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ABSTRACT

A HIGH-RESOLUTION MICROSCOPIC ELECTRICAL

IMPEDANCE IMAGING MODALITY: SCANNING

IMPEDANCE IMAGING

Hongze Liu

Department of Electrical and Computer Engineering

Doctor of Philosophy

Electrical impedance imaging is an imaging technique which has the capa-

bility of revealing the spatial distribution of the electrical impedance inside biolog-

ical tissues. Classical electrical impedance imaging including Electrical Impedance

Tomography (EIT) typically has low resolution. Advances in electrical impedance

imaging typically involve methods that either increase image resolution or image

contrast. This study investigates the possibility of the resolution improvement for

electrical impedance imaging using motion, and presents a novel high-resolution and

calibrated impedance imaging method called Scanning electrical Impedance Imaging

(SII). SII uses an electrical probe held at a known voltage and scanned over a thin

sample immersed in a conductive medium on a grounded conducting plane to obtain

high-resolution calibrated impedance images of samples.

For system improvement and image reconstruction, a numerical model is de-

veloped to describe the SII system. This model simulates the measurement process by

solving a 3-D electrostatic field at each scanning position using a modified approach





of the finite difference method (FDM). The simulation consists of a quasi-statics prob-

lem involving inhomogeneous media with a complicated boundary condition. This

3-D model is used to optimize both the probe height and the shield-spacing for probe

fabrication and also to evaluate system parameters including the frequency and the

resistor in the peripheral circuit. Based on this model, an approach is also developed

to quantifying conductivity values using the SII system. However, a large computa-

tional cost due to the motion involved in SII leads to challenges for a fast and accurate

image reconstruction based on this 3-D model.

Alternative fast models are derived as a replacement of the 3-D model for quick

image reconstruction. In particular, the Modified Linear Approximation (MLA) in-

volving two conductivity-weighted convolutions based on the reciprocity principle,

explains the function of the special shield design introduced in the SII system reason-

ably well. Based on the MLA a nonlinear inverse method using total variation regu-

larization and the Polak-Ribiére variant of the nonlinear conjugate-gradient method

is developed for fast image reconstruction of the SII system. The inverse method is

accelerated using convolution which eliminates the requirement of a numerical solver

for the 3-D electrostatic field. 2-D images of small biological tissues and cells are

measured using the SII system. The corresponding conductivity images are recon-

structed using the MLA method. The successful improvement of resolution shown in

both simulation and experimental results demonstrates that the idea of this approach

can potentially be expanded to other imaging modalities for resolution improvement

using motion.
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Chapter 1

Introduction

1.1 General background

The evolution of science often parallels the invention of instruments that ex-

tend human senses to new limits. Although cells were first discovered by Robert

Hooke in 1665, the geography of the cell was largely uncharted until the past few

decades as microscopic imaging techniques has become commonplace. By using mi-

croscopes, these techniques provide us a way to view the microscopic world of the

fundamental units (cells) that make up all living organisms. Microscopes can largely

be separated into two classes, optical microscopes and scanning probe microscopes.

Optical microscopes are microscopes which function through the optical theory of

lenses in order to magnify the image generated by the passage of a wave through the

sample. The waves used are either electromagnetic in optical microscopes or electron

beams in electron microscopes. The types of microscopes are the compound light,

stereo, and the electron microscope. The most common type of microscope-and the

first to be invented-is the optical microscope. Based on it, the optical microscopy

is a high-frequency far field imaging method with very small wavelength. The ob-

1



served structures are much larger than the wavelength used in experiments. Optical

microscopy has proven to be very useful to image the cell anatomy with very high

resolution.

Beyond the curiosity of cell anatomy, cell function is another important prop-

erty of a cell. Unlike cell anatomy, cell function is not a structure that can be imaged;

however, it can be observed by imaging the protein shape and the interaction and

exchange of ions because we now know that cell function relies heavily on these two.

In fact, life is literally teeming with polar molecules (water), inhomogeneous charge

distributions (DNA, proteins), and ions (H+, K+, Na+, Cl−). The alteration of ion

concentrations, charge distributions (e.g. during enzymatic activity), and polarizabil-

ity of water (i.e. protein hydration state) are all natural, inherent markers of cellular

function. In other words, the cell function can be revealed by imaging these mark-

ers. However, as a high-frequency far field imaging modality, conventional optical

microscopy does not provide the ability to image these markers.

Both cell anatomy and the function are the objectives of imaging biological

cells. The advent of the optical microscope allowed great advances in the first of these

two objectives. Simply describing the diverse organelles within the cells aided greatly

to our overall understanding of the biological organization, but revealed little about

their function. Consequently, current medicine focus on the structure of the cell but

has a more difficult job in determining cell function. However, cell function plays an

important role in the biological world. A advancement that takes into account these

ionic and electrical properties could enhance the ability to understand cell function.

Cell function could potentially be visualized dynamically if high-resolution (in both

time and space) images of electrical properties of matter could be made.

2



Electrical impedance imaging is a near-field modality that has potential to

visualize the electrical properties in an object by measuring electrical response on

the surface. The impedance information could reveal information about ion con-

centrations and their distributions, and even charge distribution, etc. Ideally, this

technique could be applied throughout a cellular volume. Although measuring infor-

mation about the electrical properties within living cells holds endless possibilities for

advancing biology, an effective method for doing this has not yet been fully devel-

oped. Some methods such as electrical impedance tomography have obtained crude

images of biological tissues based on electrical properties, but with nowhere near the

resolution required to explore individual cells. This thesis explores a new method

of electrical impedance imaging called Scanning Impedance Imaging (SII) that has

vastly improved resolutions close to the cellular scale. At the current stage, the tar-

gets of scanning impedance imaging focus on the concentrations of ions although it

has the potential to image all the electrical properties including charge distributions

for protein shapes.

1.2 General concepts and methods

Electrical impedance imaging is a non-invasive imaging modality that esti-

mates the electrical properties at the interior of an object from measurements made

on its surface. Typically, currents are generated within the objects, and the resulting

effects are measured. There are several ways to produce currents inside the objects.

One possible approach is direct current injection using electrodes placed on the sur-

face. Measurements can also be obtained using electrical probes on the surface. Based
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on the measurements, the impedance distribution can be reconstructed everywhere

in the object. This idea is illustrated in Figure 1.1

Voltage/Current
Source

Image
ReconstructionCurrent/Voltage

measurements

Phantom Impedance Image

Control Unit

Figure 1.1: General Electrical Impedance Imaging System

In the literature, this basic idea is implemented in limited ways. Most studies

apply tomographic reconstruction calling the modality Electrical Impedance Tomog-

raphy (EIT). In EIT, electrodes are placed around an object forming a ring with two

for current injection and voltages are measured on the other electrodes. Recently,

measurements are sometimes collected using Magnetic Resonance (MR), which is

called MR-EIT. In this work, a different approach is developed using a high-resolution

scanning technique. Even though based on the same general idea, the new approach

uses motion to produce the measurements which requires different image reconstruc-

tion from tomography.
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1.3 Significance and clinical applications

Although currently the resolution of the technology proposed in this thesis

is not high enough to image a single cell, the successful construction and use of this

technology would potentially lead to a new imaging tool that could greatly expand the

information scientists can obtain about cellular structure and function. By providing

rapid two-dimensional information regarding the conductivity and dielectric perme-

ability of cell samples, greatly improved understanding of cellular processes could be

obtained. For example, a high-resolution conductivity image could show the direc-

tion and orientation of nano-tubes used for intra-cellular trafficking as well as average

activity of ion channels in the cell membrane. An image of dielectric permeability

could show protein folding activity as well as reveal the average rotational mobility of

water molecules in different regions of the cell during different physiological processes.

The nature of the proposed technique enables the monitoring of in-vitro biochemical

processes and therapeutic action of pharmaceutical agents.

In addition to the scientific applications, electrical impedance at multiple fre-

quencies has already shown clinical utility in distinguishing between active and in-

active white blood cells [1]. In addition, cancerous tissue has already been shown to

have an increased conductivity. As a result, an example application of the device to

biopsy samples could assist the pathologist in distinguishing between malignant and

benign neoplastic growth. While some of the scientific applications are admittedly

ambitious, successful clinical applications would require far less resolution than will

be shown in this thesis.
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1.4 Thesis objectives

The primary aim of this study is the design of a microscopic electrical impedance

imaging system that applies electrical impedance imaging to small tissues and even

cells. It has the potential to image cells or a single cell with sufficient resolution at

different frequencies. The imaging system consists of a micro-scale measuring instru-

ment and a reconstruction process to create an image of the impedance of a sample

from the measurements based on physical modeling. In this thesis, a feasible design

of microscopic electrical impedance imaging that could be applied to cellular level

measurements: scanning impedance imaging (SII) is developed, modeled, and tested.

SII uses a non-contact electrical probe held at a known voltage and scanned in tiny

steps over a thin sample in a conductive aqueous medium.

1.5 Contributions

The major contributions of this thesis are system design, modeling work and

image reconstruction of the novel scanning electrical impedance imaging modality.

The specific contributions of this thesis can be outlines as follows:

• Design and development of the scanning impedance imaging system using a

novel shielded impedance probe with a coaxial geometry and liquid-contact

configuration for the connection between the probe and the sample[2, 3, 4, 5]

• Development and implementation of the experimental setup of the scanning

impedance imaging system
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• Development of the LabView programs for the scanning stage control, function

generator control and data acquisition using ADC card and lock-in amplifier

• Test and debugging of the whole experimental system

• Experiments of line-scans and 2d image scans for both artificial samples of

composite material and biological samples including leaves, flower petals, cells

etc.

• Experiments of system performance: resolution and signal-to-noise ratio for

comparison of unshielded probes and shielded probes.

• Explanation and formulation of the electromagnetic field problem in the re-

gion of interest for the electrical impedance imaging, especially for the scanning

impedance imaging with hypotheses of low frequency, low contribution of mag-

netic field, and complex combination of conductivity and permittivity[6]

• 2-D modeling of the electrical impedance tomography and the scanning impedance

imaging using MATLAB partial differential equation (pde) toolbox

• Development and verification of a 3-D finite difference model for the scanning

impedance imaging using a half-shifted mesh of a 7-point cubic structure[7, 8]

• Prediction and optimization of both the probe design and system parameters

using the 3-D finite difference model

• System performance analysis including resolution, signal-to-noise ratio and etc

using the 3-D finite difference model

• Impedance quantification of the scanning impedance imaging using the 3-D

finite difference model for both the artificial and biological samples[9]
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• Development of 2-D fast alternative models based on the reciprocity principle

and convolution for the scanning impedance imaging[10]

• Development of a fast nonlinear 2-D Image reconstruction of scanning impedance

imaging based on the Modified Linear Approximation (MLA) model using the

Polak-Ribiére variant of the nonlinear conjugate-gradient method[11]

• Comparison and performance analysis of 2-D and 3-D models for image recon-

struction of the scanning impedance imaging

• Implementation and experimental data reconstruction using the 2-D MLA method

for different biological samples
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Chapter 2

Related work

The ultimate objective of this thesis is to image the electrical properties in-

cluding charge distribution and ions inside a single cell. This study involves two main

areas: cellular imaging and electrical impedance imaging. The design of the scanning

impedance imaging benefits from previous studies in both areas. This chapter will go

through the literature in the cellular imaging area first and then review the electrical

impedance imaging. For imaging cells, microscopes of different types are employed

in order to view the microscopic world inside cells. The key challenge of the cellular

imaging is the high resolution. However, current electrical impedance imaging tar-

gets big tissues or human bodies due to its low resolution. The scanning impedance

imaging in this study solves this problem by introducing high resolution scanning tech-

niques and indirect contact configuration. Because the scanning impedance imaging

is a low-frequency near field imaging modality, the image reconstruction is a complex

inverse problem. Thus, popular approaches of inverse problem are also shown in this

chapter.
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2.1 Cellular imaging

Currently, cellular studies are limited by the ability of microscopes and mark-

ers such as dyes that allow scientists to visualize the contents and structure of the

cell. However, cells are literally teeming with polar molecules (water), inhomogeneous

charge distributions (DNA, proteins), and ions (H+, K+, Na+, Cl−). Table 2.1 shows

ion concentrations of the intracellular liquid (ICL) [12]. The alteration of ion concen-

trations, charge distributions (e.g. during enzymatic activity), and polarizability of

water (i.e. protein hydration state) are all natural, inherent markers of cellular func-

tion. The electrical activity of these markers in living cells is responsible for much

of the complex behavior of organisms. Sensory processing, cardiac function, muscle

control, thought, etc. are all partially controlled and regulated by this electrical ac-

tivity and response of different cells in the body. Even though there are a plethora

of different cell types, the fundamental mechanisms for electrical activity are quite

similar. Structurally, cells are composed of a lipid bilayer membrane enclosing an

intracellular ionic solution. This membrane contains numerous proteins, receptors,

ionic channels, and ionic pumps which are responsible for maintaining the ionic con-

centrations within the cell and the intracellular potential relative to the extracellular.

Thus, cellular anatomy and function could be potentially visualized dynamically if

high-resolution (in both time and space) images of electrical properties of matter

could be made at appropriate frequencies. Among electrical properties, electrical

impedance consisting of conductivity and permittivity is a good essential indicator

for the inner electrical status of cellular contents.

There are several nano-scale imaging modalities using the scanning probe mi-

croscopy including the well-known atomic force microscopy (AFM) [13, 14], etc. These

10



Table 2.1: The ion concentrations of the intracellular liquid (ICL)
Ions ICL (mM)
K+ 125
Na+ 12
Cl− 5
A−1.223 (organic anions) 108
H2O 55000

standard nano-scale imaging techniques are used to produce surface profiles and have

been applied to the area of cellular imaging.

The atomic force microscope is one of about two dozen types of scanned-

proximity probe microscopes. All of these microscopes work by measuring a local

property - such as height, optical absorption, or magnetism - with a probe or ”tip”

placed very close to the sample. Figure 2.1 shows the concept of a typical AFM. The

small probe-sample separation (on the order of the instrument’s resolution) makes it

possible to take measurements over a small area. To acquire an image the microscope

raster-scans the probe over the sample while measuring the local property in question.

The resulting image resembles an image on a television screen in that both consist of

many rows or lines of information placed one above the other. Pioneering work and

instrumental development of AFM were carried out by the groups of Paul Hansma,

University of California, Santa Barbara; and Gerd Binnig, IBM Physics, Munich.

Meanwhile, many other groups contributed exciting new insights at the cellular and

molecular levels using the AFM. The essential part of an AFM, as for all scanning

probe microscopes, is the tip that determines by its structure the type of interaction

with a surface; and by its geometry, the area of interaction. The original idea for the

AFM was to measure the van der Waals interaction of an atom at the very end of

the tip with atoms at a surface of a solid substrate. To bring a single atom at a tip
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close to within angstrom distance toward a surface is only possible if the surface is

atomically flat, such as, for example, the crystalline surface of mica. The ability of

AFM to image at atomic resolution, combined with its ability to image a wide variety

of samples under a wide variety of conditions, has created a great deal of interest in

applying it to the study of biological structures. For the first time, in 1989, Binnig

visualized the process of pox virus release on living cells. Images have appeared in

the literature showing DNA, single proteins, structures such as gap junctions, and

living cells (for a review see Hoh and Hansma, 1992). Unfortunately, AFM cannot

image all samples at atomic resolution. The end radii of available tips confines atomic

resolution to flat, periodic samples such as graphite. In addition, because biological

structures are soft, the tip-sample interaction tends to distort or destroy them.

Tube scanner

Position-sensitive
detector

Laser

Figure 2.1: Concept of AFM and the optical lever. Scale drawing; the tube scanner
measures 24 mm in diameter, while the cantilever is 100 μm long.

Even though these high resolution imaging methods have proved to be very

advantageous to biology, they do not use the natural contrast that exists in the elec-
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trical properties of biological material. Further, the resolution is too high to image

big shapes of proteins or ion concentrations. Thus, it is hardly feasible to obtain an

image of detailed electrical information using these surface imaging modalities. How-

ever, these methods provide a way into high-resolution imaging using high-resolution

scanning techniques and micro-(nano-)probes.

2.2 Electrical impedance measurements

2.2.1 Impedance measurements of biological tissues

As early as the 1900s, scientists and researchers have shown the interest in

measuring electrical impedance of tissues within the human body. Galeotti in 1902

was probably the first to note the changes in resistivity which accompany the death

of cells[15]. In freshly excised tissues he observed an initial increase followed by a

considerable decrease in resistivity. In 1967, Geddes and Baker reported the specific

resistance of biological tissues including body fluids, blood, cardiac muscle, skeletal

muscle, lung, kidney, liver, spleen, pancreas, nerve tissue, fat, and bone, nearly cover-

ing all the main organs within human body[16]. It has also been shown that electrical

properties of malignant tissues are significantly different from those of normal and

benign tissues. Surowiec et al. have reported that the electrical resistance of ma-

lignant tumors decreases by a factor of 20 to 40 with respect to normal or benign

tissues [17]. It is therefore hoped that such information may be used in tumor detec-

tion and diagnosis by means of the spatial distribution of conductivity measurements

(inversely related to resistance). It is also clear that such information may be used

in conjunction with other imaging modalities to identify tumors and achieve higher
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specificity rates, compared with current techniques. To exploit this finding, scientists

have reported several methods that can reveal the conductivity information inside

tissues, which will be discussed in Section 2.3.

2.2.2 Impedance measurements of cells

As early as 1923, Grant found that cancer cells have a lower resistivity that

normal cells at low frequency [18]. Since then, scientists have shown their interest

in cellular resistivity besides the interest in tissue resistivity. In 1981, Hause, et al.

proposed impedance measurement for bacterial growth monitoring [19].

Giaever was the first to monitor the impedance of populations (20 to 80) of

cultured cell using electrodes significantly larger than the cells to be studied. In 1984

he described a system where standard polystyrene tissue culture dishes were modified

to include a large reference electrode (2 cm2) and 4 smaller electrodes (3×cm2) [20].

Giaever and Keese cultured human lung fibroblasts (WI-38 and WI-38/VA-13) cells

on the modified cell culture dishes and applied an AC voltage through a resistor to a

single small electrode in the dish. The result was a near constant current source which

enabled the impedance to be determined by measurement of the resulting voltage.

Using a lock-in amplifier, they were able to observe the effects of cell proliferation

(impedance increase) as well as micro-motion of the cells (fluctuations in observed

impedance). This was the first demonstration of a system capable of monitoring pro-

liferation and motion of a population of cells cultured in vitro. Giaever and Keese

continued their work in the years that followed, examining the effects of different

proteins on cell adhesion, spreading, and motility [21]. Giaever, et al. also showed

this impedance technique was capable of resolving cellular movement at the nanome-
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ter level, something which previously was impossible using conventional time lapse

microscopy [22].

Recently, impedance studies of anchorage dependent cultured cells have been

performed by three other groups using different electrode structures. In 1995 Hage-

dorn, et al. utilized a perforated silicon membrane structure to examine the motion

of fibroblasts cultured on the surface [23]. The upper and lower electrolytes were sep-

arated by the silicon membrane so that current flowing from the upper electrode to

the lower electrode passed through the pore. Given large electrodes, the 10-micron di-

ameter pore could be made to dominate the measured impedance. In 1996, Wegener,

et al. described an electrode system similar to that of Giaever, et al. which utilized a

voltage divider technique for determination of the unknown impedance across a range

of frequencies (1 Hz to 10 kHz) [24]. In 1997, Ehret, et al. described an interdigitated

electrode structure with electrodes of 50 micron in width separated by 50 micron in

a 5 mm × 5 mm active area [25].

The development of a cellular imaging system that allows the measurement

of impedance across the cell will provide important information for monitoring cell

activation and valuable cellular mechanisms and increasing our understanding of the

internal electrical structure of the cell. However, there are few projects proposed

in the literature which attempt to obtain an image of the impedance distribution of

cells, even though many studies reported different approaches to measure the electrical

impedance. The current electrical impedance imaging is limited by its low resolution

and is not able to be used in cellular imaging. The history and detail of this technique

that motivate the basic idea of the new scanning impedance imaging modality will

be discussed in the following section.
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2.3 Electrical impedance imaging

In 1895, Roentgen’s discovery of X rays flung open a door that led to a new

dimension in the medicine–the ability to look within a patient’s body without having

to slice it open. After these initial advances, medical imaging evolved steadily but

slowly until the 1970s. Driven largely by the availability of powerful computers, sev-

eral medical imaging modalities have rapidly altered patient diagnosis and treatment

in the past few decades. Computed tomography (CT), magnetic resonance imaging

(MRI), ultrasound and positron emission tomography (PET) have all changed the

ways in which physicians practice their art.

In 1978, Henderson and Webster designed and built an impedance camera

to generate electrical impedance images of the thorax[26]. The instrument makes

100 spatially specific admittance measurements per frame at rates up to 32 frames

per second. They used this camera to study pulmonary edema. They applied a

100KHz AC voltage signal to a large electrode on the chest, and measured the current

through an array of 100 small electrodes on the opposite side using a single channel.

