
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Faculty Publications

2009-05-21

An Exploration of Topologies and Communication in Large An Exploration of Topologies and Communication in Large

Particle Swarms Particle Swarms

Matthew Gardner

Andrew McNabb

Kevin Seppi
Brigham Young University, kseppi@byu.edu

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

 Part of the Computer Sciences Commons

Original Publication Citation Original Publication Citation
Andrew McNabb, Matthew Gardner, and Kevin Seppi. "An Exploration of Topologies and

Communication in Large Particle Swarms." In Proceedings of the IEEE Congress on Evolutionary

Computation (CEC 29). pp. 712-719. Trondheim, Norway.

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Gardner, Matthew; McNabb, Andrew; and Seppi, Kevin, "An Exploration of Topologies and Communication
in Large Particle Swarms" (2009). Faculty Publications. 869.
https://scholarsarchive.byu.edu/facpub/869

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more
information, please contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/869?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F869&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

An Exploration of Topologies and Communication
in Large Particle Swarms

Andrew McNabb, Matthew Gardner, and Kevin Seppi

Abstract—Particle Swarm Optimization (PSO) has typically
been used with small swarms of about 50 particles. However, PSO
is more efficiently parallelized with large swarms. We formally
describe existing topologies and identify variations which are
better suited to large swarms in both sequential and parallel
computing environments. We examine the performance of PSO
for benchmark functions with respect to swarm size and topology.

We develop and demonstrate a new PSO variant which
leverages the unique strengths of large swarms. “Hearsay PSO”
allows for information to flow quickly through the swarm, even
with very loosely connected topologies. These loosely connected
topologies are well suited to large scale parallel computing envi-
ronments because they require very little communication between
particles. We consider the case where function evaluations are
expensive with respect to communication as well as the case
where function evaluations are relatively inexpensive. We also
consider a situation where local communication is inexpensive
compared to external communication, such as multicore systems
in a cluster.

I. INTRODUCTION

Particle Swarm Optimization (PSO) is an optimization al-
gorithm that was inspired by experiments with simulated bird
flocking [1]. This evolutionary algorithm has become popular
because it is simple, requires little tuning, and has been found
to be effective for a wide range of problems.
Often a function that needs to be optimized takes a long time

to evaluate. A problem using web content, commercial trans-
action information, or bioinformatics data, for example, may
involve large amounts of data and require minutes or hours for
each function evaluation. Alternatively, some functions may
be easy to evaluate but difficult to optimize. For example,
highly dimensional problems may take many iterations to
converge, and functions with deceptive local optima may
converge prematurely. In all of these cases, PSO must be
parallelized to fully utilize available resources.
PSO has typically been used with small swarms of 50

particles [2]. But with the widespread availability of multicore
processors and even a modest number of particles per core,
swarms running on a cluster could easily have thousands of
particles. Some have observed that with many processors,
larger swarm sizes may improve the rate of convergence [3],
[4].
Section II of this paper describes the constricted PSO

algorithm. Section III, building on other work in PSO topol-
ogy [5], uses principles from graph theory to more formally
describe particle swarm topologies. Section IV examines the

Andrew McNabb, Matthew Gardner, and Kevin Seppi are with the Depart-
ment of Computer Science, Brigham Young University, 3361 TMCB, Provo,
UT 84602 (phone: 801-422-8717; email: {a,mjg82,k}@cs.byu.edu).

performance of PSO for benchmark functions with respect to
swarm size and topology and shows that large swarms can
improve PSO with and without parallelism.
Section V focuses on functions which are more difficult

to optimize in parallel because their evaluation is inexpensive
relative to the cost of communication. This section consid-
ers ways to reduce communication by choosing appropriate
topologies, including generalized ring and dynamic random.
This point of view allows us to develop Hearsay PSO, a variant
which leverages the unique strengths of large swarms by allow-
ing information to flow quickly through the swarm, even with
very loosely connected topologies. These loosely connected
topologies are well suited to large scale parallel computing
environments because they require very little communication
between particles.
We also consider an approach for situations where some

communication is very inexpensive, and other communica-
tion is expensive. This approach is well suited to clusters
of multicore nodes, where particles on the same processor
(possibly different cores) can easily communicate, but paricles
on different processors require significantly more time to
communicate.

II. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization simulates the motion of par-
ticles in the domain of a function. These particles search for
the optimum by evaluating the function as they move. During
each iteration of the algorithm, the position and velocity of
each particle are updated. Each particle is pulled toward the
best position it has sampled, known as the personal best, and
toward the best position of any particle in its neighborhood,
known as the neighborhood best or global best. This attraction
is weak enough to allow exploration but strong enough to
encourage exploitation of good locations and to guarantee
convergence.
Each particle’s position and velocity are initialized to ran-

dom values based on a function-specific feasible region. Dur-
ing each iteration of constricted PSO, the following equations
update a particle’s position �x and velocity �v with respect to
personal best �bP and neighborhood best �bN :

�vt+1 = χ
[
�vt + φ1 U() ⊗ (�bP − �xt) + φ2 U() ⊗ (�bN − �xt)

]

(1)

�xt+1 = �xt + �vt+1 (2)

where φ1 and φ2 are usually set to 2.05, U() is a vector
of samples drawn from a standard uniform distribution, and

712978-1-4244-2959-2/09/$25.00 c© 2009 IEEE

⊗ represents element-wise multiplication. The constriction
constant χ is:

χ =
2

|2 − φ − √
φ2 − 4φ|

where φ = φ1 + φ2 [6].

III. TOPOLOGY REPRESENTATION

The topology or sociometry of a swarm indicates how
information is communicated between particles. The most
typical representation of swarm topology is an undirected
graph, where each vertex is a particle. The neighborhood of
a particle—the set of vertices with shared edges—has two
intuitive interpretations. From one perspective, it indicates
which neighbors (or “informants”) contribute their personal
bests to a particular particle’s neighborhood best. Alternatively,
it indicates which neighbors a particular particle sends its
personal best to. Since the graph is undirected, these are
equivalent.
Swarm topologies are usually defined informally, using a

combination of prose and diagrams. Although insightful, this
approach is inherently imprecise and does not scale to more
complex and dynamic topologies. Additionally, communica-
tion between particles, which has a significant cost in a parallel
implementation of PSO, is only implicit in this representation.
To address the drawbacks of defining topologies informally,

we will build on the formal definitions from graph theory.
To make communication more explicit, we will use directed
graphs instead of undirected graphs as suggested by Mendes
as future work [5]. A directed graph is a pair G = (V, E),
where V is a nonempty finite set and E is a (possibly empty)
subset of V × V . The elements of V are the vertices of G

and the elements of E are the edges (or arcs) of G. An edge
(u, v) indicates a link from vertex u to vertex v [7].
The topology in iteration i is a directed graph Ti = (Pi, Ei)

where the vertex set Pi = {p0, p1, . . . , pn−1} is a set of
particles. Note that the topology in one iteration may be
different from the topology in another iteration as particles and
edges are added or removed. In a static topology, the topology
is the same in all iterations, while in a dynamic topology, the
topolgies may vary between iterations.
The neighborhood of a particle p in iteration i is the set

Ni,p = {pj ∈ Pi | (p, pj) ∈ Ei}. In other words, it is the set of
particles to which p sends its personal best. This representation
is preferable to the “informants” model because it makes the
communication more explicit. A particle may be a member
of its own neighborhood, meaning that it considers its own
personal best when updating its neighborhood best. Using
the definition of a neighborhood, the edge set is constructed
by combining the individual neighborhoods according to the
equation Ei =

⋃
p∈P Ni,p.

