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ABSTRACT

APPLICATIONS OF SEARCH THEORY TO COORDINATED

SEARCHING BY UNMANNED AERIAL VEHICLES

Steven R. Hansen

Department of Mechanical Engineering

Master of Science

Concepts in optimal search theory have been used in human-based aerial search since

World War II. This thesis addresses the technical and theoretical issues necessary to apply

this crucial theory to search path planning for Small Unmanned Aerial Vehicles (SUAVs).

A typical search often requires that more than one target be located. Accordingly, a

method is presented to locate multiple targets in three dimensions, as well as to differentiate

between them. However, significant error can be present when locating targets from an

airborne platform, and the idea of target quality is also introduced as a way to describe the

reliability of target estimates.

Flight test results are presented to validate the target differentiation algorithm. In

this test, five out of six targets as close as 6.1 m apart are located and differentiated with less

than four meters of error. This flight test also provides color information that is useful in

generating artificial target images and understanding the target detection probability. Image

skew is then incorporated into the detection probability model, and a function is derived that

predicts target detection as a function of distance.

In order to measure the effectiveness of search algorithms with this model, the concept

of a probability map is introduced. This map can be updated as the search progresses, and is



stored on a probability grid containing nodes that keep track of the probable target locations

and the probability of detection. Using this tool, a search width is developed for a given

airborne agent. The search width is then used to derive optimal search performance based

on a given probability map and SUAV.

Finally, the concepts of efficiency and completeness are given specific definitions in the

context of discrete search. These metrics are used to develop a search plan that focuses on

efficiency, and one that focuses on completeness. Example simulations are used to illustrate

the conditions under which each plan might be desirable, and a composite search strategy is

presented that combines both plans.
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Ṅ node search rate

Nψp number of selected nodes around point qψp

nB number of batteries

NB total number of nodes contained in all bounded groups

NC node threshold in the contour search

NG node threshold in the greedy search

Nk the number of nodes in group Gk

n
L

number of divisions in L, used in defining the random search law

Nq contact quantity threshold used in target quality calculation

NUAV the total number of UAVs

p true image pixel (distortion removed)

p̆ an image pixel (appears distorted in original image)
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Chapter 1

Introduction

With the recent miniaturization of autopilot technology [1], small autonomous aircraft

have become feasible platforms for complex aerial missions. Some of the evolving possibilities

include search and rescue, fire monitoring, area surveillance, terrain mapping and military

use. Each mission requires these aircraft to scan an area, differentiate between multiple

targets and locate them.

To enhance the search capabilities of Small Unmanned Aerial Vehicles (SUAVs), this

thesis draws on the practical experience of others. Concepts in optimal search theory have

been used to improve the effectiveness of human-based aerial search since the end of World

War II [2]. This thesis asserts that these concepts can be used to improve SUAV search

performance.

1.1 Motivation

The MAGICC1Lab at Brigham Young University has been extending the capabilities

of SUAVs for a number of years. Some current capabilities include simultaneous arrival,

localization of a single target, curved path following, canyon following, and many more.

The time has come to begin combining these capabilities into more complex missions. Of

particular interest is the ability to search for and locate multiple targets.

At the beginning of a search, a target’s location consists of an assumed probability

distribution that has been constructed from items such as last-seen location, prominent

landmarks, tracking clues, probable target behavior, etc. The question is how to apply

search effort to the probability distribution (often referred to as a “probability map”) in a way

that appropriately considers both efficiency and completeness. An understanding of optimal

1MAGICC stands for Multiple AGent Intelligent Coordination and Control.
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search theory is an excellent starting point, and offers helpful guiding principles. However,

optimal search theory is based on the assumptions that search effort is both infinitely divisible

and arbitrarily allocatable [3]. These assumptions imply that a search must be characterized

by long distances, large aircraft and long-range sensors.

Search planning for SUAVs typically represents a violation of the assumptions used

in optimal search theory. The relatively short-range sensor sweeps cannot be assumed to

apply anywhere, and in any quantity. They must be applied here and now—wherever and

whenever the SUAV happens to be.

1.2 Literature Review

1.2.1 Target Differentiation

Target differentiation is built upon the foundation of target localization. In this

field, Joshua Redding determines a method for estimating the x-y location of a target based

on video and telemetry information from a single UAV [4]. Redding’s work indicates that

projecting a line in the direction of the seen target, and finding where this line intercepts

a zero-altitude plane can be used to locate a target. One limitation of this method is that

distinguishing between multiple targets can become difficult when the information is an

overlay of several target distributions on the same plane. In addition, errors in UAV height

an orientation can cause a bias in the estimated target position when they are projected

onto an incorrectly-assumed plane.

More useful techniques in 3D localization of a single point are presented by Hartley

and Zisserman in [5]. This method focuses on arranging data from multiple target sightings

into an Ax = 0 representation, then inverting A. This yields a minimum least-squares

target estimate, which is desirable if the exact camera position and intrinsic parameters are

precisely known. However, if there is significant error in the known camera (or UAV) position

data, then the least-squares estimate will be influenced by outliers in a squared sense. In

addition, if a large number of sightings is to be considered in this estimate, then inverting

the large A matrix may be difficult.
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1.2.2 Detection Probability and Search Patterns

Some of the best search theory comes from war history. Initial progress was made

by Koopman and his colleagues in the Anti-Submarine Warfare Operations Research Group

(ASWORG) of the U.S. Navy during World War II [6, p.1]. ASWORG became the Oper-

ations Evaluation Group (OEG) at the end of the war, and was assigned to publish three

volumes of general scientific and historical interest. One of these volumes was called Search

and Screening. The volume was originally confidential, but was later declassified [2, p.1].

It represents the efforts of many collaborators, and its principles are those that have been

boiled in the crucible of war experience. Valuable information can be found in its pages that

should be understood and considered before formulating any search strategy. Search and

Screening, General Principles with Historical Applications [2] is an updated version of this

book. Years later, the Office of Naval Research began supporting theoretical work related

to the Scorpion search, which involves considerations of uncertain search width and false

targets [6, p.xiii-xiv]. Lawrence D. Stone composed an additional volume called Theory of

Optimal Search based on these findings. The ideas of these individuals, and others, is the

theoretical foundation for many military and civilian searches today.

Applicable concepts from both works will be reviewed more completely in the chapter

on optimal search theory in this thesis. Search theory answers the question of where and

when search effort should be applied, but offers few suggestions in actual path planning.

Many have suggested search path generation methods. Wollan presents a heuristic

approach to search path generation based on Zamboni polygons that minimizes the path

length while completely covering a user-defined area [7]. This method promotes completeness

when searching a uniform probability distribution within a Zamboni polygon, but does not

consider the possibility that some regions may have higher probability than others. Another

paper presents a dynamic decision model where each agent chooses its own path to avoid

other agents while searching a variable-probability environment [8]. Here agents are drawn to

high-probability areas in a way that could more closely align with Koopman’s optimal search

criterion. However, as time progresses the proposed solution suffers from comparatively

disorganized paths, and eventually leads to a condition where a Zamboni pattern exhibits
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better performance. In both cases, search path evaluation would benefit from comparing the

results to an optimal search allocation.

Zhijun Tang, from Ohio State University, assumes that very accurate sensors war-

rant a detection probability of unity within the sensor footprint of each mobile sensor agent

(MSA). Under this assumption, Tang develops a path for multiple MSAs to surround the

survival zone of a target and execute a non-escape search [3]. This approach has useful ap-

plications, but does not fare well under metrics of minimum time to detection or maximum

detection probability when detection within the sensor footprint is not certain. Tang’s work

focuses on tactics to track a moving target, and he assumes that the sensor footprint re-

mains constant relative to the position and path of the MSA. However, these results are not

fully applicable to a fixed-camera platform, whose sensor footprint will change with agent

orientation, and whose detecting capability is less than perfect.

1.3 Contributions

This thesis particularly considers path planning on a scale where SUAVs are expected

to carry out the search. The simplicity, reliability and low cost of a fixed-wing, fixed-camera

platform make it the platform of choice for many SUAV missions. As such, this thesis focuses

on extending the search-and-locate capabilities of this platform. Inexpensive wireless video

systems that are designed for SUAVs [9] typically include a Charge-Coupled Device (CCD)

camera. Accordingly, a detection probability model is developed for this camera.

Many written texts focus on either search theory or path planning, but this thesis

combines and compares the two areas. In addition, diverse subjects are considered in this

thesis such as target identification, target localization, target differentiation, search theory,

path generation and multi-agent coordination. It is often difficult to appropriately model a

realistic search due to the myriad of obstacles that must be overcome in so many areas.

Despite these obstacles, this thesis offers the following contributions:

• A practical numerical method for locating targets in three dimensions.

• A way to count and separate multiple targets as seen from multiple images.

• The concept of target quality.
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• A target detection probability model based on CCD camera sensing.

• Discrete methods for measuring search rate using a probability grid.

• A method for determining search width using a probability grid.

• An optimal detection function for any given probability map.

• The metrics of search efficiency and search completeness.

• A search strategy that can be applied to any given probability map.

1.4 Document Organization

This thesis not only serves to further the work of search theory, but also serves to give

practical instruction to those who will further this work in the MAGICC Lab at Brigham

Young University (BYU). As such, there may be included detail that seems obvious to one

audience, but is helpful to another. This detail is intended to simplify, not overwhelm, the

issue. Hopefully the format is beneficial to all.

This thesis begins in chapter two by discussing the topic of target differentiation.

The chapter focuses on the computational methods which allow a UAV to locate multiple

targets and differentiate between them. The chapter is included in this thesis because target

differentiation concepts are considered a necessary first-step in developing SUAV search

capabilities. Target differentiation deals with subjects in target localization, image skew,

and target quality. Chapter two concludes with a field test, and a discussion of results.

Following target differentiation, the third chapter lays the foundation for a discus-

sion about search planning. A review of optimal search theory is considered invaluable to

perpetuating this work. Thus, chapter three is devoted entirely to the applicable aspects of

this theory, and describes some principles that are frequently referenced in state-of-the-art

search planning today. The entire chapter can be thought of as an in-depth literature review

on search theory.

Chapters four and five represent original contributions, where discrete methods for

measuring search progress are offered based on optimal search theory. Chapter four develops
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a probabilistic model for target detection using a CCD camera, and image skew consider-

ations are added to the model. Discrete approximation methods are then used to obtain

agent search width, turn performance, and an optimal detection function for a probability

map.

Chapter five begins by offering the metrics of search efficiency and search complete-

ness. Path planning strategies are also presented that focus on these metrics, and example

simulations are given to help the reader understand when it might be best to use each

strategy.

The final chapter discusses conclusions to the presented research, as well as possible

future work. This work could relate to target detection, a coordinated search effort, other

probability map uses, and search algorithm improvements.

6



Chapter 2

Target Differentiation

One aim of this thesis is to enable simple SUAVs to search for and locate multiple

targets efficiently. However, before the searching can begin, the capability of distinguishing

between and locating multiple targets must exist. This chapter establishes this capability

by first reviewing target localization mathematics and describing the camera calibration

procedure. After a method for locating a single target has been presented, the original

contributions of 3D target localization and target quality are developed, and guidelines are

established for differentiating between multiple targets. Finally, a target differentiation field

test is presented and the results are discussed.

2.1 Localization Mathematics

When determining a target’s direction from an SUAV, it is first necessary to determine

the target’s direction in the camera frame. (See Figure 2.1.) It is important to note that the

focal length, f , of an image is rarely known, but is a theoretical standard for comparison. For

this reason it is typically set to unity, as will be done in the following calculations. A camera

may be calibrated to find its intrinsic matrix, A, which describes how the pixel coordinate

system relates to the camera coordinate system. A simplified intrinsic matrix is

A =




fx 0 x0

0 fy y0

0 0 1


 . (2.1)

Ignoring image skew for the moment, each of the terms in Eq.(2.1) has physical

meaning. For example, fx represents the number of pixels that could be lined up side by side

to equal the focal length. Similarly, fy represents the number of pixels that could be stacked
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on top of each other to equal one focal length. The parameters x0 and y0 indicate the pixel

coordinates where the camera z-axis intersects the pixel frame’s x-y plane. (See Figure 2.1.)

There are also scale factors, Sx and Sy, having the relationships

Sx =
f

fx

and Sy =
f

fy

. (2.2)

Sx is the width of one pixel that has been projected onto a perpendicular plane one focal

length away, and Sy is the height of one pixel at the same distance.

Figure 2.1: The relationship between the camera and pixel coordinate frames. The Xc, Yc

and Zc axes originate from the camera center and represent the camera coordinate frame. The
Xp and Yp axes originate from the upper-left hand corner of the image, and represent the pixel
coordinate frame.

With this understanding, one can easily construct a vector in the camera frame that

points in the direction of a target pixel, (xtp, ytp). This vector is

uc =




Sy (y0 − ytp)

Sx (xtp − x0)

f


 . (2.3)
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Then for future calculations it is desired to normalize uc to obtain

ûc =
uc

‖uc‖ . (2.4)

If û can be found in the world coordinate frame, then it can be compared with other

target direction vectors. To do this, ûc must first be rotated to the body frame as shown in

Figure 2.2 using

ûb = Rcbûc (2.5)

where

Rcb =




cazcel −saz cazsel

sazcel caz sazsel

−sel 0 cel


 (2.6)

sel = sin
(π

2
− αel

)
cel = cos

(π

2
− αel

)

saz = sin (αaz) caz = cos (αaz) .

(a) Elevation Rotation (b) Azimuth Rotation

Figure 2.2: Rotations from camera to body frame.

Once the body-frame target direction vector, ûb, has been obtained, the final rotation

to the world coordinate frame can be made. The angles φ, θ and ψ are rotations about the

Xb, Yb and Zb axes respectively. (See Figure 2.3.) This rotation can be done using
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û = Rbwûb (2.7)

where

Rbw =




cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ

−sθ cθsφ cθcφ


 (2.8)

s∗ = sin (∗)

c∗ = cos (∗)

φ = UAV roll angle

θ = UAV pitch angle

ψ = UAV heading angle.

Figure 2.3: The body and world coordinate frames.

After all the above rotations are complete, the UAV world position, w, can be con-

sidered the starting point of a ray that points in the û direction toward the target. This

assumes that the distance between the body frame and the camera frame origins is negligible

compared to the effects of UAV attitude and position error, as is often the case for SUAVs.
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The ray now originates from a point in the world coordinate frame, and points in a direction

that is known in the world coordinate frame.

Supposedly, this ray was generated when a potential target was identified in an im-

age, and the target center was designated as pixel (xtp, ytp) in that image. UAV telemetry

information was then used to perform the above rotations, as well as provide the ray origin.

This information is called a target contact, γ. As referred to by Stone, this term denotes any

discovered information that could indicate the presence of a target [6, p.137]. In the case of

target localization, it takes the form

γ =





w =




x

y

z


 , û =




xû

yû

zû








. (2.9)

If this is the only contact so far, then the target’s position may be estimated by

assuming that the target is on a plane at zero altitude, as shown in Figure 2.4. Under this

assumption there is some scalar, s, that describes the distance from the UAV to the target.

Thus, the target’s estimated position is

q = w + sû. (2.10)

Figure 2.4: Projection of a ray onto the zero-altitude plane.

The planar constraint requires that the inner product 〈w + sû, ẑ〉 be equal to zero.

This can be used to obtain
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s = − z

zû

(2.11)

from

s = −〈w, ẑ〉
〈û, ẑ〉

and

ẑ =
[

0 0 1
]T

.

This value for s may now substituted into Eq.(2.10) to give

q =




x− z
zû

xû

y − z
zû

yû

0


 . (2.12)

Repetition of this method for all data points is the basis for Redding’s target localiza-

tion technique [4]. However, if UAV height-above-ground (HAG) altitude is uncertain, then

the zero-altitude assumption can cause the projected points to give a scattered and inaccu-

rate estimate of the target’s location. This is particularly true in mountainous or changing

terrain.

To solve this problem, original contributions in 3D target localization and target

quality are presented below. The quality describes how well a target has been distinguished

from nearby targets and other noise, and this quality may be more fully assessed with the

original contact information. Thus, it is desired to store the complete γ for later comparison,

rather than keeping the assumed q only.

Now consider a test point T as shown in Figure 2.5. The minimum error vector

between the test point and the target contact may be found using one step of Gram-Schmidt

orthogonalization [10, p.119]. The scalar, s, is equal to −〈û,d〉, and the magnitude of the

error vector is a function of both the chosen test point and the target contact:

|e(T, γ)| = |d− 〈û,d〉 û| (2.13)
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where

d = w −T.

Figure 2.5: This is a graphical representation of the minimum vector e between test point T
and target contact γ. As shown in Eq.(2.9), γ consists of an origin w and a direction û.

Now let Γ = {γ1, γ2, . . . , γn} be the set of contacts generated by viewing a single

target, where n is the number of contacts in set Γ. Also let the error sum between Γ and T

be defined as

E (T,Γ) =
n∑

i=1

|e (T, γi)| . (2.14)

For each Γ there exists some specialized test point C, or target center, which estimates

the target’s location. This point minimizes E (T,Γ) as shown in Figure 2.6 such that

E (C,Γ) ≤ E (T,Γ) ∀ T 6= C. (2.15)

Arriving at point C can be accomplished by a variety of numerical methods. For this

application, it is preferred to use a gradient-descent method that begins with a large step

size and then reduces the step size after all of the neighboring options exhibit a greater error

sum. As each contact is added, a starting point for the algorithm should be obtained from

the assumed q estimates (See Eq.(2.12).) for at least the first two steps, and thereafter from
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Figure 2.6: Once a test point is chosen, steps can be taken in the direction that minimizes
the error sum to arrive at the target center.

each preceding step. This is because a unique solution to Eq.(2.15) does not exist for one or

two contacts. Code for finding the target center point is included in Appendix A.1.

It is interesting to note that for an arbitrary set of contacts there is no guarantee that

only one C exists. However, if the contacts in a contact set are all generated by viewing a

single, stationary target, then the rays often gather near the target location. This typically

allows the algorithm to follow the gradient to a unique, absolute minimum in the vicinity

of target’s actual position. Of course, the degree of contact convergence depends on the

inherent error in the sensing method.

One redeeming feature of the error minimization method is that the computed target

center is attracted to the largest cluster of contacts, χ. A cluster of contacts is defined as

all of the contacts that pass within a specified distance, dχ, of a cluster point, Pχ, where dχ

and Pχ may be arbitrarily chosen. The size of the cluster is determined by the number of

contacts in the cluster, nχ.

Consider Figure 2.7, where the contact set contains two cluster points, Pχ1 and Pχ2.

