chapter 

7, the coupling between holes is considered and the far-field effects are discussed. 
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CHAPTER 4 

PRELIMINARY ANALYTICAL MODEL 

 

 An analytical model of the shotgun loudspeaker is required to predict the volume 

velocity generated at each hole, calculate the associated sound pressure radiated from 

each hole, and superpose the outputs in the far field to find the polar response of the 

array.  The directivity of a given configuration can then be predicted and explained.  This 

chapter presents an initial idealized model of a shotgun loudspeaker that provides several 

insights into its general behavior.  Refinements to the model will be presented in Chapter 

7. 

 

4.1 Equivalent Circuits 

 Of the many approaches to modeling acoustic phenomena, one of the most 

common techniques for lumped-element and one-dimensional systems involves 

equivalent circuits.  Proven circuit analysis methods are used to formulate equations of 

motion and derive physical quantities of interest (e.g., volume velocity or pressure) [12].  

As is true of any method, equivalent circuit analysis has its advantages and 

disadvantages.  Many common physical systems (e.g., transducers) require that multiple 

domains (such as acoustical, electrical, or mechanical) be represented in a single circuit 

to adequately describe the entire system.  These circuits have the ability to represent all 

elements of the various domains in a single circuit by way of coupling elements (e.g., 

transformers and gyrators).  Another advantage of this method is that many circuits can 

be drawn quite easily by simple inspection of the physical systems. 
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Equivalent circuit analysis has drawbacks as well.  For many elements, only a 

low-frequency approximation to the system is valid where the dimensions involved are 

small relative to the acoustic wavelength [13].  Wave effects are also ignored in 

individual lumped elements.  This requires great care in interpreting the solutions to the 

circuit.   

The accuracy of the equations of motion derived from equivalent circuits is 

limited by the accuracy with which the lumped elements of the circuits correctly describe 

the physical phenomena.  For example, the impedance of a volume of air can be modeled 

as a capacitor in the acoustic impedance domain, where the wavelengths of interest are 

many times longer than any single dimension of the cavity.  However, once the 

wavelengths are comparable to the dimensions of the cavity, this approximation is no 

longer valid.  Commercially available software packages implementing finite element or 

boundary element methods are often needed to accurately describe the acoustic fields for 

higher frequencies in devices with arbitrary geometries. 

 

4.2 Waveguides 

 Another inadequacy of common lumped-element circuits is their inability to 

represent dynamic changes in boundary conditions.  However, these can be modeled in 

one-dimensional systems by way of “waveguide circuits,” which take into account cross-

sectional variations.  They also serve as a means to translate impedances from one end of 

a tube to another (as seen in Fig. 4.1), in the same manner as the lossless impedance 

translation theorem given by: 
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where ZAT is the termination acoustic impedance to be translated a distance L down a tube 

of cross-sectional area S, k is the acoustic wave number, ρ0 is the density of air, and c is 

the speed of sound [10]. 

 

 

 
Figure 4.1.  Diagram of a one-dimensional tube terminated by an acoustic impedance ZAT. 
 

 

Waveguide circuits also allow for a more accurate representation of the sound 

field within a one-dimensional acoustic space.  They are not limited to extremely low 

frequencies and can account for many axial resonances of a tube.  The circuit in Fig. 4.2 

accurately models the sound field at the source and termination positions of the system 

described above for frequencies below the cutoff frequency of the first tube cross mode.  

This circuit is commonly known as a “T-network” and can be used to model one-

dimensional waves in a tube with an arbitrary termination [12]. 
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Figure 4.2.  Acoustic impedance circuit for a one-dimensional waveguide with an arbitrary source at one 
end and an arbitrary termination at the other. 

 

 

In order to get values for ZA1 and ZA2, we first solve for the acoustic input 

impedance ZAI of the circuit.  This is expressed as 
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where ZAT is the acoustic termination impedance.  With some simplification and 

rearranging of terms, we can express ZAI as 
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The impedance translational theorem in Eq. (4.1), gives the acoustic input impedance as 
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If we make the substitution 

 
S

c0ργ =  (4.5) 

into Eq. (4.4) and divide the numerator and denominator by ( )[ ]klj tan , it then becomes 
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We can now use the identity 

 ( ) ( ) 1cotcsc 22 =− xx  (4.7) 

and rearrange terms to get the expression 
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Next, we use a second identity 
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and rearrange terms again to get a final expression for ZAI. 
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If we resubstitute for γ and compare Eq. (4.3) to Eq. (4.10), we find that 

 ⎟
⎠
⎞

⎜
⎝
⎛⎟

⎠
⎞

⎜
⎝
⎛=

2
tan0

1
kL

S
c

jZ A
ρ

 (4.11) 

 (kL
S

c
jZ A csc0

2 ⎟
⎠
⎞

⎜
⎝
⎛−=
ρ ). (4.12) 

While a single T-network can offer valuable information at the input or 

termination, inspection of the sound field at points away from the ends of the tube cannot 
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be extracted without a modification to the circuit. Two successive waveguide circuits can 

be coupled together, as shown in Fig. 4.3, to provide the spatially dependant acoustic 

field quantities at inner points.  In the diagram, x is the axial position of interest and L is 

the length of the tube. 

 

 

 
 
 

Figure 4.3.  Acoustic impedance circuit for a one-dimensional waveguide with an arbitrary source at one 
end and an arbitrary termination at the other.  The circuit permits inspection of acoustic field quantities at 
any arbitrary field position x inside the tube. 
 

 

Here ZA1, ZA2, ZA3, and ZA4 are defined as 
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 At the junction of the two waveguide circuits, the pressure and volume velocity 

can be calculated as the potential and flow (current), respectively.  We will now use these 

waveguides to model the sections of the shotgun tube between holes to find the volume 

velocity at each hole. 

 

4.3 Shotgun Tube Circuit 

The sound field inside our shotgun tube is modeled by a quasi-ladder network of 

alternating waveguide circuits and shunted impedance terms for each hole.  An example 

of such a circuit for a tube with two holes is given in Fig. 4.4.  This model has four main 

elements: a source, three waveguide circuits, two hole impedance terms (ZAH), and a 

termination to the tube (ZAT). 

 

 
 

 
 

Figure 4.4.  Equivalent circuit for a tube with two holes. 
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4.3.1 Source Models 

 The source used in the preliminary model is a simple constant volume velocity 

source with infinite internal impedance.  This is a first approximation to a loudspeaker 

driving the end of the tube.  In Chapter 7, we will introduce a more accurate model of the 

loudspeaker to account for its finite internal impedance. 

 

4.3.2 Hole Impedances 

Research into work done on tone holes of musical instruments offered great 

insight into how such orifices may be modeled [14-17].  A more analytic approach, 

however, by Ted Carnes was found in a paper on the theory of shotgun microphones [11]. 

Assuming the volume velocity through each hole is insufficient to require the 

inclusion of nonlinear terms for the viscous flow resistance, the impedance representation 

of each hole is simply made up of two parts:  the radiation impedance and the impedance 

of the orifice length. 

 Simplifications can be made by assuming that ka << 1 (where a is the radius of 

the orifice) and the orifices are mounted in the wall of a tube whose radius of curvature is 

very large compared to the radius of the orifice itself.  Thus, the orifice can be 

approximated as if it were a piston in an infinite baffle.  Using this assumption, we write 

the radiation impedance (ZAR) as 

 ( ) ([ kajXkaR
a

c
Z AR 222

0 += )]
π
ρ

, (4.17) 

where 
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In these equations, a is the radius of the hole, J1 is a first-order Bessel function of the first 

kind, and H1 is a first-order Struve function.  The series expansions for both expressions 

can be written as 
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In the low-frequency approximation (ka << 1), all but the first term in each series can be 

neglected.  In this case,  and ( kaR 2 ) ( )kaX 2  reduce to 
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which can be substituted back into Eq. (4.17) to give 
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 The impedance of the orifice length (ZAO) was derived by Carnes, who modeled it 

as a very short section of a tube [11].  His first-order approximation is given by 
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where μ is the absolute viscosity and t is the thickness of the tube wall.  Adding ZAR and 

ZAO together yields the total impedance of a hole in the tube wall: 
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Seeing that the value of μ is 1.85x10-5, we can neglect viscous terms, which will be 

several orders of magnitude lower than neighboring terms for typical values of t and a.  

Making this simplification reduces our equation even further.  Our final form for the 

impedance of a hole in our shotgun tube is then given by the equation 
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4.3.3 Termination Impedances 

 Our preliminary model uses three basic tube terminations: anechoic (ZATA), closed 

(ZATC), and open (ZATO).  One further termination possibility is the drone cone (ZATD) and 

will be explored later.  The expressions for each of these three terminations can be 

written as, 
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The different terminations have different effects on the performance of the 

shotgun tube as will be discussed in Chapter 5. 
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4.4 Circuit Analysis 

 Once the parameters of each element in the circuit are carefully selected, the input 

impedance of the tube can be calculated.  This is found by beginning at the termination 

impedance (ZAT) and summing together the individual elements, either in series (ZS) or in 

parallel (ZP), using the rules for summing impedances below. 

 21 ZZZ S +=  (4.31) 

 
21

111
ZZZ P

+= . (4.32) 

Figure 4.5 provides an example of the normalized input impedance of a tube with a rigid 

termination and 5 holes, each with a radius of 0.635 cm.  This hole radius gives a 

maximum ka value of 0.0233 in the bandwidth of interest (0 to 3 kHz) which satisfies the 

ka << 1 condition placed on our analytical model.  The hole spacing is set to 11.85 cm 

which gives an overall length of approximately 71 cm.  The tube wall has a thickness of 

0.5 cm and the tube radius is 5.08 cm. 

The peaks in Fig. 4.5, with the exception of the first peak which will be explained 

momentarily, all appear to be evenly spaced.  As the plane waves travel down the tube, 

an impedance discontinuity is encountered at each hole where a portion of the incident 

wave is reflected back toward the source.  This happens at all holes and terminations, 

which gives rise to resonances between holes or combinations of holes and the 

termination. 

The hole spacing for this model is 11.85 cm which corresponds to a half-

wavelength at a frequency of 1447 Hz, where a standing wave can be created between a 

pair of neighboring holes.  This same phenomenon can also occur when the spacing 

between holes equals any integer multiple of a half-wavelength. 
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Figure 4.5.  Normalized input impedance for a 5.08 cm radius lossless tube, rigid termination, 5 holes, 
0.635 cm hole radius, 0.5 cm tube wall thickness, and 11.85 cm hole spacing which gives an overall tube 
length of 71 cm. 
 

 
Figure 4.6.  Normalized input impedance for a 5.08 cm radius tube, anechoic termination, and 5 holes. 
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A peak at 1447 Hz appears on the graph in addition to its next harmonic, 2894 Hz, 

which correspond to the 11.85 cm hole spacing.  The other peaks are due to resonances 

arising from interactions between the non-neighboring holes and the termination along 

the tube length and their respective harmonics. 

The first peak was an interesting phenomenon that was not expected initially.  

This frequency is caused by a Helmholtz resonator effect between the masses of air in the 

holes and the inner volume of the tube.  To examine this anomaly more closely, the same 

tube model was given an anechoic termination to exaggerate this particular resonance 

above the others.  This occurs because the anechoic termination eliminates any reflected 

waves from the end of the tube and thereby reduces the amplitude of any standing waves 

between holes and the termination.  Figure 4.6 shows the same tube as in Fig. 4.5 but 

with an anechoic termination.  As is clearly seen in the figure, small undulations still 

appear in the input impedance due to resonances between holes. 

As previously stated, the large resonance in Fig. 4.6 is due to the interaction of the 

“plug” of air in the hole and small volumes of air in the tube beneath each hole.  To 

investigate this behavior, the masses were varied and the corresponding changes were 

observed.  Figure 4.7 shows the result when the inertance, or mass-like term of the hole 

impedance, is either increased or decreased by a factor of 10. 

As expected, an increase of mass shifts the resonance frequency downward.  Not 

only does it shift the peak down, but it also reduces the amplitude of the resonance with 

respect to the impedance “floor” which is at a value of 1 on the normalized plot.  

Therefore, as the mass increases, the acoustic input impedance of the shotgun tube looks 

47 



more like a plane wave tube with no holes in it which has a value of Sc0ρ , or 1 if 

normalized as in the plot. 

 

 
Figure 4.7.  Normalized input impedance for a 5.08 cm radius tube with an anechoic termination and 5 holes with 
varying mass values.  The medium mass value is given by the imaginary part in Eq. (4.27).  The small mass is 1/10 
times the medium mass.  The large mass is 10 times the medium mass. 

 

 

Figure 4.7 also shows that a decrease in the mass shifts the resonance frequency 

upward.  This has a practical limit, though.  As the reactance of the hole radiation 

impedance becomes very small, the shunted hole impedance term in the circuit 

approaches zero which effectively shorts the circuit at that point.  Thus, as the mass of air 

in the shotgun tube holes decreases, the input impedance can be approximated by a single 
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waveguide circuit with a termination impedance of zero.  Figure 4.8 shows this 

approximation where the solid trace is for a very small mass and the dotted trace is for a 

single waveguide circuit, terminated with a zero impedance value. 

 

 
Figure 4.8.  Normalized input impedance comparison.  Solid trace is the input impedance for a very small mass.  
Dotted trace is the input impedance of a single waveguide circuit with a termination impedance of zero. 

 

 

 To further investigate this resonance resulting from the mass of air in the holes 

and the volume of air inside the shotgun tube, we wish to find the relationship between 

the known volume of air in the tube and the effective volume of air seen by each hole.  If 

we treat each hole region as an acoustic mass MA and acoustic compliance CA, we can use 

the two equations [18]: 
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f0 is the frequency at which the peak appears in the impedance plot where the Helmholtz 

resonance occurs.  Solving for the effective volume VH then gives 
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In principle, the total volume of the tube would then equal the sum of the various 

effective hole volumes.  However, this notion leads to some discrepancies.  Figure 4.9 

shows the actual volume inside the shotgun tube versus the calculated total volume from 

the model as described above.  Obviously, there is a decreasing difference as the number 

of holes in the tube increases or the spacing between holes decreases. 

The masses of air in the holes are only seeing an effective volume equal to the 

volume of air between adjacent holes.  This explains why the two traces in Fig. 4.9 are 

not identical.  If the effective volume of air is centered on the hole, there remains 

“unused” air near the source and the termination in the tube.  The more holes in the tube, 

the smaller this excess air volume becomes, which leads to the asymptotic behavior in 

Fig. 4.9. 
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Figure 4.9.  Actual volume inside the shotgun tube (solid trace).  Calculated volume in the shotgun tube 
model (dashed trace).  The tube radius is 5.08 cm and the tube length is 1 m. 

 

Once the acoustic input impedance ZAI of the tube is calculated, the output 

pressure from the source coupled to the tube can be found from the following relation, 

 ( ) ( ) AIZUp 0ˆ0ˆ =  (4.36) 

where  is the volume velocity value associated with the source.  For a constant 

volume velocity source, the output pressure is directly related to the input impedance of 

the tube. 

( )0Û

 The next step is to use the source volume velocity and the tube impedance values 

to solve for the volume velocities at each hole in the tube.  This can be done by using the 

well-known current-divider rule to solve for the flows into the shunt branches of the tube 

circuit (see Fig. 4.4). 
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Once the volume velocities are known, we need to calculate the radiated pressure 

for each hole at a given field position.  Assuming each hole radiates as a point source, the 

far-field pressure at a distance r away is expressed for the nth hole as 

 ( ) jkrn
n e

r
Uckj

rp −

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

π
ρ

4

ˆ
ˆ 0  (4.37) 

where  is the volume velocity of the hole [10].  We can use this expression for the 

radiated pressure generated from each hole due to the fact that the wavelengths we are 

interested in are much larger than the radius of the holes. 

nÛ

 Since we are assuming that the measurements are taken in the far field of the tube, 

we can make a simplification in the calculation of r for each hole.  We let the acoustic 

center of the array of holes be defined as the geometric center of the array as shown in 

Fig. 4.10, where r is the distance from the center of the array to field point P at an angle θ 

to the normal of the array. 