Many simple topologies can be more succinctly described
by a neighborhood function. A neighborhood function ν is a
function of a particle index and swarm size that gives a set
of indices indicating the neighbors. The neighborhood Ni,pj

of the particle pj in iteration i is related to the neighborhood
function ν by the equation Ni,pj

=
⋃

k∈ν(j,n) pk.
The complete topology Kn is a static topology of n par-

ticles where each particle sends its personal best to all other
particles in the swarm. This topology is often referred to as
fully connected, gbest, global topology, or star1. A complete
topology is described by the neighborhood function:

νK(i, n) = {0, 1, . . . , n − 1} (3)

The ring topology Ringn,1 is a static topology with n

particles where each particle sends its personal best to itself
and one neighbor on either side. The ring topology is also
known as lbest or local topology. This topology has been
generalized as Ringn,k, where each particle sends its personal
best to k neighbors on each side, although the Ringn,1 variant
is more common. The neighborhood function for Ringn,k is:

νRing(i, n, k) = {(i − k) mod n, . . . , i, . . . , (i + k) mod n}
In addition to fixed topologies, there are also many dy-

namic and adaptive topologies, including Randomized Di-
rected Neighborhoods [8] and Dynamic Multi-Swarm [9].
This paper does not focus on adaptive topologies, such as
TRIBES [10], because they tend to require global state, which
is difficult to parallelize.

IV. CHOOSING A TOPOLOGY AND SWARM SIZE

The ideal topology and swarm size for Particle Swarm
Optimization depend on the target function. Researchers have
devised various benchmark functions and have found that the
ideal topology for one function may perform very poorly for
another function.
An attempt to standardize PSO found that although K50

converged to the global optimum more quickly than Ring50,1

for many benchmark functions, it was also more likely to
permaturely converge to local optima for other functions. The
study found no significant improvement for any other swarm
size between 20 and 100 and concluded with a recommen-
dation to use Ring50,1 as a starting point. The authors ac-
knowledged that choosing the ideal topology requires thorough
experimentation for the particular problem [2].
The Sphere, Rastrigin, and Griewank benchmark functions

are representative of three different types of functions. Sphere
is unimodal and smooth. It is most easily optimized when
information flows between particles as quickly as possible.
Although the Ringn,1 topology will eventually converge, the
Kn topology is much more efficient. Rastrigin is much less
smooth, and PSO tends to prematurely converge to local
minima. However, increasing communication still tends to
improve performance for this function, which is best suited
for the Kn topology. Griewank has even more deceptive
local minima and requires less communication. Although Kn

initially appears to perform well, Ringn,1 is more effective as
it is less prone to converge prematurely.

1The word “star” has been used historically in the PSO community for Kn.
We, and others, feel that this choice is unfortunate because graph theory uses
the term to denote the complete bipartite graph K1,k .

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 713

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 0 5000 10000 15000 20000 25000

B
es

t F
un

ct
io

n
V

al
ue

Function Evaluations

K50
Ring50,1

Fig. 1. PSO performance on Sphere for conventional-sized K50 and
Ring50,1 swarms.

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

0 300000 600000 900000 1200000 1500000

B
es

t F
un

ct
io

n
V

al
ue

Function Evaluations

K50
K500

K4000

Fig. 2. PSO performance on Sphere for Kn with increasing swarm sizes.

The remainder of this section reviews the behavior of
various sizes of swarms with the Kn and Ringn,1 topologies.
Performance is evaluated with respect to the Sphere, Rastrigin,
and Griewank benchmark functions in order of increasing
deceptiveness. All plots represent the average over 20 runs.