For this example, it is assumed that dχ1 = dχ2 as shown, and that dχ12 is the distance

between Pχ1 and Pχ2. Assuming that dχ1, dχ2 ¿ dχ12, the error sums associated with test

points Pχ1 and Pχ2 are

E (Pχ1,Γ) ≈ 3dχ12 and E (Pχ2,Γ) ≈ 2dχ12.
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Thus, the error minimization method will select the largest cluster point when the distance

between cluster points is large compared to dχ1 and dχ2. In the case shown, Pχ2 is selected

as the target center. This effect causes outliers to be rejected when a large cluster exists, as

is typical near an actual target location.

Figure 2.7: Two cluster points in a set of contacts.

The error minimization method is preferred over that presented in [5] for two reasons.

First, it is a numerically feasible way to handle a large number of contacts, compared to the

task of inverting a large A matrix. Second, it is not influenced by each contact through

a squared metric, and prevents outliers from overly attracting the solution. Experience

indicates that this added stability typically keeps the target center closer to the true target

location. This makes it more likely for new contacts to be assigned to the correct target

if they are closest to the target that generated them. In practice, the suggested iterative

method is a dependable and real-time1 approach to locating a target in three dimensions.

1There is no noticeable delay in contact processing when a new image set of five contacts is processed
once every half second, and there are hundreds of contacts already. Calculations are performed on a Dell
Inspiron 600m notebook PC, with an Intel Pentium M 1.80 GHz processor and 512 MB of RAM.
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2.2 Camera Calibration and Image Skew

New techniques in camera calibration have been surfacing as CCD cameras have

become widely used in the home and professional communities. A flexible technique is pre-

sented in [11], and similar techniques have been developed in Matlab [12] and OpenCV [13].

Camera calibration is not the main focus of this thesis, and the reader may pursue calibration

algorithms in the mentioned sources. However, the following information may be helpful for

those wanting to calibrate a camera and understand the calibration parameters.

The method of camera calibration used in this thesis is based on the CameraCalibra-

tion2 function in OpenCV. Using a CCD camera, a chessboard of known dimension is viewed

in various orientations. (See Figure 2.8.) In each position the Imperx VCE-Pro frame grab-

ber, or similar hardware, is used to transfer the pixel data to host memory. Corner points

are then detected using the cvFindChessboardCorners OpenCV function, and these object

points are given to the CameraCalibration2 function, along with the number of corner points

in the image. This causes the camera’s intrinsic and extrinsic parameters to be calculated,

and returned in matrix form. The results for three repetitions of this process are shown in

Table 2.1, where twenty images were used in each run.

(a) Chessboard (b) CCD Camera

Figure 2.8: The chessboard and camera used in camera calibration.
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Note that the x0 and y0 values are assumed to be the exact center of a 640 x 480

screen. The tangential distortion coefficients, p1 and p2, are also assumed to be zero. This is

often done in camera calibration because it is convenient to measure radial distortion from

the exact center of the screen, and tangential distortion is typically negligible. This can be

seen in [11], where p1 and p2 are not even considered. Both of these assumptions are options

of the CameraCalibrate2 function.

Table 2.1: Camera calibration results.
Camera Parameters fx fy x0 y0 k1 k2 p1 p2

Calibration 1 501.161 498.554 319.5 239.5 -0.360 0.188 0.0 0.0
Calibration 2 495.686 492.112 319.5 239.5 -0.361 0.219 0.0 0.0
Calibration 3 514.109 509.664 319.5 239.5 -0.369 0.171 0.0 0.0
Calibration Average 503.652 500.110 319.5 239.5 -0.363 0.193 0.0 0.0

Some might call the camera lens a 60◦ field-of-view lens, but the above calibration

parameters are much more descriptive. In [12] there is an informative description of the

radial distortion coefficients. These follow the “Plumb Bob” model introduced by Brown in

1966 [12]. However, the lens used in this thesis does not represent extreme radial distortion,

which means that the reduced camera model is warranted [12]. Therefore, k1 and k2 will

be assumed to accurately represent radial distortion, and higher order terms will not be

considered. The radial distortion equation then becomes

r̆m = k2rm
5 + k1rm

3 + rm, (2.16)

where

r̆m =
√

x2
ŭc

+ y2
ŭc

and

rm =
√

x2
uc

+ y2
uc

.

From Figure 2.9 it can be seen that radial distortion is a phenomenon that distorts

an element’s radial distance from the camera z-axis. This happens naturally when looking
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Figure 2.9: Radial distortion. Color information that would appear at radial distance rm

from the image center is distorted to distance r̆m by the lens.

through a lens, and must be understood to accurately estimate a target’s direction. The

goal is to obtain the un-distorted radius, rm, in terms of the distorted radius, r̆m, using the

k1 and k2 parameters obtained in camera calibration.

Unfortunately, Eq.(2.16) provides no direct solution for rm. However, the fifth-order

polynomial may be approximated by a second-order polynomial within the region of interest.

Thus, for a 640 x 480 image with fx = 503.652, and fy = 500.110, the furthest distorted

radial distance in the image is 0.796 m (at an assumed focal length of 1 m). Within this

range, points may be generated from Eq.(2.16) as shown in Figure 2.10, and a second-order

least-squares approximation can be made of the form

r̆m = k4rm
2 + k3rm. (2.17)

This new approximation has a k4 of -0.217, and a k3 of 1.026. A value for rm in terms

of r̆m may now be readily obtained as

rm =
−k3 +

√
k2

3 + 4k4r̆m

2k4

. (2.18)
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Figure 2.10: Radial distortion approximation. The fifth-order distortion model can be ap-
proximated using a second-order function.

Note that the region of interest is only for positive rm, so only the positive root

applies. Added insight may be gained by re-writing Eq.(2.17) as a scaling of rm where

r̆m = rmks and ks = k4rm + k3. (2.19)

Substituting the rm from Eq.(2.18) into Eq.(2.19), the image skew constant becomes

ks(r̆m) =
k3

2
+

√(
k3

2

)2

+ k4r̆m. (2.20)

Eq.(2.19) can also be separated into its x and y components such that

xuc =
xŭc

ks

and yuc =
yŭc

ks

. (2.21)
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It is important to note here that Eq.(2.21) represents a re-definition of Eq.(2.3). In

other words, the original image frame target direction

ŭc =




Sy (y0 − ytp)

Sx (xtp − x0)

1


 =




xŭc

yŭc

1


 (2.22)

should be de-skewed to obtain the true target direction

uc =




xŭc

ks

yŭc

ks

1


 (2.23)

before it is normalized and rotated into the world frame.

2.3 Target Quality

Once the target center has been calculated as shown in Section 2.1, it is possible to get

a measurement of the target quality. There are two attributes of a contact set that are desired

when calculating the target center. Ideally, all target contacts would pass through a single

point, and each contact would have a direction as different as possible from the other contacts

to enhance triangulation accuracy. In reality, contacts in a set do not all pass through a

single point, and there is limited variety in contact direction. However, measurements can

be made that reveal to what degree a contact set exhibits these properties.

In the presence of false targets and multiple targets, measurement of these character-

istics, along with the size of the contact set, will also be correlated with a confidence that

the target exists, and that only one target exists.

Consider the contact set in Figure 2.11. The target axis is a ray that has origin C,

and direction t̂, where C is the target center as defined in Eq.(2.15), and t̂ is
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Figure 2.11: Target quality calculation. A target’s quality is calculated by comparing the
error sum at points AC and BC with the error sum at point C. The target axis direction, t̂,
is the average direction of all the contacts in the set. Lt is the test length.

t̂ =

n∑
i=1

ûi

∥∥∥∥∥
n∑

i=1

ûi

∥∥∥∥∥

. (2.24)

The axis direction, t̂, represents the average direction of all contacts in a given set.

Along this axis, two new test points, AC and BC, are defined as

AC = C +
Lt

2
t̂ and BC = C− Lt

2
t̂, (2.25)

where Lt is some test length.

The target quality may now be defined as

Q = sq

(
1− 2E (C,Γ)

E (AC,Γ) + E (BC,Γ)

)
, (2.26)

21



where E (∗,Γ) is the error sum of a test point as defined in Eq.(2.14), and sq is a quantity

scale factor that prevents the target quality from becoming artificially large before enough

data exists to make an accurate quality assessment.

In this thesis the sq factor is chosen to be

sq =





n
Nq

; n < Nq

1 ; n ≥ Nq

(2.27)

where n is the number of contacts in a given contact set as defined in Section 2.1 and Nq

is some quantity threshold. The sq component of Eq.(2.26) serves to linearly increase the

quality’s maximum bound from zero to one until at least Nq contacts are present, after which

sq is one. This causes Q to be a measurement of not only the geometric qualities of the set,

but also how many contacts are present. The quality measurement is designed to indicate

how well target localization has occurred, and a sub-standard Q indicates that something has

gone wrong. The sq technique aligns with this objective by causing a noticeable reduction

in Q as an indication that the small sample size may be a problem.

The reason for using sq is that the experimental setup used in this thesis can have

runs of three or four contacts that are generated from very similar flight positions and

dynamic conditions. These contacts can be uniformly biased such that they generate an

overly-optimistic target quality. This thesis uses a value of 10 for Nq because it is about

twice the maximum run size, but other values may be warranted if the maximum expected

run size changes. Another alternative is to eliminate the sq factor and evaluate a target’s

raw quality along with the size of the contact set.

In addition to the sq factor, Eq.(2.26) also contains a normalized measurement of the

error accumulation at the target center compared to the the error accumulation at a specified

distance away from the target center. A target’s quality is not defined for a set with only

one contact. This would cause E (AC,Γ) = E (BC,Γ) = E (C,Γ) = 0, which means that

the target axis would align perfectly with the only contact. Thus, the contact set is assigned

a quality of zero in the single contact case. In the multiple contact case, the target quality

compares a contact set’s precision with its directional diversity. If the set does not cluster

very tightly around the target center, then quality goes down. If all of the set’s contacts
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point in nearly the same direction, then quality again goes down. A low target quality causes

the error to be sensitive in the t̂ direction.

Notice that points AC and BC are calculated using Lt, and that Q is calculated using

the error sum at points AC and BC. This relationship causes the target quality to increase

as the test length increases. It is, therefore, beneficial to choose some characteristic length

as a standard for comparison. Let Lt be the average distance between each contact origin

and the target center:

Lt =

n∑
i=1

‖wi −C‖

n
. (2.28)

This definition for Lt can be used in Eq.(2.25), and the resulting points AC and BC can

then be used in Eq.(2.26) to calculate the target quality.

The concept of target quality offers a unique contribution to both target localization

and search techniques. It is a number between zero and one that serves as a standard for

comparison between various locating tasks. Accurate long-range sensors may produce a

target quality in the .95 to .99 range. Mid-range locating may warrant a comparison in the

.7 to .8 range, and low-accuracy sensors may operate in the .4 to .6 range2. Thus, target

quality offers a standard of comparison between different search scenarios and equipment

capabilities. Additionally, if a given setup typically generates target qualities in a certain

range, then qualities lower than that range give rise to appropriate questions such as: “Was

there more than one target?”, “Was there a target there at all?”, and “Were there too few

target contacts?”. In any case, a target quality outside of the expected range is justification

for an additional look.

2.4 The Differentiation Algorithm

In addition to the original contributions of 3D target localization and target quality,

this thesis also offers a target differentiation algorithm to enable UAVs to carry out a mean-

ingful search. Target differentiation using computer vision is the process of distinguishing

2These numbers are only hypothetical, but calculated target qualities may be seen in Table 2.3. For
applications where some contact error exists, an increase in contact accuracy causes the target quality to
asymptotically approach unity. A target quality of 1.00 would indicate zero error, such that all contacts
exactly intersect each other at a single point in space.
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between multiple targets in an image, creating one contact for each detected target, and

assigning each contact to a separate contact set.

To distinguish between targets, the method of color segmentation is used to identify

pixels on the screen that are within predefined color thresholds. These thresholds are mea-

sured in hue, saturation and value (HSV). The pixels that are within the HSV thresholds

are considered to be part of a target. As long as the in-threshold pixel groups do not overlap

and the target pixels are interpreted correctly, a connected component algorithm can verify

that a group is completely isolated from any other. (See Figure 2.12.)

(a) Simulation Image (b) Color Segmented Image

Figure 2.12: Target identification and separation using HSV color segmentation. In the color
segmented image, the pixels that are within the HSV thresholds are shown in white, while
others are shown in black. Each connected group has cross-hairs positioned at the average of
its pixel locations.

Once pixels groups have been established, the average pixel location for each group

may be calculated. This average pixel location is then used to create ŭc as in Eq.(2.22),

which then has its image skew removed to obtain uc. This vector must then be normalized

and transformed into the world-frame, where a new contact is born according to Eq(2.9).

This process should then be repeated for each pixel group in the image, and all of these

contacts should be put into a contact set, ΓI, called the image set. Here it is also convenient
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to define a target set, Γj, as the contact set containing contacts that have been assigned to

a single target, where j = {1, 2, 3, . . . , m}, and m is the total number of target sets.

One key to target differentiation is to make sure that each γ in ΓI is assigned to a

different Γj. Thus, additional information concerning the minimum number of targets can

be brought from the image, and directly applied to contact assignment in the world frame.

The algorithm assigns each image contact to the target set with the closest target center

as long as no other image contact is closer to the target center. It does this only if the

contact-to-target distance is less than some maximum assignment distance, dγm. (Contact

assignment pseudo-code is included in Appendix A.2.) However, if all of the nearby targets

have already been assigned a new γ from ΓI, and there are still more contacts in ΓI, then a

new Γj is created.

This assignment algorithm can mis-assign contacts in some cases. For example, if

there is enough error to cause a contact that should be assigned to Γ1 to be closest to Γ2,

then that contact may be assigned to Γ2, or to a new target set. (Error in this case is

the distance from the contact to the target center point as defined in Eq.(2.13).) This mis-

assignment tends to happen when contact error is as large as the target spacing. Also, if a

target moves off the screen, and a completely new target moves onto the screen, then a new

contact could be assigned to the old target if it is still within dγm from the old target. These

situations tend to occur when there is large contact error compared to the target spacing.

For this thesis the specific contact mis-assignments are not recorded. They are simply

allowed, and then a target center calculation is made. If mis-assignment occurs, then the

misfit contacts may affect the solution somewhat. However, as described at the end of

Section 2.1, they should not modify the center location significantly as long as a sizeable

cluster of properly-allocated contacts already exists.

In summary, target differentiation has the following steps:

1. Identify separate targets in an image, and mark the target center pixels.

2. Calculate target directions, de-skew them and transform them to the world frame.

3. Tie target direction with UAV position to form contacts.

4. Put all contacts, γ, from an image into the same image set, ΓI.
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5. Assign each γ in ΓI to a different Γj.

6. Calculate target centers for each Γj that received a contact.

7. Repeat steps 1 through 6 for each processed image.

2.5 Flight Testing

2.5.1 Test Setup

This section describes both the equipment and the procedure used in the target

differentiation flight test. The UAV platform is a Unicorn flying wing design, as shown in

Figure 2.13. It has a wingspan of 1.05 m and cruises at about 13 m/s for 45 minutes. It

utilizes a complement of remote control (RC) aircraft batteries, servos, and other hardware

that are typical for an aircraft of its size.

Figure 2.13: The SUAV used in the flight test.

The camera is secured inside a foam pod on the underside of the UAV, as shown in

Figure 2.14. The exact orientation of the camera relative to the UAV body frame is not

known precisely, but is estimated visually before the flight test. The flight test includes a

camera orientation calibration to account for this unknown.
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Figure 2.14: Camera mounted on the underside of the SUAV.

Video is sent from the UAV and received at the ground station using a video trans-

mission system from Black Widow AV [9]. The video signal is then transferred through the

ImperX VCE-Pro frame grabber to a laptop, where it can be accessed by Virtual Cockpit

for video processing. (See Figure 2.15.)

Figure 2.15: Simulated video in virtual cockpit.

In addition to the task of video processing, Virtual Cockpit also monitors the UAV

and generates the UAV flight path. Once the flight path has been generated by Virtual
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Cockpit, it is sent to the UAV autopilot via modem. The UAV uses a Foruno GH-80 GPS

unit to locate itself in the world coordinate frame, along with the autopilot’s air pressure

reading for altitude measurement. The autopilot then controls the UAV along its path, and

telemetry is transmitted back to the ground station by modem. After receiving this update,

Virtual Cockpit matches the telemetry and video information to generate target contacts.

Detailed information about the ground station and Kestrel autopilot may be found in [1]

and [14]. (See Figure 2.16.)

(a) Kestrel Autopilot 2.X. (b) UAV control in Virtual Cockpit.

Figure 2.16: The Kestrel autopilot provides on-board UAV control, while Virtual Cockpit
provides path information and receives UAV telemetry.

The procedure for this test begins with arranging multiple sheets of red cloth on

the ground. These sheets have an area of approximately 1 m 2, and their red color makes

them easy to identify through color segmentation. The location of each cloth is measured

by placing the UAV on the target, and recording its position. These are the known targets.

The camera is focused visually by viewing the video output and adjusting the lens

position. It is then calibrated using the method described in Section 2.2, and attached to

the UAV. The camera azimuth and elevation angles are estimated visually relative to the

body frame, and all of the camera parameters are recorded for use during the flight test.
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After the camera mounting is complete, the UAV is launched and follows a simple

flight plan consisting of one waypoint that is 200 m north of the known targets, and one

waypoint 200 m south of the targets. The UAV flies from one waypoint to the other and

back at an altitude of 60 m, passing over the targets each time.

The largest contact error is expected to be approximately 10 to 15 m, so a safe dγm is

30 m. In other words, dγm specifies that a contact will be allocated to the closest estimated

target if it is not more than 30 m from it. To keep contact sets from becoming too large,

a maximum of 30 contacts is allowed in each set. Beyond that, the contact that is furthest

from the estimated target center will be deleted to make room for any incoming contacts.

On the first pass, target pixels in an image are analyzed to determine the appropriate

hue, saturation and value limits for target detection. These limits are used in subsequent

passes to allow the computer to identify the targets in an image. Contacts are then generated

in Virtual Cockpit as targets appear in analyzed images, and center locations are calculated.

The camera orientation is calibrated by finding the azimuth and elevation which minimize

the total distance between each contact, and the nearest known target (see Section A.3 for

calibration code). Each target’s quality is monitored to see that reasonable data is obtained,

and the data is stored in a file for post-test evaluation.

Figure 2.17: Visual 3D analysis of target differentiation performance.
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As always, the last step in testing is the analysis. For target differentiation, the most

effective analysis is a visual inspection in a 3D virtual world as shown in Figure 2.17. This

is done through an application that renders one line per contact. Each line starts at the

contact’s origin and extends in the contact’s direction. The application also renders several

green and red spheres, which represent the estimated and known target positions respectively.

It is important that the analyst be able to zoom, pan and rotate in the virtual world to gain

full comprehension of the decisions made by the target differentiation algorithm. For this

thesis, the described application is programmed using OpenGL visual libraries.