The distance from one element in the array to the field point will be defined as Rn, 

as shown in Fig. 4.10.  This distance can be defined from the law of cosines as 

 ( )θsin2222
nnn rllrR ++= . (4.38) 

If we assume that r >> l, this distance can be approximated as 

 ( )θsinnn lrR +≈  (4.39) 

for phase terms and 

 rRn ≈  (4.40) 

for amplitude terms.  The latter value is less critical in the superposition process when 

combining pressures from all sources. 
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Figure 4.10.  Distance approximation for an element in an array to a measurement point in the far-field. 
 

We can now substitute Eqs. (4.39) and (4.40) into Eq. (4.37) to give us a final 

form for the far-field pressure, which is now a function of r and θ. 
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By the principle of superposition, we can define the total sound field radiated by 

an array of N holes as the sum of the sound fields radiated by the individual holes.  This 

is finally written as 
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Once the final pressure at a distance r from the center of the shotgun tube is found 

for all angles, the beamwidth for each frequency may be computed.  This is done by 
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finding the points that are 6 dB down on either side from θc = 0˚ (see Fig. 4.11).  In 

Figure 4.12, the beamwidth is plotted as a function of frequency in order to evaluate the 

performance of a given tube model. 

  

 
Figure 4.11.  Sample polar plot for a shotgun loudspeaker.  The polar angle is θc, not θ (see Fig. 4.10). 

6dB down from on-axis

6dB down from on-axis

 

The tube has six holes that are spaced 22 cm apart from each other, a tube radius 

of 5.08 cm, and hole radii of 1.27 cm.  The simulation also assumes an anechoic 

termination at the end of the tube.  This curve offers several pieces of information, such 

as the point below which the shotgun loudspeaker becomes omnidirectional (≈ 200 Hz in 

this case).  The undulations that occur at tube resonances will be explained in the next 

chapter. 
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The following chapter also describes how shotgun tube characteristics, such as hole radii 

and overall length of the array, change the performance of a shotgun loudspeaker. 

 

 
Figure 4.12.  Beamwidth curve for a shotgun loudspeaker with an anechoic termination, 5.08 cm tube 
radius, 1.27 cm holes radius, and 6 holes spaced at 22 cm. 
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CHAPTER 5 

PRELIMINARY MODEL RESULTS AND ANALYSIS 

 

 In order to look at the effect that each physical characteristic of the shotgun tube 

has on its beamwidth, the preliminary computational model was used to compute 

multiple iterations for a given tube, while only varying a single parameter from one run to 

the next.  The simulations initially assumed an anechoic termination and a constant 

volume velocity input.  They then involved a rigid termination, open termination, and a 

passive radiator termination.  Individual figures present overlapped beamwidth curve 

plots for each group of runs.  The comparisons afforded by the plots reveal the dominant 

impact of each physical characteristic. 

 

5.1 Varying the Spacing Between the Holes 

 Figure 5.1 shows the beamwidth curves for five different shotgun loudspeakers 

with anechoic terminations.  All physical characteristics of the tube (e.g., hole radius, 

tube radius, wall thickness, and the number of elements) were held constant except for 

the spacing between the holes and the overall length.  The number of holes in the tube 

was held constant at six and the spacing of the holes was varied from 10 to 30 cm at 5 cm 

increments which also incrementally increased the length of the shotgun tube. 

 Two key effects that the spacing of the holes has on the beamwidth can be drawn 

from this figure.  First, the larger the spacing between holes, the longer the array 

becomes, which increases the directivity – especially at low frequencies above the 

omnidirectional cutoff [9].  For example, the dotted trace, which is the simulation for a 
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spacing of 10 cm, shows that the design becomes omnidirectional at approximately 300 

Hz.  Remarkably, if the spacing is increased by only a factor of two, the beamwidth at 

300 Hz becomes 150˚ which is a 60% beamwidth reduction.  However, reduction comes 

at a cost of doubling the length of the array. 

 
 

Figure 5.1.  Beamwidth curve for shotgun loudspeakers, wherein the spacing between the holes in the tube 
was varied from 10 to 30 cm at 5 cm increments.  All other variables were held constant except the overall 
tube length. 
 

Another effect that can be seen in Fig. 5.1 is the small undulations or dips that 

appear on each trace.  These undulations occur at the primary resonance frequencies 

associated with the spacing between adjacent holes inside the tube, i.e., at the frequencies 

whose half-wavelengths are equal to the spacing between the holes and their subsequent 

harmonics.  For example, in the lowest trace of Fig. 5.1 (30 cm spacing),  the spacing 

corresponds to a half-wavelength frequency of 571 Hz, which is where the first 
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undulation in the trace occurs.  The next harmonic is at 1143 Hz.  The corresponding 

undulation is a bit harder to see, but is nevertheless present. 

 

5.2 Varying the Number of Holes 

 Figure 5.2 shows the beamwidth curves for another parameter variation.  In this 

case, all physical characteristics of the tube were held constant except for the number of 

holes (e.g., hole radius, tube radius, wall thickness, and the tube length).  The length of 

the tube was held at a constant 1.5 m and the number of equally spaced holes over that 

length was varied from three to nine, at two hole increments.  Of course, this also 

changed the spacing between holes, so the effects of only adding radiating elements to 

the array were more difficult to extract. 

 
 

Figure 5.2.  Beamwidth Curve for shotgun loudspeakers with a constant tube length.  The number of holes 
in the tube was varied from three to nine at increments of two.  All other variables were held constant 
except the hole spacing. 
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 Although the beamwidth curves do not change significantly from run to run, there 

are subtle differences that are noteworthy.  First, the shotgun tube performs better at low 

frequencies with fewer holes (which also corresponds to a larger spacing between holes).    

It is well understood in array theory that as the spacing of the elements in the array 

increases, the directivity control achieved in the low-frequency region increases [9].  

However, the behavior at higher frequencies essentially converges to the same result for 

all cases and thus does not seem to be affected by the changes. 

 Another difference between the iterations is the movement of the small 

undulations that are defined by the previously discussed spacing between the holes of the 

tube.  This is simply an artifact of the spacing when holes are added but the overall length 

of the tube is held constant. 

While interesting, the interaction of hole spacing and number of elements made it 

difficult to differentiate between the effects of each.  Consequently, another simulation 

was run, as shown in Fig. 5.3.  In this simulation, the spacing between elements was held 

constant and the overall tube length was allowed to grow as the number of elements 

increased.  The fact that the hole spacing was held constant is validated by the static 

ripple seen in each run at 779 Hz. 

 In this figure, it is clear that adding holes to the tube (and consequently increasing 

the overall length) improves the performance above 200 Hz at all frequencies.  However, 

the points at which the devices become omnidirectional does not change a great deal.  

The slopes of the curves above the omnidirectional cutoff frequencies notably increase 

with increasing numbers of elements in the array. 
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Figure 5.3.  Beamwidth curve for shotgun loudspeakers with a constant hole spacing.  The number of holes 
in the tube was varied from three to nine at two hole increments.  All other variables were held constant 
except the overall tube length. 
 

 These two sets of simulations suggest that the spacing of elements primarily 

determines the performance at lower frequencies while the overall length of the array 

primarily determines the performance at higher frequencies. 

 

5.3 Varying the Tube Radius 

 Figure 5.4 shows the beamwidth curves for cases in which all physical 

characteristics of the tube were held constant except for the radius of the tube (e.g., hole 

radius, tube length, wall thickness, and the number of elements).  The tube radius was 

varied from 4 to 8 cm at 1 cm increments. 
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 It is quite clear from the figure that all simulations converge at higher frequencies, 

where the tube radius apparently has no effect on the performance of the system.  At low 

frequencies, however, the beamwidth curve continuously moves downward and decreases 

the frequency at which the tube becomes omnidirectional. 

 

 
 

Figure 5.4.  Beamwidth curve for shotgun loudspeakers, wherein the radius of the tube was varied from 4 
to 8 cm at 1 cm increments.  All other variables were held constant. 
 

 The most important effect that varying the tube radius has on the model is the 

cutoff frequency for the first cross mode of the shotgun tube, or the frequency above 

which the tube no longer behaves as a plane-wave tube.  This cutoff frequency is 

inversely proportional to the tube radius, at: 

 
t

mn
c a

cj
f

π2
= , (5.1) 
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where c is the speed of sound and jmn = 1.84 is the first zero of the derivative of the first-

order cylindrical Bessel function [10]. 

Figure 5.4 shows these cutoff frequencies for each run by vertical lines plotted at 

each cutoff frequency.  However, only two of these values fall within the range of the x-

axis limits.  The larger the tube radius, the lower the cutoff frequency becomes [which 

can be deduced from Eq. (5.1)]; therefore the line at approximately 1250 Hz is the cutoff 

for the largest tube in the simulation (8 cm radius). 

It should be noted that the cutoff frequency for the first cross-mode creates a limit 

for our model as well as the shotgun loudspeaker prototypes.  Above this frequency, the 

device will no longer perform as a well-behaved end-fire array and is therefore 

unpredictable by the analytical model. 

 

5.4 Varying the Hole Radius 

 Figure 5.5 shows the beamwidth curves for five different shotgun loudspeakers.  

All physical characteristics of the tube were held constant (e.g., tube length, hole spacing, 

wall thickness, and the number of elements) except for the radius of the holes.  The hole 

radius varied from 0.5 to 2.5 cm in 0.5 cm increments. 

The general trend of this simulation is that as the hole radius increases, the 

directional performance of the shotgun loudspeaker decreases.  Not only does the point at 

which the device becomes directional increase, but the entire curve is shifted upward.  

The key reason for this change is the effect that varying the hole radius has on the 

acoustic impedance of each hole.  Since the hole radii remain small compared to 
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wavelength themselves, they individually combine to produce monopole-like radiation at 

all frequencies of interest. 

 
 

Figure 5.5.  Beamwidth curve for shotgun loudspeakers, wherein the radius of the holes in the tube was 
varied from 0.5 to 2.5 cm in 0.5 cm increments.  All other variables were held constant. 
 

 In Chapter 4, we found that the acoustic impedance of a single hole in the tube 

can be expressed as 

 ⎟
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where a is the hole radius.  As a increases, the value of the reactive terms decreases, 

which ultimately increases the volume velocity U  produced at each hole.  ˆ

Figure 5.6 plots the values of U  at 1200 Hz for each hole and all five hole 

diameters in the Fig. 5.5 simulation.  As a progressively increases, the volume velocity 

ˆ
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increments upward by approximately 0.5 m3/s and remains relatively constant for all 

holes.  Small fluctuations correspond to the small changes between traces at 1200 Hz in 

Fig. 5.5.  A uniform value of U  across all the holes allows for a more efficient 

interaction in the far-field. 

ˆ

  

 
 

Figure 5.6.  Volume velocity for each hole at 1200 Hz.  The five traces correspond to the five traces shown 
in the Fig. 5.5 simulation. 
 

Figure 5.7 plots the value of U  at 400 Hz for each hole and the same set of 

simulations.  At this lower frequency, the volume velocity can increase in jumps of 2 or 3 

m

ˆ

3/s for each increment in a and it begins to fluctuate widely over the holes.  These 

variations correspond to the larger changes between traces at low frequencies in Fig. 5.5, 
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where the increased variation in amplitudes radiating out of the holes decreases the 

efficiency of the far-field interactions. 

 

 
 

Figure 5.7.  Volume velocity for each hole at 400 Hz.  The five traces correspond to the five traces shown 
in the Fig. 5.5 simulation. 
 

 

5.5 Varying the Termination Impedance 

 All of the previous simulations in this chapter have assumed that the shotgun tube 

was terminated with an anechoic wedge, that allows no reflections from the end of the 

tube.  The effect of changing the termination impedance will now be explored in detail. 
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5.5.1 Anechoic Termination 

 An anechoic termination requires the reflection coefficient R to be 0 for all 

frequencies.  In general, the acoustic impedance ZA of a termination is related to R by the 

following equation [18]: 

 ⎥⎦
⎤

⎢⎣
⎡
−
+

⎟
⎠
⎞

⎜
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S
c
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where S is the tube cross-sectional area.  If R is set to 0, the acoustic impedance for an 

anechoic termination can be written as 

 
S

c
Z ATA

0ρ= . (5.4) 

An anechoic termination is then simply the characteristic impedance of the plane 

wave propagating down the tube.  As the plane wave encounters the termination, it “sees” 

it as an infinitely long tube so no reflections are produced. 

Figure 5.8 shows the normalized input impedance magnitude 
⎟
⎠
⎞⎜

⎝
⎛

S
c

Zin

0ρ
 for the 

tube with 6 holes spaced at 22 cm, a 1.27 cm hole radius, a 5.08 cm tube radius, and an 

anechoic termination.  As discussed in Chapter 4, the large spike just under 200 Hz is due 

to the small masses of air resonating with the volume of air inside the tube.  The smaller 

undulations at approximately 800 and 1600 Hz are due to resonances inside the tube 

between holes, resulting from the impedance discontinuities at each opening. 

This input impedance was coupled to a constant volume velocity source and the 

volume velocities produced at each hole were calculated.  The radiated pressures were 

then found and summed in the farfield using the procedure described in Chapter 4.  

Figure 5.9 provides the resulting beamwidth curve for the configuration. 
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Figure 5.8.  Normalized input impedance magnitude for a tube with an anechoic termination.  This model 
has 6 holes spaced at 22 cm, a 1.27 cm hole radius, and a 5.08 cm tube radius. 
 

 
 

Figure 5.9.  Beamwidth curve for a tube with an anechoic termination.  This model has 6 holes spaced at 
22 cm, a 1.27 cm hole radius, and a 5.08 cm tube radius. 
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The curve shows the same small undulations at 800 and 1600 Hz that were present in the 

impedance plot.  Figures 5.10, 5.11, and 5.12 are polar plots from this same simulation 

that help visualize what is happening at these small ripples in the beamwidth curve.  

Figure 5.10 is the polar pattern at 600 Hz.  The level of the rear lobe is approximately 13 

dB lower than that of the single front lobe and oriented along the axis of the tube.  This is 

characteristic of an end-fire configuration. 

 
Figure 5.10.  Polar pattern for a shotgun tube with an anechoic termination at 600 Hz. 

 

 Figure 5.11 is the polar pattern at 800 Hz which is near the region where 

undulations are found on the beamwidth curve.  In this plot, there is an increased level in 

the rear lobe and the polar response becomes much more symmetric from front to rear.  

The increase in the rear lobe is due to spatial aliasing.  Chapter 2 explained that when the 

delay between elements in an end-fire array is equal to the time it takes the acoustic wave 

to propagate to the next element, this results in a well defined front lobe pointing in the 

direction of the delay.  In the shotgun tube design, as the frequency increases to where the 
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wavelength is twice the hole spacing, the “sampled” points along that shotgun tube where 

the holes are located look as though there have been two opposite delays (summing to 

zero) superimposed at each hole.  This effective delay in both directions consequently 

produces a rear lobe with the same magnitude as the front lobe, as seen in Fig. 5.11. 

 
Figure 5.11.  Polar pattern for a shotgun tube with an anechoic termination at 800 Hz. 
 