A. Sphere

The simplest benchmark function is the Sphere or parabola,
expressed by the function fS(�x) =

∑D

i=1 x2
i . We use the

20-dimensional variant with the feasible region [−50, 50]20.
Figure 1 shows the best value in the swarm at each iteration
of PSO with both K50 and Ring50,1. The K50 swarm is more
effective because its particles share information as quickly
as possible, while information in Ring50,1 takes time to
propogate from one particle to the next.
Since Sphere is a smooth unimodal function, additional

particles do very little to improve performance. Figure 2 shows
that relative to function evaluations, PSO performs better with
fewer particles. In other words, a smaller swarm with more

5

10

20

50

100

200

 0 5000 10000 15000 20000 25000

B
es

t F
un

ct
io

n
V

al
ue

Function Evaluations

K50
Ring50,1

Fig. 3. PSO performance on Rastrigin for conventional-sized K50 and
Ring50,1 swarms.

5

10

20

50

100

200

0 300000 600000 900000 1200000 1500000

B
es

t F
un

ct
io

n
V

al
ue

Function Evaluations

K50
K500

K4000

Fig. 4. PSO performance on Rastrigin for Kn with increasing swarm sizes.

iterations optimizes Sphere better than a larger swarm with
fewer iterations.

B. Rastrigin

The more complicated Rastrigin function is given by
fR(�x) =

∑D

i=1

(
x2

i − 10 cos (2πxi) + 10
)
. We use the 20-

dimensional variant with the feasible region [−5.12, 5.12]20.
Figure 3 shows K50 and Ring50,1 for Rastrigin. As with
Sphere, the Ring50,1 topology is less effective because in-
formation propogates slowly.
Unfortunately, the Kn swarm is prone to prematurely con-

verge to local optima because Rastrigin is noisy. There are
many variants of PSO that address the problem of premature
convergence by encouraging exploration. Figure 4, which
shows the performance of PSO with the Kn topology for
various values of n, demonstrates that simply adding particles
can increase exploration. Since a smaller swarm can do
more iterations with fewer function evaluations, it initially
outperforms a larger swarm. However, it converges to a local
optimum and gets passed up by the larger swarm. Thus,

714 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0 20000 40000 60000 80000 100000 120000

B
es

t F
un

ct
io

n
V

al
ue

Function Evaluations

K50
Ring50,1

Fig. 5. PSO performance on Griewank for conventional-sized K50 and
Ring50,1 swarms.

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

0 300000 600000 900000 1200000 1500000

B
es

t F
un

ct
io

n
V

al
ue

Function Evaluations

Ring50,1
Ring500,1

Ring2000,1

Fig. 6. PSO performance on Griewank for Ringn,1 with increasing swarm
sizes.

adding particles can improve performance, even in a sequential
implementation of PSO.

C. Griewank

The Griewank benchmark function is defined by the equa-
tion fG(�x) = 1

4000

∑D

i=1 x2
i −ΠD

i=1 cos
(

xi√
i

)
+1. We use the

20-dimensional variant with the feasible region [−600, 600]20.
As shown in Figure 5, the Kn topology is highly susceptible
to premature convergence, and it is generally recommended to
use the Ringn,1 topology instead.
Although it performs better than K50, even Ring50,1 tends

to get stuck in local minima. Figure 6 shows that adding
more particles increases exploration, and Ringn,1 does not
prematurely converge for any n ≥ 500. However, adding
particles to Kn did not see the same improvement, and K4000

did not perform significantly better than K50. Apparently
information must fundamentally move slowly through the
swarm for PSO to successfully optimize Griewank.

5

10

20

50

100

200

 50 100 150 200 250 300 350 400 450 500

B
es

t F
un

ct
io

n
V

al
ue

Iterations

Ring50,1
Ring4000,1

K50
K4000

Fig. 7. PSO performance on Rastrigin with respect to iterations with various
topologies.

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0 500 1000 1500 2000 2500

B
es

t F
un

ct
io

n
V

al
ue

Iterations

Ring50,1
Ring400,1
Ring500,1

Ring2000,1

Fig. 8. PSO performance on Griewank with respect to iterations for Ringn,1

with increasing swarm sizes.