2.5.2 Results

Table 2.2 shows the measured positions of the known targets. All measurements are

in meters, and the altitude is measured in height above ground. Figure 2.18 shows these

targets as seen from the airborne UAV.

Table 2.2: Known target positions.
East North Altitude

1 -5 0
-11 3 0
-24 -13 0
-21 10 0
-10 12 0
-9 18 0

The UAV made a total of 15 passes over the known targets after the hue, saturation

and value limits had been set. Images were processed once every half second, which caused

target contacts to be created and center positions to be calculated.

The azimuth and elevation calibration was also performed, which decreased the av-

erage distance between each contact and its nearest known target from 6.11 to 5.89 m (see

Figure 2.19 for the distance distributions). The optimum camera orientation, (α∗az, α
∗
el), was

found to be (.0041, 1.3878) radians, as compared to the estimated (0, 1.35) radians. The
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Figure 2.18: Targets observed from the airborne UAV during the flight test (red darkened
for grayscale contrast).

pre-calibration and post-calibration target estimates are shown in Table 2.3, and the 2D

position of each target with a non-zero quality is shown in Figure 2.20.

Figure 2.19: Contact distance from the nearest known target.

After the field test was over, the data was viewed in a 3D virtual world to determine

the complexity of the data and the effectiveness of the target differentiation algorithm. A

virtual view of the target area is shown in Figure 2.21. The qualitative results are difficult to

show on paper, but one can see the complex web of contacts that the target differentiation
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Figure 2.20: 2D comparison of the known and estimated targets.

Figure 2.21: 3D visualization of the field test.
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Table 2.3: Known vs. estimated target positions.
Known Targets Original Estimates Calibrated Estimates

East North Alt. East North Alt. Q East North Alt. Q
-10 12 0 -13.63 11.00 13.69 0.729 -12.95 9.88 12.34 0.690
-11 3 0 -11.60 -0.40 13.07 0.673 -11.64 -0.85 9.74 0.647
-9 18 0 -12.35 17.79 12.32 0.660 -12.98 18.10 9.07 0.586
-24 -13 0 -22.88 -11.48 14.03 0.571 -23.89 -11.86 9.57 0.562
1 -5 0 0.46 -7.07 13.08 0.640 2.10 -8.20 8.96 0.538

-21 10 0 -11.46 24.56 8.78 0.450 -11.03 19.03 -11.45 0.393
64.70 104.05 0.00 0.000 65.73 107.24 0.00 0.000
37.30 -127.16 0.00 0.000 39.39 -128.33 0.00 0.000
6.73 -120.87 0.00 0.000 10.04 -122.24 0.00 0.000

-43.05 -15.68 0.00 0.000

algorithm was dealing with. A total of 183 contacts were produced during the flight test,

and upon visual inspection it is difficult even for a human to tell where the targets should

be placed. However, the estimated target positions seem reasonable based on the contacts

that were generated.

2.5.3 Discussion of Results

There are many positive outcomes from the field test. First, the test reveals the

presence of false targets, and shows one way that false targets can occur in image processing.

Analysis of Figure 2.22 reveals that static video contains primarily red and green clusters,

with white lines across the image. False targets were primarily seen during turns far from

the video receiver, and were probably a result of the vision algorithm interpreting these red

clusters as targets. It is important to note that if any of these false targets had occurred

near the known targets, and had increased the number of on-screen targets to more than six,

then the algorithm would have generated more than six valid (non-zero quality) estimates.

The second positive outcome from the field test is that the target differentiation

algorithm was able to identify the correct number of targets. The test involved six known

targets, and in both the original and calibrated cases there were six valid estimated targets.

This result seems to indicate that the target differentiation algorithm has a tendency to

identify the correct number of targets, even when contact accuracy is poor. There is no
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Figure 2.22: Static video from the field test.

guarantee that this is always the case, but if the maximum contact assignment distance,

dγm, is within certain bounds, then this tendency is manifest.

For example, the choice of 30 m for dγm was a good one for the field test. Some

contacts had as much as 19.1 m of error (excluding false targets), so an assignment distance

as high as 30 m did not separate any contacts from their parent target. However, dγm was

also small enough to prevent contacts from being assigned to targets outside the image. For

this particular case, if dγm had been more than about 70 m, then this could have occurred.

As long as dγm is within these reasonable bounds, then the target differentiation algorithm

has the tendency to estimate the correct number of targets even with poor contact accuracy.

The third positive outcome from the field test is the surprising accuracy of the cal-

ibrated target estimates. Despite all of the challenges, the 2D difference between the cal-

ibrated and known targets is less than four meters on five out of the six valid estimated

targets. (See Table 2.4.) In addition, the sub-standard target quality of the sixth estimate

indicates that mis-assignment may have occurred. These results are surprisingly accurate

when compared to the given contact error. It is important to note that the sensitive di-

rection to error is nearly straight down, and the altitude consistency of the first five target

estimates poses a question as to the accuracy of the UAV altitude measurement. However,

even if the 3D difference is considered, the maximum distance between the estimated and

actual targets is less than 18 m. Some of the known targets are just too close together,
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which assumedly causes one inaccurately placed target estimate (altitude of -11.45 m) from

the resulting mis-assignment.

Table 2.4: Distance between calibrated estimates and known targets (m).
Calibrated Target Estimates Known Targets Difference
East North Alt. Q East North Alt. 2D Distance 3D Distance
-23.89 -11.86 9.57 0.562 -24 -13 0 1.15 9.64

2.1 -8.19 8.96 0.538 1 -5 0 3.38 9.58
-12.95 9.88 12.34 0.690 -10 12 0 3.64 12.87
-11.64 -0.85 9.74 0.647 -11 3 0 3.9 10.49
-12.98 18.1 9.07 0.586 -9 18 0 3.98 9.91
-11.03 19.03 -11.45 0.393 -21 10 0 13.5 17.67

After the test was finished, comparison between Figure 2.18 and Figure 2.20 brought

up a question as to the accuracy of the known target measurements. Figure 2.23 shows the

position error associated with placing the test UAV on the ground and obtaining stationary

position readings. The large change in position near the beginning of the experiment is due

to a drop in the number of GPS satellites in communication. However, even with a healthy

number of satellites communicating, the GPS reading tends to vary. The type of variation

present in Figure 2.23 is also expected to be present in the position measurements of the

known targets. A better position estimate could be obtained in the future by using a more

accurate differential GPS unit, or by measuring target position for a long time.

In addition to the UAV position uncertainty shown in Figure 2.23, there is probably

significant error in attitude estimation that would be directly correlated with the contact

error already shown. However, there is currently no method for measuring the true attitude

of this SUAV in flight.

Understandably, the presented work does not serve as a proof of target differentiation’s

dependability. Several more flight tests would be preferable to further validate the robustness

of the presented method, but this task is left to those pursuing future work on this subject.
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Figure 2.23: Position measurements for a stationary UAV.

2.5.4 Conclusion

These test results are valuable in understanding the behavior of the target differen-

tiation algorithm when contact accuracy is poor. There are contacts with as much error as

19.1 m (excluding false targets), and yet the algorithm is able to count the correct number of

targets when some are as close as 6.1 m apart. In addition, the 2D target estimates are less

than four meters from the measured positions on five out of six targets, and the sub-standard

target quality of the sixth estimate appropriately indicates a problem.

The field test shows that the original contributions of 3D target localization, target

quality, and target differentiation can be applied to real-world tasks. In the future, target

estimation accuracy should increase as UAV position and attitude estimation improve. For

now, these results lay the groundwork of a meaningful search for multiple targets, where

they can be differentiated and located.
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Chapter 3

Optimal Search Theory

It is very helpful to review and understand some basic principles in optimal search

theory before planning any search strategy. This chapter does not represent original con-

tributions of this thesis, nor is it intended to be a full derivation of optimal search theory.

However, it is intended to usefully depict some of the applicable contributions, as well as to

direct interested readers to the appropriate published works. The material in this chapter

is based on references [2] and [6], written by Bernard O. Koopman and Lawrence D. Stone.

Although these men were contemporary researchers, much of Stone’s work is based on the

work of Koopman, and Koopman’s work is derived from extensive collaboration and World

War II experience. Much of the theory in this chapter is attributed to Koopman.

Some of the most applicable ideas from Koopman include the following:

• A probability model for visual detection

• The definition of a lateral range curve, and its associated search width

• An upper bound, lower bound and a mid-line case to describe target detection

probability as a function of search effort in an area

• An optimal allocation of search effort between multiple areas

• Search strategy reversal with large search effort

• Guidelines for optimal scanning

Some of the most applicable ideas from Stone include the following:

• The dependence of detection probability on path placement accuracy

• An intuitive description of the changes to a probability distribution throughout

an optimal search.
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• Proofs regarding optimal search in the presence of false targets

• Guidelines in optimal nonadaptive, semiadaptive and adaptive searches

3.1 Two Detection Models

There are two detection models that are often used in optimal search theory: the

definite range law, and the inverse cube law. Given that a target is present at range1 r

from the observer, the definite range law assumes that there is some definite range, R,

beyond which there is zero probability of detecting the target, and within which the detection

probability is unity. In other words,

p
(
D

∣∣∣I(r),MDR

)
=





1 ; r ≤ R

0 ; r > R
. (3.1)

This thesis uses D to indicate detection, and I(∗) to indicate an instantaneous glimpse

of a target that is present at ∗, where ∗ can be expressed as range r or absolute distance

d. The term MDR is used to denote the definite range detection model. Thus, Eq.(3.1)

represents the probability of detecting a target if given an instantaneous look at the target

from range r using the definite range detection model. This quantity does not take into

account the possibility of false targets, but only describes the probability of successfully

detecting a target given that it is there.

The definite range law is not a very realistic model, but is frequently used as a

standard for comparison and a quick rule of thumb. In contrast, the inverse cube law is a

probability model for visual detection based on the solid angle of a target to its observer.

Specifically, the model is developed for an airborne observer that is searching for the wake

of an ocean vessel. In Figure 3.1 the approximate vertical and horizontal viewing angles are

α ≈ c

d
and β ≈ b

d
.

1Range is distance along the ground.
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(a) (b)

Figure 3.1: Solid angle diagrams. The airborne observer O is viewing the wake of an ocean
vessel from height h. The wake has area a× b, and is range r away from the observer.

By similar triangles,
c

a
=

h

d
and α =

ah

d2
. The solid angle then becomes

Solid angle = αβ =
abh

d3
.

Or, for an arbitrary wake with total area A,

Solid angle =
Ah

(h2 + r2)
3
2

. (3.2)

The instantaneous detection probability is then assumed to be

p
(
D

∣∣∣I(r),MIC

)
=

kh

(h2 + r2)
3
2

, (3.3)

where k is a constant that contains the area of the wake and provides the freedom to adjust

for other factors such as lighting, the observer’s ability, etc. The term MIC is used to denote

the inverse cube detection model. If h ¿ r, then Eq.(3.3) takes the form

p
(
D

∣∣∣I(r),MIC

)
=

kh

r3
. (3.4)

The inverse cube law of sighting is widely recognized in this form, and gets its name

from the r3 term in the denominator. However, notice that without any further assumptions
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Eq.(3.3) can also take the form

p
(
D

∣∣∣I(d),MIC

)
=

k

d2

h

d
=

k

d2
cos θo. (3.5)

In other words, Koopman’s inverse cube law can be considered an inverse square law that

includes a factor for the orientation of the target, and is written in terms of the absolute

distance from the observer to the target.

3.2 The Lateral Range Curve and Search Width

Once a detection model is assumed, it can be used to generate a lateral range curve.

Lateral range is depicted in Figure 3.2, and is the shortest distance from some point to the

observer’s path.

Figure 3.2: The lateral range of a point is the minimum distance between it and the observer’s
path. Consequently, measurements of lateral range are orthogonal to the path.

A lateral range curve indicates the probability of detecting a target given that the

observer passes by it at lateral range x. (See Figure 3.3.) The term P (x) is used to denote

the target glimpses associated with a long, straight pass by the target at lateral range x. The

term M is used to denote some detection model, which implies that M could be legitimately

replaced by MDR, MIC , etc.
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Figure 3.3: A lateral range curve and its search width. The lateral range curve indicates the
probability of detecting a target given that the observer passes by it at lateral range x. W is
the area under the curve, and can be used as the spacing between paths to allocate a fairly
uniform search coverage.

The effective search width is defined as the area under the lateral range curve,

W =

∫ +∞

−∞
p
(
D

∣∣∣P (x),M
)
dx. (3.6)

It also happens to be a parameter that defines the range where area A is equal to area B, as

shown in Figure 3.3. The importance of this condition is that it causes parallel passes placed

W apart to yield fairly uniform coverage, and prevents wasted overlap or missed areas. The

A = B characteristic does not guarantee perfect search uniformity, but is a useful heuristic

that creates a condition where the “missed” probability from one pass is somewhat covered

by the next. Perhaps the most compelling reason to use the given definition for W is that it

is a convenient way to predict the search rate, as shown in Section 3.3.

A lateral range curve can be obtained in closed form for the definite range model such

that within range R the probability of detection is unity, and outside of that range it is zero

as shown in Figure 3.4. The associated search width in this case is 2R.

A lateral range curve may also be obtained in closed form for the inverse cube de-

tection model. Let S(t) represent some specified set of target glimpses occurring from time

zero to time t and consider an observer who is stationary at range r from a target. In the

case of continuous looking and a fixed instantaneous detection probability, the probability
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Figure 3.4: The lateral range curve of the definite range detection model.

of target detection by time t is

p
(
D

∣∣∣S(t), MIC

)
= 1− exp

(
−p

(
D

∣∣∣I(r),MIC

)
× t

)
. (3.7)

When p
(
D

∣∣I(r),MIC

)
changes over time, the probability of target detection by time t is

p
(
D

∣∣∣S(t),MIC

)
= 1− exp

(
−

∫ t

0

p
(
D

∣∣∣I
(
r(t)

)
,MIC

)
dt

)
. (3.8)

Now imagine an observer traveling in the +y direction from −∞ to +∞ at height h

and velocity v as shown in Figure 3.5. Also imagine a target placed at position x relative to

the observer’s path.

Assuming that the observer in Figure 3.5 begins a journey from y = −∞ at time

zero and continues on to y = ∞, the set S(t) in Eq.(3.8) can be replaced by P (x). In other

words, the specified set of target glimpses is now declared to be the set of glimpses generated

by passing a target at lateral range x. Eq.(3.8) then becomes

p
(
D

∣∣∣P (x), MIC

)
= 1− exp

(
−

∫ +∞

−∞
p
(
D

∣∣∣I
(
r(x, y),MIC

))dy

v

)
. (3.9)

Substituting the inverse cube law model from Eq.(3.4) in for p
(
D

∣∣I(r(x, y)),MIC

)
yields

p
(
D

∣∣∣P (x),MIC

)
= 1− exp

(
−

∫ +∞

−∞

kh(
r(x, y)

)3

dy

v

)
= 1− exp

(
−

∫ +∞

−∞

kh

(x2 + y2)
3
2

dy

v

)
.
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Figure 3.5: A long, straight pass by a target at lateral range x. The observer is traveling at
speed v, and views the target from range r.

Trig. substitution of dy = x sec2 θdθ and
√

x2 + y2 = x sec θ may then be used to obtain

p
(
D

∣∣∣P (x),MIC

)
= 1− exp

(
− kh

vx2

∫ π
2

−π
2

cos θdθ

)
,

which becomes

p
(
D

∣∣∣P (x),MIC

)
= 1− exp

(
−2

kh

vx2

)
. (3.10)

Figure 3.6: The lateral range curve of the inverse cube detection model.
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The lateral range curve from Eq.(3.10) is shown in Figure 3.6, and the associated

search width can be calculated by substituting the result from Eq.(3.10) into Eq.(3.6). In-

tegration is easiest in the form

W = 2

∫ ∞

0

1− exp

(
−2

kh

vx2

)
dx,

which is designed to use the known solution

∫ ∞

0

exp
(−z2

)
dz =

√
π

2
.

The resulting search width is

W =

√
8πkh

v
. (3.11)

The same method2 used to calculate the lateral range curve and search width for this

detection model may be applied to any detection model. However, for complex detection

models a numeric solution may be preferable.

3.3 Search in an Area

Consider the area shown in Figure 3.7, where the total length of search effort is

divided into n
L

pieces. For now the definite range law is assumed, which means that each

piece of search effort, L
n

L
, indicates that an area WL

n
L

has been completely searched. Given

that a single target is within area A, and given that the observer follows a random path that

is confined to A, the probability of detection for each piece is WL
n

L
A
. This assumes that each

piece is an independent trial in A.

Thus, the probability that detection will fail for each piece is 1 − WL
n

L
A
, and the

probability that detection will succeed along the whole length is given by

p
(
D

∣∣∣RA(L), CA,MDR

)
= 1−

(
1− WL

n
L
A

)nL

, (3.12)

2A lateral range curve is obtained by considering an observer following a long, straight path by a target
at lateral range x, and considering the target’s accumulated (time-integrated) probability of detection after
the path has been followed. The search width is then found by integrating under the lateral range curve
according to Eq.(3.6).
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Figure 3.7: Random search in an area.

where RA(L) represents a random search path of length L in area A, and CA denotes that

the target is contained within area A.

Notice the fundamental change in notation here. The probability of detection still

depends on the detection model (MDR in this case), but the target location is no longer

known precisely. This also means that the glimpse set is no longer known, and must be

represented not only by the observation path, but also by information that describes how

likely it is for the target to be at any given location. Without any further information,

CA implies a uniform probability distribution, where it is equally likely for the target to be

at any location within A. In short, the new notation shown on the left side of Eq.(3.12)

indicates that a target’s detection probability is dependent on observer motion, the target’s

spatial probability distribution, and the detection model.

Now let the number of pieces (n
L
) approach infinity. Eq.(3.12) then becomes

p
(
D

∣∣∣RA(L), CA,MDR

)
= 1− e

(−WL
A

)
. (3.13)

This is a detection function known as the random search law. A detection function tells how

the probability of detection increases as a function of search effort (L).

Now consider the scenario where area A is traversed by the same observer, but with

a series of parallel lines that are spaced W apart. In this case p
(
D

)
rises linearly with
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increasing search effort until L = A
W

has been expended. In other words,

p
(
D

∣∣∣ZA(L), CA,MDR

)
= min

(
WL

A
, 1

)
, (3.14)

where ZA(L) represents a set of parallel paths with combined length L in area A. After

L = A
W

is expended the probability of detection is unity and the target has been found. This

detection function is called the definite range law as shown in Figure 3.8.

Figure 3.8: A comparison of the characteristic detection functions.

The inverse cube law detection function is not explicitly derived in this thesis, but is

p
(
D

∣∣∣ZA(L), CA,MIC

)
= erf

(√
π

2

WL

A

)
, (3.15)

where

erf(u) =
2√
π

∫ u

0

e−s2
ds.

