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ABSTRACT 
 
 
 

CALIBRATION PROCEDURE FOR A MICROSCOPIC 

TRAFFIC SIMULATION MODEL 

 
 
 

Carole Turley 

Department of Civil and Environmental Engineering 

Master of Science 
 
 
 

The inputs to a microscopic traffic simulation model generally include 

quantitative, but immeasurable data describing driver behavior and vehicle performance 

characteristics. Engineers often use default values for parameters such as car-following 

sensitivity and gap acceptance because it can be difficult to obtain accurate estimates for 

these parameters.  

While recent research has indicated that the accuracy of a simulation model can 

significantly improve if driver behavior parameters are calibrated to local data, this is not 

a typical practice. Manual calibration of these parameters is often too time-consuming to 

be cost-effective. Researchers have applied automated calibration procedures using 

genetic algorithms to these problems with some success, but many engineers lack the 

tools or the skill set necessary to easily program and implement such a procedure. A 



 

  



 

graphical user interface (GUI) for a genetic algorithm would make automated calibration 

much more accessible to students and professional engineers. 

Another barrier that limits the practicality of calibrating driver behavior 

parameters is the number of available calibration parameters. The CORSIM (short for 

CORridor SIMulation) model developed by the Federal Highway Administration 

contains dozens of optional calibration parameters controlling various aspects of driver 

behavior. Determining the sensitivity of the model to these parameters is an important 

step toward finding the appropriate parameter values. 

The purpose of this thesis is to develop a GUI for a genetic algorithm and perform 

needed sensitivity analyses to aid in model development and calibration. This thesis tests 

a simple, automated procedure utilizing a genetic algorithm for the calibration of driver 

behavior and vehicle performance parameters that can easily be applied by engineers in 

the field. An existing genetic algorithm script that has been applied to other research has 

been adapted to fit the purposes of this thesis. As part of this procedure, a sensitivity 

analysis was performed to recommend which parameters should be included in model 

calibration.  

The results of the research suggest that fewer than half of the available driver 

behavior parameters are necessary to calibrate a model of a linear freeway network. The 

calibration tests also demonstrate the importance of calibrating to at least two measures 

of effectiveness in order to better match existing conditions and provide an acceptable 

level of error for the simulation model. 
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1 Introduction 

Researchers in a variety of fields have studied the ability of computers to imitate 

and predict natural phenomena. Traffic simulation models attempt to mimic a population 

of drivers in a theoretical highway network. In attempting to simulate human behavior 

and individual decisions, traffic simulation models must begin with quantitative, but 

often immeasurable data describing driver characteristics. Some researchers have 

addressed the problem of determining the appropriate values of variables describing 

driver and vehicle characteristics such as courtesy, aggressiveness, familiarity with 

routes, and maximum deceleration rates.  

Genetic algorithms have proven to be a useful tool in calibrating driver behavior 

and vehicle performance parameters. Like traffic simulation models, genetic algorithms 

model behavior observed in the real world. Using principles of natural selection, these 

algorithms can simulate the “evolution” of a set of parameters that can realistically 

represent driver behavior. 

While recent research has indicated that the accuracy of a simulation model can 

significantly improve through the use of automated calibration procedures, this is not a 

typical practice. Many engineers lack the tools or the skill set necessary to easily program 

and implement such a procedure. A graphical user’s interface (GUI) is necessary to make 

automated calibration more accessible to professional engineers. 
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Another barrier that limits the practicality of calibrating driver behavior 

parameters is the number of available calibration parameters. The CORSIM (short for 

CORridor SIMulation) model developed by the Federal Highway Administration 

(FHWA) contains dozens of optional calibration parameters controlling various aspects 

of driver behavior. Determining the sensitivity of the model to these parameters is an 

important step toward finding the appropriate parameter values. 

This chapter presents a brief overview of the history and background of traffic 

simulation models, describes the specific problems that this thesis addresses, and 

summarizes the remaining chapters to address the problems identified. 

1.1 Background 

Both traffic simulation modeling and genetic algorithms have a history dating to 

the middle of the twentieth century. Over the past decade, researchers have developed 

ways to combine the two technologies for calibration purposes. This section presents 

some history and background on both types of simulation. 

1.1.1 Traffic Simulation Models 

Research into traffic simulation modeling began in the 1950s, not long after the 

introduction of the first digital electronic computers, but simulation was not commonly 

used by engineers until computers became commonplace in the 1970s. CORSIM was 

developed by the FHWA in the 1970s and quickly became one of the earliest widely used 

traffic simulation models (1). It became even more popular in the 1990s with the release 

of the first version of the Traffic Software Integrated System (TSIS), a GUI that assists in 
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pre- and post-processing of CORSIM models (2). Since that time, the number of 

commercially available traffic simulation packages has proliferated to include VISSIM 

(Verkehr In Staedten SIMulation), SimTraffic, Paramics, and others. Individual software 

packages are discussed in Chapter 2.  

1.1.2 Genetic Algorithms 

John Holland developed the first genetic algorithms at the University of Michigan 

in the 1960s. The first applications to civil engineering problems were not long in 

following. David Goldberg’s landmark dissertation applying a genetic algorithm to a pipe 

optimization problem was among the first demonstrations of how these algorithms could 

find solutions to complex, real-world problems (3).  

Cheu et al. (4) published one of the first applications of a genetic algorithm to 

traffic simulation was in the 1990s. Since then, several researchers have looked at the 

possibility of applying genetic algorithms to calibration problems, but this has yet to 

become state-of-the-practice for transportation engineers. 

