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ChemAlign: Biologically Relevant Multiple Sequence Alignment Using
Physicochemical Properties
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David McClellan
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Abstract—We present a new algorithm, ChemAlign, that
uses physicochemical properties and secondary structure
elements to create biologically relevant multiple sequence
alignments (MSAs). Additionally, we introduce the Physic-
ochemical Property Difference (PPD) score for the evalu-
ation of MSAs. This score is the normalized difference of
physicochemical property values between a calculated and
a reference alignment. It takes a step beyond sequence
similarity and measures characteristics of the amino acids
to provide a more biologically relevant metric. ChemAlign
is able to produce more biologically correct alignments and
can help to identify potential drug docking sites.

Keywords-multiple sequence alignment; physicochemical
properties; Physicochemical Properties Difference score;

I. INTRODUCTION

Multiple sequence alignments (MSAs) are at the heart of
several bioinformatics research areas. For example, align-
ments are used to identify conserved regions, which are
crucial to finding drug docking sites. Current methods can
miss biologically relevant features such as these because
they only consider sequence similarity. Most of them are
further limited because they do not incorporate secondary
structure (SS) information. The globin family (with an
average percent identity of 25.9% for the HOMSTRAD [1]
data set) provides a good example of this in that it remains
difficult for existing methods to align correctly. Previous
algorithms align at best 38.4% of the positions correctly.
Using physicochemical properties (PPs), ChemAlign cor-
rectly aligns 90.6% of the positions. Furthermore, as
shown in Figure 1, regions determined from a ChemAlign
alignment appear at a possible drug docking site.

ChemAlign uses PPs (e.g., volume, polarity and hy-
dropathy) to produce biologically relevant alignments.
Researchers have used these properties in various areas
of bioinformatics [2]–[4]. Furthermore, they have varying
effects depending on the SS where they occur. ChemAlign
incorporates knowledge of the secondary structure ele-
ments (SSEs) (α-helices, β-strands and loops) to capitalize
on this. Each amino acid in a protein belongs to one of the
SSEs. Typically they are determined from tertiary structure
information, if it is known, or are predicted. Protein SS has
long been understood to be more conserved than the amino
acid sequence [5]. Using this more resilient information
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ChemAlign
SS α5 α6

1BINA PKLTGHAEKLFALVRDSAG VVADaal---GSVHAQ
1ECD APFETHANRIVGFFSKIIG i--EADVNTFVASHKP
2LHB ADVRWHAERIINAVDDAVA m--SMKLRNLSGKHAK
1EMY EDLKKQGVTVLTALGGILK h--EAEIQPLAQSHAT
1HDAA AQVKGHGAKVAAALTKAVE l--PGALSELSDLHAH
1FDHG PKVKAHGKKVLTSLGDAIK l--KGTFAQLSELHCD
1A4FA AQIKAHGKKVVAALVEAVN i--AGALSKLSDLHAQ

ClustalW
SS α5 α6

1BINA -kltghaeklfalvrdsag TVVADaal---GSVHA
1ECD apfethanrivgffskiig ieadvntfv---ASHK
2LHB advrwhaeriinavddava msmklrnLs--gkhak
1EMY edlkkqgvtvltalggilk heaeiqpla--qshat
1HDAA aqvkghgakvaaaltkave lpgalsels--dlhah
1FDHG pkvkahgkkvltslgdaik lkgtfaqls--elhcd
1A4FA aqikahgkkvvaalveavn iagalskls--dlhaq

PRALINE
SS α5 α6

1BINA pkltghaeklfalvrdsag tvvadaalgsv---ha------
1ECD apfethanrivgffskiig ieadvntfvas---hk------
2LHB advrwhaeriinavddava tekmsmklrnlsgkha-----k
1EMY edlkkqgvtvltalggilk heaeiqplaqs---ha-----t
1HDAA aqvkghgakvaaaltkave lpgalselsdl---ha-----h
1FDHG pkvkahgkkvltslgdaik lkgtfaqLsel---hc-----d
1A4FA aqikahgkkvvaalveavn iagalsklsdl---ha-----q

1
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Figure 1. A) Alignments of the fifth and sixth α-helices of the globin
data set. Uppercase amino acids match the reference data set. ChemAlign
is able to align the vast majority (90.6%) of the positions correctly,
compared to ClustalW (38.4%) and PRALINE (24.4%). ChemAlign is
able to find both of them, while ClustalW and PRALINE only find
the first one. B) Example globin protein, Hemoglobin (1A4FA), with
highlighted conserved regions corresponds with conserved regions. These
regions are at a possible drug docking site.

has improved the accuracy of sequence alignments [6]–
[8].