The derivation may be explored further in [2, p.75-78].

Sometimes there is confusion between the characteristic detection functions, which

each correspond to a specific detection model and a specific search path. Hopefully table 3.1

clarifies the issue.
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Table 3.1: Clarification of the characteristic detection functions.
Function Name Search Path Used Detection Model

Definite Range Law Parallel Sweeps Definite Range Law
Inverse Cube Law Parallel Sweeps Inverse Cube Law

Random Search Law Random Any

The confusion is understandable, because the detection function and the detection

model have identical names in some cases. When a law is mentioned, it is important to use

context clues to determine whether the subject is a detection model or a detection function.

Note that although the random search law was derived using the definite range detection

model, any model can be said to apply. This is because any detection model may be used

without violating the assumption that search effort is applied randomly in A.

Figure 3.8 shows that the inverse cube law “is close to a middle case, a circumstance

which indicates its frequent empirical use, even in cases where the special assumptions upon

which its derivation was based are largely rejected.” [2, p.79] One might question whether

or not these detection functions deserve the title ‘law’, but this thesis denotes them as such

in conformity with prior work. Koopman asserts that the definite range law and the random

search law are upper and lower bounds for any search within area A using search width W .

It is helpful to recognize that an observer’s search width characterizes its ability to

search, and directly contributes to the rate of the search. According to Koopman, a “scanning

method is optimum if it renders W a maximum” [2, p.163]. This is useful to keep in mind

when the shape of observation is not fixed. However, Koopman’s anti-submarine background

also indicates that all searching should not necessarily be done laterally from the observer’s

path, because it is often imperative to detect the target early.

Stone relates an interesting result when searching an area. He shows that the detection

function is dependent on one’s ability to accurately place parallel paths at a distance W

apart [6, p.26]. Assume that there is variation in path placement such that the mean distance

between paths is W , with a standard deviation of σ. Then, even when search effort L = A
W

has been applied and the definite range detection model is used, the probability of detection

may not reach unity. (See Figure 3.9.)
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Figure 3.9: The dependence of detection probability on path placement accuracy.

The three characteristic detection functions are yardsticks by which the success of a

search strategy may be measured, and understanding them is a key to valid search results.

There are occasions where researchers claim to have better results than the definite range

law. However, a closer look reveals that the yardstick was not held constant, such that the

miraculous improvement is really a change in A or W . In addition, Koopman claims that

in most cases, despite the diligent efforts of the searcher, the resulting detection function

is actually closest to the random search law. This can be due to target motion, inaccurate

maps, low-accuracy path planning and other factors. Thus, it is often best to plan careful

paths that do not overlap, but to still assume the random search law when deciding the

allocation of search effort. Optimal search theory is built upon this assumption.

The previous results in this section focus on understanding the probability of detection

for some search behavior given that the target is contained in area A. Often, however, the

target is only believed to be contained in area A according to some probability, p(CA).

When this is the case, the vertical axis in Figure 3.8 changes from p
(
D

∣∣CA

)
to p

(
D

)
, and

the maximum value on the axis becomes p(CA). In addition, it is useful for the search

planner to know the probability that successful detection occurs for a given search behavior

based on an estimate of the probability that the target is in the area. In other words, while
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searching, how likely is it for the target to be detected in A and actually be in A? This can

be estimated using

p
(
D ∩ CA

∣∣∣PA(L),M
)

= p(CA)× p
(
D

∣∣∣PA(L), CA,M
)
, (3.16)

where PA(L) is some path in A of length L, M is some detection model, and p(CA) is an

initial estimate of the probability that area A contains the target.

Figure 3.10 shows a Venn diagram, which is one way to gain insight about search in

an area. One can see that the probability of detecting something, p
(
D

)
, can be larger than

p
(
D ∩ CA

)
. This indicates that the possibility of false targets exists. Stone addresses this

issue in [6], but this thesis focuses on the probability of successful detection, or p
(
D ∩ CA

)
.

Thus, if a detection probability is stated, it is the probability of detecting a target and having

it present, even though the probability of detecting something may be greater.

Figure 3.10: This Venn diagram illustrates the relationship between the probability of two
events: target detection (D), and the target being contained in area A (CA). For a search in
area A, the detection probability p(D) can be greater than p(D ∩ CA). If detection occurs in
A and the target is not within A, then it is considered to be detection of a false target. The
probability p(D ∩ CA) = p(CA)p(D|CA) represents the probability of successful detection.
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3.4 Search Between Multiple Areas

Consider a target that may exist within one of two areas, A1 or A2. Each area has a

different probability of containing the target, p(C1) and p(C2). The question is how to divide

the total search effort, L, between the two areas in a way that maximizes the total detection

probability. A decision of how much search effort to spend in A1 will also determine how

much search effort is spent in A2, according to L2 = L − L1. The probability of detecting

the target in one of the areas is

p
(
D ∩ C@

∣∣∣P12(L),M
)

= p(C1)p
(
D

∣∣∣P1(L1), C1,M
)

+ p(C2)p
(
D

∣∣∣P2(L2), C2,M
)
,

where C@ indicates that the target is contained within the area where detection occurs, and

P12(L) indicates a path of length L in areas A1 and A2.

Koopman suggests that the detection function of even the most structured search

effort is typically closest to the random search law. Using this assumption, the result from

Eq.(3.13) is used to obtain

p
(
D ∩ C@

∣∣∣P12(L),M
)

= p(C1)

(
1− e

−WL1

A1

)
+ p(C2)

(
1− e

−WL2

A2

)
. (3.17)

Now let y be the exponential terms of Eq.(3.17) according to

y = y1 + y2 = p(C1)e
−WL1

A1 + p(C2)e
−W (L−L1)

A2 .

One approach to maximizing p(D ∩ C@|P12(L),M) is to minimize y, which can be accom-

plished by setting the derivative

dy

dL1

= −p(C1)
W

A1

e
−WL1

A1 + p(C2)
W

A2

e
−W (L−L1)

A2
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equal to zero and solving for L1. The result is

L1 =

A1A2

W
ln

(
p(C1)A2

p(C2)A1

)
+ A1L

A1 + A2

. (3.18)

For a numerical example, consider the following conditions:

L = 5000 m W = 10 m

A1 = 10, 000 m2 A2 = 20, 000 m2

p(C1) = 0.4 p(C2) = 0.1

Eq.(3.18) then yields a solution of L1 = 3053 m as shown in Figure 3.11.

Figure 3.11: Minimizing the probability of search failure. Failure to detect the target in area
A1 is represented by y1, and failure to detect the target in A2 is represented by y2. The target
may only be found in one area or the other, so minimizing y = y1+y2 minimizes the probability
of not detecting the target.

Notice that the provided initial conditions put the solution for L1 within the range

(0 < L1 < L). Analyzing the derivation for Eq.(3.18) and the minimum point in Figure 3.11

reveals that the optimum allocation of search effort occurs when the slopes of y1 and y2 are

equal and opposite. However, different conditions could lead to L1 < 0 or L1 > L. A solution
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less than zero would indicate that all available search effort should be spent in A2, while a

solution greater than L would indicate that all available search effort should be spent in A1.

To further explore the above example, consider the following quantities:

ρ1 = p(C1)
A

ρ2 = p(C2)
A2

φ1 = WL1

A1
φ2 = WL2

A2

A = A1 + A2 Φ = WL

(3.19)

where

ρ∗ = the probability density in region *,

φ∗ = the search effort density in region *,

A = the total search area,

Φ = the total available search effort.

Note that under the assumption of random search, ρn and φn are assumed to be uniform in

region n. This does not necessarily mean that the actual path planning should take place in

a random or distributed fashion. Observers should follow methodical paths in the region and

attempt to avoid missed sections and overlap. However, for the purposes of search allocation

between areas A1 and A2, uniformity in ρn and φn is assumed.

Search effort density (φn = WLn/An) is a term that compares the search effort in a

region with the area of that region. It is analogous to mass density (kg/m3) in that it is

a ratio between two terms, one being a measurement of some quality and the other being

a defined region in space. In this case search effort is defined in units of m2 as WL and is

compared to an area, so the search effort density is unit-less. However, a search effort density

greater than unity does not mean that the region has been completely searched (except in

the case of the definite range law). It is simply a way of quantifying how much searching

has been done in comparison to the area.

Eq.(3.18) can now be re-written in terms of these quantities, as

φ1 = ln ρ1 − 1

A
(A1 ln ρ1 + A2 ln ρ2) +

Φ

A
(3.20)
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and for φ2 as

φ2 = ln ρ2 − 1

A
(A1 ln ρ1 + A2 ln ρ2) +

Φ

A
. (3.21)

If φ1 is less than or equal to zero, then all search effort should be allocated to A2.

This corresponds to the condition

ρ1 ≤ ρ2e
−Φ

A . (3.22)

If φ2 is less than or equal to zero, then all search effort should be allocated to A1.

This corresponds to the condition

ρ2 ≤ ρ1e
−Φ

A . (3.23)

So far the optimum search allocation has been discussed in terms of quantity only.

However, Eqs.(3.22) and (3.23) also lead to an understanding of how the optimal search

should proceed in time. As Φ begins from zero and progressively increases, the region with

the highest probability density is searched first, and either Eq.(3.22) or (3.23) is valid. After

a time, the search will reach a point where

ρ1 > ρ2e
−Φ

A and ρ2 > ρ1e
−Φ

A . (3.24)

This marks a specific turning point where the higher probability density has been re-

duced by search effort such that it is equal to the lower probability density. Thereafter both

areas are searched according to the ratio dictated by Eqs.(3.20) and (3.21). If search con-

tinues for a significant time following this point, then the largest region receives the greatest

amount of search effort. The switch from searching the region with the largest ρ to searching

the region with the largest A is known as reversal for large Φ. This property can also be

verified by evaluating Eqs.(3.20) and (3.21) in the limit as Φ goes to infinity:

lim
Φ→∞

φ1

φ2

= 1. (3.25)

Another interesting phenomenon can be seen by re-arranging Eqs.(3.20) and (3.21)

according to

φ1 = ln kρ1 , φ2 = ln kρ2 (3.26)
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where

k = exp

(
− 1

A
(A1 ln ρ1 + A2 ln ρ2) +

Φ

A

)
.

This means that a region’s optimum search effort density is equal to the natural logarithm of

a quantity that is proportional to the probability density of that region.

In order to present a simple and directly-applicable solution with many areas, the

notation introduced in Eq.(3.19) will now be dropped. However, it is still useful to refer

back to these definitions in the following example, just as it was in the two-area example.

J.W. Gibbs offers a helpful principle in extending the optimum solution to n ar-

eas [15] [2, p.152]:

If f1(x1), . . . , fn(xn) are n continuously differentiable functions of x1, . . . , xn for
non-negative values, and if their sum y = f1(x1) + · · · + fn(xn), considered for
all non-negative values of xi adding up to a given constant c, has a maximum
at xi = x∗i , then there exists a constant λ having the following “discriminating”
property for the derivatives:

If x∗1 > 0 then f
′
i (x

∗
i ) = λ ; if x∗i = 0 then f

′
i (x

∗
i ) ≤ λ (3.27)

Many know the constant λ as the Lagrange multiplier, which is a function of the

given constant c. Using P1n(L) to denote some path in regions 1 through n of total length

L, Gibbs’ theorem is applied to the problem of optimal search as follows:

If

p
(
D ∩ C@

∣∣∣P1n(L),M
)

= p(C1)

(
1− e

−WL1

A1

)
+ · · ·+ p(Cn)

(
1− e

−WLn

An

)
(3.28)

and

L1 + L2 + · · ·+ Ln = L

then

Li > 0 implies that p(Ci)
W

Ai

e
−WLi

Ai = λ and
p(Ci)W

Ai

> λ (3.29)
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and

Li = 0 implies that
p(Ci)W

Ai

≤ λ.

Now let all of the considered search regions be ordered such that

p(C1)W

A1

≥ p(C2)W

A2

≥ · · · ≥ p(Cn)W

An

. (3.30)

Also consider the set AL = {A1, . . . , Am} ; m ≤ n, containing the regions that are currently

being searched (Li > 0). The value of Li for any member of this set may be calculated as a

function of λ from Eq.(3.29) as

Li =
Ai

W
ln

(
p(Ci)W

Aiλ

)
=

Ai

W

(
ln

p(Ci)W

Ai

− ln λ

)
. (3.31)

At the beginning of a search, the optimum allocation will first be found by considering

some small L > 0. This starting search effort will be completely applied in AL = {A1} such

that L = L1. Due to the fact that A1 is the only participating region,

λ = p(C1)
W

A1

e
−WL1

A1 . (3.32)

This will continue with increasing L until

λ = p(C1)
W

A1

e
−WL1

A1 = p(C2)
W

A2

e
−W (0)

A2 . (3.33)

Thereafter the search effort will be spent in AL = {A1, A2} such that L = L1 + L2, and the

probability densities of these areas will be reduced at a mutual rate until

λ = p(C1)
W

A1

e
−WL1

A1 = p(C2)
W

A2

e
−WL2

A2 = p(C3)
W

A3

. (3.34)

And so on.
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Thus, AL is known for all L, because the L = L(i) at which each Ai starts participating

in the search can be calculated as

L(i) =
A1

W

(
ln

p(C1)W

A1

− ln
p(Ci)W

Ai

)
+ · · ·+ Ai−1

W

(
ln

p(Ci−1)W

Ai−1

− ln
p(Ci)W

Ai

)
. (3.35)

Between these points, the Li applied to each area can be found using Eq.(3.31) and

L =
∑m

i=1 Li to obtain

ln λ =
A1 ln

p(C1)W

A1

+ · · ·+ Am ln
p(Cm)W

Am

−WL

A1 + · · ·+ Am

, (3.36)

where m is the number of regions currently being searched. The resulting value of λ can

then be used to determine the optimal effort allocation at each point in the search as per

Eqs.(3.32),(3.33) and (3.34).

Often when dabbling in writings about optimal search, the search effort, Φ, can be

a representation of time, search length, covered area, etc. Figure 3.12 shows an optimal

detection function based on any type of search effort. Koopman asserts that the expected

effort spent up to target detection is the area of region E [2, p.179]. This means that if Φ

is a measurement of time, then integration of region E reveals the mean time to detection

(assuming p(D|Φ) eventually reaches unity).

It is useful to note that the multiple-area example also extends to the continuous case,

where the probability of each dA is assigned according to its location by some continuous

2D function. However, evaluation of the discrete case invokes the needed familiarity with

optimal search concepts for this thesis, and the reader may refer to the published works of

Koopman [2] and Stone [6] for more detail.

Stone offers significant insight into the progression of an optimal search. He describes

a situation where the target’s probable location is a Gaussian distribution about the origin.

For an optimal search in this region, the search effort will begin at the origin, and “the
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Figure 3.12: An optimal detection function as a function of search effort Φ. Integration of
region E indicates the expected amount of search effort before detection occurs.

posterior density of the target distribution is constant inside [a circle] centered at the origin.

... As time increases and the target has not been detected, the disc over which the posterior

density is constant expands and the value of the density in that disc decreases. The result

is that the posterior target distribution is flattening and spreading as the target fails to be

detected.” [6, p.53]

Thus, for an optimal search of any shape, all regions having the maximum probability

density will be searched uniformly until they have been reduced in density to that of the

immediately-surrounding regions. Then the maximum probability density is redefined to be

this new, lower density, which applies to a larger area. This continues in the same widening

and flattening manner indefinitely. It is interesting to note that “the longer [an observer]

searches in this situation and fails to find the target, the worse one’s prospects become, in

the sense that the mean time remaining to [target detection] is increasing.” [6, p.54]

3.5 Search in the Presence of False Targets

Stone’s major contribution to search theory is his work on optimal search in the

presence of false targets. His proofs are not duplicated in this thesis, but some important

definitions, principles and results are helpful in search planning.
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A false target is any evidence that might indicate the presence of a target when a

real target is not present. A target contact is any evidence that could indicate the presence

of a target. Based on these terms, Stone indicates specific meanings for the words detected,

identified, and found:

• Detected - A target contact appears.

• Identified - Contact investigation confirms a real target.

• Found - A target has been both detected and identified.

When working with false targets, search strategies are classified as nonadaptive, semi-

adaptive, or adaptive plans. A nonadaptive plan is one that proceeds according to the optimal

search strategy as outlined in Section 3.4, and does not change based on the discovery of real

or false targets. A semiadaptive plan is one that has a specified sequence of update times

where the strategy may be updated. This plan approximates an adaptive plan, which con-

tinuously considers all information gained during the search to revise the target distribution

and the false-target distribution in a Bayesian manner [6, p.167].

Stone proves that the mean time to target detection for the adaptive, semiadaptive

and nonadaptive plans is ordered as follows:

µa ≤ µs ≤ µn. (3.37)

“Thus, if one has a choice, he would prefer to use the optimal adaptive plan for searches

involving false targets.” Unfortunately, “optimal adaptive plans have been found only for the

situation of a search with two cells and one false target known to be in the second cell.” [6,

p.166] However, due to the order established in Eq.(3.37), it is desirable to approximate the

adaptive plan if possible. For the reader interested in a cohesive introduction to semiadaptive

plans, it may be best to start reading on p.165 of [6], and dissect the next 13 pages until the

end of the chapter. Stone gives detailed theory, an instructive example, and concludes by

stating the effectiveness of adaptation.
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In the simple two-cell case for which an adaptive plan is known, the difference in

mean detection time between the adaptive and nonadaptive plans is less than 1%. However,

as complexity increases, a semiadaptive plan with continuous updating can produce as much

as 30% smaller mean times to detection than the optimal nonadaptive plan. A semiadap-

tive plan seems to have the greatest advantage over a nonadaptive plan when the target

distribution is uniform with a few false targets in each cell and a large contact investigation

time [6, p.178]. Adaptation may also be significant in the presence of flawed assumptions,

where Bayesian updates could help to correct the probability distribution.

One of the most important points to consider from Stone’s work is the proof that

immediate and conclusive contact investigation is optimal in the presence of false targets for

nonadaptive plans [6, p.154]. In other words, if search effort can be applied anywhere and

at any time, then once a target has been detected it is best to immediately take the time

to positively or negatively identify the target. This result is based on the assumption that

it takes a fixed time to identify target contacts. Stone suggests that this course of action

will minimize the mean time to find the target, and claims that “this result agrees with

the intuitive feeling that there is no point to broad searching in an area if contacts are not

investigated.” [6, p.151] Although the proof exclusively applies to nonadaptive plans, “only

immediate and conclusive contact investigation [is] considered” in Stone’s semiadaptive plans

as well [6, p.166].