D. Parallel With Expensive Function Evaluations

Sections IV-A, IV-B, and IV-C showed how large swarm
sizes can improve the convergence of PSO even with respect to
the number of function evaluations. However, in a parallel im-
plementation of PSO, it may be more appropriate to consider
the number of iterations, particularly if function evaluations
are expensive [11].
When judged by function evaluations, smaller swarms ini-

tially performed better for Rastrigin, but larger swarms were
less prone to premature convergence (Figure 4). In contrast,
Figure 7 shows that with respect to the number of iterations,
adding particles always improves performance. The same is
true for Griewank, as shown in Figure 8. This conventional-
style plot is somewhat misleading, since it shows the average
result over 20 runs. Of these 20 swarms, some find the global
minimum and others get stuck at local minima, resulting in
a high variance. Figure 9 addresses this as in [5] by showing
the number of swarms with best values below 10−6, which is

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 715

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

P
er

ce
nt

 o
f S

w
ar

m
s

W
ith

 a
 B

es
t N

ea
r

Z
er

o

Iterations

Ring50, 1
Ring400, 1
Ring500, 1

Ring2000, 1

Fig. 9. Success rate on Griewank with respect to iterations for Ringn,1

with various swarm sizes.

below any of the local minima. The figure shows that larger
swarms find the global minimum in fewer iterations and with
a higher success rate.

V. INEXPENSIVE FUNCTION EVALUATIONS RELATIVE TO

COMMUNICATION

In a parallel implementation of PSO, communication over-
head may significantly affect performance. For functions that
take a long time to evaluate, this communication may be negli-
gible. However, for simpler functions, limiting communication
may be critical for performance [11].
Functions such as Griewank, which is best optimized with

Ringn,1, inherently demand low communication. The ring
topology only needs to send 2 messages per particle for a
total of 2n messages per iteration. Since the communication
overhead is naturally low for such functions, they are naturally
efficient in a parallel implementation of PSO.
Functions like Sphere and Rastrigin are best optimized

when information flows quickly through the swarm. The Kn

topology requires n − 1 messages per particle for a total of
n2 − n messages per iteration. In this section, we will focus
on reducing communication for such functions when commu-
nication is expensive or function evaluation is inexpensive.

A. Generalized Rings

As noted in Section III, the ring topology has been gen-
eralized as Ringn,k, where each particle sends its personal
best to k neighbors on each side. Another variant of the ring
topology is a one-way ring DRingn,k, which is like Ringn,k

except that information is only sent in one direction. This is
given by the neighborhood function:

νDRing(i, n, k) = {i, (i + 1) mod n, . . . , (i + k) mod n}
The Ringn,k topology requires 2kn messages per iteration,

and DRingn,k requires kn messages per iteration. If k =
n, then Ringn,k is identical to Kn. The k parameter can be
tweaked to compromise the tradeoff between information flow

5

10

20

50

100

200

 50 100 150 200 250 300 350 400 450 500

B
es

t F
un

ct
io

n
V

al
ue

Iterations

K4000
Ring4000, 1

Ring4000, 1000
DRing4000, 2000

Fig. 10. PSO performance on Rastrigin with ring topologies.

and communication overhead. Figure 10 shows Rastrigin with
a few ring topologies, demonstrating that communication can
be halved without affecting performance.

B. Random Topology

The random topology Randn,k is a dynamic topology
where each particle randomly picks k different neighbors each
iteration. Its neighborhood function is:

νRand(i, n, k) = {i, U1, U2, . . . , Uk}
where Uj is a uniform random integer between 0 and n −
1. These random numbers are drawn independently in each
iteration and for each particle.
The Randn,k topology has kn messages per iteration. When

k is large, particles send messages to most other particles in the
swarm, making the topology similar to Kn. A topology called
stochastic star, which differs primarily by using the informants
model in its definition, also has this similarity to Kn [12].
Recall that in a dynamic topology, a particle’s neighborhood

may change between iterations. The PSO algorithm is am-
biguous about how to update a particle’s neighborhood best in
this situation. With a dynamic neighborhood best, the particle
would set its neighborhood best by taking the best personal
best in its neighborhood, throwing out the prior neighborhood
best. With a stable neighborhood best, the particle would retain
the prior neighborhood best, replacing it only if some particle
in its neighborhood has a better personal best.
Figure 11 shows the performance of the Randn, n