 As the frequency continues to increase, the effective delay to the rear begins to 

alias into a larger and larger delay which steers a split set of mirrored rear lobes away 

from 180˚, as seen in Fig. 5.12. 
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Figure 5.12.  Polar pattern for a shotgun tube with an anechoic termination at 1000 Hz. 
 

 This spatial aliasing occurs at the frequency whose half-wavelength is equal to the 

spacing between the holes, as well as integer multiples of this frequency.  If the polar 

pattern is animated over frequency, the increased rear lobes splitting into mirrored side 

lobes (as seen in Fig. 5.12) occurs at each of these frequencies and is an artifact that 

cannot be avoided. 

Returning to Fig. 5.9, another piece of information that can be gathered from the 

beamwidth curve is the point of “omnidirectionality” at approximately 200 Hz.  This 

curve will be used as our benchmark for comparison with other tube terminations. 

 

5.5.2 Rigid Termination 

 A rigid termination to the tube has a reflection coefficient of 1 for all frequencies.  

The acoustic impedance of such a condition approaches an infinite value.  For the 

numerical simulations of this work, the rigid impedance was approximated as 
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Figure 5.13 shows the input impedance for a tube with 6 holes spaced at 22 cm 

(giving an overall tube length of 1.54 m), a 1.27 cm hole radius, a 5.08 cm tube radius, 

and a rigid termination given by Eq. (5.5).  This figure shows the same Helmholtz 

resonance just below 200 Hz as seen in Fig. 5.8 with the anechoic termination, but the 

resonances between holes inside the tube are much more exaggerated now.  This is due to 

the large reflections from the end of the tube, which then continue to build on each other. 

Note that all resonance peaks (with the exception of the first peak) are 

harmonically related because the holes are all equally spaced and the length of tube from 

the last hole to the termination is also equal to the hole spacing.  Many harmonics are 

seen which are not only interactions between neighboring holes, but interactions of holes 

all along the tube and interactions with the termination as well. 

Figure 5.14 is the resulting beamwidth curve for the rigid termination 

configuration.  The undulations that occurred in the anechoic terminated case are still 

present, but they are much more exaggerated. A great disadvantage to the rigidly 

terminated case is that the reflections coming from the end of the tube create a 

superposition of an end-fire array with the delays reversed at all frequencies and therefore 

pointing in the opposite direction.  The result (which occurs at all frequencies) can be 

seen in Fig. 5.15, where the level of the rear lobe is much larger and symmetric for the 

rigidly terminated case. 
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Figure 5.13.  Normalized input impedance magnitude for a tube with a rigid termination.  This model has 6 
holes spaced at 22 cm, a 1.27 cm hole radius, and a 5.08 cm tube radius. 
 

 
Figure 5.14.  Beamwidth curve for a tube with a rigid termination.  This model has 6 holes spaced at 22 
cm, a 1.27 cm hole radius, and a 5.08 cm tube radius. 
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Figure 5.15.  Polar pattern for the rigid termination (solid trace), in comparison to the anechoic termination 
(dashed trace) at 600 Hz. 
 

 

5.5.3 Open Termination 

 The representation for an open end of a tube is a bit more complicated than the 

previous two cases.  In the low-frequency approximation, the acoustic impedance of this 

condition can be written as [18] 
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For a 5.08 cm tube radius, this expression is strictly valid up to about 1100 Hz, 

but may be used as a rough approximation above that frequency.  Figure 5.16 shows the 

normalized real and imaginary parts of the acoustic impedance for an open-ended tube of 

radius 5.08 cm radiating into free space.  The positive imaginary term indicates that there 

is an effective mass of air at the end of the tube interacting with the sound field, as 

opposed to a compliant volume of air, which would have a negative value. 
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Figure 5.16.  Normalized radiation impedance magnitude plot for an open termination.  The solid trace is 
the imaginary part and the dotted trace is the real part. 

 

Figure 5.17 shows the normalized input impedance magnitude for the tube with 

the open end.  This is very similar to the rigid condition but the resonance peak heights 

are not quite as strong.  The peaks are also shifted significantly in frequency.  This is due 

to the change in boundary condition at the end of the tube, where in the low frequency 

approximation an open end of a tube acts as a pressure release termination. 

Figure 5.18 is the resulting beamwidth curve for the open tube configuration.  It is 

clear that the tube is omnidirectional at virtually every frequency.  The only dip in the 

curve occurs at the frequency whose half-wavelength is equal to the hole spacing.  The 

polar pattern shown in Fig. 5.19 is for 815 Hz, the frequency at which the beamwidth 

curve has its lowest value.  This is the “best case scenario.” 

 

74 



 
 

Figure 5.17.  Input impedance for a tube with an open termination.  This model has 6 holes spaced at 22 
cm, a 1.27 cm hole radius, and a 5.08 cm tube radius. 
 

 
 

Figure 5.18.  Beamwidth curve for a tube with an open termination.  This model has 6 holes spaced at 22 
cm, a 1.27 cm hole radius, and a 5.08 cm tube radius. 
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Figure 5.19.  Polar pattern for the shotgun loudspeaker with an open end at 815 Hz. 

 

In order to investigate why the open ended tube performs so poorly, the volume 

velocity was plotted for all the tube holes and the end of the tube.  This is shown in Fig. 

5.20 for all 6 holes where hole number seven is the open end.  It is clear that the radiated 

pressure is much higher for the open end than any of the smaller holes along the axis of 

the tube.  Consequently, the smaller holes do not have the acoustic output to sufficiently 

interact with the radiation from the open end to create a well defined beam in any 

direction.  This mismatch between radiators in this system is a clear reason why the open 

tube termination is not an optimal choice for our design. 
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Figure 5.20.  Volume velocity for the shotgun tube holes and open termination at 500 Hz. 
 

 

5.5.4 Drone Cone Termination 

 The final termination condition that was investigated was a mounted drone cone 

(passive radiator) at the end of the tube.  A drone cone is simply a loudspeaker without its 

motor (magnet, voice coil, etc.) attached to the rear of the basket.  Figure 5.21 shows a 

photograph of a typical drone cone and Fig. 5.22 is a diagram of how the unit would be 

mounted to the shotgun tube. 
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Figure 5.21.  Photograph of sample drone cone.  Tymphany’s Peerless 830547 XLS passive radiator.  
Copyright © Tymphany Corporation. 
 

 

 
 

Figure 5.22.  Diagram of the drone cone mounted at the end of a shotgun tube. 
 

 

 It is fairly easy to model a drone cone with an equivalent circuit which can then 

be placed directly into the shotgun tube circuit.  A drone cone has a moving mass (MMD) 

which includes moving components such as the diaphragm and portions of the surround, 

a compliance (CMS) created by the surround and the spider, and a suspension resistance 

(RMS) due to lossy mechanisms [13].  Figure 5.23 shows the simple equivalent circuit for 

this system. 
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Figure 5.23.  Equivalent mechanical impedance circuit for a drone cone termination. 
 

Using this circuit, the loudspeaker acoustic impedance may be represented by 
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where a is the radius and SD is the surface area of the diaphragm ( ) [12].  Table 5.1 is 

a list of parameters used in the simulation of a drone cone termination. 

2
Daπ

 

Parameter Value Units 
RMS 0.5 kg/s 
CMS 750 μm/N 
MMS 75 g 
SD 0.0194 m2

Table 5.1.  Parameters used to model the drone cone termination. 
 

Figure 5.24 shows the normalized real and imaginary parts of the acoustic 

impedance using the values from the table.  The amplitude of the impedance above and 

below the passive radiator’s resonance frequency (approximately 21 Hz) is controlled 

primarily by two separate mechanisms.  Below this frequency, the impedance is stiffness-

controlled.  Above this frequency, and consequently for most of the audio bandwidth in 

this configuration, the impedance is mass-controlled.  In this mass-controlled region (well 
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above the resonance frequency of 21 Hz) the imaginary part increases in proportion to 

frequency, while the real part remains very small. 

 

 
 

Figure 5.24.  Normalized impedance plot for a drone cone termination.  The solid trace is the imaginary 
part and the dotted trace is the real part. 
 

To get a better idea of what this impedance plot means, it is useful to explore the 

characteristics of the reflection coefficient R produced by the drone cone [18]: 
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The result is plotted in Fig. 5.25.  It is clear that at most frequencies, the drone 

cone acts much like a rigid termination.  This makes sense, seeing that at high 
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frequencies, the mass of the diaphragm would present a large impedance barrier to the 

wave front. 

 

 
 

Figure 5.25.  Reflection coefficient for a drone cone termination. 
 

On the other hand, the driver is a damped mass-spring system and therefore has a 

well-defined resonance frequency at 21 Hz.  At that frequency, the diaphragm will be set 

in motion and a portion of the impinging wave front will be readily absorbed.  This 

resonance can be seen as a small dip in the reflection coefficient. 

 The input impedance and beamwidth curve of the shotgun tube terminated with 

the drone cone described in Table 5.1 are shown in Figs. 5.26 and 5.27, respectively.  

Both of these figures look very similar to those for the rigidly terminated model.  This is 

to be expected since the reflection coefficient for the drone cone is nearly 1 at all 

frequencies, corresponding to a nearly rigid termination. 
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Figure 5.26.  Normalized input impedance magnitude for a tube with a drone cone termination.  This 
model has 6 holes spaced at 22 cm, a 1.27 cm hole radius, and a 5.08 cm tube radius. 
 

 
 

Figure 5.27.  Beamwidth curve for a tube with an drone cone termination.  This model has 6 holes spaced 
at 22 cm, a 1.27 cm hole radius, and a 5.08 cm tube radius. 
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Figure 5.28 shows the volume velocity produced by each hole and at the drone 

cone.  Since the diaphragm is free to vibrate, the radiation from it cannot be ignored.  In 

the case of the open-ended tube, the volume velocity at the end was much higher than at 

any single hole, which significantly degraded the performance.  The volume velocity 

produced by the drone cone (hole #7 in the plot), is on the order of that produced at the 

holes along the tube.  This does not degrade the overall control of the polar pattern and 

the length of the array has been effectively increased.  It therefore produces a small 

improvement in the beamwidth performance, as shown in Fig. 5.29. 

 

 
 

Figure 5.28.  Volume velocity for the shotgun tube holes and drone cone termination at 500 Hz. 
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Figure 5.29.  Beamwidth comparison between a rigid termination (solid trace) and drone cone termination 
(dashed trace). 
 

 

5.6 Conclusions to be Drawn from this Analysis 

 We can conclude from Figs. 5.1 and 5.3 that the overall length of the array is the 

single most influential factor in the performance of the shotgun loudspeaker.  The longer 

the tube, the better the performance (as evaluated by the beamwidth curves).  Other 

factors that improve performance were (1) an increased number of holes in the tube, (2) 

increased spacing between holes, (3) increased tube radius, and (4) decreased hole radii.  

In the practical sense, the latter two points have limits.  As the tube radius increases, the 

cutoff frequency above which the first cross mode propagates decreases [as given in Eq. 

(5.1)].  A balance between desired bandwidth and directivity performance must be found 

in the design process.  Second, as the hole radius decreases, the particle velocity 
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increases.  If the velocity is increased too much, vent noise will rise, which causes 

undesirable distortion.  In addition to increased vent noise, a small hole radius will also 

reduce the efficiency of the device due to reduced radiated sound power from each hole.  

This will be discussed further in Chapter 8. 

 Finally, an anechoic termination clearly delivers the best performance when 

compared with other possible terminations discussed in this chapter.  The tradeoff is that 

an anechoic wedge needs to be on the order of ¼ the largest wavelength of interest.  In 

other words, in order for the termination to be completely anechoic down to 200 Hz, the 

wedge must be approximately 0.46 m long.  This can prove to be a problem for many 

commercial applications where space is at a premium. 
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CHAPTER 6 

PROTOTYPE DESIGN AND MEASUREMENT RESULTS 

 

 In order to validate the results from the computational model, two prototypes with 

different properties were made for the purpose of comparison.  This chapter discusses 

their design, measurement procedures and basic measurement results. 

 

6.1 Physical Characteristics of the Prototypes 

 The characteristics of the two prototypes were chosen for reasonable variation of 

the tube parameters.  Table 6.1 provides their key properties. 

 

Variable Tube #1 Tube #2 
Hole Radius 1.27 cm 0.635 cm 
Tube Radius 5.08 cm 5.08 cm 

Number of Holes 6 8 
Hole Spacing 22 cm 11.85 cm 
Tube Length 1.54 m 1.07 m 

 
Table 6.1.  List of tube parameters for each prototype. 

 

 The tube radius was the only parameter that was shared between the two 

prototypes.  It allowed a convenient sharing of the same terminations and sources.  Each 

tube was made from ABS tubing.  The holes were drilled along one side according to the 

parameters given in the table. 
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6.2 Source 

 The source for the tubes was a small loudspeaker driver mounted in a damped 

sealed box (see Fig. 6.1).  The driver was measured by a MLSSA system to extract the 

Theile/Small (T/S) parameters given in Table 6.2. The parameters describe the electrical 

and mechanical behavior of the driver and allow complete loudspeaker systems to be 

modeled using equivalent circuit techniques. 

 

 
 

Figure 6.1.  Shotgun tube source. 
 

 

Parameter Value Units 
Re 5.42 Ohms 
L1 0.152 mH 
L2 0.488 mH 
R2 16.5 Ohms 

QMS 3.03 -- 
CMS 482.8 μm/N 
MMS 9.66 g 
Fs 73.7 Hz 
Bl 6.59 Tm 

 
Table 6.2.  List of T/S parameters for the loudspeaker model. 
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6.3 Terminations 

 Two termination conditions were tested in the prototypes.  An ABS cap was used 

at the end of the tubes to act as a rigid termination.  A small foam wedge was also placed 

at the end of the tube in front of the cap to approximate an anechoic condition at higher 

frequencies.  The foam wedge is shown in Fig. 6.2. 

 

 
 

Figure 6.2.  Foam wedge placed in the end of the tubes to give an anechoic termination.  The ruler at the 
bottom of the figure is marked in centimeters. 
 

 The ABS cap and the foam wedge were each placed at the end of an impedance 

tube and the reflection and absorption coefficients were measured.  The absorption 

coefficients are shown in Figs. 6.3 and 6.4.  Appendix A discusses in detail how these 

measurements were performed and how the variables were extracted from the measured 

data. 
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Figure 6.3.  Absorption coefficient for the rigid termination. 
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Figure 6.4.  Absorption coefficient for the anechoic termination. 
 As is clear from these figures, neither the wedge nor the ABS cap performs 

perfectly.  Ideally, the rigid cap would have an absorption coefficient of zero and the 

wedge would be equal to one.  To a first approximation, the terminations suffice.  In 

Chapter 7 their imperfections are taken into account in the numerical model. 

 

6.4 Measurement Setup and Procedure 

 Figures 6.5 and 6.6 show the fully assembled long and short prototypes, 

respectively.  Once completed, each device was placed on a stand made specifically for 

the tubes, which was then mounted on a computer-controlled turntable and placed in an 

anechoic chamber, as shown in Fig. 6.7.  As can be seen in this figure, the geometric 

center of the tube coincides with the center of the turntable.  This point on the tube was 

taken as the acoustic center of rotation of the system as defined in previous related work 

[7, 8, 11]. 

 

 

 
 
 

Figure 6.5.  Fully assembled long prototype (tube #1 from Table 6.1). 
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Figure 6.6.  Fully assembled short prototype (tube #2 from Table 6.1). 
 