This principle has implications in many real path-planning tasks. Unlike optimal

search theory, path planning does not have the luxury of assuming that search effort may

be expended anywhere. Thus, if immediate and conclusive contact investigation is the best

policy in optimal search theory, then it is even better in a real search due to the observer’s

temporary proximity to a new target contact. Of course, this assumes that target detection

and identification are done by the same agent.

The search theory presented in this chapter may be used for comparison in path

planning, and offers many guiding principles as to how to conduct an effective search. Much
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of the material presented by Koopman and Stone is not included here, and could also apply

to a particular search scenario. Thus, the reader is also encouraged to read [2] and [6].
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Chapter 4

Search Planning

“In the relatively unusual cases in which the immobility of the target and the
accuracy of navigation—as well as the exactness of the knowledge concerning
the factors affecting the probability of its detection and the probabilities [p(Ci)]—
warrant using a law other than the exponential one above, explicit solutions of the
result of applying the Lagrange multiplier method cannot in general be obtained,
and modern computers must usually be used.” — B.O. Koopman [2, p.154]

With a basic understanding in optimal search theory, the task at hand is to create

a useful search technique. The above quotation might cause one to think that assuming

anything other than the random search law is walking on thin ice. However, the advent

of a global positioning system and UAV technology may represent a valid objection to this

philosophy. Then again, Koopman may still be largely right. Thus, the following methods

are presented with the hope that if target mobility, navigation accuracy, detection probability

and location probability are not sufficiently known at present, then technological advances

will soon help them to become so.

Chapters 4 and 5 represent original contributions of the author using optimal search

theory. The underlying principles are largely the same, but the contributions are specific to

the detection method of a UAV with a CCD camera. The given technique that is used to

measure search rate with a probability grid is a key to applying this theory.
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4.1 Target Detection Probability

The first task in search planning is to identify a detection model. Many researchers

simply assume that the definite range law is accurate enough for path planning. However, in

the minds of some this does not provide a reasonable approximation for an authentic search.

4.1.1 CCD Camera Model

In this section a target’s detection probability is based on the connected-component

analysis described in Section 2.4. This uses HSV color segmentation to identify the pixels

that are similar in color to the target. The goal is to obtain an estimate of the target detection

probability based on its distance. However, an accurate estimate of this probability requires

the following steps:

1. Derive a target’s image size based on its distance and cross-sectional area.

2. Find representative color distributions for the target and its background.

3. Model the transition from target color to background color in an image.

4. Decide the minimum target size (in pixels) that the algorithm will acknowledge.

5. Using the color distributions from step 2 and the color transition from step 3, generate

many images that display a target of known image size. Then attempt to identify the

target in these images using a connected-component analysis and the minimum target

size from step 4. The success ratio obtained from a large number of images should

closely represent the detection probability for a target of that size.

6. Combine data from 1 and 5 to determine a target’s detection probability with distance.

Consider an unobstructed spherical object that is observed through a charge-coupled

device (CCD) camera as shown in Figure 4.1. By similar triangles
robjp

fp

=
robj

d
, and the
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number of target pixels on-screen (occupied by an object of radius r at d units away) is

Ps = πr2
objp =

(
fp

d

)2

πr2
obj.

It can also be represented as

Ps =

(
fp

d

)2

Aobj (4.1)

where

fp = focal length in average pixels

(
fx + fy

2

)

fx = focal length in pixel widths (See Section 2.1.)

fy = focal length in pixel heights (See Section 2.1.)

d = object distance

Aobj = cross-sectional area of the object.

Figure 4.1: A spherical object viewed by a CCD camera.

Using Eq.(4.1), one can determine the expected number of target pixels in an image

based on the target’s size and distance. Notice that this formula is very similar to the solid
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angle used in Koopman’s inverse cube law, except that it does not depend on an assumed

orientation, and the output is in pixels. (See Eq.(3.2) and Eq.(3.5).) Also note that Ps is

not necessarily an integer value but represents the precise size of the target projected onto

the image plane in units of square pixels.

Before discussing the color distributions it is important to understand that color is

one of the most noticeable characteristics of a passive target. For example, BYU’s recent

search and rescue exercise (SAREX) was based on a lost victim who had been seen carrying

an orange jacket and wearing a red or white t-shirt and blue jeans. This color information

was the only information used when establishing initial target contact. Comments like “I

thought I saw something white” or “There’s an orange spot!” were typical observations.

Although the BYU SAREX was based on human detection, color is also a key factor

in computer-aided search. Figure 4.2 is a zoom-in on one of the targets from Figure 2.18.

Figure 4.2: A close-up view of a red target as seen by a CCD camera (red darkened for
grayscale contrast).

The color variation in this image can be surprising, because the target is just a flat

piece of red cloth on a road. However, a CCD image can vary for several reasons, including:

1. Environmental lighting changes

2. Object position and orientation differences

3. Lens distortion
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4. Shutter speed variation

5. The Bayer filter

6. Interlacing

7. Signal noise.

These sources of color variation generate a unique color distribution in each situation

that can be difficult to predict. Figure 4.3 shows the measured HSV distributions of the gray

road and red targets present during the flight test in Chapter 2. As shown in Figure 2.18,

six cloths of identical color were laid on the ground, and were viewed by the UAV from

around 63 meters in altitude. The lighting conditions were those generated by an outdoor

flight on an overcast day, and there was no noticeable variation in ambient lighting during

the experiment. The color data was obtained by selecting sections in many images from the

Target Differentiation field test video, and accruing the HSV information in histogram form.

When compared to some other scenarios, searching for a red piece of cloth on a road

may seem to be very simplistic. However, the color distributions of Figure 4.3 still embody

many complex factors. For instance, the bi-modal nature of the road value distribution was

seen during the field test as a series of dark diagonal lines that (according to testing in

the MAGICC Lab) are likely to have been caused by signal noise from the electronic speed

control. In addition, the left tail of the target hue distribution probably represents impure

sampling, where some pixels already appear partially blended between the target and road

colors. An unknown effect also caused the frequencies recorded in some bins to be zero while

the frequencies in neighboring bins were very significant. The complexity of these and other

factors often causes each experiment to have unique color distributions.

The goal is to use the color data from a given target and background to model the

probability of detecting the target. An example of this is described later in this section,

and the probability is found by generating many target images based on assumed color

distributions. One approach to modeling these color distributions might be to pick randomly
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(a) Road hue. (b) Target hue.

(c) Road saturation. (d) Target saturation.

(e) Road value. (f) Target value.

Figure 4.3: These are the HSV color distributions for the road and target. They are obtained
by using an application that allows the user to repetitively select different areas of pixels, and
put the pixel data into a collective histogram. Sections of road were sampled in several images
to get an accurate distribution for road color, and small sections were sampled at the center of
each target (many times, and in many images) to get an accurate distribution for target color.
The bi-modal nature of the road value distribution was seen during the field test as a series
of dark diagonal lines that are likely to have been caused by signal noise from the electronic
speed control. (See Figure 2.18.)

from the exact set of colors that was generated by sampling target/background images.

Another approach is to calculate the mean and standard deviation for each distribution

(See Table 4.1.), and generate target images based on Gaussian distributions with these

parameters.

Although the Gaussian assumption may not fit all of the data exactly (See Table 4.2.),

some of the distributions are primarily Gaussian, and others could be Gaussian in the absence
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Table 4.1: Mean and standard deviation for the HSV distributions.
Road Color Target Color

Mean St.Dev Mean St.Dev.
Hue 222.37 11.83 327.09 21.86

Saturation 27.63 7.51 65.37 18.60
Value 154.80 15.34 178.19 14.62

Pixels Sampled 24,749 985

of the un-intended experimental conditions described. One might expect the uniform target

color and lighting conditions to generate a true color distribution characterized by a single

hue, saturation, and value. Thus, the bell-shaped variation experienced in the actual mea-

surements is assumed to be random error that follows a Gaussian distribution. Accordingly,

the discrepancies in skew and kurtosis shown in Table 4.2 are rejected, and the Gaussian

model is used.

Table 4.2: Skew and kurtosis for the HSV distributions.
Skew Kurtosis

Road Hue -0.459 4.025
Road Saturation -0.136 2.568

Road Value 0.180 1.786
Target Hue -0.366 1.044

Target Saturation -0.324 3.048
Target Value 0.051 3.018

Normal Distribution 0.000 3.000

Now that color distributions have been characterized for the target and its back-

ground, the region of blurred color at the target boundary must be understood. It is helpful

to know that light undergoes a large number of effects as it enters the camera, including

changes from defocusing, diffraction, photosensitive variation, etc. The imperfect pixel pat-

tern that results from a viewed point of light can be modeled as a Gaussian distribution

called the point spread function (PSF) [16].
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Due to distortion complexity, the PSF parameters are often estimated empirically.

One way to do this is to view a distant point source of light against a black background [16].

However, when measuring the PSF for the test camera (The camera is shown in Fig-

ure 2.8(b).), there are two considerations that will help in obtaining reasonable results:

First, a light source should be chosen and placed far away, such that its projected area is

significantly less than one pixel. Second, the shutter speed should be similar to what it

would be during an outdoor search, even though the PSF is measured in a dark room.

For comparison, the projected area of one pixel at a distance of one meter is

Ap = SxSy =
1

503.652

1

500.110
= 3.97× 10−6 m2.

In addition, the light source selected for this experiment is the diode inside a Mag-Liter

Solitairer flashlight, as shown in Figure 4.4. When the diode is placed a known distance

away (limited to 7.9 m by the room), Figure 4.4(a) can be used to calculate the diode’s

projected area at one meter away:

Adiode =
.003

7.9

.006

7.9
= 2.88× 10−7 m2.

(a) Size of the Mag-Liter diode. (b) The Mag-Liter diode lit.

Figure 4.4: The Mag-Liter diode used to determine the camera’s point spread function.
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Thus, if the light source is .003 m × .006 m at a distance of 7.9 m, then the diode’s

projected area is .0726 square pixels. This is considered sufficiently small to give a reasonable

PSF estimate, because (as will be seen) the point spread function of this camera has a

standard deviation on the order of one pixel.

A feature of the test camera that must be dealt with is that it has automatic shutter

speed control based on the ambient lighting. As a result, the test must begin with full

lighting. The lights are then turned off and the PSF is measured in the next frame, before

the shutter speed has time to adjust. A view of the diode using this method is shown in

Figure 4.5.

Figure 4.5: A view of the diode through the test camera (7.9 m away).

This image can be analyzed to determine the standard deviation of the PSF by

using each pixel’s color value (also called intensity) to indicate the degree of illumination.

Figure 4.6 graphically shows the value of pixels in the vicinity of the light source.

One interesting characteristic of the test camera is that its PSF has a greater standard

deviation in the Xp direction (2.052 pixels) than in the Yp direction (.688 pixels), independent

of the diode orientation. This reveals the true shape of the point spread function for this

camera and lens. However, for simplicity an average standard deviation of σ
PSF

= 1.37 pixels

is used in the simulations that follow.

Notice that the point spread function describes the effect of light as it enters the

camera, but can also be used to describe the sources of light that illuminate each pixel.
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Figure 4.6: The camera’s point spread distribution.

Thus, if a PSF is assumed to be centered on each pixel, then a pixel’s color depends on what

projected regions the PSF covers.

To illustrate this principle, consider the pixel shown in Figure 4.7. Let χR =

[h
R
, s

R
, v

R
]T represent the HSV road color and χT = [h

T
, s

T
, v

T
]T represent the target

color. These colors are independent random samples in H,S and V from the target and road

distributions described in Figure 4.3 and Table 4.1. The color for any pixel in the image can

now be defined as

χP = χR(1− αT ) + χT αT (4.2)

where αT is the portion of the PSF that overlaps the target projection. Notice that although

the PSF is a Gaussian distribution, it represents the color blending that occurs and is not

a probability distribution. Also note that Eq.(4.2) can be used in this case because of the

sequential nature of the road and target hue. However, for hue distributions that span 360◦

(say µ1 = 10◦ and µ2 = 350◦), a method must be used that appropriately transitions between

these colors.
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Figure 4.7: A pixel’s color depends on how much of its point spread function overlaps the
target projection.

For the pixel shown in Figure 4.7, an approximation for α
T

can be obtained by

integrating under the Gaussian curve:

α
T

=

∫ ∞

δpt

∫ ∞

−∞

1

2πσ2
PSF

exp

(
−x2 + y2

2σ2
PSF

)
dydx =

1

2

(
1− erf

(
δpt

σ
PSF

√
2

))
. (4.3)

Eq.(4.2) can now be used to estimate the color of any image pixel based on its distance from

the target boundary. For a circular target projection with an area of Ps square pixels and a

target radius of rt =
√

Ps/π, δpt can be defined as rp − rt, where rp is a given pixel’s radial

distance from the target center in pixels.

By defining each pixel in this way, one can generate simulated images of the target.

However, to analyze the detection probability some pixel threshold, P0, must be used to

identify the target. Thus, a collection of qualified (connected and within color limits) pixels

less than size P0 is not considered a target, but is ignored. It is hoped that image noise and

color distributions from other objects will rarely generate P0 qualified pixels, and that an

actual target will often generate P0 qualified pixels. While searching for red targets using

the given CCD camera and wireless transmission system, a practical value for P0 is 20 pixels.
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This is just large enough for the algorithm to distinguish between the intended targets and

image noise or background objects in most cases.

Using the P0 size threshold and the derived pixel colors, many images can be created

and analyzed using connected-component color segmentation. Figure 4.8 shows the detection

probability for various target sizes and color thresholds, and Figure 4.9 shows a simulated

target image.

Figure 4.8: Target detection probability is shown as a function of target size (pixels). Each
point represents the success ratio for 1000 trials. Images were analyzed using connected-
component color segmentation on a target of size Ps. The color thresholds used in this analysis
are centered on the mean, and spaced according to the series label. For example, using data
from Table 4.1, the series labeled ‘1.0 σ’ identifies target pixels within a hue of 327.09±21.86,
a saturation of 65.37±18.60 and a value of 178.19±14.62.

Figure 4.9: A simulated target image (red darkened for grayscale contrast).
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The points in Figure 4.8 represent the connected component detection model, which

can be closely approximated as

p
(
D

∣∣∣I(Ps),MCC

)
= max




1− exp

(
−Ps − s1

a1

)

1 + exp

(
−Ps − s2

a2

) , 0


 , (4.4)

where s1, s2, a1 and a2 are the constants shown in Table 4.3, I(Ps) denotes an instantaneous

look (one processed image) at a target with an image projection size of Ps pixels, and MCC

denotes the connected component detection model. Notice that the detection probability is

a direct multiplication between a sigmoid and an exponential curve. Figure 4.10 shows the

simulation results and the approximations together.

Table 4.3: Target detection model parameters.
1.3 σ 1.5 σ 1.7 σ 2.0 σ 3.0 σ

s1 38 32 26 19.8 6.5
s2 46 40 34 27.8 14.5
a1 72.5 19 9 5 2.5
a2 8 3.8 2.8 1.6 0.96

If the detection probability is dependent on the color thresholds, then what are the

color thresholds likely to be? At present the appropriate thresholds are estimated visually

after viewing a number of color histograms from the background and the target. These

thresholds depend on how close the background color is to the target color, and how ac-

curately these colors have been sampled or estimated. Often the color thresholds are only

vague estimates based on a statement like “a bright orange jacket”, and there is no way to

know the true color of the target. However, threshold estimates can be significantly improved

before the search by sampling the color of something similar to a target in the lighting that

will be present during the search.
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Figure 4.10: Detection probability results, along with their approximations. The data points
here are identical to those in Figure 4.8. However, a black approximation curve is also shown
for each case. The approximation curve is generated using values from Table 4.3 in Eq.(4.4).

Due to these uncertainties, color thresholds typically do not extend as far as 3 σ

from the mean, nor are they precisely centered on the mean. Accurately approximating this

human-based threshold would require an extensive experiment where many users would set

the color thresholds in a variety of conditions. Such an experiment is outside the scope of

this thesis. However, during a flight test it was observed that it becomes nearly impossible

to detect these targets with this camera and algorithm if the UAV is further than 100 m

away. As will be shown, this could indicate that a detection probability closer to the 1.7 σ

curve is somewhat representative for visual threshold setting. Undoubtedly the accuracy

of the detection model could be improved by more sophisticated methods, but this offers a

starting point for now. Certainly this assumption is much less of a stretch than assuming

the definite range law! It is based on real experience with a common sensor.

Based on the 1.7 σ assumption, the detection probability becomes

p
(
D

∣∣∣I(Ps),MCC

)
= max




1− exp

(
−Ps − 26

9

)

1 + exp

(
−Ps − 34

2.8

) , 0


 , (4.5)
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Substituting the result from Eq.(4.1) into Eq.(4.5) yields an expression for the instantaneous

detection probability as a function of the observer’s distance from the object:

p
(
D

∣∣∣I(d),MCC

)
= max




1− exp


−

(
fp

d

)2

Aobj − 26

9




1 + exp


−

(
fp

d

)2

Aobj − 34

2.8




, 0




. (4.6)

In addition, if the object of interest has a typical cross-sectional area of Aobj = 1 m2, and

(fx, fy) are taken from Table 2.1, then the instantaneous detection probability is as shown

in Figure 4.11.

Figure 4.11: Instantaneous detection probability as a function of distance.

This predicts that if the UAV has a distance greater than 98 m, then no targets will

be detected. Also, being much closer than about 60 meters to a target does not significantly

increase the probability of target detection. This means that the extent to which a region is

searched can now be measured and the effectiveness of path planning strategies can be tested

for CCD camera agents. Of course, the accuracy of the model still depends on whether or

not the conditions and assumptions used to derive it are valid in a given environment. The
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target color must be different enough from the environment color such that thresholds can

be set that achieve the performance modeled by the 1.7 σ curve.

One might ask how motion affects this detection probability. The answer is that

the detection probability can be affected by motion if the detection algorithm is analyzing

interlaced video. Otherwise the shutter speed is typically fast enough that any foreseeable

UAV motion does not cause detectable blurring.

Interlacing is common in CCD cameras, and is a practice that takes every other pixel

line from one shutter opening and combines that information with the rest of the pixel lines

from the next shutter opening. This common process originated when data transmission was

more costly, and interlacing was an attempt to alleviate some of that cost.

However, even detection using interlaced video is typically not disrupted unless unless

there is significant motion. The test camera streams video at a rate of 30 frames per second,

with 1/60 s between shutter openings. If image motion is enough to move the target more

than one target width in 1/60 s, then target pixels in every other line will not be connected.

One way to correct for this problem is to only run the algorithm on half of the image, and

interpolate the color values of the pixels that are missing. If this is done, then the detection

probability should remain as derived.

The detection probability developed in this thesis depends on well-lit conditions. In

the dark, the shutter speed is slower and color blurring from motion is more prevalent. In

addition, hue measurements are much less accurate without adequate light.