1.2 Problem Statement 

Research has shown that calibration of driver behavior parameters using a genetic 

algorithm can efficiently improve the accuracy of microscopic traffic simulation models; 

however, practicing engineers rarely take this approach. Many engineers do not have the 

tools or the skill set to carry out calibration procedures which have been performed by 

researchers. A GUI for an automated calibration procedure is necessary to make these 

tools more available to students and professionals. Also, CORSIM has dozens of optional 
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parameters which could be calibrated. Determining which of these should be adjusted can 

be both difficult and time-consuming. Research into the sensitivity of the CORSIM 

model to each of the optional calibration parameters was necessary. 

1.3 Research Objectives 

The purpose of this thesis is to test a simple procedure using a genetic algorithm 

for the calibration of driver behavior and vehicle performance parameters that can easily 

be applied by engineers in the field. An existing genetic algorithm script that has been 

applied to other research has been adapted to fit the purposes of this thesis. As part of this 

procedure, a sensitivity analysis determined which parameters should be included in 

model calibration. This thesis also demonstrates the effects of calibrating to two different 

measures of effectiveness (MOEs) (volume and travel time).  

In order to make this procedure more available to engineers and students who 

may not be comfortable with programming or with DOS-based interfaces, a dialog-based 

GUI was created as part of this research. The GUI allows users to easily calibrate 

CORSIM parameters using the genetic algorithm that was applied in this research. 

1.4 Organization of the Thesis 

This thesis is organized into six chapters: this introduction, a literature review, a 

description of the calibration software developed for this research, a presentation of the 

methodologies used to collect and reduce data for the calibration and validation tests, a 

description of how the proposed procedure was tested on a local freeway network, and a 

conclusion. An overview of each main chapter follows. 
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1.4.1 Literature Review 

Chapter 2 places microscopic traffic simulation in the context of the larger range 

of traffic analysis tools. Several categories of traffic analysis tools are discussed, with 

emphasis on commercially available microscopic traffic simulation software. A brief 

history of the development of the genetic algorithm is also given, as well as some 

background on the components and structure of a genetic algorithm. Finally, recent 

research on the utilization of genetic algorithms for the calibration of microscopic traffic 

simulation models is summarized and discussed.  

1.4.2 Calibration Program 

Chapter 3 describes the genetic algorithm used for this research and the GUI that 

was developed for this thesis. This chapter describes each parameter that can be adjusted 

by the calibration program and may be used as a user’s manual by others wishing to 

apply this software to other research or field applications. 

1.4.3 Data Collection 

In order to test the proposed calibration procedure, a model of a hypothetical 

network based on Interstate 15 in Utah County, Utah was calibrated to volume and travel 

time data. Some volume data for the network was provided by the Utah Department of 

Transportation (UDOT). Chapter 4 describes the methodologies used to reduce the 

available volume data and prepare them to be input to the calibration program. It also 

presents the methodologies used to collect and reduce travel time and speed data.  
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1.4.4 Calibration Procedure 

Chapter 5 presents the methods and results of the three steps of the calibration 

procedure. First, it describes the sensitivity analysis that was performed to determine the 

appropriate population size and to select the parameters that should be included in the 

calibration. Second, it describes how the model was calibrated using the genetic 

algorithm. The calibration step will be performed five times to demonstrate the effects 

changes to the fitness function can have on model outputs. Finally, the parameter sets 

generated by the calibration step will be validated on a separate network with similar 

characteristics. 

1.4.5 Conclusion 

Chapter 6 summarizes the conclusions from the sensitivity analysis, calibration, 

and validation tests. Questions that were raised by the research presented in this thesis are 

also identified as areas that may warrant further research. 
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2 Literature Review 

This chapter describes several traffic analysis tools, with an emphasis on 

microscopic traffic simulation. It then presents a brief background on genetic algorithms. 

Finally, recent research applying genetic algorithms to the calibration of driver and 

vehicle parameters in traffic simulation models is discussed.   

2.1 Traffic Analysis Tools 

Understanding the consequences of a highway or traffic operations improvement 

before project implementation is essential to traffic engineers and planners. Decision-

makers are hesitant to invest in highway projects that promise to improve safety and 

reduce congestion without some evidence that these promises are realizable. 

Experimenting with the transportation system can be costly, dangerous, and impractical. 

Engineers have been able to avoid such experiments by turning to computer software for 

a comparatively low-cost method of analyzing transportation projects.   

Traffic software has been developed for applications at every level of planning 

and traffic analysis. Depending on the objectives of a given study, any of a variety of 

tools may be appropriate. In some cases, one tool might be capable of a particular 

analysis, but not as well suited as another that has been designed especially for that 

purpose. Alexiadis et al. (5) identify seven categories of traffic analysis tools: 
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• Sketch planning tools, 

• Travel demand models, 

• Analytical tools, 

• Traffic signal optimization tools, and 

• Traffic simulation models (macro- meso- and microscopic). 

 

Each of these categories of traffic analysis tools is suited to different situations 

and applications. This thesis focuses on microscopic traffic simulation models. In order to 

understand what traffic simulation is, it is important to understand what it is not. For this 

reason, sketch planning tools, travel demand models, analytical tools, and traffic signal 

optimization tools are briefly discussed here. Examples of tools in each category are 

listed as these tools are discussed. A more complete list is available in the literature (5). 