 

 

 
 
 

Figure 6.7.  Measurement setup in the anechoic chamber. 
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 A type 1 PCB 377A02 microphone and Larson Davis PRM426 ICP preamplifier 

were placed approximately four meters away from the center of the turntable at a height 

that was equal to the height of the holes in the tube.  The tube was rotated in angular steps 

of 5 degrees and excited with pseudorandom broadband noise.  At each position, the Data 

Physics dynamic signal analyzer shown in Fig. 6.8 calculated the transfer function 

between the input signal to the loudspeaker and the output signal from the microphone. 

 

 

 
 
 

Figure 6.8.  Data Physics dynamic signal analyzer. 
 

 This same measurement procedure was performed on both the short and long 

prototypes, with both the rigid and anechoic termination conditions.  The data was saved 

and post-processed in MATLAB where the beamwidth and frequency response of each 

prototype was calculated.  The results are given in the following section. 
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6.5 Measurement Results and Comparison 

dth was calculated for all frequencies  Once the data was collected, the beamwi

over the measurement bandwidth from 10 Hz to 2 kHz in 5 Hz increments.  Figures 6.9 

through 6.12 show the measured beamwidth curves, along with their numerical 

predictions. 

 

 

 
Figure 6.9.  Beamwidth curve comparison for the long prototype and an anechoic termination.  The solid 
trace is the measured data and the dashed trace is the predicted data. 
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Figure 6.10.  Beamwidth curve comparison for the long prototype and a rigid termination.  The solid trace 
is the measured data and the dashed trace is the predicted data. 
 

 
Figure 6.11.  Beamwidth curve comparison for the short prototype and an anechoic termination.  The solid 
trace is the measured data and the dashed trace is the predicted data. 
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Figure 6.12.  Beamwidth curve comparison for the short prototype and a rigid termination.  The solid trace 
is the measured data and the dashed trace is the predicted data. 
 

 It is clear from the figures that there is good agreement between the measured and 

the modeled data.  The discussion in Chapter 5 indicated that the plane wave assumption 

in the tube would break down at approximately 1950 Hz.  This is supported by the 

divergence from the modeled data in all four plots near this frequency. 

 To look more closely at the radiated sound fields, a few polar patterns for each 

termination condition are plotted in Figs. 6.13 through 6.18.  The frequencies 200, 800, 

and 1200 Hz were selected to show a wide range of radiation patterns.  The first is in the 

omnidirectional frequency range, the second is where the rear lobe begins to grow due to 

the spatial aliasing discussed in the previous chapter, and the last shows the mirrored rear 

lobes that are being slowly steered away from the back of the tube.  The amplitude of the 
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modeled data is not valid given that the source in this model is simply a constant value 

over frequency assigned to a volume velocity input.  In the figures, the amplitude was 

chosen to be comparable to that seen in the measured data.  The shape of the polar 

patterns is the important thing to notice.  It is again clear that there is good agreement 

between the modeled and measured data. 

 
Figure 6.13.  Polar pattern comparison for the long tube with an anechoic termination at 200 Hz.  (a) 
Measured data.  (b) Modeled data. 

(a) (b) 

 

 
Figure 6.14.  Polar pattern comparison for the long tube with an anechoic termination at 800 Hz.  (a) 
Measured data.  (b) Modeled data. 

(a) (b) 
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Figure 6.15.  Polar pattern comparison for the long tube with an anechoic termination at 1200 Hz.  (a) 
Measured data.  (b) Modeled data. 

(b) (a) 

 

 
Figure 6.16.  Polar pattern comparison for the long tube with a rigid termination at 200 Hz.  (a) Measured 
data.  (b) Modeled data. 

(a) (b) 
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Figure 6.17.  Polar pattern comparison for the long tube with a rigid termination at 800 Hz.  (a) Measured 
data.  (b) Modeled data. 

(a) (b) 

 

 
Figure 6.18.  Polar pattern comparison for the long tube with a rigid termination at 1200 Hz.  (a) Measured 
data.  (b) Modeled data. 

(a) (b) 

 

 Another noteworthy point is the on-axis frequency response of the shotgun 

loudspeaker in the far field.  In Figures 6.19 and 6.20, the on-axis response is shown for 

the long prototype with the anechoic and rigid terminations, respectively.  Again, the 
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modeled amplitude is ambiguous and is merely the result of using a constant for the 

volume velocity input to the system.  However, the shape of the curves can still be 

compared. 

 In the measured data, there seems to be a downward slope at the higher 

frequencies that is not accounted for in the model.  Many of the peaks in the measured 

results appear to show up in the model, but they are shifted slightly in frequency, which 

gives us confidence that our model is performing reasonably well for the limited 

information it has to work with.  In the next chapter, many improvements to the 

numerical model are suggested, their effects discussed, and a comparison to the measured 

data is again carried out. 

 

 
 

Figure 6.19.  On-axis frequency response of the long prototype with an anechoic termination.  The solid 
trace is the measured response and the dashed trace is the modeled response. 

99 



 

 
 

Figure 6.20.  On-axis frequency response of the long prototype with a rigid termination.  The solid trace is 
the measured response and the dashed trace is the modeled response. 
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CHAPTER 7 

NUMERICAL MODEL IMPROVEMENTS 

 

 While Chapter 6 showed that the original computational model provided 

reasonable agreement with the prototype measurements, several improvements to the 

model could increase its accuracy so as to represent the system even better.  This chapter 

describes these improvements, showing how they affect the model results, then compares 

the newly modeled data to the measured data. 

 

7.1 Losses in the Tube 

 The classical absorption coefficient for propagation, which is the sum of the 

viscous and thermal absorption coefficients, can be written as [10] 
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where η is the coefficient of shear viscosity, γ is the ratio of specific heats, and Pr is the 

Prandtl number.  The latter defined as 
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where cp is the specific heat for constant pressure and κ is the thermal conductivity.  It 

can also be shown that losses at the tube wall due to boundary layer viscosity and thermal 

conduction can be given as [10] 
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where at is the radius of the tube.  These expressions can be summed simultaneously to 

account for both types of losses in the tube: 

 wcT ααα +=  (7.4) 

The constants used in the calculations are given in Table 7.1. 

 

Parameter Value Units 
η 1.85x10-5 Pa*s 
κ 0.0263 W/m*K 
cp 1.01x103 J/kg*K 
γ 1.402 -- 
c 343 m/s 
ρo 1.21 kg/m3

 
Table 7.1.  Values for absorption loss calculations. 
 

The wavenumber can then be written in complex form to account for the losses: 

 Tjkk α−=
~ . (7.5) 

A complex sound speed c~ then follows as 

 
k

c ~~ ω
= . (7.6) 

 Figure 7.1 shows how the magnitude of the speed of sound changes over 

frequency.  The x-axis is shown here on a log scale to exaggerate the curve.  As 

frequency increases, the value for c~ asymptotically reaches the standard value of 343 m/s 

used in the original model.  A close look at the y-axis shows that even at the lowest 

frequencies, c~ does not vary too far from its value of 343 m/s, so the effect on the 

resulting beamwidth curve is expected to be minimal. 
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Figure 7.1.  Magnitude of the new complex speed of sound, c~ . 
 

Figure 7.2 shows the beamwidth curve for the model revised for propagation 

losses, in comparison to the preliminary model.  As anticipated, the two curves lie 

directly on top of each other and therefore no change is observed in the beamwidth 

curves.  However, there is a small change in the on-axis frequency response as seen in 

Fig. 7.3.  The losses result in a small downward trend as frequency increases. 
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Figure 7.2.  Beamwidth curve comparison to preliminary model. 
 

 
 

Figure 7.3.  On-axis frequency response comparison to preliminary model. 
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7.2 New Source Model 

 Another improvement to the model results by representing the source loudspeaker 

with a complete equivalent circuit instead of as a constant volume velocity source.  

Figure 7.4 shows a low-frequency equivalent circuit for a loudspeaker in a sealed box 

radiating into free space [13].  It is represented in the acoustic impedance domain.  The 

radiation terms, MAR and RAR, are the imaginary and real parts, respectively, of ZAR (the 

acoustic radiation impedance seen by the driver diaphragm).  The other elements of the 

circuit can be connected to the shotgun tube circuit to represent the loudspeaker coupled 

to the shotgun tube (see Fig. 7.5). 

 

 

 
 
 
Figure 7.4.  Equivalent acoustic impedance circuit for a loudspeaker. 
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Figure 7.5.  Equivalent acoustic impedance circuit for the loudspeaker coupled to a shotgun tube. 
 

This type of circuit is typically only valid to approximately 010ω  (where 0ω  is the 

3 dB down point as the low frequency response begins to roll off), or Hz1000≈ in our 

case, but can give a good approximation to the acoustic system beyond this limit [12]. 

Table 7.2 is a list of the T/S parameters for the driver used in the prototypes and 

were measured using the MLSSA system.  A value of 0.1 Ω for Rg is a common output 

impedance for many signal generators and power amplifiers. 

 

Parameter Value Units 
Re 5.42 Ohms 
Le 0.152 mH 

QMS 3.03 -- 
CMS 482.8 μm/N 
MMS 9.66 g 
Fs 73.7 Hz 
Bl 6.59 Tm 

 
Table 7.2.  List of the T/S parameters used in the loudspeaker model.  The driver was supplied by 
Soundtube Entertainment. 
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Using this circuit, we can solve for the acoustic input impedance at the 

loudspeaker terminals and use the following relation to find the electric input impedance 

ZEI: 

 ( ) ( )
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2

2
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where ZVC is electric impedance of the voice coil elements, ZA,VC is the acoustic 

impedance of the voice coil element, and ZAI is the acoustic input impedance. 

Figure 7.6 shows the modeled electric input impedance of the loudspeaker 

radiating into free-space as the dashed trace.  It has the characteristic single peak for a 

sealed enclosure system and shows a slowly rising impedance in the high frequency 

region due to the inductance of the voice coil. 

 

 
 

Figure 7.6.  Electric input impedance comparison for the loudspeaker radiating into free space (dashed 
trace) and into a shotgun tube (solid trace). 
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The solid trace is the modeled electric input impedance for the same loudspeaker 

radiating into a shotgun tube with 6 holes, 5.08 cm tube radius, 22 cm hole spacing, 1.27 

cm hole radius, and an anechoic termination.  The main peak has been shifted down due 

to mass loading on the driver and an additional peak shows up at approximately 200 Hz.  

The latter corresponds to the resonance frequency found for the hole air masses 

resonating with the volume of air inside the tube per hole.  The smaller peaks above this 

are due to other tube resonances as seen in previous tube acoustic input impedance plots. 

Using the circuit, we can solve for the volume velocity into the tube assuming a 

given voltage as an input to the loudspeaker terminals.  To simplify the derivation, we 

split the circuit into sections and find the acoustic impedance of each portion.  First, the 

acoustic impedance associated with the loudspeaker motor (voice coil) is 
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The loudspeaker’s mechanical system may be represented by 
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where MMD is defined as 
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Finally, the acoustic impedance of the enclosure may be expressed as [13] 
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The total acoustic impedance of the system is simply the sum of all terms. 

 ARBADAVCAA ZZZZZ +++= ,,, , (7.14) 

where ZAR is the acoustic input impedance of the shotgun circuit developed earlier, as 

shown in Fig. 7.5.  Finally, the volume velocity through the circuit can be represented by 
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where ZVC is the electric impedance of the voice coil given as 
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and is the input voltage applied to the loudspeaker terminals. gê

Figure 7.7 shows the resulting volume velocity output from the loudspeaker 

model.  The trace looks similar to the electric input impedance, which is common in 

loudspeaker design.  The volume velocity was then imported into the shotgun tube model 

and the beamwidth curve was computed. 

Figure 7.8 shows the results and compares it to the benchmark curve.  Once again, 

the curve does not change at all.  To explore why no change was observed, each hole was 

examined more closely.  The individual volume velocities were of particular interest, 

seeing that U  was the variable changed between models. ˆ
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Figure 7.7.  Volume velocity output from the loudspeaker into the shotgun tube. 
 

 
 

Figure 7.8.  Beamwidth curve comparison to preliminary model. 
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Figure 7.9 shows the volume velocities at each hole for the two different 

simulations where a constant value was used for the input, as opposed to calculating the 

volume velocity directly through the loudspeaker model.  The curves appear to be quite 

different, but if the ratio of the velocities at each hole is calculated, it is a constant 13.5 

for all holes.  A simple scale factor was found for any and all inputs.  In other words, no 

matter what the input, the ratio of velocities along the tube (or the shape of the curve as 

shown in Fig. 7.9) stays constant.  This results in the same beamwidth curve for all 

simulations within reasonable limitations. 

 

 
 

Figure 7.9.  Volume velocity comparison to preliminary model. 
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A more promising improvement in its new analytical model is the ability to better 

predict the on-axis frequency response of the device.  Figure 7.10 shows the comparison 

between the preliminary model and the improved model.  There is a well-defined 

downward slope to the new modeled response that looks very similar to that seen in the 

measured data of Chapter 6. 

 

 
 

Figure 7.10.  On-axis frequency response comparison to preliminary model. 
 

 

7.3 Air Gap Compensation 

 Mounting the loudspeaker directly to the shotgun tube presented a minor problem 

when fabricating the prototypes.  The final design had a small gap between the driver 

diaphragm and the beginning of the tube.  Figure 7.11 provides a diagram of the design.  
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As previously mentioned, a waveguide circuit can be used to model a section of tube with 

a constant cross-sectional area.  As shown in Fig. 7.12, an additional waveguide can then 

be added to the existing shotgun tube circuit between the source and the tube to 

compensate for the small expansion. 

 

 

 
Air Gap 

 
 

Figure 7.11.  Diagram of the air gap between the loudspeaker and the tube. 
 

 

 
 
 

Figure 7.12.  Simplified circuit to show placement of compensating air-gap waveguide. 
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As discussed in Chapter 4, the values of Zg1 and Zg2 are, 
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where Sg is the cross-sectional area of the air gap and Lg is the width of the gap. 

Again, no change in the polar response of the tube results from this modification.  

However, the on-axis frequency response should show a slight downward slope at the 

high-frequency end of the spectrum due to the first order low-pass filtering effects of the 

gap.  This can be seen in Fig. 7.13 where a constant volume velocity source has been 

reintroduced into the model to isolate the effects of the air-gap only. 

 

 
 

Figure 7.13.  On-axis frequency response comparison to preliminary model. 
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7.4 Termination Impedance Values 

 The modification to the model that was expected to make the most noticeable 

change to the radiation patterns of the tube was the use of actual measured termination 

impedances for the anechoic and rigid terminations of the prototypes.  The values were 

used in the model to calculate the new beamwidth curves.  The absorption coefficient α  

and termination impedance ZAT of a given termination are determined from the 

relationships [18], 

 21 R−=α  (7.19) 

and 
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where R is the complex pressure-amplitude reflection coefficient evaluated at the 

termination. 

Figure 7.14 shows the measured absorption coefficient for the anechoic 

termination used in the prototype measurements.  Between 400 and 900 Hz the 

performance of the wedge begins to break down.  Below 200 Hz, it is clearly not 

anechoic at all.  Figure 7.15 shows the normalized real and imaginary parts of the 

acoustic impedance for the anechoic wedge.  The real part behaves well for much of the 

bandwidth, where it has a value of approximately 1, and the imaginary part goes to 0.  

Given that these values are normalized, this means that the wedge presents an acoustic 

impedance of Sc0ρ  at most frequencies, which is the characteristic impedance for a 

plane wave. It therefore acts as a truly anechoic termination at these frequencies, so we 

would expect little change in the originally predicted beamwidth curve. 
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Figure 7.14.  Absorption coefficient for the anechoic termination. 
 