However, the assumption they made was not valid because they assumed electric

currents traveled in straight lines, which is not true. This work was probably the

first attempt at electrical impedance imaging. Since then, many studies have been

focused on the area of electrical impedance imaging, and many feasible approaches

have been proposed including electrical impedance tomography, magnetic resonance

electrical impedance tomography, and magnetic induction tomography.
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Electrical impedance measurements of tissues or cells in the previous section

are measures of a whole object. The electrical impedance Z is a complex number

Z = R + jX, (2.1)

where R is the electrical resistance and X is the electrical reactance. It can be seen

that the electrical impedance Z is an integral measure that is not applicable for

imaging. In the electrical impedance imaging, an image of the ability to conduct an

electric current needs to be measured for the material inside an object. Thus, the

electrical properties measured in the electrical impedance imaging are conductivity σ

and permittivity ε. The conductivity is defined as the ratio of the current density J

to the electric field E:

J = σE. (2.2)

The permittivity is defined as the ratio of the electric displacement field D to the

electric field E:

D = εE. (2.3)

Both σ and ε are measures of materials and may vary inside the object. For a

regular conductor and a parallel-plate capacitor of homogeneous materials (σ and ε

are constant), there is an explicit relationship between the electrical impedance Z

and σ and ε. The electrical resistance is

R =
L

σA
, (2.4)
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where L is the length of the conductor and A is the cross-sectional area. The electrical

capacitance is

C =
εA

d
, (2.5)

where A is the area covered by the capacitor, and d is the distance between the plates.

Thus, the electrical impedance Z can be obtained as

Z = R +
1

jωC
. (2.6)

There are several methods reported in the literature which image the electri-

cal impedance in an object. Among them, the most popular modality is Electrical

Impedance Tomography (EIT) that involves the tomographic reconstruction. In the

electrical impedance imaging, most literature work focused on EIT in both hardware

design and image reconstruction.

2.3.1 Electrical impedance tomography

In 1983, Barber and Brown suggested the first system of electrical impedance

tomography that produced a tomographic image using electrical resistivity[27]. Their

system used measurements of voltage difference on the periphery of the region to be

imaged, and used the backprojection method for image reconstruction. There were

16 electrodes placed in a plane around an object. The Applied Potential Tomogra-

phy (APT) they proposed sequentially applied electrical currents to the body using

a pair of opposite electrodes. While current was flowing, voltages between adjacent

noncurrent-carrying electrodes were measured. In 1987, Brown and Seagar reported
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on a practical system they built. They called this setup the Sheffield scheme and it is

now the most widely used electrode configuration for current injection and measure-

ment in conventional EIT[28]. In the same year, Kim and Woo proposed a similar

system except that they applied a constant voltage source instead of current injection

and measured currents on the surface. A typical EIT system is shown in Figure 2.2.

Besides APT, adaptive current tomography (ACT) was suggested as an alter-

native type of EIT system[29, 30]. In an ACT system, currents are simultaneously

applied to all electrodes while voltages on each electrode are measured. For a N-

electrode system, N-1 linearly independent current patterns are applied to the object

and the electrode voltages are measured. One advantage of the ACT system is the

ability to make static images, i.e., estimates of the absolute impedance, as well as

dynamic images which show only changes in impedance. In addition, it has been

shown both analytically and experimentally that an ACT system produces greater

distinguishability [31, 32] than an APT system, meaning that, for a given amount

of applied power, larger electrode voltage changes are produced for a given change

in impedance within the object [29, 33]. Experimental results verifying this prop-

erty are provided in [29]. Also, the distinguishability in ACT systems improves with

an increase in the number of electrodes in contrast to APT systems in which distin-

guishability decreases with a larger number of electrodes[29]. Due to limited precision

in measuring these voltages, improved distinguishability corresponds to the ability to

detect smaller impedance variations within the object, effectively providing greater

resolution. The disadvantage of ACT-type systems is increased hardware complex-

ity, since they require a current source for each electrode rather than a single source

driving one pair of electrodes at a time.
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Figure 2.2: Electrical Impedance Tomography
(a) Diagram of a typical EIT system. (b) A real phantom tank and static

impedance image with an insulator and two metal objects in a saline bath.
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The measurement system of EIT usually has 8, 16, 32 or even 64, 128 elec-

trodes, however, due to space and interference condition and data collection limita-

tion, it is nearly impossible to have more than 256 electrodes in an EIT system. Thus,

the number of independent measurements is limited and therefore the resolution is

low. This will be further discussed in the following section. EIT introduces minimal

electrical risk to the patient, since it uses a low frequency AC signal and the ampli-

tude of the source signal is very low. Because no radiation nor dyes are required, EIT

system can be used for long term monitoring of a patient or analysis of biological

tissues in vivo.

2.3.2 Other approaches

Many researchers put efforts into integrating EIT with other techniques such

as Current Density Imaging (CDI) . CDI uses Magnetic Resonance Imaging (MRI)

techniques to measure the magnetic flux density generated by the current density

distribution within an object. Thus, it can reconstruct the interior current density

without placing electrodes on the surface. By combining CDI and EIT, Magnetic

Resonance Electrical Impedance Tomography (MREIT) has been emerging as a new

conductivity imaging modality [34]. MR-EIT uses the magnetic flux density mea-

surements acquired from MR phase images to reconstruct conductivity distribution.

Magnetic flux density generated by applied currents can be measured with high spa-

tial resolution using MRI. It should be noted that only the component of the magnetic

flux density in the direction of the main field of the MRI system can be measured.

Therefore, a reconstruction technique must be developed in order to solve the inverse

problem of finding the conductivity or current density from only one component of
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magnetic flux density. In 2002, Kwon et al proposed the J-substitution algorithm

and presented simulation results [35].

Another related technique is Magnetic Induction Tomography (MIT). MIT

applies a magnetic field from an excitation coil to induce eddy currents in the material

and the magnetic field from these is then detected by sensing coils. The technique has

been variously named mutual inductance tomography (also MIT) and electromagnetic

tomography (EMT). MIT is sensitive to all three passive electromagnetic properties:

conductivity, permittivity and permeability. The development of MIT for biomedical

use presents formidable difficulties because the conductivities of biological tissues are

many orders of magnitude lower than those of metals and they have no appreciable

permeability above that of free space. This means that the secondary signals to be

measured are very weak. These difficulties might also be experienced in industrial

applications involving the imaging of ionized water. The first report of MIT for

biomedical use was by Al-Zeibak and Saunders [36]. An excitation and a sensing coil

operating at 2 MHz were scanned past a tank of tissue equivalent saline solution, with

immersed metallic objects, in a translate-rotate manner. Images were reconstructed

by filtered backprojection and showed the outline of the tank and the internal features.

Recently, interest in electrical impedance measurements on a smaller scale for

in-vitro work has been receiving some attention. For example, Lacy, et. al have

developed a cellular impedance spectroscopy device which can detect in-vitro the

activated state of eosinophils (white blood cells involved in the asthma response)

[1]. Using micro-fabricated electrodes these researchers have shown differences in the

impedance spectrum of activated and non-activated eosinophil cells. In a related
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Figure 2.3: Principle diagram of magnetic induction tomography

technique, Shao et. al have shown that a conducting tip attached to the controller of

an atomic force microscope can make images of (surface) electrical impedance [37].

2.3.3 Limitations of current modalities

The most important challenge facing current EIT systems is to improve the

spatial resolution. For a typical EIT configuration with 16 electrodes, there are only

16 projections and 104 independent measurements that can be obtained for image

reconstruction. Compared to several hundreds of projections and tens of thousands

of measurements in CT system, the measurements in conventional EIT system are

physically limited by the number of electrodes that can be placed on the surface.

Further, these measurements are obtained on the surface and therefore lead to a

lower sensitivity for the conductivity perturbations at the center, which results in a

nonuniform spatial resolution: it is better at the edge and falls gradually toward the
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center [38]. It is estimated that in the center, the spatial resolution is only about 10%

of the measured region [39]. The image resolution may be improved by increasing the

number of electrodes placed on the boundary. However, the fabrication and the size

of electrodes limit this approach. The interference from other electrodes may also

generate unpredictable noise. Furthermore, more electrodes lead to difficulty of the

placement and implementation in clinical applications.

Another challenging issue in EIT systems is to obtain the absolute value of

conductivity images. Many researches have reported attempts to reconstruct the

absolute impedance image. Korjenevsky et. al. represented that static images of

resistivity distribution can be achieved using a modified version of the backprojection

method [40]. In computer simulations, due to the perfect data with known parame-

ters in a perfect coordinate system, the absolute image can be obtained more easily.

However, in practice, the location errors of electrode placement can be very problem-

atic especially in clinical applications. For example, it could be very difficult to form

a rigid ring of electrodes around the non-regular shape of the body. Scientists have

also found that contact resistance is another source of error for an EIT system.

One big challenge in MREIT and MIT is the use of MR that introduce more

electrical risks, lots of radiations and even dyes to patients. It should also be empha-

sized that with MREIT, only the relative conductivity values can be reconstructed

using the magnetic flux density measurements alone. In order to find the absolute

conductivity values, at least one voltage measurement from the boundary is required.

For the recent modalities with AFM, the efforts to increase the resolution have con-

centrated primarily on the miniaturization of the excitation probe. Even though this
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miniaturization has resulted in an increase in the resolution, the spreading of the field

limits this improvement.

2.4 Inverse problems

The scanning impedance imaging is a low-frequency near field imaging modal-

ity similar to electrical impedance tomography. As we know, the near field imaging

resolves sub-wavelength structures in the near field which leads to a complex inverse

problem of its image reconstruction. In this section, the definition and popular ap-

proaches of inverse problems are discussed for the near field imaging.

Inverse problems are related to the forward (or direct) problems by exchanging

the knowns with the unknowns by mathematical definition:

1. typically one problem is designated the forward while the other is designated

the inverse

2. the forward problem is often the one which has been more thoroughly explored.

On the other hand, for practical applications, we can state that: in an inverse problem

we solve for the cause given an observed effect while the forward problem is the

calculation of effects from causes. Basically, we solve for an unobservable space,

dimension or earlier time from observable data. Bertero and Bocca gave a more

insightful description of inverse problems as those problems which result from a loss

of information in the forward problem[41]. It can be considered in this way: a small

amount of noise in the data can lead to enormous errors in the estimates. This

instability phenomenon is sometimes due to ill-posedness. Hadamard [42] gave a
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Table 2.2: Example forward and inverse problems
Problems Given Compute
Forward Electromagnetic sources Electromagnetic fields
Inverse Electromagnetic fields Electromagnetic sources
Forward Sharp image Blurred image
Inverse Blurred image Sharp image
Forward Conductivity distribution EIT measured data
Inverse EIT measured data Conductivity distribution

precise definition of ill-posedness by defining well-posedness. An inverse problem is

well-posed if:

1. A solution exists for any data d in the data space

2. A unique solution f exists in the image space

3. The inverse mapping d− > f is continuous

A problem is ill-posed if one of the above three conditions is not satisfied.

Inverse problem arise in a variety of important applications in science and

industry, especially biomedical and geophysical imaging. Table 2.2 shows a series

of common inverse problems along with corresponding forward problems. Generally,

inverse problems can be classified to two major groups, inverse problems for linear

and nonlinear systems. Figure 2.4 shows a diagram of typical inverse problems. It

can be seen that for this system,

g = A(f),

the inverse process performs the estimation of f from the observation g. From the

probability theory, the solution of this inverse problem is the Maximum a Posteriori
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Forward Problem

Inverse Problem

Observation gSource f System
Operator A

g = A f

Figure 2.4: Diagram of a typical inverse problem

(MAP) estimation:

f̂ = arg max
f

p(f |g), (2.7)

where p(f |g) is the conditional probability of f given g. The MAP method estimates

f as the mode of the posterior distribution of g. From Bayes theory, the conditional

probability p(f |g) satisfies

p(f |g) =
p(g|f)p(f)

p(g)
, (2.8)

where p(f) and p(g) are the marginal probability of f and g, and p(g|f) is the con-

ditional probability of g given f . The denominator p(g) of the posterior distribution

does not depend on f and therefore plays no role in the optimization. Thus, the MAP

estimator is

f̂ = arg max
f

p(g|f)p(f) (2.9)

or,

f̂ = arg min
f

− log p(g|f) − log p(f). (2.10)

27



The conditional probability p(g|f) is known as the likelihood function and

can be obtained from the sample distribution of g given f in the forward problem.

The probability of f , p(f), however, cannot be obtained from the observation g

and therefore demands additional information in many inverse problems. Providing

additional information of p(f) to the optimization in the solution of an inverse problem

is the motivation of regularization.

2.4.1 Regularization

As mentioned above, inverse problems are often ill-posed. To solve these prob-

lems numerically one must introduce some additional information about the solution,

such as an assumption on the smoothness or a bound on the norm. The same idea

arose in many fields of science. A simple form of regularization applied to integral

equations, generally termed Tikhonov regularization after Andrey Nikolayevich Ty-

chonoff, is essentially a trade-off between fitting the data and reducing a norm of the

solution. More recently, non-linear regularization methods, including total variation

regularization have become popular.

Tikhonov regularization

Tikhonov regularization is the most commonly used method of regularization

of ill-posed problems. In some fields, it is also known as ridge regression.

For a system,

g = A(f),
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the generalized Tikhonov regularization is

fλ = arg min
f

Tλ(f ; g) = arg min
f

||A(f) − g||22 + λ||f ||22. (2.11)

where ||·||22 is the Euclidean norm and ||A(f)−g||22 is the term that represents the error

between g and A(f). ||f ||22 is the regularization term (sometimes called as penalty

term) where λ > 0 is the regularization parameter. Although at first the choice of

the solution to this regularized problem may look artificial, and indeed the parameter

λ seems rather arbitrary, the process can be justified in a Bayesian point of view.

Note that for an ill-posed problem one must necessarily introduce some additional

assumptions in order to get a stable solution. Statistically we might assume that a

priori we know that x is a random variable with a multivariate normal distribution.

For simplicity we take the mean to be zero and assume that each component is

independent with standard deviation σf . Our data is also subject to errors, and we

take the errors in g to be also independently multivariate normal distributed with zero

mean and standard deviation σg. Under these assumptions the Tikhonov-regularized

solution is the most probable solution given the data and the a priori distribution

of x, according to Bayes’ theorem. The regularization parameter is then λ = σg

σf
.

Comparing Equation (2.11) to Equation (2.10), the following relationship can be

established

||A(f) − g||22 = − log(p(g|f)), λ||f ||22 = − log(p(f)). (2.12)

Notice that this relationship is valid only if the noise has the normal distribution.

The purpose of Tikhonov regularization is to find a balanced point between

the resolution and signal-to-noise ratio (SNR). If we do not have much prior infor-
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mation, due to the noise, we cannot obtain original data from what we observe. An

unregularized inverse system amplifies noise for nodes corresponding to small singu-

lar values. So the better resolution we get, the worse SNR we get at the output of

the inverse system. In other words, there is a trade-off between resolution and SNR

that we want to optimize. The Tikhonov regularization is the method for balancing

the penalty term (SNR) and discrepancy term (resolution). There are several detail

definitions for both resolution and SNR in various cases. Now, one general set of

definitions is applied to a linear shift-invariant system,

g(x) = (hA ∗ f)(x) + σζ(x)

where ζ(x) is unit variance noise, f(x) is the original vectorized image, hA is the

kernel function of the linear shift-invariant operator A. The corresponding generalized

Tikhonov regularization is

fλ(x) = (hλ ∗ hA ∗ f)(x) + σhλ ∗ ζ(x).

It is useful for estimating the noise effect of a filter by measuring the change of SNR

when the noise pass through a filter. It is called SNR gain of the filter defined as

τ =
SNRout

SNRin

and for resolution

Δ = 2π

√∑
σ2

i

n
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where

σ2
i =

2
∫

(xi − μi)
2|h(x)|2dx∫ |h(x)|2dx

.

Assuming that the noise σζ(x) is white and the regularized deblurring filter hλ

is symmetric in frequency domain, we can obtain the SNR of the whole regularization

system.

τ =
SNRout

SNRin

=

∫ |ĥAf̂ |2dω

|ĥλ(0)|2 ∫ |ĥAf̂ |2dω

and

Δ = 2π

√√√√ 2

n

∫ ∑ |∂ĥA

∂ωi
|2dω∫ |ĥA|2dω

.

The Tikhonov filter hλ is a function of the parameter λ, therefore, the reso-

lution and SNR gain are also the functions of λ. By varying λ, the L-curve can be

obtained for τ(λ) vs Δ(λ). It is usually like a decreasing curve with a corner point.

Hence, that corner point is the best point for balancing the resolution and noise.

This is the basic idea of Tikhonov regularization: due to the noise, it is impossible

to obtain the original image, even with an invertible blurring filter, hence the only

thing we can do is regularization with limited deblurring.

Total variation regularization

The Total Variation functional is assuming an important role in the regular-

ization of inverse problems belonging to many disciplines, after its first introduction

by Rudin, Osher and Fatemi (1992) [43] in the image restoration context. Total vari-

ation is a regularization technique that takes into consideration the information that

the data set is blocky and discontinuous. Most of the regularization methods assume
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the data sets to be smooth and continuous, but total variation does not assume the

same. It measures the discontinuities in the image data set. Since a smooth solution

is desirable in many applications while others require discontinuity or steep gradient

to be computed. One approach is to replace norm l2 in Tikhonov regularization with

the norm l1 , i.e., the 1-norm of the first spatial derivative of the solution. This is

called the total variation (TV) regularization. This method will help to obtain the

discontinuities or steep gradients in the restored image. The total variation can be

expressed as

T (f) = ||A(f) − g||22 + λTV (f).

where λ is the regularization parameter and TV (f) is the penalty term for the total

variation regularization which is defined as

TV (f) = ||∇f ||1 =

∫
Ω

|∇f |dΩ.

Here more details about the norm need to be discussed to distinguish Tikhonov and

total variation regularizations. The norm can be given by a general expression,

||x||p =

(∑
i

|xi|p
) 1

p

.

Some cases have special meaning and names:

1. p=1, ||x||1 =
∑

i |xi| is known as Manhattan norm because it corresponds to

the sum of the distances along the coordinate axes.

2. p=2, ||x||2 =
√∑

i |x2
i | is known as Euclidean norm, or the vector length. In

this thesis, ||x|| represents Euclidean norm if no specification.
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The change to the 1-norm has a dramatic effect on the computation of the solution.

It has been proved by P.C.Hansen that the solution consists of polynomial pieces,

and the degree of polynomials is p-1. However, TV (f) is not differentiable at zero.

So in order to avoid this difficulty a small positive constant value is added,

TV (f) =

∫
Ω

√
|∇f |2 + β2dΩ.

Thus the total variation expression can now be expressed as

T (f) = ||A(f) − g||22 + λ

∫
Ω

√
|∇f |2 + β2dΩ.

The quantity
√|∇f |2 + β2 is known as the gradient magnitude. In the image cases,

this provides us with the information about the discontinuities in the image.

The minimization of the total variation functional is a penalty approach to

the solution of the constrained problem. There are various methods to obtain this

minimization:

1. Time Marching [43]

2. Steepest Descent and Newton’s method

3. Lagged diffusivity fixed point iterative method

4. Primal-Dual Method
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2.4.2 Some iterative methods for solving inverse problems

Steepest descent algorithm

Steepest Descent method can be interpreted as an improved Landweber method

by choosing τ for every iteration. The fix-point equation is

fk+1 = fk + τk[ḡ − Ā(f)].

The function that this iteration was attempting to minimize is defined under mean

square concept,

J(f ; g) = ||g − A(f)||2.

Hence, for steepest descent algorithm, we choose τk so that J(f ; g) is as small as

possible.

τk = arg min
τ

J(fk + τk[ḡ − Ā(f)]; g).

From geometrical view, the steep descent method starts from an initial point, moves

in the orthogonal direction of the tangent plane until reaching a new tangent plane

parallel to the moving direction, then repeats this process with the new point as the

initial point. It is like going as far as possible in the gradient that is the quickest

decreasing direction to the center in some sense.
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Conjugate gradient algorithm

The Conjugate Gradient algorithm reduces the problem from k-dimension to

(k-1)-dimension for each step with the residual error orthogonal to the space,

fk = arg min
f∈K(k)(Ā;g)

J(f ; g),

where

J(f ; g) = ||g − A(f)||2,

and K(k)(Ā; g) is the Krylov subspace,

K(k)(Ā; g) = span{ḡ, Āḡ, ..., Āk−1ḡ}.

The update equation is

fk+1 = fk + αkpk

where pk is the conjugate gradient direction with the following constraint,

(pk+1, Āpk) = 0,

which means the successive conjugate gradients are orthogonal with respect to Ā.