In this paper, we explore the hypothesis that using
physicochemical properties and secondary structures pro-
duces biologically relevant multiple sequence alignments.
To do so, we introduce ChemAlign, which incorporates
both physicochemical properties and secondary structures.

II. RELATED WORK

MSA algorithms that are related to ChemAlign fit into
three categories. First, algorithms like MAFFT [9] and
ProbCons [10] that also use primary sequence informa-
tion. In a recent benchmarking study [11], these two
applications performed the best. Second, algorithms that
incorporate SSEs, like PRALINE [6]. PRALINE is a MSA
algorithm that builds an alignment without SS information,
then iterates between predicting the SSEs and building an
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alignment. It is also subject to the same limitation as the
primary sequence alignment algorithms—that of not being
able to correctly produce alignments governed by PPs.
Additionally, PRALINE is only available through an inter-
active website and therefore requires substantial amounts
of human interaction for large-scale use or testing. Third,
algorithms that integrate PPs. While researchers are using
PPs for various analyses, few have incorporated them into
sequence alignment. Those that do, use them in pairwise
alignments [3], to find matching subsequences [4], and to
adjust gap penalties [12]. ChemAlign extends these ideas
to produce MSAs.

III. METHODS

ChemAlign is a multiple sequence alignment algorithm
that uses the physicochemical property values and sec-
ondary structures of amino acids. It employs a traditional
dynamic programming approach during both the pairwise
and the progressive phases. After calculating all of the
pairwise “distances” between sequences, ChemAlign clus-
ters them to produce a neighbor-joining guide tree [13].
This tree directs the order that sequences and alignments
of sequences are aligned in the progressive stage. Chem-
Align also uses affine gap penalties. Instead of using a
substitution matrix based solely on log-odds probabilities
from an amino acid database, ChemAlign combines amino
acid exchange counts with normalized differences of PPs.
Additionally, different substitution matrices are employed
for different SSEs. In the rest of this section, we explain
ChemAlign’s use of PPs and SSs and how it calculates
gap costs.

A. Substitution Matrices

ChemAlign uses a substitution matrix comprised of both
observed amino acid exchanges and differences between
PPs. To obtain the observed amino acid exchanges, we
built a reference database of alignments with their SSs. We
combined the OXBench database [14] with the respective
SSs from the RCSB Protein Data Bank (PDB) [15]. Only
those sequences in OXBench that had an exact match
with amino acid sequences in the PDB were included.
We counted the number of each set of amino acid pairs
for each possible SSE pair producing four matrices of
observed amino acid exchanges: Oα, Oβ , Ol, and Om (m
stands for mismatch). These matrices are combined with
the normalized difference matrix Dp (for a PP p) using
Equation 1.

Dp
i,j = 1− 2 ∗ |PP [i]− PP [j]|

argmaxx(PP [x])− argminy(PP [y])
(1)

Here, i and j are amino acids. The values of Dp range
from -1.0 for the most dissimilar pair of amino acids to 1.0
for identical amino acids. For this work, we use the Effec-
tive Partition Energy [16] for its aggregate characteristics
as an illustrative PP. This property includes hydrophobic,
hydrogen bonding and electrostatic energies. Each of the
O matrices are multiplied element-wise with Dp to get
Mα,Mβ ,M l, and Mm. Combining the O matrices with

α-helix β-strand loop
α-helix 7.11
β-strand -12.81 2.97

loop -2.42 -3.33 1.95
Figure 2. Secondary structure scoring matrix N . The values are log-odd
ratios based on observed counts in the OXBench-PDB database.

Dp aggregates the benefits of each. Finally, the log-odds
probabilities of the values in each of the M matrices are
calculated to get the substitution matrices Sα, Sβ , Sl and
Sm:

Si,j = log

(
li,j
fifj

)
(2)

Here, li,j is the likelihood that amino acids i and j appear
aligned in the database and fi is the background frequency
of amino acid i.