2
topology

on the Rastrigin benchmark function. With a stable neighbor-
hood best, performance improves steadily with the number
of particles. However, a swarm with a dynamic neighborhood
best exhibits high variance and terrible overall performance.
These results show that with a dynamic neighborhood best, a
particle wastes the information from neighbors because it gets
tugged toward an ever-changing neighborhood best instead of
focusing on a productive part of the space.
Figure 12 shows the performance of Ringn,1 and Randn,2

on the Rastrigin benchmark function. The two topologies

716 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

5

10

20

50

100

200

50 100 200 300 500 1000 2000 4000

V
al

ue
 a

fte
r

50
0

ite
ra

tio
ns

Swarm Size

Dynamic gbest
Stable gbest

Fig. 11. PSO performance for dynamic and stable neighborhood bests
on Rastrigin. The primary plots show the average performance over 20
independent runs, and the error bars show the median and the 10th and 90th

percentiles.

10

20

50

50 100 200 500 1000 2000 4000

V
al

ue
 a

fte
r

50
0

ite
ra

tio
ns

Swarm Size

Ringn,1
Randn,2

Fig. 12. PSO performance for Ringn,1 and Randn,2 on Rastrigin. The
primary plots show the average performance over 20 independent runs, and
the error bars show the median and the 10th and 90th percentiles.

require the exact same amount of communication as each
particle sends its personal best to two neighbors. The random
topology performs better, even with a small swarm, and adding
additional particles for Randn,2 has a greater effect than for
Ringn,1.
Figure 13 compares the performance of Kn, Randn, n

5

(20% communication), Randn, n
20

(5% communication), and
Randn,2 on the Rastrigin benchmark function. Note that with
the exception of Randn,2 they give approximately the same
results despite the random topologies requiring significantly
less communication.

C. Hearsay PSO

Sphere and Rastrigin are better optimized with more shared
information. Although the Randn,k topology is able to reduce
communication dramatically without affecting performance,
information propogates too slowly through the swarm when k

5

10

20

50

50 100 200 300 500 1000 2000 4000

V
al

ue
 a

fte
r

50
0

ite
ra

tio
ns

Swarm Size

Kn
Randn, .2n Communication

Randn, .05n Communication
Randn, 2 Communication

Fig. 13. PSO performance for Kn, Randn, n
5

, and Randn, n
20

on Rastrigin.
The primary plots show the average performance over 20 independent runs,
and the error bars show the median and the 10th and 90th percentiles.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

50 100 200 500 1000 2000 4000

V
al

ue
 a

fte
r

50
0

ite
ra

tio
ns

Swarm Size

Transitive Best Randn, 2
Standard Randn, 2

Ringn,1
Kn

Fig. 14. PSO performance on Sphere for transitive best Randn,2 , Randn,2 ,
and Ringn,2. The primary plots show the average performance over 20
independent runs, and the error bars show the median and the 10th and 90th

percentiles.

is small. For example, Randn,2 performs worse than the more
communicative random topologies in Figure 13. However,
a modification of the PSO algorithm restores information
flow without actually increasing the communication between
particles. In Hearsay PSO, particles convey what they have
heard and not just what they have seen. Specifically, they
have a “transitive best” and send their neighborhood best to
neighbors rather than their personal best.
Figure 14 shows that Hearsay PSO with Randn,2 outper-

forms standard PSO on Sphere using topologies with the same
amount of communication. Figure 15 makes the same com-
parisons for Rastrigin and shows that for large swarm sizes,
Hearsay PSO using Randn,2 is competitive with Standard
PSO using Kn, both of which slightly outperform Standard
PSO with Randn,2. Figure 16 compares a few topologies and
shows that when the number of messages is the primary cost,