And also the successive residuals are orthogonal,

(r̄k+1, r̄k) = 0.
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Non-linear conjugate gradient

The Non-linear Conjugate Gradient algorithm is an extension of the linear CG

algorithm with a little change,

r̄k = −∇J(fk)

and

αk = arg min
α>0

J(fk + αkpk).

The update equation for fk is the same as the linear form,

fk+1 = fk + αkpk,

but, the update equation for pk is different,

pk+1 = −∇Jk+1 + βkpk.

For the calculation of βk, there are several variations of non-linear conjugate

gradient method. The Fletcher-Reeves variant of the nonlinear conjugate algorithm

generates pk+1 from the simple recursion by calculating βk as

βk =
||∇Jk+1||22
||∇Jk||22

.

The method’s performance is sometimes enhanced by re-starting, that is, periodically

setting βk to zero. The Polak-Ribiére variant of conjugate gradient defines βk as

βk =
(∇Jk+1 −∇Jk,∇Jk+1)

(∇Jk,∇Jk)
.
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These two definitions of βk are equivalent when J is quadratic, but not otherwise.

Numerical testing suggests that the Polak-Ribiére method tends to be more efficient

than the Fletcher-Reeves method.

2.4.3 Impedance image reconstruction

The problem of reconstructing impedance images from electrical measurements

on the surface of tissues or the body of a patient belong to the class of inverse prob-

lems. This inverse problem is challenging and has received quite a bit of attention in

the literature. The imaging device (the impedance electrodes) provides measurements

of a transformation of the impedance information. In practice, these measurements

are both incomplete (sampling) and inaccurate (statistical noise), which means that

one must give up recovering the exact image. Indeed, aiming for full recovery of

the impedance information usually results in unstable solutions. This means that

the reconstructed image is very sensitive to inevitable measurement error. Otherwise

expressed, slightly different data would have produced a significantly different image.

Hence, image reconstruction in electrical impedance imaging is a complex ill-posed

inverse process.

Most techniques of image reconstruction in electrical impedance imaging have

been focused on EIT systems.

For EIT, image reconstructions are developed for static and difference imag-

ing techniques. Static image reconstruction uses one set of data to carry out the

image reconstruction. Unfortunately, this type of image reconstruction suffers from

sensitivity to errors in positioning electrodes on the surface of the body. Variations
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in electrode positioning significantly affects the impedance distribution in center of

the object, since EIT is more sensitive to changes on the boundary of the medium

than changes within the medium[40]. Difference image reconstruction uses two sets

of data and calculates a difference in conductivity. Barber has shown that difference

imaging is relatively insensitive to errors in electrode placements as long as these re-

main constant during the experiment[44]. Generally, the existing algorithms of image

reconstruction can be classified into two categories: non-iterative linearization based

algorithms, and true iterative algorithms solving the full problem.

2.4.4 Non-iterative algorithms

Non-iterative algorithms usually require linearization and some assumptions

for approximation. One assumption is that the conductivity differs only slightly

from a known conductivity[45]. Sometimes, homogeneous assumption is also claimed.

Among these linearization non-iterative methods are back-projection methods [46, 26,

47]. The backprojection method for image reconstruction used in Barber and Brown’s

original work is popular in X-ray tomography systems and has enjoyed great success

in this field[48]. It has been used in multi-frequency systems to image change of con-

ductivity with respect to excitation frequencies. However, backprojection methods

are generally used with APT systems and are limited to producing dynamic images

for difference imaging techniques. The basic projection method is based on back pro-

jecting the potential difference between two equipotential lines on the surface to the

impedance value between those two equipotential lines. Then, all the impedance val-

ues are averaged over the entire image after all projection angles. They also premised

that there is an approximately linear relationship between the perturbations of the
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measured voltage gradients and those of the reference distribution; and there is an

approximately linear logarithm of the conductivity perturbation from the reference

distribution.

In [49], Barber and Brwon’s backprojection algorithm was explained as an

approximate inverse of Beylkin’s generalized Radon transform [50] and it was used as

a preconditioner in an iterative, conjugate residual method for the numerical solution

of linearized system. Berenstein and Tarabusi gave a more precise characterization

[51]. They showed that the linearized impedance imaging problem in a unit disc can

be interpreted exactly in terms of the Radon transform with respect to the Poincare

metric and a convolution operator. Barber and Brown’s turns out to be a crude

approximation of the exact representation in [51], which works best for smooth the

gradient of impedance and for points near the surface. Finally, as expected, the

inversion of the convolution operator in [51] is unstable and, so far. there is no known

exact (or fully satisfactory) reconstruction of the gradient of impedance inside the

region of interest.

Cohen-Bacrie developed an algorithm with linearization assumption using a

variance uniformization constraint. The goal is to improve the tradeoff between the

quality of the images and the numerical complexity of the reconstruction method.

In order to reduce the computational load, they adopted a linearized approximation

to the forward problem that describes the relationship between the unknown con-

ductivity and the measurements. In this framework, they proposed a proper way to

cope with the ill-posed nature of the problem, mainly caused by strong attenuation

phenomena; this was done by devising regularization techniques well suited to this

particular problem. They proposed a solution which is based on Tikhonov regular-
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ization of the problem. Then, they introduce an original regularized reconstruction

method in which the regularization matrix is determined by space-uniformization of

the variance of the reconstructed conductivities. Both methods were nonsupervised,

i.e., all tuning parameters were automatically determined from the measured data.

They used a variance uniformization constraint in the regularization that yielded fur-

ther improvements, particularly in the central region of the unknown object where

attenuation is most severe.

Some nonlinear non-iterative algorithm have also been developed in recent

decades. Cheney et. al. were the first to propose the layer stripping method[52].

Layer stripping algorithms recover the unknown impedance distribution, layer by

layer, starting from the surface and progressing inside the region[53, 54]. They used

the measurements on the surface to estimate the impedance of the outermost layer

and then performed the next layer with this layer along with all the measurements.

This process continued until the center of the region was reached. Cheney claimed

that this method could produce a higher contrast of the impedance image. However,

this method is extremely unstable and, as such, it cannot be used for imaging, even

for noiseless data, due to round-off errors[55]. In general, it is not known how to

stabilize the layer stripping approach, but there exists a stable algorithm, developed

by Sylvester in [54] for one dimensional EIT. Ikehata and Siltanen proposed a similar

algorithm[56]. Note that this algorithm is inspired by the ideas of Kirsch for shape

characterization of obstacles in inverse scattering[57]. In fact, Kirsch’s approach is

quite similar to a well known signal processing method called as multiple signal clas-

sification (MUSIC)[58, 59], as is pointed out by Cheney[60]. Finally, another very

promising approach for locating interfaces of jump discontinuity of the impedance

was proposed as level set method, as shown for example in [61, 62, 63, 64].
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2.4.5 Iterative algorithms

Iterative algorithms involve in solving the full nonlinear problem with a true

forward model that can describe the implicitly nonlinear relationship between the

impedance inside and the measurements on the surface. Usually, they can be sepa-

rated into two steps as general inverse problems.

• The first step, the forward problem, involves in modeling the measuring pro-

cess and establishing the relationship between the impedance distribution of

the internal and the measurements (currents or voltages) on the surface. Basi-

cally, the forward problem tries to interpret the measurements as a function of

impedance. Many methods can be used to solve the forward problem such as

the finite difference method (FDM), the finite element method (FEM), a direct

solution, and a simulation of an equivalent network of resistors.

• The second step, the inverse problem, performs the inverse process of the re-

lationship in the forward problem in order to retrieve the impedance. This

algorithm must be initialized with a first guess of the impedance distribution,

usually taken as uniform. Next, a forward problem simulates the measuring

process. By comparing the simulated currents to the data, one update the

impedance estimation until they agree. It can be noticed that in each iteration,

the simulation of the measuring process requires the computation of the forward

problem at least once. Hence, the complexity of the inverse problem depends

largely on how the forward problem is modeled.

These approaches are often given by output least squares methods[65][66][67][68]. In

the least-squares method, an objective function is selected, and the residuals of this
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function are minimized in the least-squares sense [69, 70, 71]. As mentioned above,

a forward solver is used to determine the boundary voltages that would be produced

given the applied current vectors and the present estimate of the impedance distri-

bution as part of each iteration in the minimization. In general, the computational

complexity of the forward solver is much greater than that of the least-squares min-

imization. All nonlinear output least squares algorithms minimize some least-square

cost functional with some Newton-type method [72].

Many studies based on the Newton’s optimization method have been done

for electrical impedance imaging, especially for EIT. The perturbation method [73]

was an early attempt to apply Newton’s method to EIT. A sensitivity matrix was

constructed by changing the resistivity of one element at a time and forward modeling.

This was then used as the derivative matrix of the boundary voltages with respect to

the element resistivities. The measured boundary data was applied to the sensitivity

matrix to determine a new set of resistivity values. The process was then repeated

iteratively. The perturbation method produces accurate images in simulations but

convergence is slow in comparison with other methods because the sensitivity matrix

is computationally intensive to calculate and must be calculated for each iteration.

This technique is important historically as one of the first iterative methods to be

used in EIT but is no longer in use.

Afterwards, other Newton’s methods were proposed for impedance imaging

by seeking to minimize the mean squares of the voltage/current difference between

those generated by a model and those measured from the observed region. The

difference between the two values is sometimes termed the objective function. The

minimization is achieved by obtaining the derivatives of the objective function with
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respect to impedance. This derivative is assigned to zero, which corresponds to a

local minimum of objective function. This would correspond to the impedance which

produces the boundary voltages/currents closest to the measured voltages/currents

in the least-squares sense. A system of equations is therefore generated which when

solved will give the closest approximation of impedance in terms of the objective

function. Since the inverse problem of EIT is ill-posed, recent Newton’s methods

seek to minimize a total cost functional including both objective functional and a

regularization term instead of the objective functional itself.

Yorkey et al. was one of the first to use an iterative method for impedance

image reconstruction [74]. He used a modified Newton-Raphson method to compute

the conductivity distribution. He demonstrated that this reconstruction method con-

verged faster than any of the other contemporary methods (the layer stripping algo-

rithm was published later) and that the first iteration produced less error than the

backprojection method. Yorkey found that this method is ill-posed because of the

high condition number of the Hessian matrix. Thus, he used a Levenberg-Marquardt

[75, 76] regularization technique to overcome this problem.

Similarly to Yorkey’s method, Newton’s one-step error reconstructor (NOSER)

[70] algorithm and its functionally equivalent, but computationally streamlined ver-

sion, fast NOSER (FNOSER) [77], performs 2-D reconstructions using only one step

of least-squares minimization. The forward solver in FNOSER is relatively simple be-

cause it is used to predict the boundary voltages only for the case when the impedance

distribution in the region is homogeneous and isotropic and the shape of the region

is known. The boundary voltages can then be directly computed from the current

vectors and this impedance value. Essentially, the FNOSER algorithm first finds the
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value of the homogeneous impedance that minimizes the error functional and then

performs one additional iteration of the minimization. As a further simplification,

FNOSER operates on the in-phase and quadrature voltage measurements indepen-

dently, as opposed to using the complex voltage values. The real-valued results from

these individual reconstructions are then combined to estimate the components of the

complex impedance.

The Newton method for more than one iteration requires the solution of the

forward problem and the computation of the derivatives of the cost functional for each

iteration. This leads to a considerable amount of computation time. Comparing to

the conventional back-projection method, the Newton’s method is more accurate and

has less sensitivity to noise. Another iterative approach was developed by Muria and

Kagawa [69]. They used a theorem called Geselowitz Sensitivity to relate the changes

of conductivity within the object to the differential voltage measured between two

electrodes on the surface of the object. Wexler [78] proposed a different method

that starts the algorithm with an initial value of the conductivity and solves for the

distribution of current flow within the object, given a known pattern of current flow

into the object.

In order to reduce the computation time, an iterative algorithm POMPUS

[79] was developed by Paulson which uses optimal current patterns and considerably

reduces the computational complexity required for multiple iterations of Newton’s

method. This method greatly reduces the time needed to produce images and hence

considerably eases the problem of performing iterative reconstruction in real-time.
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2.5 Summary

In this chapter, current studies of cellular imaging was reviewed and related to

the electrical impedance imaging. Optical microscopy is the most widely used imaging

modality of cellular imaging. However, it does not provide much contrast of the natu-

ral markers of electrical properties such as charge distribution and ion concentrations

even though these electrical properties relate closely to cell function. On the other

hand, electrical impedance imaging could reveal the distribution of these electrical

properties from the image data of the electrical impedance. Although many studies

have reported for the electrical impedance measurements of cells, few could image the

electrical impedance of cells due to the low resolution of current modalities of the elec-

trical impedance imaging. In the next chapter, the scanning impedance imaging that

could potentially provide high-resolution electrical impedance images of cells will be

presented. This new technique uses high resolution scanning techniques similarly to

the scanning probe microscopy. Its indirect contact configuration and shielded probe

design result in high resolution near field imaging of electrical impedance where the

image reconstruction is a complex inverse problem. Due to the similarity in physics,

scanning impedance imaging has similar image reconstruction as electrical impedance

tomography. The review in this chapter of inverse problems and their relationship to

the image reconstruction of electrical impedance tomography provide the basis of the

development of the image reconstruction for scanning impedance imaging. In later

chapters, we will discuss the details of image reconstruction of scanning impedance

imaging.
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Chapter 3

Scanning electrical impedance imaging

3.1 Motivations and theory

This thesis is motivated by the idea of applying the modalities of electrical

impedance imaging to microscopic tissue imaging, ultimately cellular imaging. This

idea is shown in Figure 3.1. It could be possible to provide more information for both

cell anatomy and cell function if a high resolution image of some electrical properties

rather than an optical image or a SEM image could be produced for cells. Among the

electrical properties, the conductivity and permittivity are essential indicators that

only depend on the ions, polar molecules and charge distributions inside a cell. As

reviewed in the previous chapter, electrical impedance imaging has been developed

Original living cell Electrical Impedance Image

Cell anatomy
Cell function

Original living cell Electrical Impedance Image

Cell anatomy
Cell function

Figure 3.1: Motivation of Scanning Electrical Impedance Imaging.
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,

AC source

I

Electromagnetic field
Figure 3.2: An AC source signal is applied to an object. Electromagnetic field is
generated inside the object. The voltage on the surface and the current through the
surface are related to the electromagnetic field, which reflects the essential electrical
parameters of the object: conductivity σ and permittivityε.

as an interesting area of biomedical image process for researchers. It has been shown

that measurements of internal electrical impedance of tissues could play a useful role

in several medical applications such as cancer diagnosis. One distinction of electrical

impedance imaging is the capability of imaging in vivo. However, most efforts in this

area are oriented to large scale objects. Thus, a methodology that allows scientists

observe the cell anatomy and function from the view of impedance is very promising.

Electrical impedance (or admittance) refers in general to the relationship be-

tween both conduction current and displacement current and an imposed electric

field. All the methods applied to measure the electrical impedance are based on

Ohm’s Law. The basic idea is shown in Figure 3.2. A source (usually AC signal) is

applied to the boundary of an object and the measurements of currents and voltages

on the boundary are taken as an output of the internal electromagnetic field shown
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in Figure 3.2. Then the impedance can be obtained by Ohm’s Law,

Z = U/I (3.1)

where Z is the total impedance, U is the voltage and I is the current. If the object

is non-regular shape or inhomogeneous or both, then Equation (3.1) is not able to

describe the concept of impedance reasonably well. Two essential parameters of

materials: conductivity σ and permittivity ε are much better related to the imposed

electric field and the total impedance Z can be seen as an integral of σ and ε in some

sense. The general idea of electrical impedance imaging is to obtain a map of σ and

ε distributions of the sample based on the measurements on the boundary.

When known voltages/currents are applied to the surface of an object, an

electromagnetic field of E and B is excited with a distribution of the potential φ

established as shown in Figure 3.2. Since the interested frequencies are in very low

range, it is common to ignore the magnetic field B and redefine σ as the complex

conductivity including the conductivity and permittivity for the impedance. If the

distribution of the complex conductivity σ is known, the potential φ and the electric

field E can be determined for all positions in the object with known voltages and

currents on the surface. Then the current through the surface can be achieved by

integrating the current density J over that surface. J can be obtained from impedance

and the electric field. This can be considered as a forward problem with a nonlinear

operator A,

I = A(σ). (3.2)
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Thus, the approach of impedance imaging is an inverse problem. Though this inverse

problem is very complex and ill-posed, it is feasible to estimate the internal impedance

distribution from the measurements of currents and voltages on the surface. Under

this consideration, a novel approach for impedance measurements of small tissues and

cells, named as Scanning Impedance Imaging (SII), is illustrated in Figure 3.3.

Scanning Impedance Imaging alters the geometry that is used in existing elec-

trical impedance tomography systems. In SII, the probe is held above a conducting

plane with the sample in between. The sample and probe are immersed in a conduct-

ing liquid that provides the electrical connection between the probe, the sample, and

the ground plane. Because of this geometry, this technique is best applied to thin

samples that can be placed on a flat surface - very suitable for cells or thin tissue

samples. Figure 3.3 shows a representation of an SII system being implemented to

provide an impedance map of a single cell. Here a small oscillating voltage (which

could easily be varied in frequency) is applied between a probe and a conducting

plane, and the impedance is calculated from the current through the sample. The

probe is placed in a solution matching the cell’s natural environment. The probe is

moved over the cell in very small increments providing an impedance map of its entire

area.

3.2 Imaging system setup

A typical SII system consists of several key elements that can be classified to

three functional modules:

1. an impedance probe immersed in a a conducting solution with a sample inside
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Figure 3.3: Basic idea of a Scanning Impedance Imaging system configured to measure
the impedance of a single cell. A cell sample is placed between a conducting plane and
a sensitive probe. An AC source with known voltage is applied to the probe and the
current through it is measured. Measurements are taken on a 2-D horizontal plane by
scanning the probe above the sample. It can be noticed that a fairly good impedance
image can be obtained of the sample if the sample is pretty thin. High resolution even
down to nanometer range can be expected with the micro-step scanning technique.

2. scanning control system

3. data acquisition and storage

Immersion of the probe in a conductive solution allows for innovative probe design

without the constraint of making reliable electrical contacts directly between the

probe and the material under test. Given that the electrical conductivity of the

liquid inside and outside of the cell are approximately equal, changes in conductivity

(impedance) will be due primarily to structures internal to the cell - resulting in a

true volumetric measurement. Although only a single probe is shown in Figure 3.4,

arrays of parallel probes could also be used allowing for high speed imaging with

times limited only by the movement of the probe tips. In this way changes in cellular

function could be monitored in real time with several updated images made each
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Figure 3.4: Experimental configuration of a typical SII system

second. Because the method is a non-contact measurement technique, it can be used

for non-destructive testing of a wide variety of materials.

The realization of a scanning impedance imaging system is illustrated in Figure

3.4. As shown in the figure, a sample is placed between the end of a probe and a

conducting plane. A conducting solution is filled in the space between the sample

and the probe. A stage controller is used to move the probe, which has a minimum

step increment around micron range. An AC signal generated by a programmable

frequency generator is used to drive current through the probe and sample under test

with a resistor (R) used for conversion to a voltage signal. A lock-in amplifier is used

to measure voltage across the resistor and referenced to the signal generator. For

current scale range, the use of a lock-in amplifier is not necessary because the signal-

to-noise ratios produced in the system are very high. As probe geometry shrinks in

the future and signal magnitude decreases and as phase shifts are evaluated in return
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Figure 3.5: 3-D close up view of the probe area and a 2-D cross section view of the
shielded probe

signals, this amplifier will likely be useful however. The AC drive voltage could also

be lowered from 2.5 V to hundreds of millivolts in the current configuration without

a significant loss in signal to noise ratio. This could be significant if it were desirable

to minimize voltage across a sample like a cell wall or thin tissue. Finally, a computer

running LabView controlled probe movement, data gathering, and storage.

Measurements of different horizontal positions above the sample are taken at a

certain level to produce a current image. A simple impedance image can be obtained

from the current image using a basic application of Ohm’s Law wherein the impedance

at each position can be calculated from the current through the tip and a fixed source

voltage. However, this simple impedance image is not exact impedance distribution,

which is blurred due to the current contributions from the neighborhood of the probe’s

measurement position. A shielded probe design with a coaxial geometry is introduced

to help reduce this blurring effect. Figure 3.5 illustrates the structure of this novel

probe design, where a central wire (tip) embedded in an insulator is surrounded by

a conducting shield. Due to the immersion of the probe in the conducting solution,
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this innovative probe design can be used without the constraint of a reliable electrical

contact directly to the sample. The motivation of this new probe design is to eliminate

the effects of the current flux from the region not directly under the end of the probe.

This idea can be seen in the 3-D view in Figure [51]. Further, the shield can help

to eliminate the noise generated by the entire conducting plane. The resistor ensures

that the shield is at a higher potential than the central tip so that there is no capacity

effect though the path of the tip, the shield, and the conducting plane. Therefore,

most of the current flux through the tip comes from the sample area beneath the

probe of total diameter no more than the tip diameter plus twice the shield spacing

(Sp). Experimental evidence shows that the high resolution with high signal-to-noise

ratio cannot be obtained using the simple unshielded point-source, no matter how

small the diameter of the tip. The reason is that the measured current is affected by

the entire plane. However, for our shielded tip, a higher resolution is reached with

the same tip diameter as the simple one. In addition, a much higher contrast is also

achieved.