B. Incorporating Secondary Structure
ChemAlign uses a straightforward approach to incor-

porate protein SSs into both pairwise and progressive
alignment. The SS influences the alignment in two ways:
first, the choice of a substitution matrix and second, an
additional score for (mis)matching of the SSEs. First,
ChemAlign uses a substitution matrix according to the
SSEs of the two amino acids currently being considered.
If the SSEs are the same, then the Sα, Sβ or Sl matrix
is used, otherwise, the mismatch matrix, Sm, is used.
ChemAlign also incorporates SSs by adding a (mis)match
score for the SSEs to the (mis)match score for the amino
acids. The SSE scores are specified by the matrix Nc,d

(where c and d are SSEs) as shown in Figure 2. N is the
log-odds ratios of the observed matches of the SSEs in
the OXBench-PDB database. Incorporating N aligns SSs,
which are typically more conserved than the amino acids
themselves [5].

C. Reference Sum of Pairs Score
A commonly applied metric for MSA algorithms is the

reference sum of pairs score–the percentage of positions
in a calculated alignment that match the same character in
a reference alignment:

1
nq

n∑

i

q∑

k

δ(si(k), ri(k)) (3)

Where s1, . . . sn are sequences of length l from a calcu-
lated alignment, r1, . . . rn sequences of length p from a
reference alignment, q = min(l, p) and δ is an identity
function.

D. Physicochemical Property Difference (PPD) Score
In addition to using the reference sum of pairs score,

we also look at the normalized difference in PPs values,
or the PPD score. The score is calculated as follows:

1
nq

n∑

i

q∑

k

Dp
si(k),ri(k) (4)

PPD scores range from a theoretical minimum of -1.0
to 1.0. In general, a negative PPD score means that the
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average amino acid pairing in an alignment is worse
than the average difference in the PP values. A score
of 1.0 means the calculated alignment is the same as
the reference alignment. This score takes a step beyond
sequence similarity and measures characteristics of the
amino acids.

E. Experimental Setup
To analyze the accuracy of ChemAlign, we looked

at three databases of reference MSAs: BAliBASE [17],
HOMSTRAD [1], and SMART [18]. We combine each
of the sequences in the databases with the SSEs from the
PDB. Only Sequences with a perfect sequence match in
the PDB were included.

For ChemAlign, we used the following
command: ssalign( subMatA=Sα subMatB=Sβ

subMatL=Sl subMat=Sm ss=<SSE file>).
These arguments specify files containing the substitution
matrices Sα, Sβ , Sl and Sm and a file containing
the SSEs defined by DSSP [19]. We used the default
arguments for the following programs: ClustalW (version
2.06); MAFFT (6.240); and ProbCons (1.12).

IV. RESULTS

To quantitatively assess the performance of ChemAlign,
its accuracy was compared with that of ClustalW, MAFFT
and ProbCons. These programs were chosen for their
performance, ubiquity and ease of use [11]. Both the
reference sum of pairs score and the PPD scores were used
in our evaluation. An analysis of three databases and an
in-depth look at the globin domain family are presented.
In summary, ChemAlign achieves comparable or higher
accuracy scores and a more biologically meaningful align-
ment than the other programs tested.

A. Comparison of Algorithms on Difficult Data Sets
In order to examine the impact of PP alignments,

sixteen data sets were selected from the BAliBASE,
HOMSTRAD, and SMART databases that have the lowest
sequence identity and a large number of sequences. The
alignments produced by ClustalW, MAFFT and ProbCons
were compared to ChemAlign using the reference sum of
pairs metric (see Figure 3). A value of zero on the vertical
axis indicates that the performance was identical. A score
of 1.0 indicates that ChemAlign got all of the positions
right and the other algorithm got all positions wrong.
Negative vertical axis values indicate that the competing
algorithm achieved better alignments than ChemAlign.
Many of the ChemAlign alignments are significantly better
than the competing algorithms. When the other algorithms
are superior, the alignment produced by ChemAlign is
generally close in score.

B. Reference Sum of Pairs Scores for All Data Sets
Table I reports the mean reference sum of pairs score

for ChemAlign, ClustalW, MAFFT, and ProbCons on the
BAliBASE, HOMSTRAD, and SMART databases. Chem-
Align achieves comparable mean reference sum of pairs
scores to the other methods tested. It consistently obtains
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Figure 3. Differences between competing algorithms and ChemAlign.
ChemAlign finds significantly better alignments for difficult data sets.