 
 

Figure 7.15.  Normalized real and imaginary parts of ZAT for the prototype anechoic termination. 
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Conversely, at low frequencies the imaginary part of the impedance is negative.  

This corresponds to an acoustic compliance and does not behave in the same manner as 

an anechoic wedge.  Consequently, the original model may differ more significantly at 

these frequencies when compared to the new model. 

Figure 7.16 is the beamwidth curve comparison between the models with and 

without the measured reflection coefficient built into the code.  Again, all previously 

discussed improvements to the model were removed to isolate the effects of the 

termination impedances only.  As expected, the curves show disagreement in the very 

low frequencies and in the 400 to 900 Hz regions where deviations from α ≈ 1 were seen 

in Fig. 7.14.  The performance is actually improved at low frequencies, but larger 

undulations in the mid-band region begin to show up, indicating the nonanechoic nature 

of the termination. 

 
 

Figure 7.16.  Beamwidth curve comparison to the preliminary model for the anechoic termination. 
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 Figure 7.17 shows the change in the on-axis frequency response when using the 

measured value for the termination impedance.  Notice that the only significant areas of 

change are where the wedge does not have anechoic properties (see Fig. 7.14). 

 

 
 

Figure 7.17.  On-axis frequency response comparison to preliminary model with the anechoic termination. 
 

 The reflection coefficient was also measured for the rigid termination consisting 

of a plastic end cap.  Using Eqs. (7.19) and (7.20), the absorption coefficient and the 

acoustic impedance were calculated, as well.  Figure 7.18 shows the absorption 

coefficient for this condition, which is very small at all measurement frequencies. 

 Looking at the normalized real and imaginary parts of the acoustic impedance 

shown in Fig. 7.19, it is clear that the termination is acting as an acoustic compliance as a 

first-order approximation.  This occurs at all frequencies, as shown by the negative value 
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of the imaginary part in the plot, as opposed to only the lowest frequencies as was the 

case for the anechoic wedge. 

The beamwidth curves (Fig. 7.20) and the on-axis frequency response curves (Fig. 

7.21) show almost no difference between the original and modified models for the rigidly 

terminated tube.  Some of the resonance peaks are sharpened a bit when using the 

measured value of the reflection coefficient, but there is still overall agreement between 

the two results. 

 

 

 
 

Figure 7.18.  Absorption coefficient for the rigid termination. 
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Figure 7.19.  Normalized real and imaginary parts of ZAT for the prototype rigid termination. 
 

 
 

Figure 7.20.  Beamwidth curve comparison to the preliminary model for the rigid termination. 
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Figure 7.21.  On-axis frequency response comparison to the preliminary model for the rigid termination. 
 

 

7.5 Mutual Radiation Impedances 

 Yet another improvement to the analytical model was to account for mutual 

radiation impedances between holes.  Originally, we assumed that the only interaction 

between holes was inside the tube because it was thought that the mutual radiation 

impedances would be quite small compared to internal and self radiation impedances. 

 Several references were found on mutual impedances of circular discs mounted in 

an infinite rigid baffle, but H.P. Neff’s paper was the most straightforward [19].  Neff 

gives an expression for the real and imaginary parts of the mutual impedance as 

 ( )121202112 jXRcaaZ += ρπ , (7.21) 
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where 

 ( ) ( ) ( )
kd

kdkaJkaJR sin2 211112 = , (7.22) 

 ( ) ( ) ( )
kd

kdkaJkaJX cos2 211112 = , (7.23) 

and where a1 and a2 are the radii of the holes and d is the center-to-center spacing 

between them. 

 The standard simulation was run for the shotgun tube with six holes, 22 cm hole 

spacing, 1.27 cm hole radii, and a 5.08 cm tube radius, but in this case the Z12 term for 

each pair of holes was added to the expression for the hole radiation impedance given in 

Eq. (4.27) to account for hole coupling outside the tube. 

Figure 7.22 plots the real and imaginary parts of the mutual radiation impedance 

for first hole (closest to the loudspeaker) due to the other five holes.  As was expected, 

the amplitudes in this plot are approximately six orders of magnitude lower than the hole 

self radiation impedances, which leads us to expect no appreciable change in the 

beamwidth curve.  The two curves were plotted and no apparent change could be seen.  

The on-axis frequency response was also unaffected. 
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Figure 7.22.  Real and imaginary parts of the total mutual radiation impedance for hole #1. 
 

 

7.6 Improved Model vs. Measurement Comparison 

 Figures 7.23 and 7.24 show the beamwidth comparisons for the preliminary and 

the improved numerical model (which incorporates all refinements described in this 

chapter) of the long prototype with both the anechoic (Fig. 7.23) and rigid (Fig. 7.24) end 

conditions.  The improved model curves in these plots incorporate all improvements to 

the numerical model discussed in this chapter. 

Figures 7.25 and 7.26, on the other hand, plot the beamwidth curve of the 

improved numerical model against the measured data.  When compared to the figures 

seen in Chapter 6, there is not a large change from one model to the other.  The small 

changes are attributed primarily to the measured reflection coefficients of the 

terminations, as previously discussed. 
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Figure 7.23.  Beamwidth curve comparison for the improved and preliminary numerical model of the long 
prototype with the anechoic termination.  The improved model incorporates all model refinements 
discussed in this chapter. 

 
 

Figure 7.24.  Beamwidth curve comparison for the improved and preliminary numerical model of the long 
prototype with the rigid termination.  The improved model incorporates all model refinements discussed in 
this chapter. 
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Figure 7.25.  Beamwidth curve comparison for the long prototype with an anechoic termination.  The solid 
trace is the measured data and the dashed trace is the predicted data from the improved numerical model. 
 

 
 

Figure 7.26.  Beamwidth curve comparison for the long prototype with a rigid termination.  The solid trace 
is the measured data and the dashed trace is the predicted data from the improved numerical model. 
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 There are several other important changes that come out of the new model.  First, 

the amplitude of the polar patterns is now a calculated value from the input voltage 

applied to the loudspeaker terminals.  Both the measured data and the modeled data in the 

following figures have an input voltage of 5 volts.  Figures 7.29 through 7.31 are polar 

patterns for the long prototype with an anechoic termination and Figs. 7.32 through 7.34 

are for the same prototype with a rigid termination.  These plots are for the same 

frequencies presented in Chapter 6.  As expected from the beamwidth curves shown 

previously, there is not a large change in the shape of the polar patterns for either of the 

conditions. 

 

 

(b) (a) 

Figure 7.27.  Polar pattern comparison for the long tube with an anechoic termination at 200 Hz.  (a) 
Measured data.  (b) Modeled data. 
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(a) (b) 

Figure 7.28.  Polar pattern comparison for the long tube with an anechoic termination at 800 Hz.  (a) 
Measured data.  (b) Modeled data. 
 

 

(b) (a) 

Figure 7.29.  Polar pattern comparison for the long tube with an anechoic termination at 1200 Hz.  (a) 
Measured data.  (b) Modeled data. 
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(b) (a) 

Figure 7.30.  Polar pattern comparison for the long tube with a rigid termination at 200 Hz.  (a) Measured 
data.  (b) Modeled data. 
 

 

(b) (a) 

Figure 7.31.  Polar pattern comparison for the long tube with a rigid termination at 800 Hz.  (a) Measured 
data.  (b) Modeled data. 
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(b) (a) 

Figure 7.32.  Polar pattern comparison for the long tube with a rigid termination at 1200 Hz.  (a) Measured 
data.  (b) Modeled data. 

 

The most significant improvements we get from the new models are much more 

accurate frequency response predictions.  Figures 7.35 and 7.36 show on-axis frequency 

response comparisons for the anechoic termination (Fig. 7.35) and the rigid termination 

(Fig. 7.36).  The amplitudes are much closer than the older models suggest and the shapes 

of the curves lines up much better with the measured data.  Once the frequency reaches 

the point where the half-wavelength is equal to the spacing between holes (approximately 

800 Hz in this case) there is a discrepancy between the modeled and measured results that 

requires further investigation.  It cannot be ignored, however, since it shows up in all 

frequency response plots. 
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Figure 7.33.  Measured on-axis frequency response comparison for the measured data (dashed trace) and 
the improved model data (solid trace) both with an anechoic termination. 
 

 
 

Figure 7.34.  Measured on-axis frequency response comparison for the measured data (dashed trace) and 
the improved model data (solid trace) both with a rigid termination. 
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 Finally, the electric input impedance of the system is another value that can be 

extracted from the new model that was not available in the older model.  The electric 

impedance of the driver mounted in the sealed box radiating into free-space and into the 

shotgun tube was measured using the MLSSA system.  Figure 7.37 shows the measured 

impedance of the two setups and Fig. 7.38 shows the modeled impedance of the two 

configurations.  It is clear that there is good agreement between the two cases.  The main 

discrepancy is the height of the peaks resulting from the additional loading the shotgun 

tube places on the driver.  The measured peaks are smaller in amplitude, which may 

indicate that our model of the losses in the tube and the loudspeaker enclosure are not 

adequate. 

 

 
 

Figure 7.35.  Measured input impedance comparison for the loudspeaker radiating into free-field (dashed 
trace) or into the shotgun tube (solid trace). 
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Figure 7.36.  Modeled input impedance comparison for the loudspeaker radiating into free-field (dashed 
trace) or into the shotgun tube (solid trace). 
 

 

7.7 Improved Model Summation 

 This chapter has detailed improvements made to the numerical model to enhance 

the agreement between the predicted and measured data.  It is clear that including the 

losses in the tube, a loudspeaker source model, an air-gap model, and the mutual 

radiation impedance terms do not have a substantial effect on the predictive capabilities 

of the analytical model, when looking only at the beamwidth curve.  Including measured 

termination impedances and inserting them into the model, however, does have a 

noticeable impact that improves the agreement between the predicted and measured 

results. 
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 However, when considering the on-axis frequency response the loudspeaker 

driver and air-gap models were quite important.  Inserting the loudspeaker representation 

into the numerical model allowed us to predict the electric input impedance, the on-axis 

frequency response, and the polar pattern amplitudes for comparison with the measured 

data.  The air-gap model gave us the slope we desired due to the filtering of the expansion 

cavity near the loudspeaker diaphragm. 
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CHAPTER 8 

FURTHER INVESTIGATIONS 

 

 Once the numerical model was proven to be reasonably accurate, there were a few 

remaining variations of the shotgun tube that were still of interest.  Some of the 

variations, however, involved prototypes that could not presently be fabricated but 

numerical models were found to offer valuable information.  The agreement seen 

between measured and modeled results in the previous chapters provided a confidence 

level in the numerical predictions given in this chapter. 

 

8.1 Hole Radius Variations 

 One variation of the shotgun tube involved varying the hole radius along the tube 

axis.  A benchmark hole radius was chosen to be 1.27 cm (the radius used in the long 

prototype) and the following variations will be compared to the response found with this 

hole radius. 

 Figure 8.1 shows a beamwidth comparison for three types of hole variations.  The 

solid trace is for a hole radius of 1.27 cm for all six holes.  The dashed trace is for a tube 

with a mean hole radius of 1.27 cm, but the hole radii ascend in value along the tube axis 

from nearest the loudspeaker 0.52 cm to 2.02 cm nearest the termination.  The dotted 

trace has the same mean and range of radii values, but the radii descend from 2.02 cm to 

0.52 cm.  In this comparison, there is a well-defined offset from the original 

configuration in the positive direction in both cases which is undesirable. 
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Figure 8.1.  Beamwidth comparisons for variable hole radii.  The solid trace is for a constant hole radius of 
1.27 cm.  Both ascending (dashed trace) and descending (dotted trace) radii are also shown with radii 
ranging from 0.52 to 2.02 cm, with a mean value of 1.27 cm.  The beamwidth range has been zoomed in to 
better show the difference between simulations. 
 

 In order to inspect more closely what is happening to the polar pattern, Figs. 8.2, 

8.3, and 8.4 were also generated.  These plots show the polar angle on the x-axis (θ = 0˚ 

is on-axis) versus frequency on the y-axis.  The color corresponds to the pressure 

amplitude computed at a given angle and frequency.  Figure 8.2 is our benchmark of a 

constant hole radius.  The front lobe width can be estimated by doubling the width of the 

high amplitude sound that starts at 0˚ and stops at the first dip.  In this case it is very well 

defined and follows a very distinct curve. 

 Figures 8.3 and 8.4, however, are much less defined.  The deep nulls that occur 

with a constant radius seem to smear across the polar angle which then widens the lobes.  

This is perhaps more clear in Fig. 8.5, where the polar patterns of all three configurations 

are plotted side-by-side for 600 Hz, where the smearing effect is quite obvious. 
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Figure 8.2.  Polar angle vs frequency plot for the constant hole radii configuration.  Hole radius is 1.27 cm. 
 

 
Figure 8.3.  Polar angle vs frequency plot for the ascending hole radii configuration.  Mean radius is 1.27 
cm, minimum radius is 0.52 cm, and maximum radius is 2.02 cm. 
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Figure 8.4.  Polar angle vs frequency plot for the descending hole radii configuration.  Mean radius is 1.27 
cm, minimum radius is 0.52 cm, and maximum radius is 2.02 cm. 
 

 

 

 (a) (b) (c) 
 

Figure 8.5.  Polar plot comparison at 600 Hz.  (a) Constant hole radius.  (b) Ascending hole radius.  (c) 
Descending hole radius. 
 

 

137 



Figure 8.6 shows the on-axis frequency responses for same three configurations of 

the shotgun tube.  In this case, all three exhibit the same general trends in behavior and 

therefore little useful information can be gleaned from the figure. 

 

 
 

Figure 8.6.  On-axis frequency response comparison for variable hole radii.  The solid trace is for a 
constant hole radius of 1.27 cm.  Both ascending (dashed trace) and descending (dotted trace) radii are 
centered around 1.27 cm radius with a range of 0.52 to 2.02 cm. 
 

 

8.2 Hole Impedance Variations 

 Varying the hole impedance by way of resistive materials or small passive 

diaphragms was another variation on the shotgun tube that proved interesting.  When the 

resistances of the holes are varied along the tube, a resistance profile is created.  

Similarly, when small diaphragms are placed over each hole and the diaphragm mass is 
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varied along the tube (which shifts the resonance frequencies of the diaphragms), a mass 

profile is created.  Both of these configurations are explored below. 

 

8.2.1 Resistance Profiles 

 A set of simulations was first run to investigate the effect that adding resistance 

profiles has on the beamwidth and frequency response.  The first run was our benchmark 

set of data where no resistance was added to any holes.  This is shown as the solid trace 

in Fig. 8.7.  The remaining two traces in the figure are for ascending resistance (dashed 

trace) and descending resistance (dotted trace) profiles.  The ascending and descending 

simulations had a resistance range from 0 to 105 kg/s, with a mean of 5*104 kg/s.  This 

figure shows that incorporating an ascending resistance profile worsens the beamwidth 

curve at all frequencies.  Conversely, applying a descending resistance profile actually 

improves the performance by a sizeable amount. 

 Figure 8.8 shows the polar plots of all three configurations at 600 Hz.  The left 

plot (no resistance) and the center plot (ascending resistance profile) are quite similar in 

where the nulls occur, but adding the ascending profile seems to fill in the nulls as we 

saw in the variable hole radii simulations in the previous section.  This smearing of the 

polar pattern effectively widens the lobes and therefore decreases directional 

performance. 
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Figure 8.7.  Beamwidth comparison for hole resistance profiles.  The solid trace is for no added resistance.  
Both ascending (dashed trace) and descending (dotted trace) resistance profiles have a range from 0 to 105 
kg/s.  The beamwidth range has been zoomed in to better show the difference between simulations. 
 