3.2.1 System control and data acquisition

The whole system is controlled by a computer running LabView program. The

program mainly performs two functions:

1. stage control - communication with stage controller

2. data acquisition - communication with lock-in amplifier or spectrum analyzer

Figure 3.6 shows that the process of the stage control in the SII system. The scanning

is performed in three directions, thus, there are three independent channels for three
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Figure 3.6: Diagram of the stage control using a computer in the SII sytem

motors of the XYZ stage. The moving process is implemented in the following way. A

formatted command including the axis name such as ’x’ or ’y’ and the moving distance

is generated using Labview and then transfered to the stage controller via serial port

RS-232. The moving distance is translated to the number of smallest rotation degrees

of the motor. After received, the stage controller interprets the command and sends

voltages driving corresponding motors to move the stage in certain directions. For

2-D scanning process, a s-scan is used to produce a 2-D image for the impedance

measurements as shown in Figure 3.6. An algorithm is integrated in the LabView for

this special movement.

A Newmark Systems linear XYZ stage (model NLS4-4-16) is used for the high

resolution scanning. Figure 3.7 shows the XYZ assembly configuration (a) for the

stage and the internal structure for the motion control (b). The design of the NLS4

series stages is optimized for maximum stability and performance with the use of FEA

analysis and incorporates the best in materials and component selection. The drive
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(a) (b)

Figure 3.7: The linear XYZ stage: Newmark Systems Model NLS4-4-16
(a) XYZ assembly configuration. (b)

system utilizes a stainless steel ACME leadscrew with internally lubricated plastic

drive nut. The drive nut offers zero backlash operation that automatically adjusts for

wear to insure zero backlash. The specifications lists in Table 3.1. It can be noticed

that the resolution is very high up to 0.1 micron range. In practice, it is easier for the

resolution around micron range, which is suitable for our requirements. The speed is

fast enough to perform a 2-D s-scan in a reasonable time period.

Table 3.1: Specifications for the XYZ stage Model: Newmark Systems NLS 4-4-16
Resolution 0.13 μm @ 50,000 steps/rev motor resolution
(0.250 in/rev lead)
Maximum Travel Speed 2 inches/second
(0.250 in/rev lead)
Maximum Load Horizontal: 50 lbs;

Vertical: 15 lbs;
Side: 40 lbs;
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For the data acquisition, a lock-in amplifier is used to measure the voltage

across the resistor R as shown in Figure 3.4. The shield is connected to the source

directly while the central tip is connected to the source through the resistor R. The

resistor R can be considered as a current to voltage transmitter. It provides the

signal that is easy to be measured using a lock-in amplifier. It can be noticed that

the voltage of the shield is a little bit higher than the voltage of the tip that buys

enhancement of the shield function. Figure 3.8 shows this configuration clearly with

a diagram of equivalent circuit. It can be observed that Z4 has no effect on this

circuit with known source voltage, and Z3 is the impedance sought by the SII system.

One important issue emerged here is the increased difficulty of the modeling work

with this introduced resistor, since the voltage of the tip may vary depending on

the current through it. Thus, neither the voltage or the current on the tip surface

is not known, which need to be considered together with the modeling work of the

internal electromagnetic field. This issue will be discussed more with the modeling

work in Chapter 4. The lock-in amplifier used in the experiments is manufactured

by EG&G Instruments. The Model No. is 7265. Besides the stage and the lock-in

amplifier, the source generator (Agilent 33250A 80 MHz function/arbitrary waveform

generator) is also controlled by the LabView program so that certain pattern signals

can be generated as expected.

The control program including a loop procedure shown in Figure 3.9 is devel-

oped on LabView 7.0. First, the source generator, the stage and the lock-in amplifier

are initialized to communicated with the computer. Then, a moving command is

sent from the computer to the stage to move to the next position. After a response

received, measuring commands are sent to the source generator and the lock-in am-

plifier to test the voltage across the resistor and the data is received and stored. This
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Figure 3.8: Equivalent circuit for the SII system. Z1 is the feedback resistor, Z2 is the
equivalent impedance between the shield and the tip, Z3 is the equivalent impedance be-
tween the tip and the ground-plane at each position, and Z4 is the equivalent impedance
between the shield and the ground-plane.

process is repeated until a scan is finished. All the communications are performed

using VISA I/O control VIs. Figure 3.10 shows the implementation of the LabView

program with both the front panel layout and the block diagram. It can be seen that

there are stepsizes and ranges for scanning movements in the x,y,z directions and a

waveform display for the receiving signals on the front panel. In the block diagram,

there is a logic block coded in C that performs the controls of different scans. The

data is stored orderly in a file after scanning. Matlab is used for data post-processing

including display, resolution calculation, model matching and etc.

3.2.2 Probe design and fabrication

Of course the most critical component in the imaging system is the impedance

probe. Impedance measurements are drastically different depending on the probe

used. In order to improve the resolution and signal-to-noise ratio, a few probe designs

are proposed, implemented and tested. Among them, a novel shielded design of the
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Figure 3.9: Flow diagram of the LabView program

impedance probe demonstrates great enhancement on both the resolution and the

signal-to-noise ratio.

Shielded probe

The shielded probe is based on an inner conductor surrounded by an outer

conductor as illustrated in Figure 3.5. The idea behind this design is to bias the

outer conductor at a higher voltage than (or same voltage as) the inner conductor,
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(a)

(b)

Figure 3.10: LabView program for the SII system
(a) Front panel layout. (b) Block diagram of the design.
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(a) (c)(b)

Figure 3.11: (a)180 μm tip diameter, 550 μm shield inner diameter;(b)100 μm tip
diameter, 300 μm shield inner diameter;(c)30 μm tip diameter, 100 μm shield inner
diameter

preventing unwanted current flux generated over the entire surface of the bottom con-

ducting plane from being directed toward the inner conductor. The inner conductor

called the ”tip” of diameter D is separated from the outer conductor or ”shield” by an

insulator. The spacing between the tip and the shield is given by Sp as illustrated in

Figure 3.5. When used in the imaging system illustrated in Figure 3.4, the resistor R

ensures that the shield is at a higher voltage potential than the tip so that current flux

to the tip can come only from an area beneath the probe of total diameter less than

or equal to the tip diameter (D) plus twice the shield spacing (Sp). Small diameter

shielded probes were constructed using insulated copper wire with metal diameters

of 30, 100, and 180 microns. The wire is threaded into a stainless steel tube of inner

diameters of 100, 300, and 550 microns respectively and embedded in non-conductive

epoxy. The stainless steel tube serves as the shield and the metal core of the wire is

the tip for the probes. The intention is to keep the diameter D equal to the shield

spacing Sp as the probe sizes are scaled. Figure 3.11 shows digital photographs taken

through an optical microscope showing the cross section of constructed probes.
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Figure 3.12: Scanning electron microscope picture shown the cross section of a hollow
optical waveguide made at BYU using a procedure similar to that outlined in 3.13. In
this case, however, a sacrificial layer was removed leaving a hollow core in the center of
the structure.

Microprobe

Critical to making SII work on a scale capable of imaging at the cellular level,

is the fabrication of the shielded probes in micron scales, which can be challenging.

Micro-fabrication methods using clean room techniques are used here. The probe

construction is based on the modification of a process currently used at BYU for the

fabrication of hollow optical waveguides and fluid channels - an example of which is

shown in Figure 10. In this process, a long metallic strip is surrounded by insulating

materials and then removed with acid to produce a hollow core. In the production

of microprobes, the same type of metal strip is surrounded by insulators, and then

recoated in metal to form the shield for the microprobe.
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Figure 3.13: Processing flowchart for the construction of microprobes: 1. PECVD
deposition of insulating layers (SiO2) and evaporation of metal layers. 2. The top
metal layer is patterned using lithography to define the tip dimensions then SiO2 is
deposited over the surface. 3. The SiO2 is patterned using lithography to define the
shield spacing. 4. Metal is coated over the surface to complete the outer shield.
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Figure 3.14: Illustration of several microprobes fabricated on a silicon substrate. The
ends of the probes are formed by cleaving and then polishing the silicon - achieving a
very flat surface. Separate connections to the probe tip and shield are made on the
silicon using standard lithography and etch techniques.

The microprobe process is diagrammed in Figure 3.13. It begins with the

deposition of alternating layers of silicon dioxide and metal on a silicon substrate.

The top metal layer will determine the tip thickness (h). Various metal layers can

be used including aluminum, gold, nickel, and tungsten. As part of the process

development, several metals are used to find which produces the best probe geometries

and impedance measurements. Thin metallic strips are then formed using standard

photolithography techniques and metal etching determining our tip width (w). These

metal strips are then coated in another insulating layer. This insulating layer is etched

to define the shield separation, Sp, for the microprobe. A final metallic coating is

applied over the insulator to form the outer shield. Using lithographic techniques,
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very high precision features can be made and the dimensions h, w, and Sp varied

simply by changing lithographic photomasks.

Upon completion of the deposition and etching steps described in Figure 3.13,

the silicon wafer is cleaved perpendicular to the length of the microprobe and the

cleaved surface polished. The tip, insulator, and shield are then exposed and this

polished end is the one used in a solution to scan over a sample. Figure 3.14 illustrates

three parallel microprobes on the same silicon substrate fabricated in parallel. The

number of probes on a substrate could obviously be increased substantially with no

increase in fabrication complexity. With multiple parallel microprobes, total scan

times over a sample could be significantly decreased. Of course each microprobe

would require separate connections to its metallic tip and its metallic shield. This is

illustrated in Figure 3.14 with the connections ending simply in bonding pads at the

edge of the silicon substrate.

Based on this process, some microprobes are made in the BYU Integrated

Microfabrication Lab (IML). The diameter of the tip is down to 5 micron.

3.3 Alternative configuration for imaging setup

Besides the original setup of the SII system, another configuration was also

implemented. The key difference is that the alternative setup seeks a way to measure

the current through the tip without introducing the resistor R. Thus, the voltage

of the tip keeps the same voltage as the voltage of the shield instead of a lower one.

Figure 3.15 shows the diagram of the imaging system for this idea. The system is

done by applying a known voltage to the base plane and simultaneously measuring
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Figure 3.15: Alternative experimental configuration of SII system

the current flux into the probe. The current is buffered and amplified with a trans-

impedance amplifier (Princeton Applied Research Model 181), then measured with a

fast-Fourier transform spectrum analyzer (Stanford Research 760). Digital filtering

in the spectrum analyzer eliminates the need for analog filter stages and results in

a higher signal-to-noise ratio compared to data measured using an oscilloscope or

voltmeter.

Figure 3.16 provides a clear view of the differences between two setups due

to the use of a transimpedance current amplifier. Using this simple element has

allowed for a dramatic improvement in measurement accuracy because it allows for

the tip and the shield to always be biased at the same voltage - preventing current

flow between them through the conducting water solution above a sample. Earlier

system incarnations ground the conducting base plane, and apply bias to the tip and

shield that have a resistor between them. Current through the tip is calculated from

65



AC
Z3Z4

Z2

AC

Tip

Shield

Bottom
Conducting Plane

Amplifier

Figure 3.16: Equivalent circuit for the alternative setup shown in Figure 3.15. Z2 is
the equivalent impedance between the shield and the tip, Z3 is the equivalent impedance
between the tip and the ground-plane at each position, and Z4 is the equivalent
impedance between the shield and the ground-plane.

a measured voltage drop across this feedback resistor. This meant that the tip and

shield are at different biases and the measured current is a combination of current due

to the tip and shield bias difference and current due to the tip and bottom conducting

plane bias difference, the latter being the current through the sample that is intended

to measure. Determining the portion of the current only due to the sample is a

very complex problem, given that the impedance between the tip and shield could

vary with probe height and sample conductivity. Attempts are made to approximate

this impedance or determine it by making multiple tests at different frequencies, but

satisfactory accuracy is never obtained in this way. The setup shown in Figure 3.15

directly connects the shield to ground and the tip to the virtual ground created at

the input of the current amplifier. Using this arrangement, the voltage on the tip is

same as the one on the shield and both are fixed to zero. This results in less noise

generated in the measurements. Further, all of the current flowing into the probe’s

tip is insured to arise only from the electric field applied between the tip and the

conducting plane beneath the sample.
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The disadvantages of this setup compared to the original one are higher com-

plexity and non-grounding of the conducting plane. This non-grounding issue refers

to the source voltage on the conducting plane that has a much larger area than the

probe does. This could be a relatively larger source for other effects such as chemical

effects.

3.4 Measurement strategy

Using the SII system, two types experiments are performed: 1-D line scan

and 2-D image scan. A line scan is defined as a line profile scanned across in abrupt

change conductivity in one horizontal direction. It is a simple test that is used to

evaluate the performance of the SII system. Figure 3.17 illustrates a common setup

for a line scan. A thin insulator is placed on top of the conducting plane in the

imaging system. The probe is then inserted into the system and positioned above

the insulator. The probe is then moved from a position directly over the insulator to

one directly over the uncovered conducting plane in small scan increments with the

current through the tip measured at each increment. The resulting line scan indicates

the probe’s ability to respond to the drastic change in impedance provided by the

insulator. For very high resolution, a very sharp change in current would be expected

at the abrupt junction created by the insulator. In order to quantify the resolution,

the distance between the positions with 30% and 70% of the maximum current for

the whole line scan is used to indicate the slope of the change for line scan. This

distance, dres, is shown on Figure 3.17. The smaller dres, the better the resolution for

a particular probe and scan condition. The automated XYZ stage allows for making

line scan measurements at controlled variations of height above the insulator.
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Figure 3.17: Illustration of line scan measurement used to characterize resolution in
scanning impedance imaging system

A 2-D image scan is performed using s-scan in a horizontal plane. A 2-D image

related to impedance distribution can be obtained for a thin sample. Each pixel of

the image is the current measurement of a scanning position. The pixel resolution

depends on the step size, usually 10 μm, 25 μm. As mentioned above, the image is not

the exact impedance distribution due to the complex electric field there. However,

this image can be considered as a coarse or blurred image of the exact impedance

image.
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Chapter 4

System modeling

In this chapter, an accurate 3-D numerical model for the forward problem to

solve the current through the central tip with known conductivity distribution based

on a finite-difference solution to the (quasi-)electrostatic field equations has been

developed. This model can help illustrate the relationship between system parame-

ters and measurements. It is also an important forward solution which is necessary

to improve data resolution through image reconstruction. It has been also used to

understand and improve the SII system design.

The basic numerical problem is to calculate the current flowing through the

probe tip for a particular inhomogeneous sample between the probe and a conducting

plane. The analysis requires the calculation of the electromagnetic fields between the

probe and the conducting plane. However, the simple quasi-electrostatic calculation

is complicated because the voltage on the tip and the current through the tip both

vary depending on the driving circuit shown in Figure 3.4. Simply put, the model

of the SII system is a quasi-statics problem involving inhomogeneous media with a

complicated boundary condition. The modifier “quasi-” refers to the fact that the

capacitance of the sample is considered through a complex-valued conductivity.
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4.1 Electromagnetic background information

Using our measuring instrument a current map can be obtained at a particular

distance above the sample. As mentioned above, the corresponding simple impedance

image is a blurred image of the exact impedance distribution of the sample. The

measurements take into account everything (no approximation, all field perturbations,

noise, etc.) but do not provide details on the cause of impedance image blurring, or

how to account for it. Thus, an important task is to develop a detailed physical model

of the SII system to describe the relationship between the measured current and the

exact impedance distribution. For a linearly-conductive material, a basic equation of

the electrical field can be derived from Maxwell’s equations (specifically Gauss’s law

and continuity of charge) and Ohm’s law,

� ·(εE) = − 1

jω
� ·(σ′E) (4.1)

where E is the electric field, ε is the permittivity of the material, σ′ is the conductivity,

and ω is the frequency. If introducing the complex conductivity as σ = σ′ + jωε then

Equation (4.1) becomes

� ·(σE) = 0. (4.2)

The electric and magnetic fields can be always written in terms of a scalar

potential, φ, and a vector potential, A:

E = −� φ − jωA (4.3)
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and

B = �× A (4.4)

where, � · A can be arbitrarily chosen. When the wavelength of electromagnetic

field is much longer than the dimensions of the experimental setup such as this case,

it is common to ignore the small contribution from A and write E = − � φ. The

fundamental equation for the potential inside the region of interest is therefore

� ·(σ � φ) = 0. (4.5)

Briefly, this equation specifies that no source resides in the body and that charge is

not allowed to accumulate in the object.

For the completeness of the problem, the relationship of the voltage and current

to φ must be established for the boundary conditions. Voltage is a path integral of

electrical field:

V = −
∫

P

E · dl =

∫
P

�φ · dl = φ. (4.6)

The current density (including displacement current) is J = σE from Ohm’s Law and

the total current is an integral of current density over a surface,

I =

∫
S

J · ds = −
∫

S

σ � φ · n̂ds (4.7)

where n̂ is a normal vector to the surface S.

The forward problem of the SII system is to simulate the current given con-

ductivity distribution for scans. Figure 4.1 shows the diagram of the whole forward

problem. For example, a 2-D image scan produces a 2-D current image. Each pixel in
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Figure 4.1: Diagram of the whole forward problem

this image corresponding a scan position leads to a setup of electric field in the region

of interest. The electric field would change due to the boundary condition variation

caused by moving the probe. Thus, each pixel in the current map results in a com-

plete PDE (Equation (4.5)) problem solving the electric field. Hence, a 2-D 100×100

image scan consists of 10000 PDE problems that need to be solved with different

boundary conditions. It can be noticed that this process requires huge computational

resources both in time and memory storage.

4.2 Solution of the numerical problem

If the conductivity is known, the potential φ can be determined for all posi-

tions in the object by establishing the boundary conditions using known voltages and

currents on the surface. Then, the current through the tip is an integral of the current

density over the surface of the tip. Therefore, in order to find the current through

the tip at each scanning position, solving the differential equation in Equation (4.5)

for φ is demanded. The central purpose of this chapter is to construct a numerical

method for solving this problem with acceptable precision and demonstrate how this
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method can be used to illuminate how the probe is working and provide insight into

improving probe design.

Since the sample of interest is inhomogeneous media and the ultimate micro-

probe will be built with clean-room techniques that lead to an irregular shape of

the probe, it is common to use Cartesian coordinates for the analysis of this prob-

lem. In three-dimensional Cartesian coordinates, the fundamental differential equa-

tion (Equation (4.5)) expands to

∂

∂x
(σ

∂φ

∂x
) +

∂

∂y
(σ

∂φ

∂y
) +

∂

∂z
(σ

∂φ

∂z
) = 0 (4.8)

with ∇ =
(

∂
∂x

, ∂
∂y

, ∂
∂z

)
. It can be written in the following form,

∑
w=x,y,z

∂

∂w
(σ

∂φ

∂w
) = 0. (4.9)

In order to solve this equation, the region of interest (including the sample and liquid)

is broken into discrete points forming a rectangular mesh. Fig. 4.2 shows the details

of one cube in the rectangular mesh. The complex conductivity σ is defined on a

half-centered grid to the one φ is defined on. Using central differences the discretized

equation becomes

∑
w=x,y,z

1

�w

{
σw+

φw+ − φ

�w
− σw−

φ − φw−

�w

}
= 0, (4.10)

or ∑
w=x,y,z

1

�w2
{σw−φw− + σw+φw+ − (σw− + σw+)φ} = 0, (4.11)
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Figure 4.2: Diagram of the rectangular mesh

where the ghost point of conductivity σw± is an average of the four neighboring

points. For example, Fig. 4.2 shows the ghost point σx+ in the x+ direction which is

calculated as

σx+ =
1

4
(σx+,y−,z+ + σx+,y−,z− + σx+,y+,z− + σx+,y+,z+) . (4.12)

Basically, Equation (4.11) shows that the potential φ of a measured point (x, y, z),

φ(x, y, z), is the conductivity-weighted average of its six adjacent points in three

dimensions. According to the discrete approximations of the gradient and the integral,

the discretized form of the current is

I =
∑

σz−
φz − φz−

�z
� x � y, (4.13)

where assuming that the current through the tip flows along the z direction. Figure

4.3 shows the assumptions on the boundary conditions. The bottom conducting
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Figure 4.3: Boundary setup for the forward problem in the SII system

plane, the tip and the shield are conductors that can hold a specified voltage on the

surface, while everywhere else, the assumption is that the electric field perpendicular

to the surface is zero which means no current density through the surface (Neumann

boundary condition). The voltages of the shield and the bottom conducting plane are

known (Dirichlet boundary condition). However, the main setup with the resistor R

shown in Figure 3.4 needs more attention to the boundary condition at the tip end

because the voltage is determined by the relationship between the electrostatic field

and the voltage drop introduced by R. By vectorizing the three dimensional arrays

φ and σ, the full equation of this PDE problem is

∑
j

Aijφj + RciI = bi (4.14)

where, R is the resistor in Figure 3.3 and I is the current through the central tip,

I =
∑
j∈tip

σz−
j

φz
j − φz−

j

�z
� x � y

.
=
∑

j

djφj. (4.15)
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Figure 4.4: Components of the influence matrix A

Further derivations require the introduction of both a selective vector ci with the

definition,

ci =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 i on the tip

0 elsewhere

,

and an influence matrix A with coefficients Aij so that,

∑
j

Aijφj =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
j hijφj internal

φi−φw−
i

�w
Neumann condition

φi Dirichlet condition

(4.16)

where
∑

j hijφj represents the left side of Equation (4.11). The influence matrix A

is a huge sparse matrix with only seven diagonal elements, as shown in Figure 4.4.