2.1.1 Sketch Planning Tools 

Sketch planning tools use simplified planning techniques and highly aggregated 

data to produce general, order-of-magnitude estimates of travel demand. Sketch planning 

tools can range from simple spreadsheet models to more sophisticated software packages 

(5). Tools in this category allow engineers and planners to quickly and cheaply screen a 

large number of alternatives in order to create a short list of viable alternatives that will 

undergo a more detailed analysis (6).  Some of the existing sketch planning tools include: 

• HDM-4 (Highway Development and Management) (7), 

• QuickZone (8), 
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• STEAM (Surface Transportation Efficiency Analysis Model) (9), and 

• TEAPAC (Traffic Engineering Applications PACkage) SITE (10). 

2.1.2 Travel Demand Models 

Travel demand models use current traffic and transit ridership characteristics 

along with population and employment forecasts to predict future travel demand in terms 

of mode choice, destination, temporal distribution, route choice, etc. Travel demand 

models were originally developed to determine the impacts of major highway projects. 

Travel demand models were not designed to evaluate operational changes or travel 

management strategies (5).  

Traditional travel demand models employ an approach known as the Urban 

Transportation Modeling System (UTMS), which is also called the four-step planning 

model. The four-step planning model involves predicting the number of trips produced by 

and attracted to each zone (trip generation), creating origin-destination (O-D) matrices 

which link origins and destinations (trip distribution), determining the portion of travelers 

that will use each available mode (mode split), and assigning each trip to a particular 

route (trip assignment). This method, though widely used, has been criticized almost 

from its inception because it is not based on a coherent theory of travel behavior, leading 

to some inconsistencies within the model (6). 

More recent developments in travel demand modeling have utilized an activity-

based approach (11). This approach recognizes travel as a derived demand. In other 

words, people travel because they want to do something at a place other than where they 

are, rather than because they want to make a trip for its own sake (6). This recognition 
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has created more intuitive logic within the models, but the data requirements for such 

models are much more complicated than the simple population and employment statistics 

necessary for the UTMS. 

Some of the existing travel demand models include: 

• Quick Response System (QRS) II (12),  

• TransCAD (13), 

• CUBE/MinUTP (14), 

• CUBE/ Transporation Planning Plus (TP+) (15), and 

• VISUM (16). 

2.1.3 Analytical Tools 

Analytical procedures based on the Highway Capacity Manual (HCM) have been 

the industry standard for many years. Recent advances in computing technology, 

however, have made simulation models more practical than they previously were. Traffic 

analysis tools based on HCM procedures can quickly predict capacity, speed, delay, and 

queuing on isolated, small-scale transportation facilities. HCM-based tools are less 

effective when applied to over-saturated conditions (5). Some of the existing HCM-based 

tools include: 

• SIDRA (Signalized Intersection Design and Research Aid) (17), 

• Canadian Capacity Guide (CCG))/Calc 2 (18), 

•  Highway Capacity Software (HCS)+ (19), and 

• TRAFFIXTM (20). 
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2.1.4 Traffic Signal Optimization Tools 

Traffic signal optimization tools are intended to optimize signal-phasing and 

timing plans. Traffic signal optimization tools can be applied to single intersections, 

arterial streets, signal networks, and ramp metering rates (5). Traffic signal optimization 

tools are not designed to analyze major highway or transit improvements or changes in 

network geometry. Some of the existing traffic signal optimization tools include: 

• Synchro (21), 

• Progression Analysis and Signal System Evaluation Routine (PASSER) II-02 

(22), 

• TRANSYT (TRAffic Network StudY Tool)-7F (23), and 

• TSDWIN (Time Space Diagram WINdow) (24). 

2.1.5 Traffic Simulation Models 

Traffic simulation models have been classified as either macroscopic or 

microscopic. Some models, called mesoscopic models, combine elements of both. In 

recent years, a fourth level of detail, called nanoscopic simulation has emerged. This 

section describes these four categories. 

2.1.5.1 Macroscopic Models 

In macroscopic models, vehicle movement is governed by the flow-density 

relationship without tracking individual vehicles (25). The simulation takes place on a 

section-by-section basis and is based on deterministic relationships of flow, speed, and 

density in the traffic stream (5). While this can adequately represent reality at a large 
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scale, macroscopic models make some counterintuitive assumptions. For example, a car 

exists simultaneously at every point along its route during the entire period (morning 

peak, mid-day, evening peak, and off-peak) when its trip takes place (26).  

Some of the existing macroscopic traffic simulation models include: 

• TRAF-CORFLO (CORridor FLOw Model) (27),  

• KRONOS (28), and 

• SATURN (Simulation and Assignment of Traffic to Urban Road Networks) 

(29). 

2.1.5.2 Mesoscopic Models 

Mesoscopic models were developed as a compromise between computationally 

intensive microscopic models and more efficient macroscopic models. Mesoscopic 

models are becoming less common as the computing power necessary for microscopic 

modeling becomes more available. In mesoscopic models, the unit of traffic flow is the 

individual vehicle, but movement is governed by the average speed on the link (5).  

Some of the existing mesoscopic models include: 

• CONTRAM (CONtinuous TRaffic Assignment Model) (30),  

• DYNAMIT-P (DYNAmic traffic assignment Massachusetts Institute of 

Technology) (31), and  

• DYNASMART-P (DYnamic Network Assignment-Simulation Model for 

Advanced Roadway Telematics) (32). 
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2.1.5.3 Nanoscopic Models 

Nanosimulation or traffic safety modeling is a relatively new area of simulation 

which attempts to model drivers' steering behavior and more detailed components of 

perception-reaction time in order to include traffic safety in the model. In traditional 

microscopic traffic simulation, cars are programmed to avoid collisions (33).  