 The right plot in Fig. 8.8, however, not only shares the deep nulls that zero 

resistance shows, but the nulls are also shifted a small amount toward the on-axis position 

(0˚).  When the tube is terminated by an anechoic wedge, as it is in these simulations, 

there is a general decrease in hole volume velocity for holes farther from the source.  The 

decrease is due to propagation losses and internal reflections at impedance 

discontinuities.  The descending resistance profile reduces the output from the holes 

closest to the source by a larger amount, thus creating closer volume velocity matching 

for the outputs of all holes.  The resulting increase in interference efficiency then 

improves the far field beamwidth results. 
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(c) (a) (b)  
Figure 8.8.  Polar plot comparison at 600 Hz.  (a) No added resistance.  (b) Ascending resistance profile.  
(c) Descending resistance profile. 
 

 Figure 8.9 shows the on-axis frequency response for all three simulations.  In this 

case a noticeable difference in the low-frequency response is shown.  As resistance is 

added to the holes, the output is reduced by a substantial amount and the response 

somewhat smoothed.  Although the smoothing effect may be desirable, the reduced 

output may be detrimental in commercial applications where power amplification can be 

expensive. 
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Figure 8.9.  On-axis frequency response comparison for resistance profiles.  The solid trace is no added 
resistance.  Both ascending (dashed trace) and descending (dotted trace) resistance profiles have a range 
from 0 to 105 kg/s. 
 

 

8.2.2 Mass Profiles 

 Another configuration of interest was the mass profile, which is a bit more 

complicated than simply increasing the acoustic resistance of an orifice.  A mass profile 

is created by inserting a small diaphragm in each hole.  This can be modeled using the 

same circuit used to model a drone cone termination in combination with the shotgun 

equivalent circuit.  This combined circuit is shown in Fig. 8.10.  This is basically a mass-

spring system with internal damping.  The values used in this simulation are given in 

Table 8.1.  The variable mass of the system is what is of primary interest here. 
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Figure 8.10.  Equivalent circuit for a shotgun tube with diaphragms over the holes. 
 

 

Parameter Value Units 
RMS 0.106 kg/s 
CMS 1893 μm/N 
MMD variable kg 

Sd 6 cm2

 
Table 8.1.  Parameters used to model the diaphragms placed in tube holes to create the mass profiles. 
 

 As the mass varies, the resonance frequency of the system varies inversely.  

Figure 8.11 shows the reflection coefficient calculated at each hole looking into the 

diaphragm (given by Eq. (7.20)) when the mass is varied from 0.5 to 2 grams.  All other 

parameters describing the system are given in Table 8.1.  In this figure, it is clear that 

there is a well-defined resonance for each diaphragm where the reflection coefficient is at 

a minimum.  For a mass of 2 grams, the resonance frequency is approximately 70 Hz.  It 

slowly moves up as the mass is decreased, reaching a value of about 130 Hz for a mass of 

0.5 grams.  This variable resonance of the system caused by the addition or subtraction of 

mass is the focus of this simulation.  Figure 8.12 shows the beamwidth curves for three 

different configurations: no diaphragms in the holes, an ascending mass profile, and a 

descending mass profile. 
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Figure 8.11.  Reflection coefficient calculated at each hole using a mass profile.  The mass of each 
diaphragm was varied from 0.5 to 2 grams. 
 

 
 

Figure 8.12.  Beamwidth comparison for mass profiles.  The solid trace is for 0 mass.  Both ascending 
(dashed trace) and descending (dotted trace) mass profiles have a range of 0.5 to 2 grams.  The beamwidth 
range has been zoomed in to better show the difference between simulations. 
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 The first impression from Fig. 8.12 is that adding a mass profile into the holes 

only improves performance.  Both ascending and descending configurations result in a 

narrower beamwidth and the descending profile does much better than either of the other 

two simulations below 200 Hz. 

 The polar patterns at 600 Hz are shown in Fig. 8.13 for comparison.  As seen in 

the resistance profiles, an ascending mass profile smears the energy over the polar angle 

and fills in the nulls in the left plot, where no diaphragms are mounted in the holes.  

Although this smearing occurs, the main lobe is still substantially narrowed, which results 

in the improved beamwidth curve.  The plot shown on the right of Fig. 8.13 shows many 

improvements.  The width of the front lobe is narrowed even more than that seen in the 

ascending profile.  Another improvement that has not been seen in any simulations thus 

far is the narrowing of the side and rear lobes, as well. 

While this seems to show that using a mass profile improves the overall 

performance of the shotgun tube, a closer look at the amplitudes of the center and right 

plots in this figure raises a concern.  The main lobe may be narrower, but the amplitude is 

drastically reduced from the benchmark simulation on the left. 

Seeing this drastic reduction in amplitude led to the plots shown in Fig. 8.14.  

This figure shows the on-axis frequency responses found for each of the three 

simulations.  It is obvious that both the ascending and descending profiles lead to a 

staggering decrease of approximately 35 dB across the entire frequency range.  In the 

discussion of the resistance profiles, it was stated that a reduction of even 10 dB is 

detrimental to commercial applications, where input power can be expensive.  The 

reductions seen here would then be quite unacceptable. 
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(b) (c) (a) 

 
Figure 8.13.  Polar plot comparison at 600 Hz.  (a) 0 mass.  (b) Ascending mass profile.  (c) Descending 
mass profile. 
  

 

 
 

Figure 8.14.  On-axis frequency response comparison for mass profiles.  The solid trace is for 0 mass.  
Both ascending (dashed trace) and descending (dotted trace) mass profiles have a range of 0.5 to 2 grams. 
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8.3 Sensitivity Investigations 

 Although many of the previously discussed configurations improved the 

performance seen on the beamwidth curves, it was shown that the amplitude of the on-

axis frequency response suffered.  This led to the definition of a relative sensitivity 

variable, G, defined as 
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where sp̂  is the on-axis pressure amplitude magnitude of a given shotgun tube 

configuration and ffp̂  is the far field on-axis pressure amplitude magnitude of the same 

driver mounted in a sealed sphere [20] (containing the same volume of air as the 

prototype source enclosure) and radiating into free space. The latter is based on the same 

voltage input as used in the shotgun loudspeaker.  The value was calculated for three 

frequencies spread throughout the frequency range, for seven different configurations.  

The input voltage was set to one volt and the on-axis pressure value at one meter was 

calculated from the far-field pressure found by interpolating the value found at ten 

meters.  This was done so that the original value calculated at ten meters was in the 

geometric and acoustic far field of the shotgun tube.  The results are shown in Table 8.2. 

 The first row shows the results for the standard shotgun tube that has been our 

benchmark for comparison throughout this chapter.  The remaining six configurations are 

the variations on the shotgun tube discussed in the previous sections.  It is clear from this 

table that a mass profile reduces the sensitivity drastically and is therefore not 

recommended.  At low frequencies, using a variable hole radius or applying a resistance 

profile along the tube does not change the sensitivity a substantial amount.  At the mid 
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and high frequencies, however, the sensitivity begins to drop.  When compared to the 

standard shotgun tube, though, the difference in sensitivity remains fairly uniform. 

 

 G (300 Hz) G (1000 Hz) G (1600 Hz) 

Standard Shotgun Tube -4.3 -16.8 -22.4 

Ascending Hole Radii -5.4 -16.8 -22.6 

Descending Hole Radii -3.2 -16.7 -22.1 

Ascending Resistance -6.7 -17.2 -22.5 

Descending Resistance -5.9 -17.1 -22.4 

Ascending Mass -36.0 -49.7 -55.1 

Descending Mass -35.9 -49.8 -54.9 
 
Table 8.2.  Relative sensitivity values for seven configurations with an input of one volt at one meter for 
three frequencies. 
 

When the beamwidth curves, on-axis frequency response, and sensitivity are all 

taken into account, it seems that a shotgun tube with a descending resistance profile 

applied to the holes is the best configuration shown thus far.  Figure 8.7 showed that this 

profile has a much improved beamwidth curve from the standard shotgun tube.  Table 8.2 

shows that the sensitivity is no worse than the standard shotgun tube.  Finally, Fig. 8.15 

provides a plot of the on-axis frequency response for the descending resistance profile 

tube compared to the loudspeaker radiating into free-space mounted in a sphere 

containing a volume equal to that of the shotgun tube source model.  While this resistance 

profile response is not as high as the free-field source response, the exceptional 

directivity control makes it an excellent option for applications requiring highly 

directional sources. 
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Figure 8.15.  On-axis frequency response comparison for the descending resistance profile (solid trace) and 
a loudspeaker radiating into free-space (dashed trace). 
 

 

8.4 High-Frequency Source Integration 

 The original goal of this research was to design a device that could be used to 

control the beamwidth of sound at low frequencies.  The work thus far has shown that 

this can be accomplished with a shotgun tube.  However, if such a device cannot be 

integrated with a directional high-frequency radiator, the usability of the shotgun tube in 

the commercial market decreases. 

 In order to investigate whether or not a combination of low and high-frequency 

drivers could be accomplished, a compression driver and horn were mounted on the end 

of each prototype.  The compression driver shown in Fig. 8.16 had a sensitivity of 105 dB 
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with a one watt input and measured at one meter from the mouth between 250 and 4 kHz.  

The driver was mounted to the exponential horn shown in Fig. 8.17.  The arrangement 

was then mounted to the end of each shotgun tube as shown in Fig. 8.18. 

 

 
Figure 8.16.  High-frequency source.  A University Sound ID75 compression driver. 
 

 

 
Figure 8.17.  High-frequency horn attached to the compression driver.  A Selenium HL14-25 exponential 
horn. 
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Figure 8.18.  Long shotgun tube with high-frequency compression driver mounted on the end. 

 

A close look at Fig. 8.18 reveals a crossover mounted to the top of the low-

frequency source behind the shotgun tube.  A close-up of the crossover is shown in Fig. 

8.19.  The impedance and frequency response of each driver was measured and imported 

into LSPCad Professional, to produce the crossover design.  The measured frequency 

response of the full-bandwidth long prototype is shown in Fig. 8.20. 

 

 
Figure 8.19.  Crossover for the integration of a high-frequency compression driver with the shotgun tubes. 
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Figure 8.20.  Measured on-axis frequency response of the full-bandwidth prototype. 
 

 The beamwidth curve was measured in the same manner as the low-frequency 

prototypes themselves, where a single microphone is held stationary in the far-field of the 

device.  The horn-loaded shotgun tube was then rotated on a turntable and the 6 dB down 

points were found.  The beamwidth curves for the long prototype with and without the 

high-frequency driver are plotted in Fig. 8.21.  Similar measurements for the short 

prototype are plotted in Fig. 8.22. 

A few things are clear from these two plots.  First, as expected, the crossover 

region (centered around 1300 Hz) shows wild fluctuations that are a result of interference 

between the shotgun tube and the compression driver output.  These unwanted 

interactions can be reduced by using a higher-order crossover to minimize the frequency 

content common to both drivers. 
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 Second, at frequencies beyond the crossover region, the curve converges back to 

the modeled curve.  This suggests that the exponential horn used in these measurements 

provides a reasonable match for integration with a shotgun tube. 

 

 

 
Figure 8.21.  Beamwidth curve comparison for the long tube with an anechoic termination.  The solid trace 
is the original long prototype beamwidth curve.  The dashed trace is the same tube but with a high-
frequency driver and horn attached to the end of the tube. 
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Figure 8.22.  Beamwidth curve comparison for the short tube with an anechoic termination.  The solid 
trace is the original short prototype beamwidth curve.  The dashed trace is the same tube but with a high-
frequency driver and horn attached to the end of the tube. 
 

 

8.5 Directivity Comparison 

 For a simple comparison, Fig. 8.23 shows three beamwidth curves.  The first 

curve (solid trace) is for a long shotgun tube with the physical characteristics given in 

Table 6.1.  A descending resistance profile is applied to the holes.  The second curve 

(dashed trace) is the measured beamwidth curve for a dual-parabolic dome (FP6030) 

provided to us by Soundtube Entertainment.  Finally, the third curve (dotted trace) is for a 

baffled circular piston of radius cma 24.5=  radiating into a semi-infinite free space.  

This third trace was added to the plot to show how radiation from a driver of the same 

size used in the shotgun tube differs in the far-field.  Note that the maximum beamwidth 

the disk can reach is only 180˚ due to the infinite baffle in which it is mounted. 
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 It is apparent that the baffled piston never becomes non-omnidirectional in our 

frequency range of interest.  This is due to the small radius of the driver used with the 

shotgun tube.  Figure 8.24 shows the same comparison, but now the radius of the disk 

mounted in an infinite baffle has been doubled and it finally reaches a point of non-

omnidirectionality at approximately 1200 Hz.  This comparison shows that the final 

shotgun tube design performed better than several available products on the market 

today. 

 
 

 
 

Figure 8.23.  Beamwidth curve comparison between a shotgun tube (solid trace), dual-parabolic dome 
(dotted trace), and a circular piston mounted in an infinite baffle (dashed trace). 
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Figure 8.24.  Beamwidth curve comparison between a shotgun tube (solid trace), dual-parabolic dome 
(dotted trace), and a circular piston mounted in an infinite baffle (dashed trace).  The piston radius has been 
doubled from the simulation shown in Fig. 8.23. 
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CHAPTER 9 

CONCLUSIONS 

 

 The preceding chapters have presented many different simulations of shotgun 

tube loudspeakers configurations, measurement results from prototype evaluations, and 

comparisons between the measurements and simulations.  Further numerical simulations 

of shotgun tube variations were also presented and the results were discussed.  This 

chapter summarizes what was learned throughout the research project and makes 

suggestions for future work beyond the scope of this thesis. 

A shotgun tube loudspeaker may be modeled as a passive end-fire array 

employing a single loudspeaker coupled to a plane-wave tube with holes along the side. 

This modeling approach was shown to predict radiated far-field sound fields with 

reasonable accuracy.  Additionally, improvements to the model were shown to improve 

the predictive capabilities of the model, including accurate far-field amplitude values and 

electric input impedance curves. 

 The overall length of the array was found to be the single most influential factor 

in the directional performance of the shotgun loudspeaker.  The longer the tube, the better 

the performance (as evaluated by the beamwidth curves).  Other factors that improve 

performance included an increased number of holes in the tube, increased spacing 

between holes, increased tube radius, and decreased hole radius.  However, the impact of 

these factors was less dramatic. 

 An anechoic termination to a shotgun tube clearly delivers the best directional 

performance when compared to the other termination possibilities.  The trade-off is that 
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an anechoic wedge typically needs to be on the order of one-forth the lowest wavelength 

of interest.  This can prove to be a problem for many commercial applications where 

space is at a premium and shotgun tube length needs to be minimized. 

 This research has also revealed two major shortcomings of the shotgun tube 

design.  First, there is the problem of spatial aliasing where the half-wavelength of 

interest is equal to the spacing between holes which results in directing energy in large 

side lobes.  Second, the relative sensitivity of the shotgun tube is much lower than typical 

devices currently on the market which increases the amount of required input power. 

 Applying a descending resistance profile to the tube holes increases the 

performance at all frequencies when compared to the standard shotgun tube with equal 

resistance per hole.  The cost of this improvement is a decrease in sensitivity or output 

power from the tube.  Using a mass profile or variable hole radii did not result in any 

substantial improvement. 

 Finally, it has been shown that the integration of a shotgun tube and a high-

frequency device is possible.  However, there are interference effects present near the 

cross-over frequency which could be addressed in future work. 