Also, bi is a vector that describes the boundary condition,
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bi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 internal

0 Neumann condition

0 bottom plane

Vshield shield

Vin tip

, (4.17)

where Vshield and Vin are sources applied to the shield and the resistor R respectively.

Vshield and Vin could be same, especially in experiments. From Equation (4.14) and

(4.15), the matrix formulation for the SII system is:

⎡
⎢⎣ A(σ) Rc

d(σ)T −1

⎤
⎥⎦

︸ ︷︷ ︸
A′

⎡
⎢⎣ φ

I

⎤
⎥⎦

︸ ︷︷ ︸
φ′

=

⎡
⎢⎣ b

0

⎤
⎥⎦

︸ ︷︷ ︸
b′

, (4.18)

or

A′φ′ = b′. (4.19)

Both the potential φ at each position and the current through the tip I can be obtained

by directly solving Equation (4.18). Since A, c, d, and b are all sparse matrices, A′

and b′ are sparse too. It becomes the problem of solving a sparse linear system.

For the alternative setup shown in Figure 3.15, the full equation of the elec-

trostatic problem corresponding to Equation (4.14) is

∑
j

Aijφj = bi (4.20)
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and instead the current through the central tip I is

I =
∑
j∈tip

σz−
j

φz−
j − φz

j

�z
� x � y. (4.21)

The influence matrix A is the same as the one of the main setup (Equation (4.16)) that

consists of 7 diagonals of non-zero elements. However, bi, representing the boundary

condition is different due to the changes of the driving circuit,

bi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 internal

0 Neumann condition

Vsource bottom plane

0 shield

0 tip

, (4.22)

where Vsource is the driving voltage applied to the conducting plane. Thus, the matrix

formulation for the alternative setup becomes

Aφ = b. (4.23)

The potential φ can be obtained by solving Equation (4.23) and then the current I

can be derived through Equation (4.21).

It can be seen that problems of both setups finally require solving a sparse

linear equation. There are several iterative methods such as the generalized minimal

residual method (GMRES) and the biconjugate gradient stabilized (BICGSTAB) al-

gorithm that can solve these kinds of equations efficiently[80]. These algorithms are
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Figure 4.5: The framework of the iterative algorithms solving the forward problem of
the SII system

numerical iterative methods and the process is shown in Figure 4.5. In order to

save the memory storage, a function is derived to calculate the result of A′φ′ directly

rather than constructing A′ and then multiplying A′ with φ′. Since Vshield, Vin and

σ are all complex numbers, complex variations of standard iterative algorithms have

been developed to solve Equation(4.18) in the complex domain. It has been tested

that both BICGSTAB and GMRES lead to good convergences.

4.3 Model verification

To verify the model, line-scanning experiments were performed using the SII

system. In the experiments, the main configuration with the resistor R as shown in

Figure 3.3 was used. A 20-μm thick mica slice was immersed in water of 10-kΩ-cm

resistivity and used as a test object on a conducting (aluminum wafer) plane. A

shielded probe (D=30μm) was used for the tests. The probe is known to be flat

at a precision of ±2.5μm A Newmark System Model NLS4-4-16 XYZ was used as
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a stage controller to move the probe for scanning at increments down to 10μm. A

2.5-Volt peak-to-peak, 10kHz AC signal was used to drive the current through the

probe with a 27-kΩ resistor R. The data was collected using a DSP lock-in amplifier

(EG&G Instruments Model 7265). In an ideal impedance image of this test object,

there should be an abrupt step-like change at the edge of the insulator. Thus, when

the probe is moved from a position directly over the insulator to one directly over

the uncovered conducting plane in small scan increments, a line profile of the current

through the tip at each increment will be obtained with a large impedance step change

at the edge. The slope of the change is a reasonable measure of the resolution of the

impedance image.

This configuration was simulated at different frequencies that range from 1

kHz to 1 MHz. The results show that the frequency does not have a significant effect

in either the signal-to-noise ratio or the resolution for this configuration. It is not

surprising since the conductivity of water is much larger than the permittivity of

water. This means that the imaginary parts of the complex numbers used in the

equations are much smaller than the real parts even while increasing the frequency.

Thus, 10 kHz was picked for the AC signal in the experiments to avoid the disturbance

of the driving circuit. Due to the 3D FDM model, the imaginary part is too small

under this frequency, even comparable to the tolerance. In order to reduce the time

and the storage of simulations, it is common to ignore the small contributions of the

imaginary parts and all the results were calculated in real numbers.

Figure 4.6 shows a line profile scanned from the insulator to the conducting

plane at the height Z0 = 25μm along with a model fit simulated using the same

conditions. The experimental data are currents through the tip calculated from RMS
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Figure 4.6: Measured results of line scans using a 30μm (tip diameter) probe and a
20μm thick mica slide for an insulator along with simulated results using the model
under the same conditions.

voltages of the resistor R. Both curves are linearly scaled to lie between 0 and 1. As

expected, current maximums occur when the probe is located over the conducting

plane, while minimum values are achieved when the probe is over the insulator. Vali-

dation of the simulation model is evident in the excellent fit between the experimental

data and the model.

A series of line plots similar to the one represented above were produced at

different heights Z0 using the same experimental setup. The distance, dres, was used

to quantify the resolution, as shown in Figure 4.6. Figure 4.7 shows the plot of

dres versus probe height Z0. This provides insight of the relationship between the

resolution and the probe height above the insulator. Both model simulation and the

experimental data illustrate that the resolution improves when the probe is closer to
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Figure 4.7: The resolution dres, which is defined as the distance between the 30% and
70% of the maximum current difference versus the probe height Z0 along with simulated
results using the model under same conditions.

the insulator. That is not a surprising result because the effective cross-sectional area

of the current flow shrinks hyperbolically to the area of the physical tip as the probe

gets nearer to the sample. There is also a close fit between the measured data and the

model for the trend of the resolution versus the height. The difference between the

two curves can be attributed to the noise in the experiments and some quantization

error of the numerical model due to grid discretization. These results confirm that

scans should be performed with the probe as close as possible to the insulator for the

best resolution.
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Figure 4.8: Simulated results of line scans for various shield-spacing using a 30μm
(tip diameter) probe and a 20μm thick mica slide for an insulator.

4.4 Predictions using the model

Further exploration has also been done using this numerical model. Two im-

portant parameters, the spacing between the tip and the shield, Sp and the resistor R,

have been analyzed from the model simulations for their effects on both the resolution

and the signal-to-noise ratio. According to the simulation results, an optimum probe

design can be predicted based on this numerical model.
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4.4.1 Shield spacing prediction

Figure 4.8 shows the simulated line scans at different shield spacings (SP=10μm,

30μm, 50μm, 100μm, 300μm, 500μm). These are the results simulated using a

(D=30μm) probe with a fixed 30-μm shield thickness over a 20-μm thick mica slice.

A source voltage of 2.5 Volt was applied to the shield directly and to the tip via a

100-kΩ resistor R. It can be seen in Figure 4.8 that the difference between the current

maximum and the minimum becomes smaller when the shield spacing is decreased.

At a given noise level, the difference between the maximum and the minimum is

proportional to the signal-to-noise ratio. Because of the peripheral circuit setup, the

voltage of the shield is always higher than the voltage on the tip, therefore, there are

counteractive currents from the shield into the tip. The total amount of this counter-

active current will be stronger when the shield spacing is smaller, which means the

current through the tip will be smaller as well as the voltage across the resistor R.

Further, using the definition of the resolution as the 30%-70% distance, dres,

Figure 4.9 shows the simulated resolution dres versus the shield spacing based on

the results as shown in Figure 4.8. It can be observed that the resolution becomes

better as the shield spacing is decreased. Thus, the effect of the shield on impedance

measurements can be considered in two main aspects. One is the counteracting cur-

rent from shield to tip with the negative effect on the signal-to-noise ratio mentioned

above. The other is the concentration of the current flow through the tip that helps

improve the resolution. According to the shield spacing results, it is not possible to

obtain the best resolution and the best signal-to-noise ratio at same time according to

the shield spacing results. Therefore, it is necessary to find a balance between them.

The difficulty in fabricating the probe must also be considered. From these results
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Figure 4.9: Simulated results of the resolution versus the shield-spacing Sp.

and techniques for the probe fabrication, a 100-μm shield spacing represents a probe

that can be built consistently with a good trade-off between optimizing resolution and

signal-to-noise ratio under this configuration. These simulation results have allowed

an improved insight into the function of the shield in this probe design and why it

provides better resolution and signal to noise ratios than an unshielded probe that

can be imagined as Sp → ∞.

4.4.2 Resistor R prediction

In addition to shield spacing, the resistor R was also altered with other con-

figuration parameters fixed to investigate its relationship to the resolution and the

signal-to-noise ratio. The resistor R was varied logarithmically between 1kΩ and

85



0 500 1000 1500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

position (μm)

vo
lta

ge
 (

V
) 100MΩ 

10MΩ 

1MΩ 

1kΩ 
10kΩ 

100kΩ 

Figure 4.10: Simulated results of line scans for various resistor R using a 30μm (tip
diameter) probe and a 20μm thick mica slide for an insulator.

100MΩ. A typical probe (D=30μm, Sp=30μm, 30-μm shield thickness) was used in

these simulations and the water conductivity was changed to accelerate the simula-

tions.

Figure 4.10 shows that the maximum of the voltage across the resistor R,

which is the signal measured by the lock-in amplifier, is smaller when the resistance

is smaller. However, the magnitude of the voltage does not scale linearly with the

resistor, so the current through the resistor increases as the resistor gets smaller, even

though the voltage decreases. Thus, a small resistor produces both a good signal-to-

noise ratio and a low voltage signal difficult for measurement. Table 4.1 summarizes

the maximum current for the various R. For each experiment, the resolution was

approximately dres = 30μm. Even though the different resistances vary the voltage
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Table 4.1: Maximum current for various R resistors. The resolution obtained remained
constant at 30 μm.

Resistor R Maximum Current

1kΩ 0.2954μA
10kΩ 0.0838μA
100kΩ 0.0488μA
1MΩ 0.0344μA
10MΩ 0.0070μA
100MΩ 0.0035μA

difference between the shield and the tip, these simulations show that this does not

have a significant effect on the resolution. Therefore, the optimum value of the resistor

depends on the consideration for balancing signal-to-noise ratio and measurement

error. Due to the complexity of the measuring environment and the diversity of the

measuring objective, one could hardly provide an exact optimum value for all cases,

10kΩ-100kΩ is a good range for R in most cases.
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Chapter 5

Impedance quantification using the 3-D FDM model

The 3-D FDM model developed in Chapter 4 provides not only the description

of the electromagnetic field in the SII system but also the relationship between the

measured current and the impedance distribution. This relationship could be applied

to the reconstruction of the impedance distribution from the measured currents. It

can be noticed that this reconstruction is a complex inverse problem by recalling the

Equation (4.7) and (4.5). There are two facts that need to be considered in this

reconstruction.

1. Value-transform: (quantitative issue) the value we measured is current that

is not directly related to the impedance in the SII system. In other words, the

impedance cannot be obtained from the measured current using only the Ohm’s

Law.

2. Blurring: (resolution issue) the measured current integrates the impedance

distribution in a small region under the probe, which leads to the “blurring

effect” of measured current images.
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These two issues interact each other and both are necessary for the reconstruction of

impedance images. However, for thin-sample testing experiments, the quantitative is-

sue can be solved separately under some assumptions. In this chapter, with the help of

the 3-D FDM model, a simple extraction of exact impedance values could be achieved

without solving the full inverse problem of both two issues. This simple extraction is

based on the fact of the current confinement introduced by the shielded-probe design.

The 3-D FDM model confirms that current flow to the probe is confined within a

cylinder directly below the probe. Thus, it is almost true that the blurring effect is

limited with the shielded-probe design in the thin-sample testing experiments. When

this limitation is valid, the average value of the impedance in the cylinder directly

below the probe can be considered as a good estimation of the quantitative value of

the impedance at the position of the probe. As mentioned in previous chapters, due

to the low frequency source used in the SII system, only resistivity is considered in

this section with the trivial capacity ignored. The first part of this chapter describes

the probe confinement using numerical modeling based on the 3-D FDM model. The

next part describes how resistivity values can be computed from SII measurements

given the current confining properties of the probe based on the numerical model.

Measurements of known saline solutions are provided to confirm the accuracy of the

computed resistivity values. The final part provides quantitative 2-D resistivity scans

for three different material systems and also shows the significance and limitations of

this method.

The simple extraction shown in this chapter provides the ability to determine

the actual resistivity of a sample that enables the comparisons between different sam-

ples rather than simply a relative measurement within a single sample. Furthermore,

a more quantitative measurement produces useful information for analyzing biologi-
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cal samples that exhibit a range of resistivity values rather than simply an interface

between conductive and insulating regions. However, as mentioned above, this simple

extraction is not a full solution to our problem since it evades the consideration of the

blurring issue. A more thorough exploration will be discussed in the next chapter.

All the results in this chapter were obtained using the alternative setup for

the SII system as shown in Figure 3.15. This configuration provides knowledge of the

voltage of the tip by eliminating the resistor in the original setup that could harm

the quantitative process. The instruments used in all the experiments in this chapter

are listed as follows,

• Trans-impedance amplifier (Model: Princeton Applied Research 181),

• Fast-Fourier transform spectrum analyzer (Model: Stanford Research 760),

• Linear XYZ stage (Model: Newmark Systems NLS 4-4-16).

Digital filtering in the spectrum analyzer eliminates the need for analog filter stages

and results in a higher signal-to-noise ratio compared to data measured using an os-

cilloscope or voltmeter. As illustrated in Figure 3.15, a sinusoidal voltage is applied

across the sample as opposed to a DC voltage. The AC measurement suppresses hy-

drolysis in the water below the impedance probe. The experimental results presented

in this chapter were obtained using a 60 kHz signal of amplitude 1 V peak-to-peak.

In practice, it has been determined that resistivity measurements are independent of

signal amplitude for a voltage range between 0.1 and 10 V peak-to-peak.

The probe used in the experiments employed the shield design as shown in

Figure 3.5. In practice, impedance probes are made by inserting insulated copper
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wire into stainless steel syringe needles filled with an insulating epoxy. The tip of

the needle is then ground flat and electrical connections are made to the copper wire,

which serves as a probe’s tip, and to the syringe, which serves as the shield. The

measurements shown in this chapter used 38 gauge copper wire and 23 gauge syringe

needles to create probes with approximately D=100 μm tip diameter, and Sp=100

μm spacing between the tip and the shield.

5.1 Current confinement using shielded probes

As stated in Chapter 3, the primary motive for the shielded design of the SII

impedance probe is the confinement of current within a known volume, which provides

a hardware improvement of image resolution. In the alternative configuration of the

SII system, the shield is connected to ground and the tip is connected to the virtual

ground created at the input of the current amplifier. Using this arrangement, all of

the current flowing into the probe’s tip is insured to arise only from the electric field

applied between the tip and the conducting plane beneath the sample. Using the 3-D

FDM model developed in Chapter 4, more details can be provided for the current flow

under the probe and are critical in calculating sample resistivity. A simulation was

performed using the model and the system was configured as stated above. The result

is shown in Figure 5.1. The stream lines were generated by solving for the electric field

in the region below a probe and then tracing current flow from the conducting plane

below a sample toward either the tip or shield electrodes. This particular simulation

assumed there was a sample 100 μm high sitting on the bottom conducting plane,

with 100 μm of a conducting solution between the sample and probe as shown in

Figure5.2. The sample was assumed to be less conductive than the solution, with a
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Figure 5.1: Current flow lines from conducting base plane into the tip and shield of
an SII probe. This is a 2-D cross section taken from a 3-D simulation. The dark lines
represent current flowing into the tip while the light lines represent current flowing
into the shield. Simulation represents a high conductivity solution over a 100 μm thick
sample. Conductivity ratio for sample to solution is 1:10

conductivity ratio of 1:10. The full simulation is done in three dimensions with Figure

5.1 only showing a 2-D cross section. The dark lines indicate current flowing from the

bottom plane toward the tip, while the lighter lines indicate current flowing into the

shield electrode. Readily apparent in Figure 5.1 is that the current flowing toward

the tip is confined to a cylindrical volume directly below the tip. The diameter of

this cylinder is approximately the midway point between the tip and the shield or

Deff = D + Sp, (5.1)
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Figure 5.2: Illustration of the current confinement and definitions of D, Sp, Z0, and
h

as shown in Figure 5.2.

Simulations were also run for homogeneous media (corresponding to a situa-

tion where only water of a constant conductivity is between the probe and conducting

plane) and for other heterogeneous cases (corresponding to water placed over a sample

with different conductivity). In each case, the diameter Deff of the current confining

cylinder remained approximately equal to the quantity given by Equation (5.1). The

implication of this result is very significant. The tip collects current from a con-

fined volume between it and the bottom conductive plane when the shield design is

employed.
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5.2 Extracting resistivity values

The resistance between the probe and the conducting plane can be obtained

from Ohm’s Law,

Rmeas =
1

Gmeas
=

V

Imeas
, (5.2)

where V is the known voltage applied at the bottom conducting plane and Imeas is the

current that is injected into and then amplified by the transimpedance amplifier. The

Ohm’s Law does not provide the details of the electromagnetic field inside and only

the whole resistance of a certain part of the sample can be obtained using this simple

formula. Thus, this quantitative process has no efforts on the image reconstruction.

Nonetheless, extracting a good estimation of the resistivity of the sample is still

possible from this general start. From the theorectical analysis in the Chapter 4

and the fact of the confinement shown in the previous section, the measured current

through the tip, Imeas can be written as

Imeas =

∫
Aeff

Jds

∣∣∣∣
z=0

=

∫
Aeff

σEds

∣∣∣∣
z=0

(5.3)

where Aeff is the cross-section area of the current confining cylinder and J is the

current density near the bottom conducting plane. The diameter of Aeff is Deff,

Aeff = π

(
Deff

2

)2

= π

(
D + Sp

2

)2

. (5.4)
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σ is the conductivity and E is the electric field. Thus, the relationship between the

conductivity σ and the measured resistance Rmeas can be obtained,

Rmeas =
V

Imeas

=
V∫

Aeff
σEds

∣∣∣
z=0

(5.5)

or

Gmeas =
1

V

∫
Aeff

σEds

∣∣∣∣
z=0

. (5.6)

By observing the current flow under the probe, it is possible to make a useful as-

sumption that the electric field is not significantly different from the one of the two

infinite plate capacitor with homogeneous media in the middle if the conductivity of

the sample does not vary too much. In formula, the assumption is

E =
V

h
(5.7)

where h is the distance between the probe end and the bottom conducting plane. As

a corollary, the electric field E is uniform in the cylinder. Thus, Equation 5.6 can be

written as

Gmeas =
1

V
E

∫
Aeff

σds

∣∣∣∣
z=0

=
1

h
(σaverAeff)

where σaver is the average value of the conductivity near the bottom plane inside the

small cylinder, which is the average conductivity of the sample in the cylinder in thin-

sample cases. Therefore, quantitative average values of the conductivity distribution

can be restored from the measured current or resistence

σaver =
h

RmeasAeff
.
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If the conductivity σ is replaced by the resistivity ρ = 1
σ

, then the equation can be

written as

ρaver =
RmeasAeff

h
. (5.8)

Equation (5.8) shows that an average of the resistivity in a cylinder right under

the probe can be obtained if Aeff and h are known. The diameter of the cylinder is

Deff which is almost twice of the diameter of the tip since the shield spacing and the

tip diameter are equal for most probes used in experiments. Thus, every pixel in the

image of the average resistivity ρaver is no larger than a circle area with a diameter of

2×D. Since the cylinder is too small when compared to the sample (the whole image

size) and it is comparable to the scanning step size (pixel size), the image can be

considered as a good estimated image of the real resistivity of the sample. Although

there is no improvement in image resolution when using this simple extraction, the

shielded-probe design guarantees that a good image resolution can be expected for

the image of resistivity.