HUTSIM is a simulation model being developed at Helsinki University of 

Technology (HUT). HUTSIM developers are currently seeking to incorporate nanoscopic 

principles, such as lapses in reaction time and errors in response, into the driver-behavior 

models in HUTSIM (34, 35). Nanosimulation is usually categorized as a sub-category of 

microsimulation. 

2.1.5.4 Microscopic Models 

Microscopic computer simulation of traffic was first introduced in 1955, when   

D. L. Gerlough published his dissertation, “Simulation of Freeway Traffic on a General-

purpose Discrete Variable Computer” at the University of California, Los Angeles (33). 

Microscopic models track individual vehicles, each with its own set of driver and vehicle 

characteristics. Whereas macro- and mesoscopic models track only the lateral movement 

of vehicles, microscopic models also examine behavior between lanes of traffic, creating 

a two-dimensional model (referring to the analysis, not to the animations created in post-

processing).  

Driver and vehicle characteristics, interactions with the network geometry, and 

interactions between vehicles are all factors that determine movements (25). These 

models are driven by car-following, lane-changing, and gap acceptance models (which 

can be thought of as sub-models). Most microscopic traffic simulation models utilize 
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variations on the General Motors (GM) model (33), which remains the industry standard 

today.  

Some of the existing microscopic traffic simulation models include: 

• SimTraffic (36), 

• VISSIM (37), 

• AIMSUN (38), 

• TEXAS (Traffic EXperimantal Analytical Simulation) (39), 

• INTEGRATION (40), 

• CORSIM (1), and 

• Paramics (26). 

2.1.6 Common Microscopic Traffic Simulation Models 

For many years, CORSIM was the industry standard for microscopic traffic 

simulation. Recently, VISSIM has gained popularity and now competes with CORSIM as 

one of the most widely used microscopic traffic simulation packages throughout the 

United States and Europe. Other commonly used models include Paramics and 

SimTraffic. This section briefly describes each of these. 

2.1.6.1 CORSIM  

CORSIM was developed by the FHWA in the mid- 1970s in response to the need 

for a simulation model with reasonable computer usage requirements that could represent 

traffic flow in large urban areas containing surface street networks and freeways. 

CORSIM combines two models: NETSIM (NETwork SIMulation), which represents 
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traffic on urban streets and FRESIM (FREeway SIMulation), which represents freeway 

traffic (1). FRESIM and NETSIM were use slightly different car-following and lane-

changing logic, so a vehicle being modeled in CORSIM will behave differently 

depending on whether is it traveling on a freeway or surface street link. 

CORSIM can model various intersection controls, including actuated and pre-

timed signals, and most surface geometries and traffic flow conditions. The network 

geometry is represented by a system of links and nodes, where the links represent 

roadway segments and nodes represent entry points, intersections, or changes in the 

roadway (11). CORSIM was developed to model primarily automobile traffic, but can 

also model bus routes and truck lanes. CORSIM was not designed to represent light rail. 

In real life, driver and vehicle characteristics vary with a large degree of 

randomness. Because of this, CORSIM uses random number seeds to assign driver and 

vehicle characteristics to each vehicle in the simulation. The stochastic nature of the 

CORSIM model requires that a simulation be run several times using different sets of 

random number seeds in order to gain an understanding of network performance (1). 

While CORSIM can be used as a stand-alone Dynamic Linked Library (DLL), it 

is commonly run within the TSIS environment (refer to Section 1.1.1), which includes 

tools for pre- and post-processing a CORSIM model (1). 

2.1.6.2 VISSIM 

VISSIM was developed in Germany at the University of Karlsruhe in the early 

1970s, but the software was not made commercially available until 1993 (11). Because of 

its European roots, VISSIM was designed to model a variety of modes, including general 

traffic, buses, light rail, heavy rail, trucks, pedestrians, and bicyclists.  
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VISSIM comprises a simulator and a signal state generator. The simulator 

contains network geometry and generates traffic. As in CORSIM, VISSIM uses links to 

represent roadway segments. VISSIM does not, however, have the traditional node 

structure found in CORSIM. The signal state generator contains the signal control logic 

that can be used to can model virtually any control logic, including fixed time, actuated, 

adaptive, transit signal priority, and ramp metering. The node-less network structure and 

separate signal state generator both give the user greater flexibility in defining the traffic 

environment (11). 

2.1.6.3 Paramics 

The Paramics model was developed in the early 1990s as a collaborative effort 

between Quadstone (a high-performance software firm) and SIAS (a traffic engineering 

firm) at the University of Edinburgh (26). The two firms have since separated and now 

distribute the software as two separate packages. Paramics was first used in the United 

States in 1999 (41). The Paramics model does not have driver behavior calibration 

parameters, but rather works from the assumption that appropriate demand data and 

network geometry will yield correct results regardless of driving characteristics specific 

to a certain location (26). Driver behavior characteristics can only be modified to match 

local data using the model's application programming interface (API) (41). 

2.1.6.4 SimTraffic 

SimTraffic was developed to work hand in hand with the signal optimization 

program, Synchro, and to provide a user-friendly modeling and visualization alternative 

to CORSIM (36). While the primary strength of SimTraffic lies in its ability to model 
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signalized intersections, SimTraffic developers claim that it can be applied to freeways 

and larger networks as well. SimTraffic was developed by Trafficware and bases its 

vehicle and driver performance characterstics on the vehicle and driver performance 

characteristics developed by the FHWA. Thus, the internal logic of the model is very 

similar to that of CORSIM. As of Version 6, SimTraffic does not simulate transit, ramp 

metering, on-street parking, or high-occupancy vehicle (HOV) lanes. It can model most 

network geometries, including limited applications of roundabouts. It also models 

individual pedestrians, where CORSIM only accounts for pedestrians as delay factors 

(36). 