 

9.1 Future Work 

 Throughout the course of this research, several additional areas of investigation 

into the shotgun tube behavior have been brought to light that have not been fully 

explored.  The following list may be used as a basis for further efforts: 

• A more complete understanding of the tube resonances created by the holes is 

needed. 
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• Although variable hole radii have been investigated, variable hole spacing was 

not.  This will also change the directivity and the harmonic structure of the 

acoustic input impedance.  This may also have a drastic effect on eliminating 

spatial aliasing in the far-field. 

• Vent noise created at the holes of the tube was mentioned but not investigated in 

this project.  Measurements could be taken to quantify the level of the noise 

produced if the hole radii are too small. 

• A nonuniform cross-sectional area over the length of the tube. 

• Chapter 8 discussed the effect resistance and mass profiles have on the beamwidth 

and frequency response, but no physical measurements were made.  Shotgun 

tubes with small resistive patches or radiating drone cones should be fabricated 

and measured for comparison with analytical results. 

• More investigation into coupling a shotgun tube with a high-frequency device is 

also needed.  Different horn flares or crossover designs should be examined. 

• Finally, the level of the side lobes in relation to the main frontal lobe was 

mentioned early on in this thesis, but not as a measure of performance.  The effect 

that side lobe levels have on perceived performance could also be investigated. 

 

 

159 



REFERENCES 

 

[1] T. N. Carnes, D. D. Reynolds and E. L. Hixson, “Analytical Modeling of Wave 

Interference Directional Microphones,” J. of Eng. for Industry, vol. 103, pp. 361-

371, (1981). 

[2] H. F. Olson, “Directional Microphones,” J. Audio Eng. Soc., vol. 15, pp. 420-430, 

(1967 no. 4). 

[3] H. F. Olson, “The Quest for Directional Microphones at RCA,” J. Audio Eng. 

Soc., vol. 28, pp. 776-786, (1980 no. 11). 

[4] W. P. Mason and R. N. Marshall, “A Tubular Directional Microphone,” J. Acoust. 

Soc. Am., vol. 10, pp. 206-215, (1939). 

[5] M. M. Boone and O. Ouweltjes, “Design of a Loudspeaker System with a Low-

Frequency Cardioidlike Radiation Pattern,” J. Audio Eng. Soc., vol. 45, pp. 702-

706, (1997 no. 9). 

[6] H. F. Olson, “Gradient Loudspeakers,” J. Audio Eng. Soc., vol. 21, pp. 86-93, 

(1973 no. 2). 

[7] K. R. Holland and F. J. Fahy, “A Low-Cost End-Fire Acoustic Radiator,” J. 

Audio Eng. Soc., vol. 39, pp. 540-550, (1991 no. 7/8). 

[8] H. F. Olson, Elements of Acoustical Engineering, D. Van Nostrand Company, 

Inc., 1940 and 1947. 

[9] L. J. Ziomek, Fundamentals of Acoustic Field Theory and Space-Time Signal 

Processing, CRC Press, 1995. 

160 



[10] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of 

Acosutics 4th Edition, John Wiley and Sons, Inc., New York, 1982. 

[11] T. N. Carnes, Analysis and Design of Wave Interference Directional 

Microphones, The University of Texas at Austin, Ph.D. Dissertation, Physics 

Department, 1976. 

[12] T. W. Leishman, Physics 562 Class Notes, Department of Physics and 

Astronomy, 2003. 

[13] L. L. Beranek, Acoustics, McGraw-Hill, 1954 and Acoustical Society of America, 

1986. 

[14] F. G. Leppington, “On the Theory of Woodwind Finger Holes,” J. of Sound and 

Vib., vol. 83, pp. 521-532, (1982 no. 4). 

[15] D. H. Keefe, “Theory of the Single Woodwind Tone Hole,” J. Acoust. Soc. Am., 

vol. 72, pp. 676-687, (1982 no. 3). 

[16] D. H. Keefe, “Experiments on the Single Woodwind Tone Hole,” J. Acoust. Soc. 

Am., vol. 72, pp. 688-699, (1982 no. 3). 

[17] J. Kergomard, “Tone Hole External Interactions in Woodwinds Musical 

Instruments,” 13th International Congress on Acoustics, Yugoslavia, vol. 3, pp 53-

56, (1989). 

[18] A. D. Pierce, Acoustics, An Introduction to its Physical Principles and 

Applications, Acoustical Society of America, New York, 1991. 

[19] H. P. Neff, Jr., “Mutual Impedance of Circular Pistons,” J. Audio Eng. Soc., vol. 

43, pp. 695-699, (1995 no. 9). 

161 



[20] E. Skudrzyk, The Foundations of Acoustics, Basic Mathematics and Basic 

Acoustics, Springer – Verlag, New York, 1971. 

 

 

162 



APPENDIX A 

MEASURING REFLECTION COEFFICIENTS IN A PLANE-WAVE TUBE 

 

 One of the improvements made to the numerical model in Chapter 7 was the use 

of measured reflection coefficients to calculate the termination impedances for the 

anechoic and rigid shotgun tube terminations.  The theory behind how these variables are 

calculated will be detailed in this appendix [12]. 

 Figure A.1 shows a diagram of a plane-wave tube measurement system.  This 

setup consists of a loudspeaker coupled to a cylindrical duct of length L terminated with 

an arbitrary impedance ZT.  The incident pressure wave, pi, created at the loudspeaker 

propagates down the tube where a reflected pressure wave, pr, is sent back towards the 

source.  The total pressure field created by the superposition of the two opposing waves is 

sampled at two points in the tube, p1 and p2, by microphones whose outputs are denoted 

by e1 and e2, as shown in Fig. A.1. 

 

 

 
 

Figure A.1.  Diagram of plane-wave tube. 
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 The total pressure field inside the tube can be described by the superposition of 

the right-going incident wave and the left-going reflected wave by, 

 ( ) ( ) ( )xLjkxLjk
ri BeAeppxp −−− +=+=  (A.1) 

where x is the position along the tube, L is the length of the tube, and A and B are the 

amplitudes of the incident and reflected waves, respectively.  The total pressure detected 

by each of the two microphones can be written as, 

 ( ) ( ) ( )dljkdljk BeAexpp +−+ +== 11  (A.2) 

 ( ) jkljkl BeAexpp −+== 22  (A.3) 

where d is the spacing between microphones and l is the distance from the second 

microphone to the tube termination, as shown in Fig. A.1. 

 The reflection coefficient is defined as the reflected wave divided by the incident 

wave and gives a measure of how much energy is reflected back at a given measurement 

point.  At any point in the tube, this coefficient can be given by, 

 ( ) ( )
( )

( )

( )
( xLkj

xLjk

xLjk

i

r e
A
B

Ae
Be

xp
xpxR −−

−

−−

=== 2 ) . (A.4) 

This then gives us a method for finding the reflection coefficient at the tube 

termination and each of the two microphones. 

 ( )
A
BLR =  (A.5) 

 ( ) ( ) ( ) ( )dlkjdlkj eLRe
A
BxR +−+− == 22

1  (A.6) 

 ( ) ( ) ( ) kdjkljklj exReLRe
A
BxR 2

1
22

2 === −−  (A.7) 
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Equations (A.2) and (A.3) can now be written as, 

 ( ) ( ) ( ) ( ) ( )[ ]11 1 xRAeeLARAep dljkdljkdljk +=+= ++−+  (A.8) 

 ( ) ( )[ ]22 1 xRAeeLARAep jkljkljkl +=+= −  (A.9) 

In order to get an accurate frequency response measurement between the 

microphones, a relative calibration must be performed before we can proceed any further.  

The current test setup lends itself very nicely to the switching technique for calculating 

the calibration factor.  The main reason for this is that the microphones are constrained to 

a fixed position in the tube wall.  When the microphones are switched, there is essentially 

no error in the positioning of the microphones. 

The switching technique involves two measurements for each microphone.  

Figure A.2 shows the initial signal path for the first set of measurements.  Microphone #1 

powered by electronics with frequency responses, M1 and E1 respectively, detects the 

pressure at position p1, and outputs a voltage signal, e1a.  Microphone #2 does the same 

thing at position p2. 

 

 

 
 

Figure A.2.  Signal flow for the first step in the switching technique. 
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The transfer function between the two microphones is then defined as, 

 
111
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2
12 EMp

EMp
e
e
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a
a == . (A.10) 

Next, the microphones and related electronics switch positions as shown in Fig. 

A.3 and the outputted voltage signals, e1b and e2b, are recorded. 

 

 

 
 

Figure A.3.  Signal flow for the second step in the switching technique. 
 

 

The transfer function between the two microphones in this case is given by, 
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A frequency-dependant calibration factor for the pair of microphones is then found by 

taking the geometric mean of H12a and H12b. 

 ( ) 2
1

121212, bacal HHH ⋅=  (A.12) 

Using Eqs. (A.10) and (A.11), this then becomes, 
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which is our calibration factor. 
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Once the microphones have been relatively calibrated, Hcal,12 can be used to 

correct the frequency response function between the two microphones by, 
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Using Eqs. (A.8) and (A.9), H12 can be written as, 
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Substituting Eq. (A.7) into Eq. (A.15) gives, 
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We can then solve for . ( )1xR
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Finally, substituting Eq. (A.17) into Eq. (A.6) gives our final expression for the reflection 

coefficient at the end of the tube as, 

 ( ) ( dlkj
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e
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Once the reflection coefficient is known, the absorption coefficient and acoustic 

impedance of the termination can be found using the following two equations: 

 21 R−=α  (A.19) 
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APPENDIX B 

MATLAB CODE 

 

 The following pages contain all the MATLAB code developed for a numerical 

representation of the shotgun tube. 

 
Main Shotgun Tube Program  
 
clear all; close all; 
  
%%%%%  Tube Parameters  %%%%% 
%A = ; %tube radius 
%t = ; %thickness of tube wall 
%L = ; %spacing between holes 
%holes = ; %number of holes 
%a_idx = ; 
%a = a_calc(a_idx,holes); 
  
%parameters for long tube 
A = 5.08/100; 
L = 22/100; 
holes = 6; 
t = 5/1000; 
a = 1.27/100*ones(1,holes); 
%a_idx = 2; 
%a = a_calc(a_idx,holes); 
  
%parameters for short tube 
% A = 5.08/100; 
% L = 11.85/100; 
% holes = 8; 
% t = 5/1000; 
% a = 0.635/100*ones(1,holes); 
% %a_idx = 1; 
% %a = a_calc(a_idx,holes); 
  
model = [1 1 1 1 1]; 
  
if model(1) == 1 
    load Rdata_wedge; 
    %load Rdata_rigid; 
    f = fnew'; 
else 
    f = 1000:5:2500; 
end 
  
omega = 2*pi*f; 
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theta = 0:pi/800:2*pi; 
c = 343; 
rho = 1.21; 
k = 2*pi*f/c; 
r = 5.8928; 
S = pi*A^2; 
  
if model(2) == 1 
    %%%%% Compensate for Losses in the Tube %%%%% 
    eta = 1.85e-5; 
    Pr = 0.710; 
    gam = 1.402; 
    alphac = omega.^2*eta/2/rho/c^3*(4/3+(gam-1)/Pr); 
    alphaw = sqrt(eta*omega/2/rho)/A/c*(1+(gam-1)/sqrt(Pr)); 
    alpha = alphac+alphaw; 
    k = k-j*alpha; 
    c = omega./k; 
end 
  
if model(1) == 1 
    ZmL = (rho*c'/S.*(1+Rnew)./(1-Rnew))'; 
else 
    ZmL = rho*c/S; 
    %ZmL = 1000*rho*c/S; 
end 
  
Zm = zeros(holes,length(f)); 
midx = 1; 
switch midx 
    case 1 
        for n = 1:holes 
            Zm(n,:) = rho*c.*k.^2/4/pi+j*omega*(rho*t/pi/a(n)^2+0.5*rho/a(n)); 
        end 
    case 2 
        %%%%% Resistance Profile %%%%% 
        minR = 0; 
        maxR = 100000; 
         
        for n = 1:holes 
            Zm(n,:) = rho*c.*k.^2/4/pi+j*omega*(rho*t/pi/a(n)^2+0.5*rho/a(n)); 
        end 
        holeZr = holeZres(f,holes,minR,maxR); 
        Zm = Zm+holeZr; 
    case 3 
        %%%%% Mass Profile %%%%% 
        Cms = 1893/1e6; %m/N 
        Sd = 6/10000; %m^2 
        Rms = 0.106; %kg/s 
        minMms = 0.5/1000; %kg 
        maxMms = 2/1000; %kg 
         
        [holeZm,holeZmrad] = holeZmass(f,holes,minMms,maxMms,Cms,Sd,Rms); 
        Zm = holeZm+holeZmrad; 
end 
  

169 



if model(3) == 1 
    %%%%% Compensate for Mutual Radiation Impedances %%%%% 
    for n = 1:holes 
        tempd = [(1-n)*L:L:(holes-n)*L]; 
        d_idx = find(tempd ~= 0); 
        d = tempd(d_idx); 
        for m = 1:holes-1 
            Rmut(m,:) = 2*besselj(1,k*a(n)).*besselj(1,k*a(n)).*sin(k*d(m))./k/d(m); 
            Xmut(m,:) = 2*besselj(1,k*a(n)).*besselj(1,k*a(n)).*cos(k*d(m))./k/d(m); 
        end 
        Zmut(n,:) = sum(Rmut,1)+j*sum(Xmut,1); 
    end 
    Zm = Zm+Zmut; 
end 
  
f1 = j*rho*c.*tan(k*L/2)/S; 
f2 = -j*rho*c.*csc(k*L)/S; 
  
N = (holes-1)*4+7; 
Z = zeros(N,length(f)); 
for n = 1:N; 
    if n == 1 
        Z(N-n+1,:) = ZmL+f1; 
    elseif mod(n,2) == 0 
        if mod(n,4) ~= 0 
            Z(N-n+1,:) = 1./(1./Z(N-n+2,:)+1./f2); 
        elseif mod(n,4) == 0 
            m = n/4; 
            Z(N-n+1,:) = 1./(1./Z(N-n+2,:)+1./(Zm(holes+1-m,:))); 
        end 
    elseif mod(n,2) == 1 
        Z(N-n+1,:) = f1+Z(N-n+2,:); 
    end 
end 
  
if model(4) == 1 
    %%%%% Compensation for Air Gap %%%%% 
    T = 0.0191; 
  
    f1e = j*rho*c.*tan(k*T/2)/S; 
    f2e = -j*rho*c.*csc(k*T)/S; 
    Ztemp = f1e+1./(1./f2e+1./(f1e+Z(1,:))); 
  
    Sg = pi*0.0762^2; 
    f1g = j*rho*c.*tan(k*T/2)/Sg; 
    f2g = -j*rho*c.*csc(k*T)/Sg; 
    Zinput = f1g+1./(1./f2g+1./(f1g+Ztemp)); 
else 
    Zinput = Z(1,:); 
end 
  
if model(5) == 1 
    %%%%% New Speaker Model %%%%% 
    eg = 2.83; 
    [boxU,Zest,Zesff] = speak(eg,f,Zinput); 
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else 
    boxU = ones(1,length(f)); 
end 
  
utemp = zeros(holes*2,length(f)); 
for d = 1:holes*2 
    if d == 1 
        if exist('Sg') == 1 
            ucava = boxU.*f2g./(f2g+Ztemp+f1g); 
            ucavb = ucava.*f2e./(f2e+Z(1,:)+f1e); 
            utemp(1,:) = ucavb.*f2./(f2+Z(3,:)); 
        else 
            utemp(1,:) = boxU.*f2./(f2+Z(3,:)); 
        end 
    elseif mod(d,2) == 0 
        utemp(d,:) = utemp(d-1,:).*Zm(d/2,:)./(Zm(d/2,:)+Z(2*d+1,:)); 
    elseif mod(d,2) == 1 
        utemp(d,:) = utemp(d-1,:).*f2./(f2+Z(2*d+1,:)); 
    end 
end 
  
if exist('Sg') == 1 
    utemp = [ucavb ; utemp]; 
else 
    utemp = [boxU ; utemp]; 
end 
utemp2 = -1*diff(utemp,1,1); 
  