To determine the value of the average resistivity ρaver using Equation (5.8),

Rmeas, Aeff and h must be known. Rmeas can be obtained from the measured current

using Equation (5.2). h is the probe height shown in Figure 5.2 which could poten-

tially be measured. Aeff is the key value that need further consideration. Although

simulations have shown that Aeff is invariant in both homogeneous case and other

heterogeneous cases, it is possible for Aeff to be a function of h, though there is no

explicit relationship between them shown in the theoretical analysis. Therefore, sim-

ulations were run for the demonstration of this possible relationship and the results

are shown in Figure 5.3. The effects of the shield on the probe design are also illus-

trated in this figure. This figure shows the simulation results using the FDM model
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Figure 5.3: (a) Calculated resistance between the tip and the base plane using a
shielded and unshielded probe. (b) The effective area, found by dividing the resistivity
times sample height by the resistance from part (a)
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comparing a shielded probe to an unshielded one. The unshielded case consisting of

simply a center electrode surrounded by an insulator (no outer shield electrode).

Figure 5.3 (a) compares the simulated resistance as Rmeas as a function of

probe height h in a homogeneous solution of conductivity σ=0.01 S/m. The probe

geometries were D= 100 μm, and Sp= 100 μm. Resistance is determined by dividing

the voltage drop across the sample V by the current through the probe tip Imeas,

as shown in Equation (5.2). Integrating J over the tip surface easily approximates

the tip current. It can be seen that the curve for the shielded probe is nearly linear

as height above the sample increases. This is due to the fact that the shield limits

the effective diameter of the cylindrical volume contributing to tip current and the

total resistance increases linearly as the cylinder’s volume increases linearly. The

unshielded case is nonlinear because the effective probe area increases with height, h.

The effect of the shielded probe is also demonstrated in Figure 5.3 (b). In this

figure, the total resistance computed in Figure 5.3 (a) is used together with Equation

(5.8) to obtain Aeff,

Aeff =
ρaverh

Rmeas
. (5.9)

Figure 5.3 (b) plots ρmeash/R to determine whether the area Aeff remains constant as

h increases so that ρaver can be obtained from Equation (5.8). As shown in the figure,

for the unshielded case ρmeash/R continues to increase with h, indicating that current

is being drawn from a volume with a changing cross-sectional area and Equation (5.4)

will not hold for this case. For the shielded case, however, above 80 μm, ρmeash/R

(area) remains approximately constant, indicting that Equation (5.4) does accurately

describe the resistance relationship for this volume.
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The simulation results indicate that a shielded probe is able to confine current

not only to a confined volume, but specifically to a cylindrical volume with a nearly

constant cross sectional area. This allows total resistance to be related to sample

resistivity in the simplest possible way using Equation (5.8). Extensions of the model

for heights greater than h= 500 μm (for a D= 100 μm and Sp = 100 μm probe), show

that gradually current confinement begins to break down and the cross sectional area

of the confinement volume no longer remains constant. This still provides a large

range of heights, h, where the constant area approximation is valid.

5.3 Modification for practical experiments

It would be ideal to relate measurement data to the physical parameter resis-

tivity in order to classify or compare material compositions. The modeling results

discussed earlier establish a theoretical basis for using the simple relationship given

in Equation (5.8) to relate resisitivity to the probe area given by Equation (5.4), and

the sample resistance Rsample given in Equation (5.2). For real samples, however, even

if the height of the probe above the bottom conducting plane, h, is known, the actual

thickness of the sample (Z0 − h) may vary along the samples area (h and Z0 are

defined in Figure ). The total resistance Rsample will actually consist of a resistance

due to the material under test and the water between this material and the probe.

Since, the height of the sample will not always necessarily be known, we will report

the quantity (resistivity) × height as a quantitative measure, given by

ρaverh = RsampleAeff. (5.10)
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Figure 5.4: Resistivity of saline solution versus molar concentration of NaCl

If sample height is well known, the ρaverh quantity can easily be divided by h to yield

an absolute material resistivity. This is complicated somewhat by the fact that there

is also a conductive water solution between the probe and the sample, but under

certain test conditions this can be dealt with as discussed in the next section.

To demonstrate how this ρaverh quantity will be used and to experimentally

verify the FDM modeling results, a series of scans were performed for the simplest

possible test case - homogeneous saline solutions. The experiments in this chapter

were performed using the alternative setup of SII with a spectrum analyzer shown in

Chapter 3. Resistivity versus NaCl concentration was measured using a commercial

resistivity meter with the results shown in Figure 5.4.
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Figure 5.5: Calculated (dashed) and measured (solid) values for ρh for three different
saline solutions versus probe height h

Rmeas was measured as the probe was scanned vertically (increasing h), away

from the base plane. The probe size and geometry are described at the beginning

of this chapter. It should be noted that 60 kHz was used as the sinusoidal voltage

excitation frequency because it allowed for very high signal-to-noise ratios as the spec-

trum analyzer was able to filter out spurious interference signals at lower frequencies.

Capacitance terms were measured for different elements in the system and found to

be so low, that at 60 kHz, impedance changes were dominated by resistivity.

Figure 5.5 shows a plot of ρaverh (orRmeasAeff) for three different saline solutions

versus height h. These results are similar to those found in Figure 5.3 (a) in which

there is a linear increase in total resistance versus height. Shown in Figure 5.5 are
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direct comparisons of experimental data and computations from the FDM model

using different solution conductivities. The measurement data used in this figure was

smoothed with a linearly-weighted moving average filter to reduce quantization effects

in the spectrum analyzer. The match between model and experiment is excellent, not

only in curve shape but in absolute value. This match provides confirmation that the

degree of current confinement predicted for the shielded probe is occurring in practice

and ρaverh will be a reasonable indicator for quantifying resistivity.

5.4 Experimental results

Much more interesting from an application’s standpoint is the evaluation of

real material samples below a conductive water solution. A first test case was for-

mulated that involved a material with constant resistivity but well controlled sample

heights at different areas. The material chosen was SU8 [81] - a photosensitive poly-

mer that can be applied over a conductive surface in controlled thicknesses with an

area defined using photolithography. The total Rmeas in this case will be the com-

bination of resistance due to the water and resistance due to the SU8. Given that

these resistances would simply add in series, it was decided that the easiest way to

deal with this situation was to make the total water resistance very small by using a

high conductivity solution when testing the SU8 samples. In the test cases reported

here, water of conductivity of σ=400 μS/cm was used, which turned out to be very

high compared to the SU8 conductivity.

Test samples were constructed by first coating a very flat silicon wafer with a

300 nm thick aluminum layer through evaporation based deposition. The aluminum

served as the conductive bottom plane for the sample. SU8 was then applied to the

103



Figure 5.6: Profilometer scan of three SU8 squares indicating their height above a
silicon wafer. Squares are approximately 1.5 mm wide

wafer using spin coating and hot plate curing. Using a series of photolithography steps

and additional spin coatings, 1.5 mm × 1.5 mm squares of three different thicknesses

were formed on the substrate adjacent to each other. Figure 5.6 shows a surface profile

made of the wafer using a thickness profilometer (Tencor Alphastep 200) showing the

three different SU8 thicknesses.

Given that the SU8 film has a homogeneous resistivity distribution, and that

the water solution used during measurement has a much lower resistivity than the

SU8, we would expect the ρh measurement over the different SU8 squares to vary

linearly with SU8 height. Figure 5.7 shows the results of an SII scan across the middle
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Figure 5.7: SII line scan of the three SU8 squares with results reported as ρh or
(Rsample)(Aeff). The height of the squares as measured using the profilometer is indi-
cated.

of the SU8 squares. The Rmeas values from the scan have been multiplied by the Aeff of

the probe to produce ρh values for the sample. Figure 5.7 looks very similar to Figure

5.6 as expected, as they are both are in effect a measure of sample height. Given that

we know the actual heights of the SU8 squares from the profilometer measurements,

an absolute value of ρ can be reported for SU8, which is ρ = 3 × 106Ω-cm. There

is limited available literature reporting a resistivity value for SU8. In a single case

we did find that involved the addition of silver nanoparticles to SU8 to make it more

conducting, our reported resistivity value is within an order of magnitude of that

projected for pure SU8[82].
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Figure 5.8: 2-D SII scan of SU8 squares. The black and white gradient scale is in
terms of ρh, with units of Ω-cm2, with the shortest square on the left side of the figure.

Figure 5.8 shows a two-dimensional area scan of three SU8 squares of variable

height. The scan plots the quantity ρh as intensity on a black/white gradient scale

with largest ρh (corresponding to the tallest square) the lightest color. The figure

illustrates both the large contrast available for an image scan and the high spatial

resolution possible, even using a probe tip with a D=100 μm diameter.

A further demonstration of the power of SII as a quantitative imaging tool is

provided in Figure 5.9 for more complex material samples. This figure shows scans

made on butterfly wing and on a silicon wafer covered with oxide. The conditions

used to obtain these scans was similar to those used to create the SU8 images in

Figure 5.7 and 5.8. The top left image in Figure 5.9 is a photograph of structures

etched into the thin (300 nm) oxide layer on the silicon wafer. The bottom left image

is an SII scan of the same wafer showing the contrast between the oxide coated regions

and those free of oxide. The black box drawn in the upper left picture shows the area

of the wafer scanned. The top right image is a photograph of a butterfly wing and

below it is the same area scanned using the SII system. Prominent in the resistivity
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Figure 5.9: 2-D SII scans and optical pictures for oxide coated silicon wafter on left
and butterfly wing on the right. The top images are optical photographs. The bottom
images are SII scans reported in terms of ρh

scan are the veins in the wing and high resistivity regions that could not be obviously

predicted from the optical photograph. In both of the images shown in Figure 5.9,

the gradient scales are for ρh values (units of Ω-cm2).
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5.5 Significance and limitations

The method developed in this chapter seeks to quantify the resistivity of sam-

ples based on the fact of the current confinement introduced by the shielded-probe

design. Simulations using the FDM model developed in Chapter 4 have shown that a

shielded probe confines the current flowing into the center electrode to be a cylindrical

volume with both homogeneous and heterogeneous resistivity distributions. Further,

the cross-section area of the current confining cylinder (the effective area Aeff) holds

an invariant value with its diameter Deff = D +Sp. This allows for the determination

of resistivity within this volume using a simple average value ρaver because of the

small size of the cylinder. Given that sample height may be an unknown for a given

material sample, the quantity ρaverh is a natural way to report resistivity in SII scans.

This quantification provides the ability to quantify resistivity with the SII

system as a new tool for classifying material properties and imaging a variety of

samples. There is great significance based on this resistivity quantification. Three

important contributions are listed as following,

• Quantitative Images: The contrast values in images obtained using this simple

method are resistivity or resistivity timing with height. Both are more mean-

ingful than the original images of the measured current. In other words, the

method provides more physical meanings for the result images.

• Material Classification: The material composition of a sample can be analyzed

with known resistivity values. Even for the measurement of ρaverh, the sample

can be classified if the measurements of the same material were produced before.
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• Comparison of Images: Images produced from different scans can be comparable

so that different samples can be measured with correspondent result images.

Although this simple quantification allows for the value extraction of the re-

sistivity, it contributes nothing to the improvement of resolution that is harmed by

the blurring effect. The value ρaverh examined in this simple method is an average

value of a whole cylinder under the probe. Further, the Aeff would depends on the

probe height h when h is small as shown in Figure 5.3 (b) (h ≤ 80μm). Small h

means that the probe is close to the sample. However, simulations in Chapter 4 have

shown that best resolution is achieved when the probe is closest to the sample. All

these issues indicate that this simple method is not a perfect solution if both the

value and resolution are critical. This results in the requirement of a full solution

with image reconstruction techniques applied. In next chapter, several methods of

image reconstruction for the SII system will be proposed and implemented.
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Chapter 6

Fast approximate models and image reconstruction for SII

The SII system seeks to produce 2-D images or 3-D volumes of impedance

distribution for different samples at very high resolution as described in Chapter 3.

However, the 3-D volume reconstruction could hardly be achieved due to the configu-

ration with the probe along z direction. The signal picked up by the probe integrates

the information along z direction which means the probe measures a path integral

of the current density along z direction. This results in a lower sensitivity in z di-

rection comparing to x and y direction. Due to this specialty of z direction, the SII

system mainly focuses on 2-D image scans at this time. Unlike other medical imaging

modalities such as MRI, CT, EIT and etc, the data set obtained by a typical SII

system is the current map of a particular layer of the sample. This current map re-

lates to the impedance image roughly pixel to pixel. Thus, SII can be considered as a

’direct-mapping’ imaging method. However, The current at each position represents

the whole effect of the impedance in a small region surrounding this position, which

can be considered as a kind of image blurring. The measurements take into account

everything (no approximations, all field perturbations, noise, etc.) but do not provide

detail on the causes of image blurring. Chapter 4 derives the electrostatic theory and
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the numerical FDM model for a SII system. The analysis and the results have shown

that this blurring effect is not a simple blurring generated by convolution. No ex-

plicitly precise expression can be obtained at this point for the blurring function that

represents the relationship between the current through the tip and the impedance

distribution. This problem becomes a challenging inverse problem. One critical task

here is to solve this problem to provide an approach that can obtain the impedance

image from the measured current map. Thus, the SII modality can be described as

a two step process. The first step is the construction of an appropriate instrument

that can take sufficient measurements. The next step in the process is the image

reconstruction of the impedance distribution from the data improving the resolution

and signal-to-noise ratio.

Conventional methods for the inverse problem in the electrical impedance

imaging focus on nonlinear inverse methods using a true 3-D numerical solver based

on the finite difference method (FDM) or the finite element method (FEM). Based

on the 3-D numerical FDM model introduced in Chapter 4, a framework of image

reconstruction for the SII modality can be developed similarly to image reconstruc-

tions of other imaging modalities as shown in Figure 6.1. Here, a nonlinear parameter

identification method is used to produce the impedance image. This algorithm must

be initialized with a first guess of the impedance distribution, usually taken as uni-

form. Next, a computer model simulates the measuring process. By comparing the

simulated currents to the data, the impedance estimation is updated until they agree

under some assumptions. Also, regularization must be applied to this process due to

the ill-posedness. These general optimization methods can obtain the results based

on the theoretical analysis, however, they are limited by the computational ability of

computers. These methods are usually CPU time intensive since there is a need to
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Figure 6.1: The main framework of image reconstruction for the SII system

solve the forward problems repeatedly during inverse iterations. For SII, the situation

could be worse. As mentioned in Chapter 4, the forward problem of SII simulates

the measuring process. It can be considered as a system with an impedance image

as input and the output is a current image. For each pixel of the current image,

the forward solver has to solve the PDE equation mentioned in Chapter 4 following

the steps as shown in Figure 4.5. It can be noticed that solving this PDE is also an

iterative process. Thus, the forward problem requires iterative solutions of the PDE

for every pixel. This leads to huge computational cost. Further, in each iteration of

the inverse problem, the forward problem need to be solved at least once. It can be

imagined that image reconstruction of SII could hardly be achieved practically using
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Figure 6.2: The computational cost of conventional methods using the numerical
FDM model for image reconstruction of SII

this approach. Also, the computational cost raises up dramatically when the image

size increases. Figure 6.2 shows this situation clearly.

In this chapter, fast approximate models are developed to produce the solution

of the forward problem with much less computational time and memory occupation

compared to the numerical FDM model. Fast image reconstruction methods are de-

rived based on these models. These models can be classified to two major groups

according to their assumptions. The first group is developed using charge theory and

homogeneous assumption. The second one is based on the reciprocity principle[83].

Among them, the Modified Linear Approximation (MLA) demonstrates the best per-

formance. With the help of MLA, fast image reconstruction can be achieved by

avoiding the true 3-D numerical forward solver during the inverse iterations. Total

variation regularization is applied. The determination of parameters is also analyzed.
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As mentioned above, due to lack of independent measurements in z direction,

Only 2-D image measurements are considered here. All the experimental results in

this chapter are in 2-D images with the assumption the impedance in z direction is

uniform.

6.1 Simple model I: Simplified Linear (SL) model

6.1.1 Model formula for the unshielded case

Consider the current through a conducting tip placed a distance h above a

conducting ground plane. If the tip is not surrounded by a shield as an unshielded

case, the current through the ground plane should be the same as the current through

the tip. Therefore, the current through the tip is

I =

∫
xy

σ
∂V

∂z
dxdy

∣∣∣∣
z=0

. (6.1)

From the electrostatic analysis in Chapter 4, V can be calculated from the

potential, φ, which can be obtained by using the true FDM model. Besides this

numerical approach, exact solution of V can hardly be achieved. However, some sim-

ple solution could approximate V reasonably well under assumptions. Here, three

assumptions are introduced to simplify this complicated relationship significantly.

These assumptions are justified only under specific conditions which are admittedly

not always met during all scanning impedance experiments. Therefore, the theory

can be improved upon in the future. However, making these assumptions provides a

tractable linear theory that can be compared against simulations and (most impor-
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tantly) experimental data. This linear model can then be used to develop a simple,

linear reconstruction algorithm for 2-D conductivity from 2-D current measurements.

Here are the three assumptions:

• Assumption I: The current is the same as it would be in an infinite material.

From experiences in solving the numerical FDM model, this assumption should

be valid for scan points near the center of the experiment since the potential field

decreases dramatically from the scanning point. Towards the boundaries of the

experiment, the potential field would be tolerated by the boundary conditions.

If the lateral boundaries in the experiment are moved out to places where the

potential field is vanishingly small, the errors associated with this assumption

could be minimized. Thus, with some effort of making proper boundaries in the

experiment, this assumption could be valid everywhere in the region of interest.

• Assumption II: ∂V /∂z is independent of σ and, therefore, the same as it

would be for a medium of homogeneous (background) conductivity. This is the

key to linearizing the relationship between I and σ. This assumption can be

compared to the Born approximation made in inverse scattering. In biological

samples, this assumption should be fairly mild as conductivity is supposed to

vary moderately from a background value. Admittedly, however, this could not

be hold for large variations in conductivity, for instance, the boundary between

different materials. For biological samples, these situations can be avoided in

most cases. Another issue is that this assumption could harm the resolution as it

considers no sharp changes. Thus, the results would not be perfectly deblurred.

However, it could help to eliminate most of the blurring effect.
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Figure 6.3: The idea of the simple linear (SL) model for the SII system. V(r) is
the voltage at position r. The probe is considered as an infinitesimal charge above the
conducting plane. The variation of the conductivity of the sample is small enough to
be replaced with the conductivity of the background.

• Assumption III: The potential distribution due to the conductive tip (from

which ∂V /∂z is independent of σ can be calculated) is the same as it would be

by placing an infinitesimal point charge at (or near) the location of the center

of the tip. Simulations show that away from the center of a small tip, the

potential is distributed almost same way of the infinitesimal charge. In the SII

system, where the diameter of the tip is comparable to the distance between

the tip end and the plane, this simplifying assumption actually explains much

of the observed potential variation. This is not unreasonable since an exact

formula could be obtained by placing the correct surface charge distribution on

the tip and integrating. At some distance away from the tip, the precise surface

charge distribution is inconsequential and the true distribution can reasonably

be replaced with a constant charge integrated over the tip area, which-at this

distance-is equivalent to a point charge placed at the center of the tip. Thus,

”‘the distance”’ may not be the exact distance between the tip end and the

plane. This number becomes a parameter for this model in most cases.
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With the help of these three assumptions, a simple linear model can be derived

from the electrostatic analysis as shown in Figure 6.3. The potential (voltage) can be

obtained by placing a charge at the center of the tip and using the method of images

to account for the ground conducting plane. The formula is

V (r) =
q

4πε

[
1

|r− hẑ| −
1

|r + hẑ|
]

(6.2)

where q is the equivalent charge at the center of the tip and r is the position vector

r = xx̂ + yŷ + zẑ. (6.3)

On the ground plane, it can be observed

∂V

∂z

∣∣∣∣
z=0

=
q

4πε

[
2h

(x2 + y2 + z2)3/2

]
. (6.4)

The assumption of an infinite domain implies shift invariance of the model. The

formula would also be valid when the probe is moved to the position (x′, y′). Thus,

Equation (6.1) becomes

I(x′, y′) =

∫
xy

σ(x, y) · q

4πε

[
2h

((x′ − x)2 + (y′ − y)2 + z2)3/2

]
dxdy. (6.5)

It can be noticed that the relationship between I and σ turns out to be a convolution

with a kernel Kh. The subscript h of Kh represents that the kernel is depend on the

distance between the tip end and the plane. From Equation (6.5), a thin-sample, 2-D,

118



linear shift-invariant model can be obtained:

I =
q

2πεh2
Kh ∗ σ (6.6)

where ∗ represents 2-D convolution. Kh is given by

Kh(x, y) =
h3

(x2 + y2 + h2)3/2
. (6.7)

This kernel function is normalized and symmetric. It is the impulse response of this

model.