2.2 Car-following Models 

The logic used to determine when and how much a car accelerates or decelerates 

is crucial to the accuracy of a microscopic simulation model. Most simulation models use 

variations on the GM model. Although it was developed in the 1950s and 1960s, it has 

remained the industry standard for describing car-following behavior and continues to be 

verified by empirical data. A variation on the GM model is the PITT car-following 

model, which is utilized in FRESIM. Other car-following models that have been 

developed more recently include the Van Aerde (40) and the University of Delaware (42) 

models, which will not be discussed here but can be found in the literature. The GM 

family of models is perceived to be the most commonly used in microscopic traffic 

simulation models and are, therefore, the focus of this thesis. 
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2.2.1 Generalized General Motors Model 

The first GM model modeled car-following as a stimulus-response process in 

which the following vehicle attempts to maintain space headway (43). When the speed of 

a leading vehicle decreases relative to the following vehicle, the following vehicle reacts 

be decelerating. Conversely, the following vehicle accelerates when the relative speed of 

the leading vehicle increases. This process can be represented by the first GM model, 

given in Equation 2-1 (42, 43):  

))()(( txtxx FLFF &&&& −= α  (2-1)       

where:  Fx&&  = acceleration of the following vehicle, 

 Fx&  = speed of the following vehicle, 

 Lx&  = speed of the leading vehicle, 

 αF  = sensitivity of the following vehicle, and  

 t  = time. 

 

Equation 2-2 is the generalized form of the GM model, also called the fifth GM 

model (42, 43). 
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where:  T  = following driver's perception-reaction time, and 

 l, m, λ  = constants relating to driver sensitivity. 

 

Varying the values of l and m produces different variations on the GM model. 

Kikuchi et al. (42) refer to two of the more common GM models as the Pipes model and 
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the Gazis' model. The Pipes model set both l and m equal to zero, reducing the 

generalized GM model to Equation 1, with α = λ. In the Gazis' model, m = 0 and l = 1, so 

that car-following sensitivity varies inversely with the distance between the two vehicles. 

The Gazis’ model is the microscopic equivalent of the macroscopic Greeenburg model. 

2.2.2 PITT Car-following Model 

FRESIM uses the PITT car-following model, which is expressed in terms of 

desired space headway, shown in Equation 2-3 (4, 44). 

2
212 )]()([)()( tvtvbktkvmLths −+++=  (2-3) 

where: hs(t) = desired space headway at time t, 

 L  = length of leading vehicle, 

 m = minimum car-following distance (PITT constant), 

 k = car-following sensitivity factor for following vehicle, 

 b  = relative sensitivity constant, 

 v1(t) = speed of leading vehicle at time t, and 

 v2(t) = speed of following vehicle at time t. 

 

Equation 2-3 can be solved for the following vehicle’s acceleration, given by 

Equation 2-4 (44). 
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where: a = the acceleration of the following vehicle, 

 T  = the duration of the scanning interval, 
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 x  = position of the leading vehicle, and 

 y  = position of the following vehicle. 

2.3 Genetic Algorithms 

Many traffic simulation models require the user to define characteristics for 

several different driver types.  Since an engineer cannot quantify a priori how courteous 

or aggressive the drivers on a particular system might be, these driver behavior 

characteristics must often be reverse engineered based on field data. Some method of 

optimization must be used to find a set of parameters that best reflects observed 

characteristics of the system. Genetic algorithms lend themselves well to this task and are 

accepted as an efficient and robust optimization and search methodology used in a variety 

of fields. 

This section will briefly discuss optimization methods that can provide 

alternatives to genetic algorithms. Next, basic genetics terminology is introduced to 

provide a framework for a description of the components of a genetic algorithm. This will 

be followed by a brief history of the development of genetic algorithms. Finally, the steps 

to implementing a genetic algorithm, as recommended by the literature, will be presented.  

2.3.1 Alternative Optimization Methods 

Prior to the development of genetic algorithms, commonly used optimization 

methods fell into three categories: calculus-based, exhaustive searches, and random 

searches (3). 
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2.3.1.1 Calculus-based optimization 

Many optimization problems can be modeled as either minimization or 

maximization problems. If the search space or the fitness function is well-understood and 

can be represented as a continuous function, extrema can be found by finding the roots of 

the derivatives. If there are many roots, these must be individually examined to determine 

which of these are global extrema (3).  

2.3.1.2 Exhaustive searches 

Some optimization problems cannot be represented as continuous functions. In 

these cases, every possible solution may be evaluated to find the optimal solution. While 

computers make exhaustive searches more practical than they formerly were, they are 

still impractical for very large search spaces (3). 

2.3.1.3 Random searches  

Random searches are similar to exhaustive searches, but they can cover the search 

space uniformly earlier in the search. They may be able to find an acceptable solution 

more quickly than an exhaustive search, but are subject to the same limitations when 

applied to a large search space (3). 

Any of these methods may be useful for certain applications but none is robust 

enough to be applied to every problem (3). All of these methods tend to converge on 

local, rather than absolute optima. Many problems cannot be solved by any of the above 

mentioned methods.  In order to address these shortcomings, researchers have turned to 

principles of genetics to develop a more robust optimization method. 
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2.3.2 Genetics Terminology 

As the name suggests, genetic algorithms are based on principles of genetics 

observed in the natural world. While an in-depth understanding of genetics is not required 

to implement a genetic algorithm, a basic understanding of the terminology can be 

helpful. Some of the vocabulary that genetic algorithms have borrowed from biology is 

presented here (45). 