Table I
MEAN REFERENCE SUM OF PAIRS SCORES

Database ChemAlign ClustalW MAFFT ProbCons
BAliBASE 37.8% 38.7% 37.1% 39.7%
HOMSTRAD 58.8% 59.5% 56.3% 59.7%
SMART 59.8% 58.6% 56.9% 59.9%

scores higher than MAFFT, scores higher than ClustalW
on the SMART database and higher than ProbCons on
the HOMSTRAD database. Many of these data sets have
few sequences, or have high sequence similarity, so the
differences between algorithms are less pronounced.

C. Physicochemical Property Difference Scores
We also evaluated the alignments generated from Chem-

Align, ClustalW, MAFFT and ProbCons using the PPD
score (with the PP Effective Partition Energy). ChemAlign
achieves similar or superior PPDs scores, suggesting that
the alignments are equally or more biologically accurate.
While the Effective Partition Energy generally captures
the forces of mutation here, researchers can also use the
PPD score to evaluate additional properties (i.e., polarity
or volume) affecting their alignments.

D. Globin Domain Alignment
The globin data set, used here as an example, was taken

from the HOMSTRAD database, and is composed of 41
protein sequences, all of which have representative crystal
structures in the PDB. Seven different categories of globin
proteins are represented in this data set. Such protein
diversity, in terms of primary and SS, as well as overall
function, makes accurate alignment notoriously difficult.

The globin data set has a low percent identity of
25.9%, making it difficult for current methods to correctly
align. ChemAlign is able to get 90.6% of the positions
correct, while MAFFT only achieves 21.2% of them cor-
rect (ClustalW: 38.4%, ProbCons: 23.6% and PRALINE:
24.4%). In terms of percentages, ChemAlign is between
135.9–328.8% better (3,727–4,951 more positions) than
the other methods. ChemAlign earns a PPD score of
0.79, which is between 76.2–242.6% better than the other
methods. These scores reflect that ChemAlign produces
alignments with columns of higher Effective Partition
Energy similarity than the other algorithms. This is a
characteristic of biologically relevant alignments.
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Table II
PHYSICOCHEMICAL PROPERTY DIFFERENCE SCORES

Database ChemAlign ClustalW MAFFT ProbCons
BAliBASE 0.400 0.400 0.369 0.376
HOMSTRAD 0.632 0.635 0.606 0.628
SMART 0.643 0.632 0.610 0.629

ChemAlign is able to correctly align the vast majority of
the amino acids throughout the globin data set. ClustalW
only aligns the first, part of the second and the third α-
helices correctly. PRALINE correctly aligns only the first
of the eight α-helices. Figure 1 shows the ChemAlign,
ClustalW and PRALINE alignments of the fifth and sixth
α-helices. Highlighted on the alignments are the most
conserved regions (using a sliding window of size three).
ChemAlign is able to find both regions, while ClustalW
and PRALINE only find the first one. The positions of
these regions on the protein is a potential drug docking
site. Alignment methods that do not incorporate PPs and
SS information can limit the discovery of such regions.

V. CONCLUSION

Multiple sequence alignments are the foundation for
several bioinformatics research areas. For example, iden-
tifying genes for drug development relies on an accurate
alignment of sequences. Current methods struggle to accu-
rately align data sets with low percent identity. ChemAlign
is a new algorithm that addresses this problem by using a
physicochemical property to produce biologically relevant
MSAs. It also incorporates SSEs to overcome limitations
employed by traditional approaches that use the “’aver-
age’ site in the ’average’ protein” [2]. Leveraging this
additional information, it is able to find more potential
drug docking sites than other algorithms (see Figure 1).
Additionally, we introduce the Physicochemical Property
Difference (PPD) score. This score measures the average
difference in values for a physicochemical property for
all pairs of amino acids in an alignment. It takes a step
beyond sequence similarity and measures characteristics
of the amino acids. ChemAlign achieves comparable or
superior PPD scores than the other algorithms tested.

ChemAlign is implemented in the software package
PSODA [20]. PSODA is free and available for several
operating systems at http://dna.cs.byu.edu/psoda.

VI. FUTURE WORK

We are improving ChemAlign by extending the differ-
ence in PPs matrix, D, to handle multiple properties with
weights. Additionally, we are looking at increasing the
specificity of the substitution matrices by using different
PPs for each of the SSs.
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