This model is valid only if the conductivity does not vary significantly over the

sample and if h is large enough so that the ground plane can be considered distant

from the tip. Under those circumstances, h represents the exact height between the

tip end and the conducting plane and q is the integrated charge density on the tip end

during measurement. If one of these assumptions could not be hold, h and q would

lose their physical meaning. However, experiments have shown that this model could

be useful if h and q are considered as model parameters. These parameters need to

be determined by fitting the model to the experimental data. In either case, q could

hardly be known priorly. Thus, only relative value of conductivity can be obtained

from the current measurements by inverting this model. This results in a relative-

valued image reconstruction of SII using this model.

While somewhat crude, the simplified linear model suggests that measured

current values collected into an image will provide a blurred image of relative conduc-

tivity. Simple deblurring models could provide high-resolution images proportional

to conductivity, σ. The model also suggests that height above the ground plane is
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the dominant cause of blurring while q only affects the absolute value. Thus, if the

samples are thin-enough and the probe is positioned near enough, high-resolution

images of relative conductivity can be obtained as expected.

Since most of the probes used in the experiments for SII are shielded, this

model need to be explored in the shielded case. This expansion is the main significance

of the model of the unshielded probe.

6.1.2 Model formula for the shielded case

The structure of the shielded probe is shown in Figure 3.5. The central tip

is surrounded by an insulator and then surrounded by a metal shield. The first two

assumptions: 1) an infinite region, 2) small variation in voltage when comparing the

case of inhomogeneous media to the homogeneous one, are still valid for this case. For

the third assumption: constant (infinitesimal) charge distribution, a modification is

necessary due to the special structure of the shielded probe. The tip is still considered

as an infinitesimal charge, however, the shield is much bigger and the cylinderal

structure of the shield could not be ignored. Thus, for the model of the shielded

case, the tip end is still an infinitesimal charge q, but the shield is a collection of N

point-charges totaling q1with N is large enough. The shield ring is assumed to be a

distance b from the center of the tip. Using the method of images again, the voltage

can be obtained in the region of interest as

V (r) =
q

4πε

[
1

|r − hẑ| −
1

|r + hẑ|
]

+
q1

4πNε

N−1∑
n=0

[
1

|un(r) − hẑ| −
1

|un(r) + hẑ|
]

120



where

un(r) = r − b cos(2π
n

N
)x̂ − b sin(2π

n

N
)ŷ.

Simplifying, this equation becomes

V (r) =
q

4πε

[
1√

ρ2 + (z − h)2
− 1√

ρ2 + (z + h)2

]

+
q1

4πNε

N−1∑
n=0

[
1√

ρ2
n(x, y) + (z − h)2

− 1√
ρ2

n(x, y) + (z + h)2

]

where

ρ2
n(x, y, b) = (x − b cos(2π

n

N
))2 + (y − b sin(2π

n

N
))2

and

ρ2 = ρ2
n(x, y, 0).

In the limit as N → ∞, by defining ξ = q1/q, and using cylindrical coordinates:

x = ρ cos θ

y = ρ sin θ,

a simplifier formula can be obtained,

V (r) =
q

4πε

[
1√

ρ2 + (z − h)2
− 1√

ρ2 + (z + h)2

+
ξ√

(ρ − b)2 + (z − h)2
− ξ√

(ρ − b)2 + (z + h)2

]
.

Therefore,

∂V

∂z

∣∣∣∣
z=0

=
q

2πεh2

[
h3

(ρ2 + h2)3/2
+

ξh3

[(ρ − b)2 + h2]3/2

]
.
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Now, however the current through the tip is not the current through the ground

conductor. Instead, the current through the tip must be some fraction of the current

through the ground plane:

I = β(h)

∫
xy

σ
∂V

∂z
dxdy

∣∣∣∣
z=0

.

Thus,

Kshield
h,b,ξ (ρ) = β(h)

[
h3

(ρ2 + h2)3/2
+

ξh3

[(ρ − b)2 + h2]3/2

]

is the kernel of the simple linear model for the shielded case where β(h) is a pro-

portionality constant assumed to be independent of σ (a linearization assumption).

Numerical simulations in homogeneous materials suggests that β(h) is power-law de-

pendent on h:

β(h) = c0h
γ.

It can be seen that this kernel is dependent on three parameters: h, b, ξ in which h

and b depends on the system configuration and the probe dimension while ξ is hard

to determine. However, the parameters can be calculated by fitting to experimental

data. Further, it can be seen that the model for the shielded case is not significantly

different from that of the unshielded case. The second term involving (ρ−b)2+h2in the

denominator is nearly identical to the first term when b/h 
 1. Typically, in order to

use the simplified model, this condition b/h 
 1 has to be assumed anyway so that the

tip can be approximated as a point charge. As a result, even in the shielded case, the

unshielded blurring function is a useful model to be applied to results. Furthermore,

as mentioned above, more unknown parameters and more difficult Fourier transform
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lead to higher complexity of the shielded model which makes it less useful than the

unshielded one.

6.2 Simple model II: Reciprocity Principle (RP) models

The SL model can hardly represent the detail of the geometry of the probe,

which leads to a lack of accuracy for the shielded case. Further, since the value of the

charge is hard to determine, the SL model is a relative model without the ability of

quantification of the impedance distribution. Among the three assumptions proposed

above, the charge assumption is too strong. Thus, other approaches are explored to

avoid this assumption so that the detail of the shielded-probe design can be modeled.

In this section, the reciprocity principle is applied to the SII system. The anal-

ysis based on it provides another series of models that reveal the relationship between

the impedance distribution and the current through the tip with the consideration of

the shielded-probe design. These models are based on weaker assumptions.

6.2.1 Reciprocity Principle in SII

Unshielded case

The region of interest in a typical SII system consists of the sample and the

conducting solution. Due to the low-frequency signals used in the SII system, it can

be noticed that the electromagnetic field out of the region of interest is trivial. Thus,

the current density is zero through the surface everywhere except for the end of the

tip (and the shield) and the conducting plane. Figure 6.4 shows this idea clearly. The
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Figure 6.4: Conducting region Ω with conductivity σ. (a) A voltage U t applied to
the tip and the ground leads to a potential distribution φ. The current through the tip
It can be measured.

ellipse represents the region of interest in the SII system as a conducting domain Ω

with conductivity σ. This domain has two ports with current through: one represents

the tip and one is the conducting plane as shown in the figure. Here, the conducting

plane is considered as the ground with zero potential. A voltage U t is applied to the

tip and the conducting plane, which excites an electromagnetic field inside the region

Ω. As the model in Chapter 4, when the wavelength of electromagnetic field is much

longer than the dimensions of the experimental setup such as the SII system, it is

common to ignore the small contribution from the magnetic field and write E = −�φ

where φ is the electric scalar potential in Ω. I t is the current through the tip and −I t

is though the ground port. From Ohm’s Law, the current density J in Ω satisfies the

following formula,

J = −σE = −σ � φ, (6.8)

where E is the electric field in the domain Ω. Multiply the electric potential φ on

both sides and integrate the equation over the boundary ∂Ω,

∫
∂Ω

Jφ · ds = −
∫

∂Ω

φσ � φ · ds. (6.9)
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The normal component of J is zero everywhere on the boundary ∂Ω except for on

the two ports (the tip and the conducting plane) in Figure 6.4. The potential φ is

zero on the conducting plane (ground) and is U t on the tip. Thus, the left-hand side

of Equation (6.9) simplifies to U tI t. Applying Gauss’ theorem to the right-hand side,

Equation (6.9) can be rewritten as

U tI t = −
∫

Ω

� · (φσ � φ)dΩ. (6.10)

To simply the right-hand side, notice that

� ·(φσ � φ) = σ � φ · �φ + φ � ·(σ � φ), (6.11)

and because �·(σ�φ) = 0 for all the points in the domain, Equation(6.10) simplifies

to

I t = − 1

U t

∫
Ω

σ � φ · �φdΩ. (6.12)

Shielded case

For the shielded case, similar formulas could be developed. The difference

between the unshielded case and the shielded case is that there is one more port that

represents the shield as shown in Figure 6.5. Consider the region of interest Ω in

the shielded case with conductivity σ. It can be noticed that the current through

the shield Is is also unknown. Thus, it demands two setups with different boundary

conditions so that two independent equations can be established to solve I t and Is.

U t
1 is the voltage applied to the tip while another voltage Us

1 drives the shield, which

leads to an electric scalar potential distribution φ1. Hence, a current through the tip
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Figure 6.5: Conducting region Ω with conductivity σ. (a) A voltage U t
1 applied to the

tip and another voltage U s
1 applied to the shield lead to a potential distribution φ1. The

current through the tip It
1 and the current through the shield Is

1 can be measured. (b)
Changing the voltage on the shield to zero results in a different potential distribution
φ2 with different currents It

2, Is
2 .

I t
1 and a current through the shield Is

1 can be measured. On the other hand, U t
2 and

Us
2 excites φ2 in the region Ω and I t

2 and Is
2 are the corresponding currents.

For the first case, Ohm’s law is

J1 = −σ � φ1, (6.13)

where J1 is the current density in the domain Ω. Multiply the potential obtained in

the second case, φ2, on both sides and integrate the equation over the boundary ∂Ω:

∫
∂Ω

J1φ2 · ds = −
∫

∂Ω

φ2σ � φ1 · ds. (6.14)

The normal component of J1 is zero everywhere on the boundary except for on the

conducting plane, the tip, and the shield. The voltage, φ2 is zero on the conducting

plane and is U t
2 on the tip, Us

2 on the shield. The current through the shield in the

first case is Is
1 and the current through the tip is I t

1. Thus, the left-hand side of the
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previous equation simplifies to U t
2I

t
1 + Us

2I
s
1 . Similar to the unshielded case, (6.14)

becomes

U t
2I

t
1 + Us

2I
s
1 = −

∫
Ω

� · (φ2σ � φ1) dΩ. (6.15)

Then, for the second case, let the shield connected to the ground and the voltage

applied to the tip same as the one in the first case. Thus, the first case simulates the

experimental configuration and the second case shorts the shield to the ground,

U t
2 = U t

1 = U t and Us
2 = 0. (6.16)

Also notice that

� · (φ2σ � φ1) = σ � φ2 · �φ1 + φ2 � · (σ � φ1)︸ ︷︷ ︸
=0

. (6.17)

Equation (6.15) simplifies to

I t = I t
1 = − 1

U t

∫
Ω

σ � φ2 · �φ1dΩ. (6.18)

6.2.2 Reciprocity Principle (RP) model

Equation (6.12) and Equation (6.18) establish explicit relationships between

the current through the tip and the conductivity distribution in the region Ω for both

the unshielded and the shielded cases. Two assumptions were used in the development

of these two formulas. However, these two formulas are still complicated because the

φ, φ2 and φ1 potential distributions are themselves dependent on σ. Another two
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assumptions are introduced to simply these relationships significantly. To be clear,

all the four assumptions are listed here.

• Assumption I: The current through the surface is zero everywhere except for

the tip (and the shield) and the conducting plane. The low-frequency environ-

ment allows this assumption to be valid. No notable radiation can be observed

in experiments. With the help of this assumption, the region of interest in a

SII system can be simply represented as a conducting domain with ports on it

as shown in Figure 6.4 and Figure 6.5.

• Assumption II: The contribution of the magnetic field is trivial that can be

ignored. Usually, at low frequency, the vector potential is so small that the

electric field is mainly dependent on the scalar potential φ as E = σ � φ. The

validation of this assumption is critical for the electrical impedance imaging.

In this imaging modality, the electrical properties including σ and ε are the

contrast of the images without the consideration of the permutability.

• Assumption III (same as Assumption I in the SL model): The current is same

as it would be in an infinite material. Far from the boundaries of the sample, the

linear operator can be considered shift-invariant (at least in two-dimensions).

• Assumption IV (similar as Assumption II in the SL model): φ, φ2 and φ1 are

independent of σ, therefore, the same as they would be for a medium of homoge-

neous conductivity. This is the key to linearizing the relationship between I and

σ. In biological samples, the conductivity varies moderately from a background

value, therefore, this assumption could be hold in most experiments.
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The first two assumptions are also used in the FDM model. They are valid with few

limitations. The third one is same as the one in the SL model and they have same

reasons and validations. The fourth one is similar to the one in the SL model, however,

assumes approximate electrical potential distributions rather than ∂V /∂z that is

correspondent to the electric field. When the linear and shift-invariant approximations

are valid, (6.12) and (6.18) can be seen as convolutions,

I (x′) =

∫
σ (x)K (x′ − x) dx, (6.19)

where

K (x) =

⎧⎪⎨
⎪⎩

− 1
U
� φ (−x) · �φ (−x) unshielded case

− 1
U
� φ2 (−x) · �φ1 (−x) shielded case

. (6.20)

The SII system only takes 2-D data, and it is more difficult to justify shift-invariance

in the third dimension. Thus, the linear equation more appropriate for SII assumes

that the conductivity in the z-direction is its average so that

I (x, y) = σ (x, y) � k (x, y) , (6.21)

where � represents two-dimensional convolution, σ (x, y) =
∫

σ (x) dz, and

k (x, y) =

∫
K (x) dz. (6.22)

This two-dimensional model is called the Reciprocity Principle (RP) model.
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6.2.3 Modified Linear Approximation (MLA)

The linear assumption (Assumption IV) made previously is not always true,

especially when abrupt changes of conductivity occur. For example, Figure 6.7(c)

shows that the RP model almost fits the data from a true 3-d simulation except for

on the low-valued end of the abrupt change in σ. In order to create a model that

fits experimental data, an approximation has been developed combining two linear

kernels, the RP kernel and a Gaussian kernel with a weighting that is dependent on

the value of conductivity at a given location. In particular,

I (x, y) = w (σ) · (σ ∗ k) + (1 − w (σ)) · (σ ∗ kl) . (6.23)

The Gaussian kernel, kl, has a width chosen to match the width of the RP kernel and

a height chosen so that the Gaussian kernel and the RP kernel both have the same

integral. In addition, w (σ) is a weight coefficient linearly-dependent on σ and chosen

so that the Gaussian kernel is weighted more heavily when σ is small and weighted

less heavily when σ is near the background value of σb. Specifically,

w (σ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γ1 σ = 0,

σ
σb

(γ2 − γ1) + γ1 0 < σ < σb,

γ2 σ ≥ σb.

The values of γ1 and γ2 are chosen based on simulations and are assumed constant for a

given geometry and driving voltage. Because of the simulation match to the RP kernel

when σ ≈ σb, γ2 ≈ 1 is usually selected. Then, γ1 is chosen by matching the MLA-

predicted curve with the full 3-D model for a step function in conductivity. Values
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less than 0.5 (such as 0.15 or 0.2) for γ1 are typical for the experiments described

in this paper. The value of γ1 determines how much of the Gaussian kernel is used

for low values of σ. By weighting two linear convolution kernels with a conductivity-

dependent weight, we have produced a simple non-linear model that can be exposed

more clearly by writing (6.23) as

I = σ ∗ k1 + σ · (σ ∗ k2) , (6.24)

where I and σ are 2-D images, · is element-by-element multiplication,

k1 = γ1k + (1 − γ1) kl

and

k2 =
γ2 − γ1

σb
k − γ2 − γ1

σb
kl.

It can be seen that only two 2-D convolutions and one 2-D element-multiplication

are necessary in the calculation of I. As long as this is sufficiently accurate, there is

no need for the 3-D numerical solution of the PDE in Equation (4.5) at multiple scan

positions in the forward solver. Thus, the modified model can be computed much

faster than the true 3-D FDM model and makes possible quick image reconstruction.

6.3 Kernel evaluation

As stated above, the kernel of the SL model can be obtained from Equation

(6.7) for both unshielded and shielded cases. The key is to determine the value of

h which can be considered as an optimization parameter during the kernel fitting
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Figure 6.6: The shaded surface plot of two-dimensional kernel function. (a) the
kernel of the SL model h = 35μm, (b) the kernel of the RP model for a (D = 30μm,
Sp = 30μm, 30-μm shield thickness) probe, Vt = 2.3V and Vs = 2.5V

process. In practice, it is not hard to provide an estimated value for h based on

previous experience.

The kernel of the RP model can be obtained from Equation (6.20) and (6.22).

The critical step in the kernel evaluation is the determination of the potential φ for

different boundary conditions. For a given homogeneous σ, φ can be solved using the

FDM method proposed in Chapter 4. After determination of φ, the gradient of φ can

be approximated using central differences. In the practical case of an inhomogeneous

medium, one important issue is that the voltage of the tip varies during the scanning

procedure. Thus, there is no fixed value for the voltage of tip that can be used

in the kernel calculation. One possible solution is to treat the voltage of the tip

Vt as a parameter of the kernel and tweak Vt for the best fit. Since the modified

model is a calibrated model for the SII system, Vt can be determined from the known

conductivity of the background medium and the corresponding current through the

tip.
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Figure 6.6 shows the shaded surface plots of two-dimensional kernels of both

the SL model and the RP model for the shielded case. For the SL model, the height

parameter h is 35μm. For the RP model, the tip diameter and the shield thickness

are both 30 μm while the gap spacing between the shield and the tip is also 30 μm

wide. The potential φ1 is simulated with a 2.3V voltage applied to the tip and a

2.5V voltage applied to the shield. Then, we obtain φ2 by repeating the same process

except using zero voltage on the shield. It can be observed that the kernel function of

the RP model has a sharper edge and represents more details of the probe structure

than the kernel of the SL model. The sharper edge shows that the RP model might

be able to reveal the shield function better than the SL model since the shield helps

to shrink the average cross-section area of current flow through the sample.

6.4 Evaluation for simple models

To demonstrate all the simple models to SII, line scans were modeled and

compared to the simulated measurements. These line-profiles were taken from 3-d

simulations such as those reported on in Figure 6.8 and Figure 6.9. A shielded probe

was used with D = 30μm, Sp = 30μm and 30-μm shield thickness. The simulated

measurements were generated using the true 3-D FDM forward solver proposed in

Chapter 4.

Figure 6.7(b), Figure 6.7(c) and Figure 6.7(d) show 1-d line-scans of the 3-D

FDM model and the simple models simulated based on the conductivity profile shown

in Figure 6.7 (a) with an abrupt change in the middle along the scanning direction.

Confidence in the simple models can be built by comparing its predictions to the true

3-D FDM model in simulations. Very good correspondence can be observed between
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Figure 6.7: (a) is the conductivity profile along the direction; (b), (c), (d) are sim-
ulations using the simplified linear, RP, and MLA models respectively (solid curves),
compared to the 3-D FDM model (points).

the simple models and the more exact numerical solution. While these models give

reasonable qualitative fits to the rising edge of the data, it is clear that the MLA

method is the only simplified model that fits well to both ends of the abrupt change.

The ability to fit such an abrupt change in conductivity gives confidence in the use

of the MLA model for the forward calculation step in real SII inverse problem. In

the following sections, the image reconstruction based on the MLA model will be

discussed.
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6.5 Image reconstruction for SII using MLA

As mentioned above, the SL model is a relative-valued model for SII while

the RP and MLA models are calibrated ones. Also notice the best correspondence

of MLA method shown above. The left part of this chapter will focus on the image

reconstruction for SII using MLA method only. Notice that the MLA method is a

nonlinear approximation of the solution for the forward problem of SII. Therefore,

the nonlinear conjugate gradient method is employed to solve this complex inverse

problem and the discretization is also involved.

6.5.1 Equations for inverse problem and regularization

In the inverse problem, the current through the tip is measured at every scan

position; the conductivity distribution is unknown and must be determined. The

framework is same as shown in Figure 6.1 except for solving the forward problem

using MLA. It is necessary to define a cost functional. In our case, we define the cost

functional with a regularization term of total variation as

J (σ) = ||I (σ) − Imeas||2 + λTV (σ) (6.25)

where I (σ) is the calculated current from the current guess of σ, Imeas is the measured

current and

TV (σ) =

∫
Ω

√
| � σ|2 + ζ2dxdy. (6.26)

The first term in the cost functional corresponds to the energy norm of the mismatch

between the measured currents and the predicted ones, while the second term is the
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regularization term of total variation (modified to be differentiable at σ = 0 by a

small constant ζ) with λ selected as a regularization parameter. The solution of the

inverse process is to minimize the above cost functional:

σ̂ = min
σ

J (σ) . (6.27)

The major minimization in the inverse problem is a nonlinear optimization

problem. The non-linear conjugate-gradient method is a good choice since it does

not require storage of a Hessian matrix which is large. The Polak-Ribiére variant

of conjugate-gradient method was used to solve this problem, as it accomplishes

the transition to further iterations more gracefully than the conventional conjugate-

gradient method. The iterates σk, k ≥ 0 in the conjugate gradient method satisfy the

recurrence,

σk+1 = σk + αkdk

where the step-size αk is positive, and the direction dk is generated by the rule,

dk+1 = −gk+1 + βkdk

with

d0 = −g0

where g = ∇J , and

βk =
〈gk+1 − gk, gk〉

||gk||2 .