• Chromosome: long strings of DNA that carry genetic information. Humans 

have 46 chromosomes. In a genetic algorithm, each member of the population 

has one chromosome. 

• Crossover: The process by which copies of chromosomes from each parent 

exchange genetic material to form the child's chromosomes. 

• Mutation: The process by which genetic material within a chromosome 

changes, resulting in characteristics not present in either parent. 

• Fitness: A subjective measure used by Charles Darwin to describe how likely 

an organism is to survive and produce offspring. 

2.3.3 Components of a Genetic Algorithm 

The basic genetic algorithm itself can be said to have evolved over the past three 

decades. In spite of the existence of several different breeds, the following characteristics 

could be said to define the genetic algorithm species (3, 45). 

• Initial population: Unlike other optimization methods, genetic algorithms use 

a population of possible solutions as a starting point, rather than a single initial 

guess. 
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• Encoding: All variable characteristics of a solution are represented by a 

chromosome. This is usually a bit string in which numeric data are stored as 

binary digits, although researchers have found other encoding methodologies 

more appropriate for categorical or continuous data. 

• Fitness function: Each possible solution is evaluated in terms of its “fitness,” 

based on some predetermined function. The algorithm determines which 

solutions will reproduce based on this fitness function. 

• Crossover: The individuals chosen to reproduce exchange portions of their 

chromosomes in order to generate new individuals with different 

combinations of the characteristics their parents have. 

• Mutation: In addition to exchanging pieces of the bit string between 

individuals, portions of a chromosome are also moved around internally in 

order to preserve diversity in the population. 

• Randomization: The crossover and mutation operators are performed 

randomly, based on predefined probabilities. Selection is generally also 

randomized, depending on the selection method. 

2.3.4 History of the Genetic Algorithm 

Biologists were the first to use early computers to attempt to model genetics and 

evolution (45). In 1957, the work of A.S. Fraser, published in Australian Journal of 

Biological Sciences, modeled genetic systems using a method very similar to a modern 

genetic algorithm (46).  
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The application of adaptation and natural selection to optimization problems was 

not long in following. John Holland and his students at the University of Michigan began 

exploring adaptive systems theory in the 1960s (3). The first published application of a 

genetic algorithm was the 1967 dissertation of one of these students, Bagley. Bagley 

developed an optimum strategy for the playing hexapawn, which is a simplified version 

of chess (3, 47). 

Meanwhile, other researchers were also exploring the optimization potential of 

principles of evolution. In Germany, Rechenberg introduced an optimization method he 

called Evolutionsstrategie (evolution strategies) in 1965 (45). In 1966, Fogel, Owens, and  

Walsh introduced “evolutionary programming,” a method in which candidate solutions 

are randomly mutated and the fittest is selected (3). 

John Holland set forth the theoretical basis for modern genetic algorithms in 1975 

with the publication of his book, Adaptation in Natural and Artificial Systems (48). That 

same year Ken DeJong made the first effort to apply a genetic algorithm to optimizing 

the parameters of another genetic algorithm (3). 

In 1985, David Goldberg, a Civil Engineering student at the University of 

Michigan published a dissertation in which he applied a genetic algorithm to a pipe 

optimization problem. Goldberg is largely responsible for popularizing the genetic 

algorithm and bringing it from academia to the toolbox of practicing engineers and 

scientists (49). 
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2.3.5 Implementing a Genetic Algorithm 

This section presents the steps involved in implementing a genetic algorithm, 

from deciding whether a genetic algorithm is appropriate to determining when to stop the 

algorithm. Each of these steps will be presented in the following sections. 

2.3.5.1 When is a Genetic Algorithm Appropriate? 

Genetic algorithms are most appropriate for problems subject to the limitations of 

the optimization methods presented in Section 1.3.1 (3). This includes problems with any 

of the following conditions (45): 

• The search space is large, 

• The search space is not smooth or unimodal, 

• The search space not well understood, or 

• The fitness function is noisy (i.e. there is a random term in the function). 

 

One limitation of genetic algorithms is that, while they tend not to converge on 

local extrema, they have no way of determining whether a solution is the absolute best 

possible. Rather, they can only compare a solution to others that have been tried. Thus, 

genetic algorithms are most appropriate in situation where a “good enough” solution is 

desired, rather than an absolute optimum (45). 

2.3.5.2 Selecting Parameters to Vary 

While one of the strengths of the genetic algorithm is its ability to handle several 

optimization parameters, an excessive number of parameters will slow down and 

generally complicate the process. Haupt and Haupt (49) give the example of designing a 
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car to optimize gas mileage. In this hypothetical problem, the engineer could vary several 

possible parameters, such as weight, height, width, shape, color, type of engine, tire 

pressure, etc. Of these, some, such as weight and shape, will have a great impact on gas 

mileage. Others, such as color, will have minimal impact and will unnecessarily 

complicate the problem if they are included in the genetic algorithm. Parameters can be 

selected based on engineering judgment, or sensitivity analyses (49).  

2.3.5.3 Selecting Constraints 

Two approaches are available for selecting constraints (the minimum and 

maximum value for each parameter). The first is to use hard bounds, so the variable is not 

allowed to have any value outside a specified interval (0 < x < 10, for example). Binary 

encoding facilitates these kinds of hard bounds most naturally. The second approach is to 

transform the variable using a function with a domain equal to the desired interval (x = 5 

sin y + 5, for example). This is more appropriate for continuous variable encoding (49). 