4.1.2 Image Skew Considerations

Unfortunately, typical image skew causes an object’s image size to be less than it

would be if no image skew were present. This means that if an object’s expected size in an

image is Ps, based on the object’s distance and size alone, then its expected image size will

be Ps̆ after image skew.

76



Consider some small rectangular region, p, whose projected area onto a plane one

meter away is Ap = SxSy. (See Figure 4.12.) Due to image skew, the information that

would be viewed through region p is actually viewed through the smaller region p̆, with area

Ap̆ = Sx̆Sy̆. The position shift for any point in the image is

xŭc = xucks yŭc = yucks, (4.7)

where ks is the image skew factor whose value depends on radial distance from the image

center. (See Section 2.2.)

Figure 4.12: The shrinkage effect of radial distortion.

With the understanding gained from Section 2.2, one can compare the size of p̆ with

the size of p by equating their upper and lower boundaries through the factor ks:

(
xŭc +

Sx̆

2

)
−

(
xŭc −

Sx̆

2

)
=

(
xuc +

Sx

2

)
ks −

(
xuc −

Sx

2

)
ks. (4.8)

Simplifying then yields

Sx̆ = Sxks, and similarly Sy̆ = Syks. (4.9)
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This means that the area of p̆ is related to the area of p through

Ap̆ = Sx̆Sy̆ = (Sxks)(Syks) = Apks
2. (4.10)

Thus, if image skew reduces a region’s radial distance to 0.9 times its original value

(ks = 0.9), then its x and y dimensions are also reduced to 0.9 times their original value such

that the area is reduced to (0.9)2 times its original value. This is true as long as regions p

and p̆ are small enough that the same skew factor applies to the whole region with sufficient

approximation.

Now call region p̆ an image pixel, and let the region c̆ represent a collection of quali-

fying target pixels that is small enough to assume uniform ks in c̆. If the number of pixels

within c is Ps, then the number of pixels within c̆ is Ps̆, where Ps̆ = Psks
2. Thus, a more

accurate version of Eq.(4.6) is

p(D|I(d, r̆m),MCC) = max




1− exp


−

(
ks(r̆m)fp

d

)2

Aobj − 26

9




1 + exp


−

(
ks(r̆m)fp

d

)2

Aobj − 34

2.8




, 0




, (4.11)

where I(d, r̆m) denotes an instantaneous look from distance d, with the target appearing

at radius r̆m from the image center. MCC still denotes the connected component detection

model, and the term ks(r̆m) shows that ks depends on r̆m, as in Eq.(2.20). Figure 4.13 shows

what happens to the sensor footprint when image skew is accounted for.

4.2 Discrete Search

Attention must now be given to a practical method of recording these detection

probabilities as they accrue. This data can then be used to approximate an agent’s search
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(a) Detection probability without
image skew taken into account.

(b) Detection probability with im-
age skew directionality taken into
account.

(c) Detection probability with im-
age skew directionality and shrink-
age taken into account.

Figure 4.13: The effect of image skew on detection probability and sensor footprint. A plane
is viewed from 80 meters away using the camera calibrated in Table 2.1. Pure green indicates
p(D|I(d, r̆m),MCC) = 1, and pure red indicates p(D|I(d, r̆m),MCC) = 0. Although image skew
increases the viewing angle, it also decreases the peripheral detection probability.

width, as well as to measure UAV search performance in a given scenario. This data can also

be accessed during a search to indicate location probabilities and direct UAV movement.

4.2.1 Probability Map Generation

In order to plan a search and measure its effectiveness using a computer, one must

enter the realm of discrete search. Particularly, it is helpful to generate a probability grid

containing N discrete nodes to approximate the probability distribution in the search area.

The grid nodes are spaced some distance δg apart in the x and y directions over the region

of interest. Each node, ni, represents an area of δ2
g , and records two probabilities:

1. p(Ci), the probability that the target is contained in area Ai (given by the initial

probability map).

2. p(D(t)|Ci), the probability that the target has been detected by time t, given that it

is contained in area Ai.
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At any given point in the search, the overall probability of successful detection can be

calculated according to

p
(
D(t) ∩ C@

)
=

N∑
i=1

p(Ci)p
(
D(t)

∣∣Ci

)
, (4.12)

where C@ indicates that the target is contained within the area where detection occurs.

If an observer is allowed to view node ni at time t, then an update can be made to

describe the new detection probability for a target in Ai. The detection probability becomes

p
(
D(t)

∣∣Ci

)
= p

(
D̃(t)

∣∣Ci

)
+ p

(
D∗(t)

∣∣Ci

)− p
(
D̃(t)

∣∣Ci

)
p
(
D∗(t)

∣∣Ci

)
(4.13)

where

D(t) = target detection by time t,

D̃(t) = target detection before time t, and

D∗(t) = target detection at time t.

For example, let I(dij, r̆m, t) be an instantaneous look at node ni from UAV uj at a

distance of dij, where the target’s image projection is r̆m away from the image center, all at

time t. Assume that one UAV is viewing node ni such that p(D|I(dij, r̆m, t), Ci,MCC) = 0.6.

Also assume that previous observations have been made such that a target in Ai already has

a probability of 0.9 of being detected. In this case, the probability of detecting a target in

Ai by time t is

p
(
D(t)

∣∣Ci

)
= 0.9 + 0.6− (0.9)(0.6) = 0.96.

Thus, a node is used to approximate the detection probability of a target, given that the

target is in the area represented by the node.

At the beginning of the search each node has zero probability of having a detected

target in its area, and the probability that a target is in any given area is defined by some
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initial probability map. This probability map is generated by considering factors such as the

last seen position, probable target behavior, prominent landmarks and other evidence. The

probability grid is the medium on which the probability map is stored and updated. It is a

three-dimensional checklist that records whether or not all of the possible target locations

have been searched, and how well. The underlying grid can be updated in simulation or

during a real search, and can be helpful in planning effective paths. Grid updates require

access to both the camera calibration parameters and UAV telemetry.

To better understand the concept of a probability map, it is often helpful to see

one that has been generated based on a realistic search situation. This can illustrate the

motivation behind using a probability map, and show some of the considerations that come

into play. The following example is based on a recent BYU search and rescue exercise

(SAREX) that occurred just south-west of Utah Lake. The purpose of the exercise was to

test the usefulness of BYU’s current SUAV technology in supporting ground team search

and rescue operations. The test was also used to help identify the most important areas for

improvement in BYU’s SUAV systems.

Figure 4.14(a) shows the SAREX environment, where the search team encountered

the following scenario:

A group of Boy Scouts left their campground this morning at about 8:45 a.m.,

headed towards location D on four-wheelers. Among them was a boy named

Jimmy Nielsen: 13 years old, 210 lb., 5’9”, and diabetic. Along the trip Jimmy

was not feeling well and decided that he would walk back to camp. He was last

seen at point S, headed towards camp alone and without food or water. Jimmy

may not have taken any insulin this morning. When Jimmy left camp he was

carrying an orange jacket in his hands, and wearing blue jeans and a red or white

t-shirt. At 9:45 a.m. the scout group returned and discovered that Jimmy had

not made it back to camp. The time is now 10:30 and minimal searching has

been accomplished, but an SUAV is available to aid in the search.
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(a) A map of the area of interest. (b) The generated probability map.

Figure 4.14: A probability map is generated from the SAREX scenario where terrain data,
landmarks, last seen location and probable target behavior are all considered. The area map
contains the locations C = campground, D = destination, S = last seen location. Red indicates
the areas where Jimmy is more likely to be, while green indicates the less likely areas.

Based on this search scenario, a probability map such as that shown in Figure 4.14(b)

could be generated to describe Jimmy’s probable location. After separating from the group,

Jimmy would probably have headed back to camp along the main road. On the other hand, if

he became lost he might try to find a lookout point or the group. The probability that Jimmy

is within the area of interest at 10:30 a.m. is only 0.95, which is the sum of all probabilities

shown in Figure 4.14(b). However, the distribution is significantly biased towards roads, the

group destination, the last seen location and other topological features. There are many

assumptions that can be made when defining a probability map, and these are primarily the

responsibility of the search planner.

Probability map derivation is not the focus of this thesis, but hopefully the reader can

see that generating an accurate probability map can be a significant step towards maximizing
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search efficiency. If this probability map is searched in high probability regions first, followed

by a thorough sweep of its remaining areas, then the detection probability can be maximized

at each point in time. The first step in optimal search is generating this map.

It is also useful to note that the probability map and grid discussed in this section

record the probabilities associated with the presence and detection of one target only. For

the multiple target case another map and grid might be present to record the same infor-

mation related to each additional target. Indeed, this could be necessary if two targets are

not expected to behave the same. However, if the initial probability map and detection

probabilities are assumed to be identical between more than one target, then only one map

and grid may be necessary.

For example, say that at some point in time the information from map and grid

1 indicates a detection probability for target 1 of 0.5, and the information from map and

grid 2 indicates a detection probability for target 2 of 0.6. To calculate the probability of

detecting at least one target, one would find it to be 0.5 + 0.6− (0.5)(0.6) = 0.8. However,

if the information from map and grid 1 was assumed to be representative of the detection

probability for both target 1 and target 2, then the answer would be 0.5 + 0.5− (0.5)(0.5) =

0.75.

4.2.2 Search Width Characterization

In order to optimize UAV search performance, some underlying search parameters

must first be chosen. Assume for a moment that there is a single Dell Inspiron 600m com-

puter (1.8 GHz, 512MB RAM) at the site, and that this computer carries the task of running

Virtual Cockpit. This includes running the connected-component video processing to identify

targets, as well as maintaining constant communication with the UAV through the ground-

station modem. (See Section 2.5.1.) With this setup the video processing can interfere with

other essential functions if frames are analyzed much faster than twice per second. This

dictates the rate and times at which the grid is updated.
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Here it is necessary to introduce a quantity called the area detection probability, Λ.

This is the average node detection probability in an area, multiplied by that area, or

Λ =

N∑
i=1

p(Ci)p
(
D(t)

∣∣Ci

)

N
AN = δ2

g

N∑
i=1

p(Ci)p
(
D(t)

∣∣Ci

)
, (4.14)

where AN denotes the area represented by the N nodes being considered. The area detection

probability is a measurement of not only how much detection probabilities have changed,

but over what area.

If a UAV flies over a previously un-searched region, then the rate of the area detection

probability change is directly proportional to the effective UAV search width according to

Λ̇ = WVg (4.15)

where

W = the UAV effective search width,

Vg = the UAV groundspeed.

Thus, a maximum Λ̇ corresponds to a maximum W for a given groundspeed.

Due to the correlation between search rate and UAV velocity, one might push the

UAV to its maximum velocity during a search. However, the maximum velocity can also

cause high fuel consumption, high down time and few target glimpses. Assuming negligible

wind such that the flight speed is the groundspeed, the average search rate for multiple

flights can be described by

Λ̇ = W
df

tf + tg
= WVg

tf
tf + tg

, (4.16)
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where Λ̇ is the average search rate, df is the distance covered by a single flight, tf is the

time of a single flight, and tg is the time spent on the ground between flights. The time of a

single flight is determined by the parameters discussed in [17], and can be approximated as

tf =
nBCBVB

Pr/η
(4.17)

where

nB = the number of batteries (2 in this case),

CB = battery storage in Coulombs

(
1300 mAh× 3.6

C

mAh

)
,

VB = battery voltage (12V in this case), and

Pr/η = the electric power required.

(Pr = .1968V 2
g − 4.4275Vg + 33.483, and η ≈ .3 are approximations from [17].)

If the search width is assumed to be constant in Eq.(4.16), then as tg becomes small

the Λ̇-maximizing velocity is the UAV maximum velocity. However, as tg becomes large,

the Λ̇-maximizing velocity is the UAV maximum range velocity. For this thesis a large

tg is assumed such that the optimum flight velocity is the maximum range velocity, or

approximately 13 m/s for the small Unicorn UAV platform shown in Figure 2.13 [17, p.26].

The next parameters to be selected are UAV height above ground and camera angle.

To select these, a series of simulations were run (Vg = 13 m/s, Frame rate = 2 frames/s) in

which the camera passed over a probability grid at various altitudes and camera angles. The

maximizing set (h, θo), illustrated in Figure 4.15, was found by running the UAV over the

grid using a constant height and camera angle for each run. Altitude was evaluated from 0

to 100 m in increments of 1 m, and camera forward angle was evaluated from 0◦ to 90◦ in

increments of 1◦ Figure 4.16 shows the Λ̇ maximum and the Λ̇-maximizing camera angle for

each altitude. The figure presents results both with and without image skew.
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Figure 4.15: Selecting the Λ̇-maximizing value for h and θo. The UAV is traveling over a
probability grid, and the probability of detection at each node is being recorded. The solid
green nodes have a detection probability near unity,and the solid red nodes have a detection
probability of zero.

(a) Maximum Λ̇ without image skew. (b) Maximizing θ without image skew.

(c) Maximum Λ̇ with image skew. (d) Maximizing θ with image skew.

Figure 4.16: Subfigures (a) and (c) show the maximum Λ̇ possible at each altitude. Subfigures
(b) and (d) show the maximizing θo at that altitude. The top two subfigures represent data
where no image skew is accounted for, and the bottom subfigures represent data where image
skew is accounted for. Nodes are updated every 0.5 seconds according to Eq.(4.13).
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It is interesting to note the difference between Figures 4.16(a) and 4.16(c). The

image skew seems to reduce the camera’s search capability between the altitudes of about

60 and 85 meters. This is the range where the corners of the image would be particularly

helpful at increasing a target’s detection probability through time integration. However,

when the corner detection range is reduced through image skew, Figure 4.16(c) shows that

it is advantageous to stay lower to the ground. The maximum value in this figure occurs

at (h = 62m, θo = 2◦), which is selected as the optimal search configuration when using

this CCD camera detection model. Remember that the data in Figure 4.16 depends on the

camera calibration parameters, the target size (Aobj = 1 m2), the UAV velocity (13 m/s),

and a grid update once every half second.

The data obtained to calculate Λ̇ can also be used to find the effective search width

if the p(D|Ci) for each node is recorded and the search path is known. As the simulated

SUAV passes over an area, the resulting grid updates will reveal the time-integrated detection

probability at each node. This detection probability may then be compared with the node’s

distance from the UAV path to form the lateral range curve. (See Figure 4.17.) The search

width may then be calculated by integrating under the lateral range curve.

Figure 4.17: The maximum lateral range curve at various altitudes. This plot uses the
altitudes shown in the key, along with the corresponding camera angles from Figure 4.16(d).
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Figure 4.18 shows the maximum search width possible at each altitude. This search

width corresponds directly to the rate of change in the area detection probability. Notice

that the data in Figure 4.18 is an exact scaling of the data in Figure 4.16(c). The two are

related through Eq.(4.15), where Vg = 13 m/s. However, the data in Figure 4.16(c) was

measured by recording Λ̇ during each UAV pass, and the data in Figure 4.18 was measured

by integrating under the lateral range curve.

For an altitude of 62 meters and a θo of 2◦, the effective search width is 89.3 meters.

This information can now be used to space search paths in a real search.

Figure 4.18: Maximum search width as a function of altitude. This plot uses the alti-
tudes shown along the horizontal axis, along with the corresponding camera angles from Fig-
ure 4.16(d).

A similar test can be run to evaluate the effectiveness of a side-looking camera. To

create Figure 4.19, Λ̇ is calculated over the entire range 0 ≤ θo ≤ 90, then the maximum Λ̇

is selected for each altitude. The difference is that θo is measured laterally from the flight

path and the down direction.

Although there is a region where Figure 4.19 shows a greater Λ̇ than in Figure 4.19, it

is only for altitudes of 3 m or less, with the camera looking out nearly parallel to the ground.

However, this region is undesirable in real flight due to the difficulty of avoiding obstacles at

this altitude. Thus, with the intent of applying these principles to real SUAVs, a forward-

looking camera is used. It is also interesting to note that if the algorithm is given the freedom
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(a) Maximum Λ̇ for a side-looking camera. (b) Maximizing θo for a side-looking camera.

Figure 4.19: Subfigure (a) shows the maximum Λ̇ possible at each altitude for a side-looking
camera. Subfigure (b) shows the maximizing θo at that altitude. The azimuth of the camera
is ±90◦, or lateral to the path, and θo is the angle between the camera direction and straight
down. Image skew is included in the detection model used to generate the data, and nodes are
updated every 0.5 seconds according to Eq.(4.13).

to point in the Λ̇-maximizing direction at each time step, then it ends up scanning back and

forth (changing θo for the side-looking camera) to maximize search width. Understandably,

this would be the optimum behavior for computer detection using a gimbaled camera, but

it is very sickening for a human to watch.

4.2.3 Turning

Traveling in a straight line is fabulous if the search area is only one search width

wide. However, most searches require the UAV to turn, which can leave considerable doubt

as to the search effectiveness in those regions. So, there are several questions to answer for

path-planning purposes: Can a turn be used as valid coverage of an area? How much of a

turn is reasonable? What is the detection rate in a turn?

The simulations that answer these questions are very similar to those used to charac-

terize a search width. However, the turning simulations all take place at an altitude of 62 m,

a forward camera angle of θo = 2◦ and a velocity of 13 m/s. The only independent variable

now is the flight radius. Figure 4.20 shows this type of simulation, where the UAV is put into

a turn and allowed to view the probability grid. The lateral range curve is again calculated

based on each node’s distance from the UAV path. These curves are shown in Figure 4.21.
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Notice that the lateral range curve generated by a 300 m radius turn is nearly symmetric,

similar to that of a straight path. This is because there is only a small bank angle required

to hold a 300 m radius turn, and the camera can point almost directly at the flight path.

On the other hand, tighter turns result in a detection probability bias towards the inside of

the turn. The sharp inner slope seems to be caused by the image boundary, while the more

gradual outer slope is caused by nodes that are too far away to be fully detected.

Figure 4.20: Characterization of search performance in a turn.

Figure 4.21: Lateral range curves during various turns at 60 m altitude.
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Comparing Figure 4.21 with Figure 4.22 reveals that even though the search width is

decreasing for tighter turns, Λ̇ is increasing. The UAV velocity is still 13 m/s, but the camera

is pointing outward from the turn, and is able to search at a greater rate than normal. Thus,

with decreasing flight radius, the camera is duplicating less of the searching effort by looking

at new area in greater quantity. The increasing Λ̇ effect continues until it is overcome by

the camera leaving spaces between consecutive frames (frame rate of 2 frames/s) and/or the

viewed region being too distant for detection. The function printed in Figure 4.22 is an

approximation of this increasing Λ̇ behavior, where the data point at 21 meters is suffering

from some of the ill effects described.

Figure 4.22: Λ̇ as a function of turning radius.

Figure 4.23 is a surprisingly linear set of data comparing the search width to the bank

angle. The point at (π
2
, 0) is a theoretical limit where the UAV is executing an instantaneous

turn, and going over everything so fast that the detection probability for a single pass is

zero. If this point is removed, then the linear fit remains largely un-changed. This indicates

that in some cases the characterization of search width in a turn may be largely predicted

by a line between the non-turning search width and this theoretical limit.