Hence, the key part of the inverse process is the evaluation of the function J (σ) and

the gradient ∇J (σ).
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After discretization, J (σ) can be calculated as

J (σ) =
∑

i

(Ii (σ) − Imeas,i)
2

︸ ︷︷ ︸
JI(σ)

+λ
∑

i

√
| � σi|2 + ζ2

︸ ︷︷ ︸
Jσ(σ)

. (6.28)

Also, g (σ) is the gradient of J (σ):

g (σ) =
∂J (σ)

∂σ

=
∂JI (σ)

∂σ
+

∂Jσ (σ)

∂σ

=
∑

i

2 (Ii (σ) − Imeas,i)
∂Ii (σ)

∂σ
− λ � ·

( �σ

| � σ|
)

.

An expression of I can be derived from Equation (6.24) ,

Ii =
∑

h

tk1
ihσh + σi

∑
h

tk2
ihσh,

where tk1

ih and tk2

ih are the (i, h)th elements of the Toeplitz matrices which implement

the convolutions by k1 and k2, respectively. Then,

∂Ii

∂σj
= tk1

ij + σit
k2
ij + δij

∑
h

tk2
ihσh.

Thus, the first term of g (σ) in the matrix form becomes

∂JI (σ)

∂σ
= 2

∂I

∂σ
(I (σ) − I)

= 2
(
T H

k1
+ T H

k2
D (σ)∗ + D (Tk2σ)∗

)
(I (σ) − I) .
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Meanwhile, Jσ (σ) is discretized in two dimensional space as follows,

Jσ (σ) =
1

2

∑
i

∑
j

Θ
((

Dx
ijσ
)2

+
(
Dy

ijσ
)2)

(6.29)

where Dx
ijσ =

fij−fi−1,j

�x
, Dy

ijσ =
fij−fi,j−1

�y
and Θ (t) = 2

√
t + β2. The gradient of

Equation (6.29) is computed as,

∂Jσ (σ)

∂σ
=
∑

i

∑
j

(
Dx

ij

(
Θ′

ijD
x
ijσ
)

+ Dy
ij

(
Θ′

ijD
y
ijσ
))

where

Θ′
ij = Θ′

((
Dx

ijσ
)2

+
(
Dy

ijσ
)2)

=
1√(

Dx
ijσ
)2

+
(
Dy

ijσ
)2

+ β2

.

In matrix form,

∂Jσ (σ)

∂σ
= DT

x D (Θ′) Dxσ + DT
y D (Θ′)Dyσ.

Therefore,

g (σ) = 2
(
T H

k1
+ T H

k2
D (σ)∗ + D (Tk2σ)∗

)
(I (σ) − I)+λDT

x D (Θ′) Dxσ+DT
y D (Θ′)Dyσ.

(6.30)

At each iteration, J (σ) and g (σ) are calculated once and only convolutions and

element-multiplication are involved. This results in a huge savings in both CPU time

and memory. In addition, because the RP kernel has limited practical spatial support,

it can be calculated using a small number of elements in the true FDM model. Then,

this convolution kernel can be used to simulate the results from a much larger problem
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Table 6.1: Conductivity values of the five circles in the noise-free case. Both mean
and standard deviation are shown for each circle.

5 circles (noise free) \ conductivity (S/m) mean std

background 0.0998 2.9342e-4
c1 (largest) 0.0069 1.3106e-4

c2 0.0069 3.9025e-5
c3 0.0067 2.1472e-6
c4 0.0069 1.8119e-18

c5 (smallest) 0.0124 0

— one in which the true FDM model may not even be usable due to the size of the

problem.

6.5.2 Simulations for 2D image reconstruction

To demonstrate the MLA method and its application to SII, several simulations

were performed and analyzed for different configurations. This section starts with

two simulations, the first is designed to understand the impact of the reconstruction

algorithm on object size, while the second is designed to understand the impact of the

reconstruction algorithm on object contrast. In all of the following simulations, the

shielded probe is assumed to have a 30 μm tip diameter, a 30 μm gap spacing, and a

shield thickness of 30 μm. In addition, the conductivity of the background medium

in all simulations is 100 mS/m (close to the conductivity of nutrient solutions). The

simulated measurements were generated using the true 3-D FDM model, and the

phantoms were homogeneous in the z direction.

Figure 6.8 shows five circles with different sizes in a background medium.

The image is scaled so that black corresponds to 0 and white to 110 mS/m. The

conductivity of each circle is 6.67 mS/m. There are some obvious blurring effects
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(a) (b)

(c) (d)

Figure 6.8: Five circles with different sizes in the background medium, pixel size
10μm×10μm, image size 100×100; (a) the conductivity phantom, (b) the simulated
measurements using the 3D FDM method, (c) noise-free reconstructed image using the
MLA method, (d) MLA-reconstructed image with Gaussian noise (6% of maximum or
24dB SNR).
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Table 6.2: Conductivity values of the five circles in the noisy case. Both mean and
standard deviation are shown for each circle.

5 circles (noisy) \ conductivity (S/m) mean std

background 0.1034 0.0073
c1 (largest) 0.0089 0.0036

c2 0.0083 0.0012
c3 0.0089 9.1716e-4
c4 0.0093 9.4799e-4

c5(smallest) 0.0235 0.0155

in the simulated current measurements shown in Figure 6.8(b). The reconstructed

conductivity image shown in Figure 6.8(c) was obtained after 25 iterations of the non-

linear conjugate gradient method, using the MLA method for the forward calculation

with γ1 = 0.15 and γ2 = 1. Table 6.1 shows the corresponding conductivity values in

both mean and standard deviation. This noise-free result looks almost the same as

the original phantom in both value and shape. It shows much clearer edges than the

raw data. Clearly, the MLA method is approximating the forward kernel sufficiently

to recover additional edge information from the raw data. To see the impact of

noise on the reconstruction process, Gaussian noise (with a standard deviation of 6%

of the background current value for an SNR of 24dB) was added to the simulated

measurements. Figure 6.8(d) shows the reconstruction from these noisy data and

Table 6.2 shows the corresponding conductivity values. Despite the high-level of

noise, the reconstruction of the five circles is quite good, preserving both the shape

and size of the circles. The reconstructed values of the circles and the background

medium are also preserved except for artifacts that are likely caused by the total

variation algorithm trying to preserve flat regions.

The next simulation experiment is designed to show how using the MLA

method affects the recovery of the conductivity values themselves. Figure 6.9(a)
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(a) (b)

(c) (d)

Figure 6.9: Four circles with different conductivities in the background medium, pixel
size 10μm×10μm, image size 100×100; (a) the conductivity phantom, (b) the measured
current map, (c) the reconstructed image using the MLA method, (d) the reconstructed
image using the MLA method with Gaussian noise (6% of maximum or 24dB SNR).
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Table 6.3: Conductivity values of the four circles in the noise-free case. Both mean
and standard deviation are shown for each circle.

4 circles (noise free) \ conductivity (S/m) mean std

background 0.998 1.8973e-4
c1 (lowest) 0.0052 1.2263e-4

c2 0.0103 2.2096e-4
c3 0.0306 4.5191e-4

c4 (highest) 0.0505 5.1585e-4

Table 6.4: Conductivity values of the four circles in the noisy case. Both mean and
standard deviation are shown for each circle.

4 circles (noisy) \ conductivity (S/m) mean std

background 0.1033 0.0070
c1 (lowest) 0.0075 0.0051

c2 0.0118 0.0042
c3 0.0323 0.0043

c4 (highest) 0.0532 0.0054

shows four circles with different conductivities (5, 10, 30, and 50 mS/m) were em-

bedded in a background of 100 mS/m. The current “measurements” simulated using

the full 3-D FDM model are shown in Figure 6.9(b). The reconstructed conductivity

images using the MLA-method for the forward problem with γ1 = 0.15 and γ2 = 1 are

shown in Figures 6.9(c) and 6.9(d) for noise-free and noisy (24dB) data respectively

while Tables 6.3 and 6.4 show the corresponding conductivity values. The results

show that in both shape and value, both reconstructed images are nearly the same as

the original phantom. The noisy reconstructions do show artifacts due to the noise

and the total-variation method of regularization. Of central significance, however, is

the ability of the inverse problem to converge to a resolution-enhanced solution in

2-3 minutes because of the use of the fast non-linear MLA method in the forward

problem.
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6.5.3 Experimental data reconstruction

Given the success on simulated data, the MLA method was applied to the

inverse problem of recovering conductivity of biological samples from current mea-

surements. Two experiments with biological tissues were performed using the SII

system. The system is described in Chapter 3 and is specified here. A Newmark

System Model NLS4-4-16 XYZ was used as a stage controller to move the probe for

scanning horizontally at increments of 10μm. A 2.5 Volt peak to peak, 10kHz AC

signal generated by a programmable frequency generators (Agilent 3520A) was ap-

plied to the shield directly and drove the tip through a 27kΩ resistor. A DSP lock-in

amplifier (EG&G Instruments Model 7265) or a FFT spectrum analyzer (Stanford

Research Systems Model SR760) collected the voltage across the resistor, which is

proportional to the current through the tip. The experiments of the breast-cancer

cells and the first butterfly wing shown in Figure 6.11 (a) were performed using the

main setup of SII with the resistor R while the second butterfly wing shown in Figure

6.11 (b) was measured using the alternative setup with the spectrum analyzer.

The breast-cancer cells were immersed in a cell nutrient solution that had a

higher conductivity than the cells. The conducting plane was an aluminum wafer.

A shielded probe (D =30 μm, Sp =30 μm, 30 μm shield thickness) was suspended

approximately 100 μm above the wafer. The cells were precipitated for a couple of

hours so that they touched the conducting plane. A scan was performed to generate a

2-D image of the voltage across the resistor, from which a current map was obtained.

The scanning step-size was 10μm, and the image size was 100×100. Similarly, the

butterfly wings as shown in Figure 6.11 were taped down to the conducting plane

which was also an aluminum wafer. A shielded probe (D =100μm, Sp =100μm, 100
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μm shield thickness) was suspended as close to the sample as possible. 2-D images

with 25.4 μm scanning step-size were obtained. The image sizes of the butterfly wings

shown in Figure 6.11 (a) and (b) are 200×200 and 300×300 respectively.

Figure 6.10, 6.12 and 6.13 show the experimental measurements along with

the reconstructed images using the MLA method with γ1 = 0.15 and γ2 = 0.8 for

the breast-cancer cell groups and the pieces of butterfly wings. By comparing the

reconstructed images to the original measurements, it can be observed that more

details are revealed and the image resolution is improved in the reconstructed images.

In both reconstructed images, high frequency components are very clear and edges

are much sharper. There is also evidence of artifact, however, in the reconstructed

images such as the “halos” around the cell groups and the artistic-appearance of the

reconstructed butterfly wings. These experiments confirm that the MLA method can

be used to explain the data reasonably well for real biological samples.

6.5.4 Convergence and algorithm evaluation

All the kernel evaluations of the above simulations and experiments were ob-

tained by a FORTRAN program running on an IBM 1350 Linux cluster. The re-

construction algorithm was coded in MATLAB running on a P4 2.8 GHz desktop

computer. Figure 6.14 shows the values of the cost functional vs. the number of

iterations for image reconstruction in all the simulations and experiments. Fast con-

vergence can be observed in all four cases and the slowest convergence occurs in the

butterfly wing cases. This could be due to the large image sizes of the butterfly wings.

For both the CPU time and memory, the reconstruction of the butterfly wing images

also result in the most computational cost for the same reason. Comparing to the

145



100μm

2

4

6

8

10

12

14

x 10
−6

(a)

100μm

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(b)

Figure 6.10: Breast cancer cells, pixel size 10μm×10μm, image size 1.0mm×1.0mm.
(a), the measured current map; (b), the reconstructed images
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Figure 6.11: digital photos of two pieces of different butterfly wings

conventional inverse method using a true 3-D forward model, the MLA method is

much faster and therefore capable of processing a large image in a reasonable amount

of time.
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Figure 6.12: A piece of the butterfly wing shown in Figure 6.11 (a), pixel size
25.4μm×25.4μm, image size 5.08mm×5.08mm. (a), the measured current map; (b),
the reconstructed conductivity images
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Figure 6.13: A piece of the butterfly wing shown in Figure 6.11 (b), pixel size
25.4μm×25.4μm, image size 7.62mm×7.62mm. (a), the measured current map; (b),
the reconstructed conductivity images
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Figure 6.14: Cost functional value vs. number of iterations for (a) five circles; (b)
four circles; (c) breast-cancer cells; (d) blue curve for the butterfly wing (a) and red
curve for the butterfly wing (b).

6.6 Summary

In this chapter, fast linear and non-linear models based on reasonable assump-

tions have been developed to approximate the solution of the forward problem in

scanning impedance imaging. The approaches use simple explicit formula to approx-

imate the complicated relationship between measured current and conductivity. The

models can accurately predict the relationship between conductivity and current so

that the inverse problem of conductivity recovery from current does not require the
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use of a true 3-D forward numerical solver in the inverse iterations. The savings in

computational cost is significant and allows an inverse problem that would normally

take about 5 months to be completed in 5 minutes. Among them, the MLA model

has demonstrate the best correspondence under same conditions. The image recon-

struction based on the MLA model was verified for accuracy and speed on simulated

data and then used to reconstruct conductivity images of biological tissues. The re-

sults indicated that the MLA method can help improve the resolution and provide

a calibrated image of the conductivity distribution. The broader significance of this

work is showing how a scanning approach can be used to increase the number of

measurements (instead of increasing the number of probes) without losing the ability

to recover conductivity. It would potentially be significant to extend this principle to

additional scanning geometries such as those that may be encountered in standard

electrical impedance tomography.
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Chapter 7

Conclusions

7.1 Discussion

The objective of this thesis was to provide a systematic and practical approach

that can image the electrical impedance information of small and thin biological slices.

A feasible method that could potentially be applied to cellular level measurements

called scanning impedance imaging (SII) was developed and implemented. This novel

method improves the low resolution of electrical impedance imaging by using high

resolution scanning techniques. The aqueous solution used in this method provides

a way of indirect contact that both eliminates the complex contact impedance and

allows non-destructive measurements under scanning. The new shielded design of the

probe eliminates both the effects of the current flux from the region not directly under

the end of the probe and the noise generated by the entire conducting plane therefore

resulting in higher resolution and higher signal-to-noise ratio. Two hardware setups

were designed and implemented. Efforts in scaling down the probe size have also been

shown.

153



A numerical model for the SII system based on a finite difference method has

been developed on supercomputer. Important parameters of the hardware configura-

tion: height Z0, shield spacing Sp and resistor R, have been considered and simulated

using this model. The corresponding system performances, including the resolution

and the signal-to-noise ratio, have been analyzed. The results have demonstrated that

this model can explain experimental data at different probe heights. These results

also indicate that the best image resolutions can be achieved when the probe is as

close as possible to the sample. Useful predictions have also been obtained using this

model. The resistor, R, does not affect the resolution and the shield spacing controls

the trade-off between the resolution and the signal-to-noise ratio. This model is useful

for understanding the physics of SII and is critical to the development of fast image

reconstruction.

The significance of SII is the high resolution achieved by using a scanning

technique. Conventional electrical impedance imaging, especially EIT, is limited by

the low resolution. In order to increase the resolution, the most common approach is

to increase the number of independent measurements. Conventional methods focus

on increasing the number of electrodes which has limitations due to the fabrication

of electrodes and the interference noise between electrodes. On the other hand, SII

uses motion (scanning) to increase the number of measurements instead of increasing

the number of electrodes. There are at least two major advantages: a much more

accurate and complicated probe (electrode) can be built because only one probe

is used, and many more measurements can be achieved without consideration of

size and interference of electrodes. However, one drawback is also obvious. The

boundary conditions change each time the probe moves. Hence, for one configuration

of boundary condition only one measurement can be obtained. The forward problem
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of image reconstruction requires many solutions of the numerical FDM model. Thus,

image reconstruction for SII is a much more complicated inverse problem.

Two approaches have been developed in this thesis to solve this very compli-

cated inverse problem. The first one focused on quantifying the electrical impedance

value from the measurements and ignoring the blurring effects occurred in SII due to

the fact that the shield design confines the current flux. A combined value ρh was

used to report the resistivity in SII scans. Scans of SU8 test structures showed ρh

values that scale with heights as expected. Two other scans were also shown of oxide

structures on silicon and a butterfly wing. The ability to quantify resistivity with this

system provides a new tool for classifying material properties and imaging a variety

of samples.

The second approach considered this complicated inverse problem in another

way. Not only the quantification but also the blurring effect were solved under some

reasonable assumptions. Two groups of approximation models were developed to

replace the true numerical FDM model used as the forward solver in the inverse

problem. When the assumptions are valid, these models could approximate the com-

plex relationship between measured current and conductivity using simple explicit

formulas. Model verification has been achieved by comparing a simulated line-scan

with the true 3-D forward model under same conditions with a known conductivity

distribution for all models. Among them, MLA has shown the best fit to the true

numerical model and experimental data. An approach of image reconstruction for SII

was developed using the MLA model as the forward solver. Due to the non-linearity

of MLA, the non-linear conjugate gradient method was employed in the image re-

construction. Simulation results demonstrate the efficiency and the accuracy of this
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inverse method for the SII system. Two-dimensional images of butterfly wings and

cells were also obtained using the SII system and reconstructed using the MLA image

reconstruction. The results showed that the MLA image reconstruction could help

improve the resolution and calibrate the conductivity value from the measurements.

The savings in computational costs including CPU time and memory are significant.

The CPU time reduces from 5 months to 5 minutes and larger images can be processed

due to the small memory occupation.

It is significant because these two approaches provide a practical way for image

reconstruction of SII. The broader significance of this work is the feasibility of im-

proving resolution using motion. The idea and method in this thesis could be applied

to EIT and other modalities.

7.2 Future work

The ultimate goal of SII is to seek high resolution image of electrical impedance

of cells or a single cell. The current experimental setup is not capable of this demand

and future work is needed. The bottleneck of the current work is the resolution

of hardware. The numerical FDM model and the MLA image reconstruction have

shown that the reconstructed image resolution is limited by the size of the probe

and the scanning step size. One possibility for future work is to fabricate the whole

system on a chip and improve the micro-probe introduced in Chapter 3. A higher

resolution scanning control system would then be needed. Thus, the whole system

would be shrunk down to cellular size which then has the capability of imaging cel-

lular impedance. The successful expansion of SII to cellular imaging would lead to

a new imaging tool that would greatly expand the information scientists can obtain
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about cellular structure and function. By providing rapid two-dimensional informa-

tion regarding the conductivity and permittivity of cell samples, greatly improved

understanding of cellular processes could be obtained. For example, a high-resolution

conductivity image could show the direction and orientation of nano-tubes used for

intra-cellular trafficking as well as average activity of ion channels in the cell mem-

brane.

Another improvement of SII in the future could be the reconstruction of a

3D conductivity distribution rather than 2D-only. In this thesis, the sample under

measurement has to be thin and flat. If more measurements could be obtained for the

z direction, 3D reconstruction of the conductivity distribution could be possible. The

system design involved in this thesis may not be suitable for 3D scanning, and the

fast image reconstruction ignores changes of conductivity in the z direction. Thus,

the system design and the image reconstruction must be expanded.

Another possibility for future work is to increase the frequency. In high fre-

quency range, the effects of the permittivity of the sample could be comparable to

the conductivity. This could be especially significant for imaging cells. Much more

information of proteins and ion concentrations could be revealed and could be vi-

tal to understanding the cell function. For example, an image of permittivity could

show protein folding activity as well as reveal the average rotational mobility of water

molecules in different regions of the cell during different physiological processes.

In addition, future work in using motion to increase the number of measure-

ments could focus on expanding the idea of the fast image reconstruction in this thesis

to other imaging modalities. For example, current EIT uses a ring of electrodes to

increase the number of measurements and then improve the image resolution. One
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Current measured for 
each position

Figure 7.1: Diagram of an improved EIT system. It uses rotation to replace most of
the electrodes.

possible solution is to use only two electrodes and rotate them along the surface of the

sample. Figure 7.1 shows this idea clearly. A pair of probes is placed opposite each

other with a sample at the center. A conductive medium surrounds the probes and

the sample. A voltage is applied to the pair of probes and the current through them

is measured. The distinction of this innovative design is the rotation of the probes

that can produce rings of measurements similar to the classical EIT system. This

idea demonstrates at least two advantages. First, there are only two probes instead

of 32 or 128 probes, which dramatically reduces the difficulty of the instrumental

construction so that micro-scale measurements can be taken. Second, the amount

of measurements only depends on the rotation speed and the sampling rate. Thus,
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adequate measurements can be obtained by decelerating the rotate speed, increasing

the sampling rate, or both. The idea of the MLA image reconstruction can be applied

to this rotation system though the motion involved is different from that in SII. Due

to the rotation, convolution is not applicable, however, circular convolution could be

useful in this case. If a fast image reconstruction based on an idea similar to MLA

in SII could be developed for this system, the low resolution of current EIT system

could be improved dramatically. A similar idea could also be applied in other imaging

modalities.
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