2.3.5.4 Selecting a Fitness Function 

For some problems, selecting a fitness function may be relatively straightforward. 

To refer back to the example of optimizing a car's gas mileage, the car which can travel 

the farthest using the least amount of gas would be the best solution. However, if an 

engineer wished to design a car with both the greatest possible gas mileage and passenger 

seating capacity, a more complicated function would be necessary. Theoretically, a 

fitness function could be designed to include as many MOEs as the programmer wishes. 

However, the same caveat applies here as to parameter selection, wherein an excessive 

number of MOEs could unnecessarily complicate the algorithm. 
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2.3.5.5 Encoding 

The most common approaches for representing parameters in a genetic algorithm 

are binary bit strings and real-value (decimal digit) encoding. Other methods, such as 

tree-encoding, which have also been developed in the several years, will not be discussed 

here, but can be found in the literature (45). 

Researchers at the University of Michigan used binary encoding for the first 

genetic algorithms. Binary encoding has become state of the practice and is the basis for 

much of the research that has been done on genetic algorithms. It has the advantage of 

preserving schemata, or similarities between different chromosomes (3). Schemata were 

very important to Holland and his colleagues, but more recent research has suggested that 

schemata do not play as important a role as previously believed (45). Binary encoding 

naturally holds the parameter constraints by keeping a fixed number of bits. For example, 

a string with two bits can have 4 possible values: 00, 01, 10, and 11. These correspond to 

the decimal numbers 0, 1, 2, and 3. A value greater than three can be represented by 

adding more digits. This makes binary encoding a very natural way to represent 

parameters with a finite selection of values. 

Some applications lend themselves more naturally to continuous-value encoding 

(49). While Holland's early theory suggests that real value encoding should not perform 

as well because of its inability to preserve schemata, empirical evidence suggests that, for 

many applications, it can perform as well or better (45). Additionally, since most other 

optimization methods use a continuous, rather than binary encoding methodology, it can 

allow genetic algorithms to cooperate more easily with other methods to form hybrids. 
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Continuous parameter representation is most appropriate for a bound, but continuous 

search space (49).  

2.3.5.6 Selection 

The advantage of a genetic algorithm over a random search lies in the ability to 

preserve those characteristics that make one solution more or less fit than another (3). 

Thus, it is crucial that the most fit individuals are more likely to pass on their 

characteristics to the next iteration than the least fit. Researchers have proposed several 

approaches to selecting which chromosomes will be allowed to reproduce. 

Fitness proportionate roulette wheel selection is the original and most common 

selection method. In this method, once the fitness of each individual has been evaluated, 

the fitness values are calculated as a proportion of the total fitness for the entire 

population. This proportion is then used as the probability that a particular chromosome 

will be chosen to reproduce. Some variations on this method are sigma scaling, elitism, 

and rank proportionate selection (45). 

Sigma scaling has been found to curtail premature convergence. In the early 

iterations, the range of fitness values will be large. As the algorithm begins to converge, 

this range becomes much smaller. Ideally, a wider range of fitness values should be 

selected in the early iterations in order to prevent the algorithm from converging on a 

local maximum. Later on, only the very best solutions should be kept. In sigma scaling, 

the probability of selection is based on the number of standard deviations away from the 

mean fitness, rather than absolute fitness value. This forces the algorithm to become more 

selective in later iterations (45). 



29 

While sigma scaling is intended to keep the algorithm from discarding solutions 

with low fitness values that may develop into better solutions, elitism forces the 

algorithm to keep the very best solutions. A certain number of best solutions are set aside 

before the selection operator is called. These elite solutions will always survive to the 

next iteration and always reproduce until a better solution is found (45). 

Rank proportionate scaling is a method of making the selection process less 

sensitive to large gaps in fitness values. Individuals are ranked according to their fitness 

and the probability of selection is based on an individual's rank, rather than on absolute 

fitness. Thus, an individual that is only slightly better than its nearest neighbor is just as 

likely to be chosen as if it were twice as fit (45). 

2.3.5.7 Crossover 

Single-point crossover is the simplest form of the crossover operation. Once two 

individuals have been selected to mate, a random point on the bit string is chosen and the 

chromosomes exchange the section to the right of that string. Single-point crossover is 

illustrated in Figure 2-1. This method is often the most appropriate because it is the 

simplest; however, it has the disadvantage of favoring the bits at the ends of the string to 

be exchanged. The bits in the middle of the string are less likely to be exchanged (45). 

When disadvantage of favoring the bits at the end of the chromosome becomes an 

important issue, it can be overcome by using multiple-point crossover (45). A random 

number of crossover points are chosen for each chromosome and the bits are exchanged 

in the sections between these points. Figure 2-2 shows an example of multiple-point 

crossover with three crossover points. 
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Figure 2-1: Schematic of single-point crossover. 

 

Figure 2-2: Schematic of multiple-point crossover. 

2.3.5.8 Mutation 

The algorithm maintains diversity in the population by randomly mutating some 

individuals at each iteration. In bit string chromosomes, a position on the chromosome is 

randomly chosen and “flipped” (45). DeJong's research points to an optimal probability 

of mutation of less than 1 percent (3). That is, any one bit in the string might have a 
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probability (P = 0.01) of getting “flipped.” The probability of mutation for an entire 

chromosome can be expressed by Equation 2-5. 

n
BC PP = , (2-5) 

where: PC  = probability of mutation for the chromosome, 

 PB  = probability of a bit getting “flipped,” and 

 n  = the number of bits in the bit string. 