U = zeros(holes,length(f)); 
for g = 1:holes 
    U(g,:) = utemp2(2*g,:); 
end 
  
L2 = zeros(holes,1); 
if mod(holes,2) == 1 
    for n = 1:(holes-1)/2 
        L2(n) = -((holes-1)/2-n+1)*L; 
        L2(holes-n+1) = -L2(n); 
    end 
    L2((holes-1)/2+1) = 0; 
     
elseif mod(holes,2) == 0 
    for n = 1:holes/2 
        L2(n) = -(holes/2-n+0.5)*L; 
        L2(holes-n+1) = -L2(n); 
    end 
end 
  
Ptemp = zeros(holes,length(theta)); 
temp = (length(theta)-1)*3/4; 
b = 1; 
gui_active(1); 
h = progressbar([],0,'Calculating...'); 
M = length(f); 
for F = 1:M 
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    h = progressbar(h,1/M); 
    if ~gui_active 
        break; 
    end 
     
    for n = 1:holes 
        if model(2) == 1 
            Ptemp(n,:) = j*rho*c(F)*k(F)*U(n,F)*exp(-j*k(F)*(r+L2(n)*sin(theta)))/4/pi/r; 
        else 
            Ptemp(n,:) = j*rho*c*k(F)*U(n,F)*exp(-j*k(F)*(r+L2(n)*sin(theta)))/4/pi/r; 
        end 
    end 
     
    P2 = sum(Ptemp); 
    if model(5) == 1 
        Beam = 20*log10(abs(P2)/20e-6); 
    else 
        Dir = P2./max(abs(P2)); 
        Beam = 20*log10(abs(Dir))+50; 
        idx = find(Beam < 0); 
        Beam(idx) = 0; 
    end 
  
    Beam = [Beam(temp:end) Beam(1:temp-1)]; 
  
    for n = 1:length(Beam)/2 
        da = Beam(1)-Beam(n); 
        if da >= 6 
            break; 
        end 
    end 
    step = theta(2); 
    width(b) = 2*((n-1)*step/pi*180); 
    data(b,:) = Beam; 
    b = b+1; 
end 
  
progressbar(h,-1); 
  
%cuttoff frequency for tube of radius A 
fc = 1.84*343/2/pi/A; 
  
figure; 
plot(f,width,'k-','LineWidth',1.5); 
title('Beamwidth Curve','FontWeight','Bold'); 
xlabel('Frequency (Hz)'); 
ylabel('Beamwidth (\theta)'); 
xlim([f(1) f(end)]); 
ylim([20 370]); 
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Calculate Hole Radii for Variable Configuration 
 
function [a] = a_calc(a_idx,holes); 
  
switch a_idx 
    case 1 
        a = 1.27/100*ones(1,holes); 
    case 2 
        amin = 0.52/100; %m 
        amax = 2.02/100; %m 
         
        aconfig = 2; 
        switch aconfig 
            case 1 
                a = asc_desc(amin,amax,holes,1); 
            case 2 
                a = asc_desc(amin,amax,holes,2); 
            case 3 
                if mod(holes,2) == 0 
                    holes2 = holes/2; 
                    a1 = asc_desc(amin,amax,holes2,1); 
                    a2 = asc_desc(amin,amax,holes2,2); 
                    a = [a1 a2]; 
                else 
                    holes2 = (holes+1)/2; 
                    a1 = asc_desc(amin,amax,holes2,1); 
                    a2 = asc_desc(amin,amax,holes2,2); 
                    a = [a1 a2(2:end)]; 
                end 
            case 4 
                if mod(holes,2) == 0 
                    holes2 = holes/2; 
                    a1 = asc_desc(amin,amax,holes2,2); 
                    a2 = asc_desc(amin,amax,holes2,1); 
                    a = [a1 a2]; 
                else 
                    holes2 = (holes+1)/2; 
                    a1 = asc_desc(amin,amax,holes2,2); 
                    a2 = asc_desc(amin,amax,holes2,1); 
                    a = [a1 a2(2:end)]; 
                end 
        end 
end 
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Calculate Spacing for Ascending or Descending Configurations 
 
function [a] = asc_desc(mina,maxa,holes,b) 
  
diff = maxa-mina; 
da = diff/(holes-1); 
  
for n = 1:holes 
    if b == 1 
        a(n) = mina+(n-1)*da; %ascending 
    else 
        a(n) = maxa-(n-1)*da; %descending 
    end 
end 
 
 
 
Calculate Resistance Profiles 
 
function [holeZr] = holeZres(f,holes,minR,maxR); 
  
rindex = 2; 
switch rindex 
    case 1 
        R = asc_desc(minR,maxR,holes,1); 
    case 2 
        R = asc_desc(minR,maxR,holes,2); 
    case 3 
        if mod(holes,2) == 0 
            holes2 = holes/2; 
            a1 = asc_desc(minR,maxR,holes2,1); 
            a2 = asc_desc(minR,maxR,holes2,2); 
            R = [a1 a2]; 
        else 
            holes2 = (holes+1)/2; 
            a1 = asc_desc(minR,maxR,holes2,1); 
            a2 = asc_desc(minR,maxR,holes2,2); 
            R = [a1 a2(2:end)]; 
        end 
    case 4 
        if mod(holes,2) == 0 
            holes2 = holes/2; 
            a1 = asc_desc(minR,maxR,holes2,2); 
            a2 = asc_desc(minR,maxR,holes2,1); 
            R = [a1 a2]; 
        else 
            holes2 = (holes+1)/2; 
            a1 = asc_desc(minR,maxR,holes2,2); 
            a2 = asc_desc(minR,maxR,holes2,1); 
            R = [a1 a2(2:end)]; 
        end 
end 
  
for n = 1:holes 
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    holeZr(n,:) = R(n)*ones(1,length(f)); 
end 
 
 
 
Calculate Mass Profiles 
 
function [holeZm,holeZmrad] = holeZmass(f,holes,minMms,maxMms,Cms,Sd,Rms); 
  
d_index = 1; 
switch d_index 
    case 1 
        Mms = asc_desc(minMms,maxMms,holes,1); 
    case 2 
        Mms = asc_desc(minMms,maxMms,holes,2); 
    case 3 
        if mod(holes,2) == 0 
            holes2 = holes/2; 
            a1 = asc_desc(minMms,maxMms,holes2,1); 
            a2 = asc_desc(minMms,maxMms,holes2,2); 
            Mms = [a1 a2]; 
        else 
            holes2 = (holes+1)/2; 
            a1 = asc_desc(minMms,maxMms,holes2,1); 
            a2 = asc_desc(minMms,maxMms,holes2,2); 
            Mms = [a1 a2(2:end)]; 
        end 
    case 4 
        if mod(holes,2) == 0 
            holes2 = holes/2; 
            a1 = asc_desc(minMms,maxMms,holes2,2); 
            a2 = asc_desc(minMms,maxMms,holes2,1); 
            Mms = [a1 a2]; 
        else 
            holes2 = (holes+1)/2; 
            a1 = asc_desc(minMms,maxMms,holes2,2); 
            a2 = asc_desc(minMms,maxMms,holes2,1); 
            Mms = [a1 a2(2:end)]; 
        end 
end 
  
Cas = Cms*Sd^2; 
Mas = Mms/Sd^2; 
Ras = Rms/Sd^2; 
  
rho = 1.21; 
c = 343; 
omega = 2*pi*f; 
k = omega/c; 
  
ka = omega/c*sqrt(Sd/pi); 
Rar = 1-besselj(1,2*ka)./ka; 
Xar = real(besselh(1,2*ka)./ka); 
for n = 1:holes 
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    holeZmrad(n,:) = rho*c/Sd*Rar+j*rho*c/Sd*Xar; 
end 
  
for n = 1:length(Mas) 
    holeZm(n,:) = Ras+1./(j*omega*Cas)+j*omega.*Mas(n); 
end 
 
 
 
 
 
  
Calculate Drone Cone Radiation Impedance 
 
function [ZmL] = droneZ(f); 
  
omega = 2*pi*f; 
c = 343; 
rho = 1.21; 
  
Cms = 750/1e6; %m/N 
Mms = 75/1000; %kg 
Rms = 0.5; %kg/s 
Sd = 0.0194; %m^2 
  
Cas = Cms*Sd^2; 
Mas = Mms/Sd^2; 
Ras = Rms/Sd^2; 
  
ka = omega/c*sqrt(Sd/pi); 
Rar = rho*c/Sd*ka.^2/4; 
Mar = rho*c/Sd*0.61*ka; 
  
Zdriver = Ras+1./(j*omega*Cas)+j*omega*Mas; 
Zrad = Rar+j*Mar; 
  
ZmL = Zdriver+Zrad; 
 
 
 
Calculate Speaker Diaphragm Impedance and Volume Velocity Output 
 
function [Ut,Zest,Zes] = speak(eg,f,Zinput) 
  
rho = 1.21; 
c = 343; 
omega = 2*pi*f; 
  
%%% ST woofer T/S parameters %%% 
a = 0.0524; %radius of diaphragm in m 
Sd = pi*a^2; %surface area in m^2 
Fs = 73.6885; %free-air resonance (from MLSSA) 
Qms = 3.0355; %(from MLSSA) 
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Mms = 9.6645/1000; %kg (from MLSSA) 
Cms = 482.7695/1e6; %m/N (from MLSSA) 
Bl = 6.5975; %Tm (from MLSSA) 
  
Re = 5.4225; %ohms (from MLSSA) 
L1 = 0.152/1000; %H (from MLSSA) 
L2 = 0.488/1000; %H (from MLSSA) 
R2 = 16.553; %ohms (from MLSSA) 
Rg = 0.1; %internal resistance of signal generator (typical value is approx 0.1 ohms) 
  
Mmd = Mms-8/3*rho*a^3; %Mms-mass of fluid loading 
Mad = Mmd/Sd^2; %acoustic mass of driver 
Cas = Cms*Sd^2; %acoustic compliance of driver 
Rms = 1/2/pi/Fs/Cms/Qms; %acoustic resistance of driver 
Ras = Rms/Sd^2; 
  
%%%%%  voice coil parameters -- Zr->elements in MM domain, Zra->elements in AI domain 
Zr = (Rg+Re+j*omega*L1)/Bl^2+j*omega*L2*R2/Bl^2./(j*omega*L2+R2); %Rg+Re+L1+L2//R2 
Z1 = Bl^2/Sd^2/(Rg+Re); 
Z2 = j*omega*L1/Bl^2/Sd^2; 
Z3 = Bl^2/Sd^2/R2+j*omega*L2/Bl^2/Sd^2; 
Zra = 1./(1/Z1+1./Z2+1./Z3); 
  
psource = eg/Bl/Sd./Zr; 
  
%dimensions of box in m 
D = 0.1905; %depth (7.5") 
W = 0.1397; %width (5.5") 
H = 0.1397; %height (5.5") 
V = D*W*H; %internal volume of box in m^3 
  
M = 30; 
Zar = Zcalc(V,a,f,M,1); %cap in sphere 
Rar = real(Zar); 
Mar = imag(Zar); 
  
Rab = 10000; %acoustic resistance of box 
Mab = 0.3*rho*a/Sd; %acoustic mass of box 
Cab = V/rho/c^2; %acoustic compliance of box 
  
Zdriver = Ras+1./(j*omega*Cas)+j*omega*Mad; %combined Z of driver 
Zbox = Rab+1./(j*omega*Cab)+j*omega*Mab; %combined Z from box 
  
%%% calculate the input impedance for the tube and volume velocity at the diaphragm 
Zradt = Zinput; %Zinput from tube 
Zast = Zra+Zdriver+Zradt+Zbox; 
Zest = Zr*Bl^2+Bl^2/Sd^2./(Zast-Zra)-Rg; 
Zest = abs(Zest); 
Ut = psource./Zast; 
  
%%% calculate the input impedance as if there were no tube attached to the driver 
Zrad = Rar+j*Mar; %combined Z from radiation terms 
Zas = Zra+Zdriver+Zrad+Zbox; 
Zes = Zr*Bl^2+Bl^2/Sd^2./(Zas-Zra)-Rg; 
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Zes = abs(Zes); 
U = psource./Zas; 
Wt = abs(U.^2).*Rar; 
pff = sqrt(rho*c*Wt); 
pref = sqrt(rho*c*10^-12); 
pffdB = 20*log10(pff/pref); 
 
 
 
Calculate Radiation Impedance for a Free-Field Loudspeaker 
 
function Zar = Zcalc(aveV,ac,f,M,b) 
  
u0 = 1; 
a = (aveV*3/4/pi)^(1/3); 
theta0 = asin(ac/a); 
theta = 0; 
Sc = 4*pi*a^2*sin(theta0/2)^2; 
  
omega = 2*pi*f; 
c = 343; 
rho = 1.21; 
k = omega/c; 
ka = k*a; 
kac = k*ac; 
  
gui_active(1); 
if b == 1 
    h = progressbar([],0,'Calculating Driver Response...'); 
elseif b == 2 
    h = progressbar([],0,'Calculating Port Response...'); 
end 
  
Zar = 0; 
for n = 1:M 
    m = n-1; 
     
    h = progressbar(h,1/M); 
    if ~gui_active 
        break; 
    end 
     
    if m == 0 
        Um = u0/2*(1-cos(theta0)); 
    else 
        Pp = legendre(m+1,cos(theta0)); 
        Pm = legendre(m-1,cos(theta0)); 
        Um = u0/2*(Pm(1)-Pp(1)); 
    end 
     
    jmp = sqrt(pi/2./ka).*besselj(m+1+0.5,ka); 
    jmn = sqrt(pi/2./ka).*besselj(m-1+0.5,ka); 
    nmp = sqrt(pi/2./ka).*bessely(m+1+0.5,ka); 
    nmn = sqrt(pi/2./ka).*bessely(m-1+0.5,ka); 
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    for mm = 1:length(nmp) 
        if nmp(mm) ~= Inf 
            break; 
        end 
    end 
     
    for nn = 1:mm-1 
        nmp(nn) = nmp(mm); 
        nmn(nn) = nmn(mm); 
    end 
     
    delta = atan(((m+1)*jmp-m*jmn)./(m*nmn-(m+1)*nmp)); 
     
    D = ((m+1)*jmp-m*jmn)/(2*m+1); 
    for mm = 1:length(D) 
        if D(mm) ~= 0 
            break; 
        end 
    end 
     
    for nn = 1:mm-1 
        D(nn) = D(mm); 
    end 
     
    Bm = D./sin(delta); 
     
    jm = sqrt(pi/2./ka).*besselj(m+0.5,ka); 
    nm = sqrt(pi/2./ka).*bessely(m+0.5,ka); 
    h2 = jm-j*nm; 
     
    for mm = 1:length(h2) 
        if abs(h2(mm)) == Inf 
            h2(mm)=0; 
        end 
    end 
     
    Zar = Zar+rho*c*4*pi*a^2/(u0*Sc)^2*Um^2./Bm/(2*m+1).*exp(j*delta).*h2; 
end 
  
progressbar(h,-1); 
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