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 717

5

10

20

50

50 100 200 500 1000 2000 4000

V
al

ue
 a

fte
r

50
0

ite
ra

tio
ns

Swarm Size

Transitive Best Randn,2
Standard Randn,2

Ringn,1
Kn

Fig. 15. PSO performance on Rastrigin for transitive best Randn,2 ,
Randn,2 , and Ringn,2. The primary plots show the average performance
over 20 independent runs, and the error bars show the median and the 10th

and 90th percentiles.

5

10

20

50

100

200

 10 100 1000 10000 100000 1e+06

B
es

t F
un

ct
io

n
V

al
ue

Cumulative Messages

K4000
Ring4000, 1000

Ring4000, 1
Rand4000, 2 with Transitive Best

Fig. 16. PSO performance on Rastrigin with respect to communication.

Hearsay PSO with Randn,2 outperforms standard PSO with
most other topologies.

D. Subswarms

Another way to parallelize PSO is to perform independent
runs, or subswarms, on different processors and take the best
result after the runs have completed. Formally, Subswarmsn,k

is a static topology consisting of n independent components
of k fully-connected particles. This requires no modification
of the PSO implementation and works surprisingly well.
If local communication is inexpensive, then the subswarms
topology is extremely efficient because it involves no external
communication.
“Communicating subswarms” occasionally share neighbor-

hood bests between subswarms. If external communication
is expensive, this can be effective because messages are not
sent every iteration. The communicating subswarms topology
CommunicatingSwarms is dynamic: it is Subswarmsn,k

5

10

20

50

 100 150 200 250 300 350 400 450 500

B
es

t F
un

ct
io

n
V

al
ue

Iterations

K400
CommunicatingSwarms10, 400

K2000
CommunicatingSwarms2, 2000

K4000

Fig. 17. PSO performance on Rastrigin with communicating subswarms.

during most iterations but is Knk every ith iteration. More
sophisticated ways to connect multiple subswarms have been
proposed [9], [13], but communicating subswarms are partic-
ularly simple to parallelize.
Figure 17 shows two CommunicatingSwarms topologies

with 4000 total particles in comparison with related Kn

swarms. These subswarms communicate every 50 iterations,
and as a result, there is an interesting dip after every 50th iter-
ation. Communicating subswarms outperform a single swarm
of the smaller size, and the results even seem promising in
comparison with a single large swarm.

VI. CONCLUSIONS AND FUTURE WORK

We have shown that large swarms can improve the per-
formance of Particle Swarm Optimization on several stan-
dard benchmark functions. Large swarms inherently delay
convergence, which can be helpful in optimizing deceptive
and moderately deceptive functions such as Griewank and
Rastrigin. These results apply to both sequential and parallel
environments.
However, performance gains are particularly compelling in

the context of parallel computation. Where faster convergence
is desirable but where communication is expensive relative to
function evaluations, we have proposed adaptations of PSO.
We have given a more formal approach to topologies, making
it easier to describe complex and dynamic topologies. Random
topologies with a stable neighborhood best increase the flow of
information without destabilizing motion. Hearsay PSO allows
particles to communicate more than just their personal best,
which helps information spread even more quickly. This allows
topologies to be more sparsely connected, which reduces
the communication overhead of PSO in large scale parallel
environments.
The subswarms topology deals with the situation where

local communication is inexpensive (such as between cores
in a multicore processor) and external communication is more
expensive (like between multicore processors in a cluster) or
impossible (with serial-only code).