This analysis shows that significant searching can be done in turns, even with a fixed

camera. However, although the rate of search can actually increase in a turn, the search
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Figure 4.23: W as a function of bank angle.

width seems to diminish. These are important properties to understand when planning

UAV search paths.

Although the results from this section are not explicitly used in Chapter 5, they are

offered for those whose path planning can incorporate these principles to receive greater

precision and fewer missed areas while turning. In general, during a turn:

1. The search rate increases.

2. Paths should be placed closer together.

This means that turns should not necessarily be avoided, but should be planned with

a purpose. They can expedite the search rate for a fixed-camera agent if they are used

properly.

4.2.4 Optimal Discrete Search

When dealing with a non-uniform discrete probability map it can be useful generate

an optimum detection function. This serves as a standard for comparison when judging the

effectiveness of path planning approaches. To generate the optimum detection function, one

must know the node search rate

Ṅ =

NUAV∑
j=1

Ṅj, (4.18)
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where Ṅj = Λ̇j/δ
2
g

nodes
second

for each agent, and Λ̇j is obtained from Eq.(4.15) for each agent.

Ṅ defines how fast the UAVs can collectively search nodes during straight and level flight.

Using this definition, an optimum detection function may be created as follows:

• Estimate or measure the search width and groundspeed for each agent.

• Calculate Λ̇ for each agent using Eq.(4.15).

• Order the nodes in descending probability from i = 1 . . . N .

• Assume that the nodes are searched at a rate of Ṅ .

• Step through the nodes from first to last, recording a new time and probability after

each node. Thus, evaluation of node i yields ∆t = 1/Ṅ and ∆p(D ∩ C@) = p(Ci).

This will generate a detection function that is the discrete equivalent to Koopman’s

definite range law for evaluating a uniform area, as shown in Figures 4.24(a) and 4.24(c).

However, this method also provides a useful analysis for more complex probability maps as

shown in Figure 4.24(b) and 4.24(d).

This is a fairly simple way to evaluate how well the search would progress if the agents

could be at the most beneficial location on the map at all times. Real agents are typically

unable to do this, but significant differences between the optimum detection function and

an actual detection function tend to point out where improvements in the search strategy

can be made.

Several original contributions have been made in this chapter. These include a new

CCD detection model, a discrete method for measuring search width and search rate us-

ing a probability grid, and a method for calculating an optimal detection function for any

probability map.
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(a) A uniform discrete probability map. (b) The SAREX discrete probability map
from Section 4.2.1.

(c) The optimum detection function for the uni-
form map.

(d) The optimum detection function for the
SAREX map.

Figure 4.24: In these two discrete probability maps, the total contained target probability is
0.95, and one UAV is searching. In the SAREX case it is possible for the detection probability
to increase more rapidly at the beginning due to a search of the highest probability nodes first.
However, notice that the optimum search of both maps becomes complete at the same time.
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Chapter 5

Path Planning Strategy

SUAVs are approaching the point where they can contribute significantly to many

missions. For instance, the MAGICC Lab has developed the capability of hand-launching

an SUAV into a mission that is completely controlled by the autopilot all the way from the

auto-takeoff to the auto-land cycle [18]. SUAV search paths can also be followed through

mountain canyons or in support of a spiral viewing pattern [18]. As these capabilities continue

to develop, it is becoming very important to measure the effectiveness of the applied search

method. This chapter shows how search theory can be applied to the path planning task.

In defining a path planning strategy there are many options. Often an area is searched

using some kind of offset path, as is done in a Zamboni or contour search[7, 19]. However, if

an optimal search strategy is to be followed, then perhaps the agents should go straight to

the high-probability regions. Then again, maybe a combination would be better.

The offset path approach typically ignores the fact that some regions are more likely

to contain the target than others. Thus, it can be slower at finding the target in some

situations. However, the redeeming feature of the offset path approach is that upon arriving

at the end of the last path, the probability of having detected the target is greater than if

the same search effort had been applied in some other way1.

In this chapter the metrics of search efficiency and search completeness are offered as

original contributions. In addition, two plans are developed and combined into a composite

strategy. The first is designed to be efficient. The agents seek out high probability regions

1This is true if (a)the target is stationary, (b)the other search is incomplete or has redundancy, and (c)the
search environment consists of a planar surface such that altitude changes are not required.
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using a locally greedy search, coordinated by a global assignment. The second plan seeks to

be complete. It generates offset paths from a local boundary according to search width, and

assigns each agent to follow the nearest available path.

These plans are carried out in the Search Simulator, where UAVs are assigned ap-

proximate dynamic and aerodynamic constants according to the size, shape and weight of

MAGICC Lab UAVs. As such, some of the numbers used for UAV control in these simu-

lations are presented for demonstration purposes, but will need to be altered for use with

other airframes.

5.1 Efficiency vs. Completeness

So which is better, the greedy or offset path method?

The answer depends on which is more important to the success of the search: efficiency

or completeness. These two qualities apply particularly to a finite search where limited

search effort is available. The search efficiency, ξ(t∗), and search completeness, ζ(t∗), of a

given detection function are shown in Figure 5.1. They are defined as

ξ(t∗) =

∫ t∗

0
p
(
D(t) ∩ C@

)
dt

t∗
and ζ(t∗) = p

(
D(t∗) ∩ C@

)
, (5.1)

where t∗ marks the time at the end of the search.

Figure 5.1: Efficiency and completeness for a given detection function.
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Notice that the efficiency and completeness of two different detection functions are

only comparable for a given ending time. As the search begins, a strategy that is more

efficient is also more complete. However, as time progresses a less efficient strategy may attain

higher completeness than its competitor. Thus, a highly complete strategy also has a certain

level of efficiency, and a highly efficient strategy also has a certain level of completeness.

A re-evaluation of Figure 3.12 reveals that an increase in efficiency leads to a decrease in

mean detection time. Completeness, on the other hand, is a measure of the target detection

probability when all of the available search effort has been expended. In certain situations

it is beneficial to switch off between an efficient plan and a complete plan the updated

probability map changes.

5.2 The Greedy Search

Consider the agent in Figure 5.2. Assume that this agent has position w and heading

ψ in the world coordinate frame such that the UAV Xs stability axis points in the ψ direction.

One way to execute a greedy search is to evaluate local probabilities at a distance Rp and

angle ψp relative to the UAV, and go towards the highest probability.

Figure 5.2: Testing a local probability.
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Each node in the probability grid is already keeping track of the probability a target

is within the node’s area, and the probability that it has been detected given that it is in

the node’s area. However, the probability of interest to a UAV is the probability that any

node’s area contains an un-detected target:

p
(
U(t) ∩ Ci

)
= p

(
U(t)

∣∣Ci

)
p(Ci) (5.2)

or

p
(
U(t) ∩ Ci

)
=

(
1− p

(
D(t)

∣∣Ci

))
p(Ci). (5.3)

To examine the most profitable direction, a point qψp can be located in the world

frame according to some assumed direction, ψp, and some assumed range, Rp. This point is

qψp =




wx + Rp cos (ψ + ψp)

wy + Rp sin (ψ + ψp)

0




.

To examine the benefit of viewing qψp , some measurement must be made to determine

the average p̄ψp =
∑Nψp

i=1 p(U ∩Ci)/Nψp in its vicinity, where Nψp is some number of selected

nodes around qψp . This average measures the benefit of traveling in the ψp direction and

viewing the surrounding area of qψp . Due to the fact that the traveling UAV will sweep out

a path whose width is less than or equal to the maximized search width, an estimate for p̄ψp

may be obtained by averaging p(U ∩ Ci) for all nodes within distance W/2 from qψp .

The next task is to select the Rp and ψp values. If Rp is too small, then the UAV

will end up getting p̄ψp estimates that include some recently-viewed nodes, which can cause

fidgety behavior. On the other hand, if Rp is too large, then the UAV may change course

before having an opportunity to pass over the previously selected qψp . Fortunately, in the

primarily downward-looking case, the UAV does not affect the current probability of nodes at

a range more than W/2 away. This distance, along with the W/2 sampling radius described
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above lead to an Rp total value of W . At this range, the angle at which qψp is considered

must be chosen to allows the UAV enough turning time to view them. However, a maximum

ψp range is desirable to allow the UAV greater choice among local maximums. This thesis

uses ψp = {−2.0,−1.8, . . . , 1.8, 2.0} radians, which spans ±115◦ because simulations have

shown that the modeled UAV can turn quickly enough to view qψp points that are 89.32 m

away at these angles.

An algorithm could certainly look further ahead than Rp if desired, and some re-

searchers have investigated more sophisticated algorithms where the UAV flies along some

locally-optimal path [8]. However, the given procedure is one that fulfills the requirement of

viewing nearby locations in a greedy fashion. Due to the fact that this algorithm is intended

for use with one or more UAVs, each UAV uj is discouraged from searching near other UAVs

by modifying p̄ψp according to

p̄′ψp
= p̄ψp

N
UAV∏

n=1

kun, n 6= j, (5.4)

where NUAV is the number of UAVs, and UAV uj is the one making the directional decision.

This uses

kun =





0 if dun < Rp

dun
Rp

− 1 if Rp ≤ dun < 2Rp

1 if dun ≥ 2Rp

, (5.5)

where dun is the distance from some other UAV, un, to the point qψp . In other words, kun

is a scale factor that modifies the average probability associated with qψp such that p̄′ψp
is

zero within Rp of another UAV and rises linearly until p̄′ψp
= p̄ψp at dun ≥ 2Rp. The range

Rp is used in kun because it is the same radius that is used in directional decision-making.

Thus, the given logic always makes heading towards a proximate UAV look un-attractive in

the greedy search.
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Each UAV is commanded towards the maximum p̄′ψp
value at each time step according

to

ψg =
τψg,last + ∆tψp,max

τ + ∆t
, (5.6)

where ψp,max is the ψp corresponding to the maximum p̄′ψp
value, τ is a time constant, and

∆t is the time step size. Eq.(5.6) is a low-pass filter on the commanded heading, where

τ has been tuned to produce the desired dynamics with the assumed UAV airframe. The

time constant is chosen to allow the UAV to turn relatively quickly, but the low-pass filter

prevents an over-aggressive response as the UAV travels over a changing probability terrain.

For the simulated UAV, a value of τ = 1.2 is used.

One of the problems in executing a purely greedy search is that agents can wander

around for a long time chasing a local maximum that is not nearly as profitable as in other

regions of the map. The greedy search2 is part of an efficient plan, but lacks a needed holistic

view. This can be added by directing agents to more profitable areas according to a global

mandate, but still allowing them to execute a locally greedy search.

In order to steer agents towards the most profitable regions on a probability map,

these regions must first be identified. (See Figure 5.3.) This is done using a method that is

similar to that of a connected-component video processing algorithm. The nodes that are

higher than a given probability threshold are identified and collected into groups. These

groups are characterized according to their contained probability

p(U ∩ Ck) =

Nk∑
i=1

p(U ∩ Ci) (5.7)

and their total area

Ak = δ2
gNk, (5.8)

where Nk is the number of nodes in group Gk, δg is the node spacing, and p(U∩Ci) is defined

in Eq.(5.3).

2Refers to being locally greedy, or greedy in the spatial domain.
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Figure 5.3: On this probability density surface, red indicates a high p(U ∩ Ci) compared to
other regions, and green indicates a low p(U ∩Ci) compared to other regions. Groups of nodes
with a probability above a certain threshold have been identified and bounded with a blue line.

When searching with more than one UAV, any given group, Gk, most likely has a

different probability rate to UAV uj than it does to any other UAV. This rate can be defined

as

ṗjk =
p(U ∩ Ck)Vg

djk + Ak/W
, (5.9)

where djk is the closest distance from UAV uj to group Gk. Notice that the denominator is

an approximation of the travel distance required to get to group Gk and search it, and the

numerator contains a sum of the node probabilities within Gk. Multiplying this probability

length density by Vg yields an estimate of the probability rate associated with searching

group Gk. Due to the fact that p(U ∩ Ck) and Ak are constant for a given node group,

the maximum ṗjk for a given node group also indicates the closest UAV3. However, Eq.(5.9)

is only an estimate of the probability rate, and does not take into account the benefit of

viewing regions on the way to Gk.

This thesis executes search assignment as follows:

1. Each UAV-group pair is assigned a probability rate according to Eq.(5.9.

2. The list of probability rates is ordered from highest to lowest.

3This assumes that an identical velocity and search width common to all agents.
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3. The UAV and node group corresponding to the maximum probability rate are assigned

to each other.

4. The list is sequentially evaluated, and UAV/node group assignments are made when

the probability rate corresponds to a UAV and node group that have been previously

un-assigned.

This means that every UAV will be assigned a group if there are more groups than

UAVs, but that some UAVs will go un-assigned if there are more UAVs than groups. The

un-assigned UAVs continue to search in a locally greedy fashion. Once a UAV has been

assigned to a group, it is commanded to fly towards it if it is further than dG from it. Once

it comes within distance dG from the group it begins a local greedy search. This thesis uses

a value of dG = Rp to ensure that the UAV comes close enough to detect the desired node

group.

Although it is desirable to direct UAVs to more profitable areas, meddling with their

search by giving them a new assignment can pull them away from some smaller probabilities

that may need to be re-searched later. Thus, it is beneficial to establish an update rate

that will not allow the UAVs to search in un-profitable regions for too long, but which offers

only periodic guidance. Accordingly, the groups and assignments are calculated once every

tA = 20 seconds, with node probability updates still occurring once every half second4. This

greedy approach ensures that profitable nodes are accounted for in the search plan whether

they are nearby or not.

As mentioned previously, this global assignment depends on some number of identified

nodes that have been placed into node groups, where the appropriate number of nodes is

experimentally determined. There should be enough nodes to give the UAVs guidance, but

not so many nodes that the UAVs are directed to huge, un-helpful node groups. This thesis

4As described in Section 4.2.2, a probability update occurs once every half second because that is the
fastest that the given ground station is able to process a video frame while coordinating UAV flight.
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groups tG = 7 seconds-worth of nodes once every tA = 20 seconds. Based on tG, the actual

number of nodes that is grouped is NG = ṄtG, where Ṅ is defined in Eq.(4.18).

5.3 The Contour Search

The greedy search can be an effective way to search a complex probability distribution,

but there often arrives a time when the probability is uniform within a defined region. It is

more efficient in this case for a UAV to systematically follow offset paths that are spaced W

apart, rather than to seek out probability differences.

Generation of offset paths has been extensively studied in the field of pocket milling.

Hatna claims that for regular shapes a zigzag pattern is more efficient, but for complex shapes

a contour pattern is more efficient [20]. (The word ‘efficient’ here refers to the shortest path

length.) Yao and Gupta elaborate on this statement by developing a branch and bound

method that generates a composite cutter path using a combination of zigzag and offset

contour paths. They claim that this new path is guaranteed to be shorter than traditional

zigzag or contour paths alone [21].

After a greedy search has exploited the most profitable regions, the remaining prob-

ability map often has a shape that is quite complex. Thus, path generation could be done

with the branch and bound method, but for simplicity this thesis implements a pure contour

pattern from the VRONI algorithm of Martin Held. This algorithm generates contour paths

by trimming offset contour segments to the boundaries of an extended Voronoi diagram.

Path generation is not the focus of this thesis, and is not discussed in more detail here.

However, readers interested in this subject are invited to to explore the works of Martin Held

in [22] and [23]. For now, it is sufficient to understand that some method has been used to

generate offset paths at specified intervals (search widths) from the boundary.

Once these offset paths have been created, it is important to note that great care has

been taken to ensure that they do not overlap, and that they are spaced W apart. Thus, a

contour search requires that they be followed in some organized and non-overlapping fashion.
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This could be done by simply allowing the UAV to follow the contours using the vector-field

approach presented in [24]. However, this method can cause a drastic and un-predictable

viewing pattern when the UAV encounters sharp direction changes. Another way to follow

the contour lines is to use the sliding segment technique shown in Figure 5.4. This technique

can be used to predict turns in the upcoming contour path, and keep the camera largely

pointed at the path.

Figure 5.4: The sliding segment method.

This technique is accomplished by keeping track of qc, a point representing the forward

progress of the UAV along the contour path. Using a segment length of Ls = 90 m, qf is

created Ls/2 in front of qc along the contour path, and qb is created Ls/2 behind qc along the

path. The UAV is then commanded to fly along segment qbqf using a vector-field approach,

and the segment midpoint, qm, is used as a benchmark for UAV forward progress along the

segment. At each time step the UAV moves forward some distance δm along segment qbqf ,

and point qc is advanced the same δm along the contour path. Then qf , qb, qm and δm are

calculated over again.
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The sliding segment method is one predictable way to control the UAV system. The

UAV follows a ‘sliding segment’ that changes direction in anticipation of upcoming curves,

keeping the camera largely pointed at the path. Together, offset contours and the sliding

segment method represent one way to search an area in a systematic manner with a fixed

camera.

Un-like the greedy search, the contour search does not have time or node thresholds.

All of the non-zero nodes are simply grouped and a boundary is drawn around them. Then

the offset contours are generated and followed by the nearest available UAV. This method of

assignment illustrates one of the offset contour search assumptions: probability uniformity.

UAVs are assigned to follow the nearest available contour because all contours are assumed

to have equal benefit other than their distance from UAVs.

5.4 The Composite Search

A composite search can be executed by switching off between the greedy search and

the offset contour search at different times. In general, the greedy search is used unless a

certain degree of uniformity is present, and then the contour search is used. The composite

search method is not un-like the greedy search. It simply uses a new time threshold, tC to

determine how many seconds-worth of nodes must be within a single group before a contour

search is warranted. The rate at which UAVs are capable of searching (Ṅ) then determines

the precise node count according to NC = ṄtC . Once contours have been drawn they must

all be followed before the UAVs switch back to greedy searching.

Rather than add more detail about how to carry out such an algorithm, it is helpful to

see a small example of when the greedy and contour searches might be appropriate. Assume

that there are two UAVs searching a probability map, each traveling at a velocity of 12 m/s

and having a search width of 8 m. Also assume that the underlying probability grid has a

spacing of δg = 20 m. Under these conditions, and assuming no overlap, nodes are searched

at a rate of
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Ṅ =
NUAV VgW

δ2
g

= .48
nodes

s
, (5.10)

where Ṅ is the node search rate defined in Eq.(4.18), NUAV is the number of UAVs, Vg is

groundspeed, and W is agent search width.

The greedy search and the offset contour search are both dependent on groups of

nodes that have been identified and contained in a boundary. These nodes are identified

because they are each above some probability threshold, PT . For the greedy search, assume

that at any one time it is desirable to have at least tG = 6 s worth of bounded nodes, where

tG is the time threshold for the greedy search. This means that it is desirable to have at

least NG = ṄtG = 2.88 nodes bounded at any one time, where NG is the node threshold for

the greedy search.

Now consider the probability map and node list shown in Figure 5.5. If it is desirable

to have at least NG = 2.88 nodes bounded at any time, then by stepping down the node list

to the first node with i ≥ 2.88, the probability threshold PT is found. This threshold can

then be used in the spatial domain to identify and establish boundaries around all nodes

with probabilities greater than or equal to PT . The given method for selecting PT causes

the collective number of nodes in all boundaries, NB, to always be greater than NG.

When PT is selected in this way, each resulting group, Gk, contains some number of

nodes, Nk. However, all nodes with p(U ∩Ci) ≥ PT are included, which makes it possible for

the Nk of some groups to become large. When this happens, some time threshold, tC , can

be used to establish how many seconds-worth of nodes must be contained in any one group

to justify starting a contour search. If tC = 23 s, then the number of nodes that must be

contained is NC = ṄtC = 11 nodes, where NC is the node threshold for a contour search. If

more than 11 nodes are contained within any one boundary, then a contour search begins.

To illustrate this logic, assume that at some point the UAVs were able to search the

probability map in Figure 5.5 such that the three nodes in the upper-right hand corner all

have values of p(U ∩ Ci) = .05. The new situation is shown in Figure 5.6.
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Figure 5.5: A small example probability map and the list of nodes, ordered highest to lowest.
The numbers shown in the grid represent the probability p(U ∩ Ci) for each node ni. The
bounded nodes are above some probability threshold, PT , which is chosen by stepping down
the ordered list to the first node with i ≥ NG.

Figure 5.6: Offset contours on the example probability map. If the probability threshold
is PT = .05, then NB = 12 nodes are bounded as shown. If the contour threshold is NC =
11 nodes, and this is less than Nk, then offset contours are drawn and a contour search begins.

Stepping down the list to the node with i ≥ NG selects a probability threshold of

PT = .05, which causes a boundary to be drawn around 12 nodes. This also causes Nk to be

greater than or equal to NC , or 12 ≥ 11, which causes a contour search to begin.

Hopefully these examples have been helpful in understanding the method of composite

search for this thesis. In contrast to the above examples, this thesis uses the values of tG = 7s

and tC = 100s as the time thresholds for the greedy and contour search respectively. In the
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greedy search UAVs are directed towards profitable areas that are identified using tC . This

parameter must be high enough that the UAVs typically have bounded areas to work on,

but low enough that they are not directed to large areas that offer little guidance. On the

other hand, tG is chosen to be high enough that a contour search will begin when a sizeable

search area exists, but low enough that the search areas do not have to be excessively large

for this to happen. Both tG and tC are chosen experimentally.

The presented logic is one way to identify when a sufficient degree of uniformity exists

to begin a contour search. In a more general sense, it also indicates when to perform a search

that focuses on completeness vs. one that focuses on efficiency. Notice that this strategy

parallels the principle of reversal for large Φ discussed in Section 3.4 in that the regions of

high probability are searched until a fairly uniform distribution remains. At this point it

becomes profitable to not only change the region of search, but also the method of search.

5.5 Simulation Results and Discussion

There are trade-offs in choosing to search using the greedy algorithm vs. the offset

contour algorithm, and a composite search can produce better results in some cases. In this

section three probability maps are searched using the greedy algorithm, the offset contour

algorithm, and the composite algorithm. Each map is searched using a different number of

UAVs, and is designed to show specific cases where each algorithm might be most effective.

However, the “effectiveness” of each algorithm is subject to interpretation, and depends on

the relative importance of efficiency vs. completeness to the success of the search. This

section ends with a comparison between efficiency and completeness for each algorithm, and

compares them against the uniformity of the probability map.

The first simulation shows when it might be best to use the greedy search algorithm

described. The probability map uses a Gaussian distribution to define p(U ∩ Ci) for each

node, as shown in Figure 5.7. Red represents a high p(U ∩ Ci) relative to other nodes, and
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green represents a low p(U ∩ Ci) relative to other nodes. This region is searched with one

UAV.

Figure 5.7: A Gaussian probability map.

Figure 5.8 shows the detection functions for a search of this region using both greedy

and offset contour methods. The optimum detection function is also shown for comparison,

and the actual paths are shown in Figure 5.9.

The blue curve in Figure 5.8 is labeled ‘Composite / Greedy’ because a composite

search is used to obtain this curve, but it is always appropriate to use a greedy search for

the given situation and time frame. Notice that in this case the greedy search follows the

optimum much better than the contour search. This is because the agent goes straight to

the center of the Gaussian distribution, then follows the local probability in a manner that

approximates a spiral search. The contour search, on the other hand, follows a methodical

set of paths to cover the region, which causes the detection probability to rise more sharply

at times when the more profitable regions are being viewed.
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Figure 5.8: Detection functions for a search of the Gaussian probability map.

(a) The offset contour pattern. (b) The greedy search pattern.

Figure 5.9: The search paths used on the Gaussian probability map. These paths are applied
to the map in Figure 5.7 to generate the detection functions shown in Figure 5.8. The contour
pattern is one type of offset contour method, and generates a typical systematic detection
function. The greedy path is less organized and less complete, but searches high probability
regions early.
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The completenesses and efficiencies for each of the different search methods are shown

in Table 5.1. Notice that the greedy search yields an efficiency that is significantly higher than

the contour search, and arrives at a completeness that is comparable to that of the contour

search. However, the contour search systematically proceeds until it is more complete than

the greedy search at 200 seconds. Thus, the early efficiency of this type of greedy search

sacrifices some degree of future completeness.

Table 5.1: Completeness and efficiency for searches of the Gaussian map.
ζ(200) ξ(200)

Optimum 0.996 0.694
Greedy 0.933 0.642
Offset Contour 0.926 0.325
Composite 0.933 0.642

Notice that offset path plans like the Zamboni or contour search are not always the

best. In fact, this case is an example where an alternate plan yields a 50% increase in

efficiency as compared to an offset path plan. In addition, the greedy approach would also

be the more complete plan if the search ended before 198 seconds. Thus, the decision of

which plan to use greatly depends on the shape of the probability distribution, the benefit

of efficiency vs. completeness, and the amount of search effort available.

The next example is a two-agent search of a uniform probability map, and is an

example where the offset contour search might be best. (See Figure 5.10.) Each node within

the red region has an identical p(U ∩Ci), and nodes outside the red region have a p(U ∩Ci)

of zero.

Figure 5.11 shows the detection functions for a search of this region. The ‘Composite

/ Contour’ curve is labeled as such because it is a composite search, but always exhibits

offset contour behavior. The UAVs have finished following all of the available contours at

about 570 s, and a new set of contours is generated. Figure 5.11 shows that even at the end
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Figure 5.10: A uniform probability map.

of the first contour search there are still missed areas that must be re-visited. Figure 5.12

shows the actual paths that are used.

Figure 5.11: Detection functions for a search of the uniform probability map.

Table 5.2 shows that the contour search is both more efficient and more complete

than the greedy search after 577 seconds. However, the greedy search is not far behind.

The drawback of the greedy search is that there are times when the agents will cross

over previously searched regions to get to some maximum. As this happens more and more,

the ‘Swiss cheese’ effect shown in Figure 5.13 becomes prevalent. The cross-overs cause more

112



(a) The composite/offset contour pattern. (b) The greedy search pattern.

Figure 5.12: The search paths used on the uniform probability map. These paths are applied
to the map in Figure 5.10 to generate the detection functions shown in Figure 5.11. The
composite path begins by following offset contours, then switches over to a greedy search after
a time.

Table 5.2: Completeness and efficiency for searches of the uniform map.
ζ(650) ξ(650)

Optimum 0.999 0.500
Greedy 0.742 0.419
Offset Contour 0.955 0.490
Composite 0.955 0.490

holes, and the holes cause more cross-overs in a pattern of diminishing returns. Perhaps this

is the reason that searches presented in much of the literature ([2],[7],[19]) favor some type of

methodical contour method. Using a greedy strategy, and without the aid of a computer, it

can become very difficult to locate and remember everywhere that an agent has been. Even

with a computer, Figure 5.13 seems to indicate that the coverage of a parallel-pass method

might have the benefit of increased uniformity.

For the third example, Figure 5.14 shows a uniform probability distribution that

has been augmented with several other Gaussian shapes. This example illustrates when a

composite search might be best, and uses three agents are used to search the map.

The detection functions shown in Figure 5.15 are all separate runs, although the

greedy search curve hides behind the composite curve most of the time. This is because

the composite search uses the greedy method until t =220 s. After this point the composite
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Figure 5.13: The ‘Swiss cheese’ effect of a greedy search on a uniform probability map.

Figure 5.14: A complex probability map.

search switches over to a contour search to best cover the uniform distribution that is left.

This slightly increases the slope of the detection function such that the composite search

comes out better than greedy search in both efficiency and completeness. (See Table 5.3.)

The actual paths are shown in Figure 5.16.

Table 5.3: Completeness and efficiency for searches of the complex map.
ζ(400) ξ(400)

Optimum 1.000 0.913
Greedy 0.969 0.815
Offset Contour 0.981 0.376
Composite 0.974 0.816
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Figure 5.15: Detection functions for a search of the complex probability map.

(a) The offset contour pattern. (b) The greedy search pattern.

(c) The composite pattern.

Figure 5.16: The search paths used on the complex probability map. These paths are applied
to the map in Figure 5.14 to generate the detection functions shown in Figure 5.15. A dot
indicates the starting point for the agents.
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One might argue that the benefit of switching over to the contour search does not

provide much improvement, and is not worth the effort. That sounds fair enough when

looking at the detection functions. However, after searching for 220 s and not finding the

target, there is still a probability of 1.0 that must be divided between all of the remaining

possible locations. When considering the future benefit in this way, the contour search looks

just as advantageous as it does in Figure 5.11.

The previous three examples have shown when it might be beneficial to use the greedy,

contour, or composite search strategies. However, selection of an appropriate strategy is

based on the relative importance of efficiency and completeness, along with the available

amount of search effort. The final example is designed to give an overview that helps the

reader develop a rule of thumb for when to use each strategy. In order to do this, a constant

area is searched for an amount of time that is consistent between experimental runs. Un-like

the preceding examples, however, the probability distribution changes such that the tradeoff

between efficiency and completeness can be seen.

Consider the variable probability map presented in Figure 5.17. This map is un-like

the previous maps in that it is defined by a variable region of non-uniform probability, ANU ,

and a variable region of uniform probability, AU . Together these two regions make up the

total area, AT = ANU +AU , and are related through the ratio RNT = ANU/AT . The variable

map is generated based on this ratio as it is varied from zero to one, and the completeness

and efficiency of each search algorithm is recorded.

The total region is a square with edge length LT = 750 m, and the non-uniform region

is a square with edge length LNU = LT

√
RNT . The regions ANU and AT share the same

lower left-hand corner.

When calculating the node probabilities in the variable map, the first step is to allo-

cate a probability of 1−RNT to all of the nodes within AT . Then, an additional probability

of RNT is allocated to the nodes that are within ANU . This second allocation is done in a

non-uniform fashion, based on a 5 × 5 matrix of Gaussian distributions. Each distribution
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Figure 5.17: A variable probability map. The map contains a non-uniform probability region
of area L2

NU , and a uniform probability region of area L2
T − L2

NU .

has a standard deviation of 25 m and is placed at some x and y-increment of 150 m through-

out AT , all centered within AT . However, these Gaussian distributions are only allowed to

affect the nodes in ANU . As RNT grows from zero to one, more of the map is affected by the

Gaussian distributions, and becomes non-uniform.

A single UAV searches each generated map by starting in the center of AT , and each

experimental run stops at time t∗ = AT /VgW = 484.43 s. Theoretically, this is the time

necessary for the UAV to make one complete sweep of the total area. The results for these

simulations are shown in Figure 5.18.

It is important to note in Figure 5.18 that the results are dependent upon the specific

situation presented in each scenario. In some cases the map configuration may cause a UAV

to end up finishing a contour right next to a region that needs to be searched, or being pulled

away from something just before finishing its search. So, the key is to look for general trends

rather than at specific data points.

Despite this variation, Figure 5.18 is very helpful in illustrating the trade-off between

completeness and efficiency. Note that in almost every case the contour search is the method
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(a) A comparison of completenesses for algorithms run on the variable probability map.

(b) A comparison of efficiencies for algorithms run on the variable probability map.

Figure 5.18: Efficiency and completeness comparison on a variable probability map.

highest in completeness and lowest in efficiency. Also note that the composite algorithm is

the most advantageous within the range RNT = 0 to 0.3. This is the range where a significant

amount of uniform probability remains after the most profitable regions have been searched.

This range depends on the relationship between tC and AT . In other words, the range could

extend higher if the total number of uniform nodes remaining were greater than ṄtC after

the more profitable (variable) regions had been searched. Within the range the composite

search can achieve efficiencies at least equal to those of the greedy search, but can augment

the overall completeness to be above that of the greedy search.
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It is hoped that this example provides the needed intuition for the reader. For a map

with certain uniformity, the composite search strategy can be beneficial in augmenting the

completeness of an efficient search strategy. Remember that the importance of efficiency is

affected by the available search effort, the search rate, and the time-dependent consequences

of not finding the target. On the other hand, the offset path search strategy should be used if

completeness is highly important relative to efficiency. These are the rules of thumb sought

for in doing the variable-map experiments.

It is important to note that a search simulation like those presented above may be

executed in tandem with a real-world search. Telemetry can be fed into the simulation

regarding where UAVs have been, and the resulting probability distribution can then be

used to guide the evolving search effort.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The intent of this thesis is to bridge the gap between the principles of optimal search

theory and the principles of path planning. However, in order to perform a meaningful search

it is often necessary to detect and locate more than one target. Thus, a method of target

differentiation is given that includes the following contributions:

• A practical numerical method for locating targets in three dimensions.

• A way to count and separate multiple targets as seen from multiple images.

• The concept of target quality.

Results from a field test are discussed in which multiple targets as close as 6.1 m apart

are located and counted correctly. The estimated 2D locations for these targets exhibit less

than four meters of error in five out of six target estimates. In addition, the concept of target

quality is used to identify when faulty data is likely to be present.

Following the chapter on target differentiation, chapter three is entirely devoted to a

review of optimal search theory. This chapter collects concepts from the work of two other

researchers, and can be considered an in-depth literature review of the prevailing search

theory.

This thesis seeks to show that applying optimal search theory to a coordinated UAV

search can improve search performance. Chapters four and five present original work where

optimal search theory is applied to UAV searching by way of a discrete probability grid. The

original contributions include:
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• A target detection probability model based on CCD camera sensing.

• Discrete methods for measuring search rate using a probability grid.

• A method for determining search width using a probability grid.

• An optimal detection function for any given probability map.

• The metrics of search efficiency and search completeness.

• A search strategy that can be applied to any given probability map.

The CCD detection model is developed using the color data obtained in the field test.

This data is used to reconstruct many target images, and Monte Carlo simulations are run

to determine a target’s detection probability based on its size in the image. Functions are

chosen to represent a target’s detection probability based on its distance from the camera,

and image skew is also considered to obtain a more accurate model.

The concept of a discrete probability grid and a probability map are presented as tools

to measuring search progress. Using these tools and the CCD model for target detection,

the search width and turn performance for the given SUAV are also developed.

In the last chapter the metrics of search efficiency and search completeness are offered.

Three search situations are presented, and each of the greedy, contour, and composite strate-

gies is applied. This does not constitute a proof of the conditions under which an efficient vs.

a complete strategy should be used, because that would depend on the perceived importance

of efficiency vs. completeness in a given search scenario. However, the concluding simulation

illustrates some strategy trade-offs that should be considered in path planning. This result

shows that considerations prompted by optimal search theory can be used to select the most

effective search strategy based on the importance of efficiency and completeness.
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6.2 Future Work

There are four candidate areas for immediate work. These are:

1. Detection logic

2. Ground team coordination

3. Probability map extensions

4. UAV search algorithms

As stated in Section 4.1.1, color is one of the most important considerations when

planning a search. Further work should be done to quickly and easily understand the color

distributions of a target and its background before beginning a search. If these distribu-

tions are understood, then algorithms for effective and/or dynamic color thresholding could

drastically increase a target’s detection probability through a CCD camera. The detection

probability could also be significantly improved by not only identifying a known target color,

but also by filtering out colors that are different from that of the background.

In order to make these principles useful, they must be integrated into the larger

picture. The SUAVs described here are often hand-launched by a ground team that has

a specific purpose. As such, further studies in ground team operations should be done to

develop a platform and user-interface that cause the SUAV to be a valuable part of the team

effort.

Additionally, the usefulness of the probability map could be extended by tailoring

the update method to fit a particular purpose. For example, a learning algorithm could use

Bayesian updates to change the probability map based on targets or other clues that are

identified. Another possibility is the moving-target case, where the probability map could

be updated based on probable target motion.

Of course, the algorithms presented in this thesis are not perfect. Particularly, the

global assignment of the greedy search mandates that new regions be searched without
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considering whether or not the new assignment is better than what the UAV is currently

searching. In addition, the global benefit of each option does not take into account the

proximity of other SUAVs. In the contour search, tight corners still cause some missed areas

despite the benefit of the sliding segment method. Further research in perfecting these and

other details could improve the efficiency and completeness of these methods.

On a final note, remember that the principles of optimal search theory originated

from an effort to save lives during World War II. These principles were tested by pilots and

observers who were searching for submarine invaders, in a situation where every failure might

have caused a loss of life. The knowledge that we have today did not come without a price,

and it is hoped that the reader will honor the legacy of those researchers and participants

who fought for freedom. Please honor those who have given so much.
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Appendix A

Target Differentiation Code

A.1 Target Center Calculation

This code calculates the target center estimate, C, using the contacts in a contact set.
If there are less than four contacts in the set, then a zero-altitude estimate is calculated. If
there are at least four contacts in the set, then the error minimzation approach is used to find
the 3D target center. The function compute target center() calls the function calcError() to
find the total error between all the contacts in the target set, and a given test point. This
function is not shown, but is the same calculation as shown in Eq.(2.14). The test point is
then moved to the position with least error. The iteration starts off with a large step size,
and then reduces its step size near the local minimum for accuracy.

A.2 Contact Assignment

The code for contact assignment is only pseudo-code due to its length. It assigns all
of the contacts in an image set to the closest target as long as no other contact is closer to
that target. If no nearby target estimates exist, then a new one is created.

A.3 Azimuth and Elevation Calibration

This code calculates the camera azimuth and elevation angles that minimize the total
distance between all of the contacts in all target sets, and a set of previously-known targets
called “loaded targets”. The function contact distance(), called from calc avg distance(), is
the same calculation shown in Eq.(2.13).
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