718 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

In the future, we expect to extend our work with large
swarms. Large scale parallel computing environments open the
door to very large swarms. A cluster of a thousand 8-core pro-
cessors could allow optimization with hundreds of thousands
or perhaps millions of particles. Based on our experiences so
far it seems likely that we will discover new issues that will
drive further algorithmic advances. For example, we expect
that large swarms like larger societies will demand richer
communication for the swarm to work effectively. Sharing
information such as history may allow particles to move more
intelligently without increasing communication overhead. We
suspect that knowledge of subsets of particles (“partially fully-
informed PSO”) or may work well in cases where “fully-
informed PSO” has failed for large swarms [14].
Space has limited this work to a subset of the interesting

and applicable benchmark functions. In future work we need
to consider more benchmarks. The use of directed graphs has
also allowed us to describe and consider interesting topologies,
but we have only begun to develop topologies that might be
applicable in parallel computing environments.

REFERENCES

[1] James Kennedy and Russell C. Eberhart. Particle swarm optimization.
In International Conference on Neural Networks IV, pages 1942–1948,
Piscataway, NJ, 1995.

[2] Daniel Bratton and James Kennedy. Defining a standard for particle
swarm optimization. In Proceedings of the IEEE Swarm Intelligence
Symposium, pages 120–127, 2007.

[3] J. F. Schutte, J. A. Reinbolt, B. J. Fregly, R. T. Haftka, and A. D. George.
Parallel global optimization with the particle swarm algorithm. Inter-

national Journal for Numerical Methods in Engineering, 61(13):2296–
2315, December 2004.

[4] J.R. Perez and J. Basterrechea. Particle swarm optimization for antenna
far-field radiation pattern reconstruction. In 36th European Microwave
Conference, pages 687–690, 2006.

[5] Rui Mendes. Population Topologies and Their Influence in Particle
Swarm Performance. PhD thesis, Escola de Engenharia, Universidade
do Minho, 2004.

[6] Maurice Clerc and James Kennedy. The particle swarm - explosion,
stability, and convergence in a multidimensional complex space. IEEE
Transactions on Evolutionary Computation, 6(1):58–73, 2002.

[7] Russell Merris. Graph Theory. John Wiley & Sons, New York, 2001.
[8] Arvind S. Mohais, Christopher Ward, and Christian Posthoff. Ran-

domized directed neighborhoods with edge migration in particle swarm
optimization. In Proceedings of the IEEE Congress on Evolutionary
Computation, volume 1, pages 548–555, 2004.

[9] J. J. Liang and P. N. Suganthan. Dynamic multi-swarm particle swarm
optimizer. In Proceedings of the IEEE Swarm Intelligence Symposium,
pages 124–129, 2005.

[10] Maurice Clerc. TRIBES - un exemple d’optimisation par essaim
particulaire sans paramètres de contrôle. In Optimisation par Essaim
Particulaire, Paris, France, 2003.

[11] Andrew W. McNabb, Christopher K. Monson, and Kevin D. Seppi.
Parallel PSO using MapReduce. In Proceedings of the IEEE Congress
on Evolutionary Computation, pages 7–14, September 2007.

[12] Vladimiro Miranda, Hrvoje Keko, and Álvaro Jaramillo Duque. Stochas-
tic star communication topology in evolutionary particle swarms. Inter-
national Journal of Computational Intelligence Research, 4(2), 2008.

[13] Johannes Jordan, Sabine Helwig, and Rolf Wanka. Social interaction
in particle swarm optimization, the ranked FIPS, and adaptive multi-
swarms. In Proceedings of the 10th Annual Conference on Genetic and
Evolutionary Computation, pages 49–56. ACM, 2008.

[14] Marco A. Montes de Oca and Thomas Stützle. Convergence behavior
of the fully informed particle swarm optimization algorithm. In Pro-
ceedings of the 10th Annual Conference on Genetic and Evolutionary
Computation, pages 71–78. ACM, 2008.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 719

	An Exploration of Topologies and Communication in Large Particle Swarms
	Original Publication Citation
	BYU ScholarsArchive Citation

	untitled