 

Thus, if the probability of mutation is expressed in terms of chromosomes rather 

than individual bits, DeJong’s research would suggest that PC be less than 0.3 for a 

chromosome with a length of 30 bits. 

2.3.5.9 Stopping 

One of the weaknesses of a genetic algorithm is the inability to determine if a 

particular solution is the best possible. Stopping criteria define when a solution is “good 

enough.” Generally, this will either be a predefined minimum fitness value or a 

maximum number of iterations (3). 

2.3.5.10 Setting Genetic Algorithm Parameters 

From the previous sections, it is apparent that some parameters for the genetic 

algorithm itself must be set before the simulation begins. These parameters include: 

• Probability of crossover, 

• Probability of mutation, 

• Population size, 
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• Minimum fitness for stopping, and 

• Maximum number of iterations. 

 

DeJong's research attempted to determine the optimal values for population size, 

probability of crossover, and probability of mutation on a suite of test cases in 1975 (3). 

In 1986, Greffenstette proposed that, since the selection of these parameters is an 

optimization problem, another genetic algorithm could be used to find them. More recent 

research has focused on self-adapting parameters (50). 

2.4 Calibration of Microscopic Traffic Simulation Models 

This section summarizes three studies that have utilized genetic algorithms to 

calibrate driver behavior parameters in CORSIM. Specifically, these studies focused on 

the lane-changing and car-following parameters that are incorporated into the FRESIM 

component of CORSIM. These parameters will be discussed in detail in Section 3.1.3. 

2.4.1 Singapore Expressway Model 

Genetic algorithms were first applied to the calibration of microscopic traffic 

simulation models in 1998 by Cheu et al. (4). Cheu and his colleagues built a FRESIM 

model of a 3.7 mile section of the Ayer Rajar Expressway in Singapore. Traffic data for 

surveillance were collected using video surveillance from pedestrian bridges located at 

several locations along the section. Two data sets were used in this study, each consisting 

of two weekdays within the same two week period. One day of data was used for 

parameter calibration, the other for verification.  
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Parameter sets were encoded into chromosomes consisting of 40 decimal digits. 

Fitness calculations only included data that had not been used to determine simulation 

inputs, in to avoid overestimating the accuracy of the model.  

The MOEs selected for calibration were speed and volume. The fitness function 

selected by Cheu et al (4) is shown in Equation 2-6.  
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where: F  = fitness value, 

 ui  = average speed at detector station i (mph), 

 qi  = average flowrate at detector station i (vehicles per 30 second), 

 si  = scale factor i, and 

 AAE(x)  = Average absolute error, given by Equation 2-7. 
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where:  T  = number of time steps, 

 xfield(t)  = field observation at timestep t, and 

 xFRESIM(t)  = FRESIM calculation at timestep t. 

 

Thus, the algorithm seeks to maximize the fitness value by minimizing average 

absolute error. 

Sensitivity analyses by Cheu et al. (4) showed that a population size of 4, while 

much lower than what is typically used for genetic algorithms, converged to a higher 

final fitness value than populations of sizes 10 and 40. Further sensitivity analyses 



34 

revealed free flow speed, minimum car-following distance, and car following sensitivity 

factors to have the most impact on the accuracy of the model. The calibrated parameters 

for the various data sets suggested that drivers may have different characteristics during 

each period (morning peak, mid-day, and evening peak) and that different parameters sets 

may be appropriate for each of these periods. 

2.4.2 Covington, Virginia Highway Model 

Park and Qi (51) proposed a very thorough procedure for calibrating microscopic 

traffic simulation models using a genetic algorithm. They applied their procedure to a 

five-mile highway segment near Covington, Virginia using Paramics, CORSIM, and 

VISSIM. The proposed procedure placed a greater emphasis on preprocessing to 

determine whether a genetic algorithm was actually necessary and to ensure that the 

initial population was somewhat evenly spread over the search space. 

In the procedure proposed by Park and Qi (51), the model being calibrated was 

first run with default parameters. If an acceptable fit to the field data was obtained on this 

first run, further calibration was unnecessary. Otherwise, an initial distribution was 

created using Latin Hypercube Design (LHD) sampling (51) to ensure that the entire 

range of possible parameter values was covered. Because of the stochastic nature of the 

CORSIM model, multiple runs were performed with each of these parameter sets. A 

feasibility test was performed in order to verify that the specified parameter ranges 

reasonably cover the field data. Parameter ranges were deemed acceptable if the field 

data fell within the middle 90 percent of the simulated data. 
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Park and Qi (51) used decimal digits to encode values in the chromosomes. The 

objective function was a measure of error, given by Equation 2-8. 
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where: e  = error, 

 xo  = field observation, and 

 xs  = simulation calculation. 

 

The genetic algorithm sought to minimize error directly rather than transforming 

it to an exponential maximization problem. Schultz (52) points out that the advantages to 

such a transformation are that it can provide a better measure of overall effectiveness and 

a better mathematical representation of the results. The exponential fitness function that 

is most commonly used (the exponential of the opposite of the error) places a greater 

emphasis on small reductions in error if the error is already small than if the error is large. 

After the genetic algorithm was completed, the calibrated parameter sets were validated 

using field data from the same facility, collected on a different day (51). 

Many CORSIM parameters can be defined by distributions. These include amber 

interval response, gap distribution for left turns, distribution of free-flow speed by driver 

type, start-up lost time distribution, discharge headway distribution, and car-following 

sensitivity factors. For parameters that can be defined by distributions, factors within the 

distributions were not adjusted individually. Rather, Park and Qi defined three to five 

possible distributions and allowed the algorithm to select one of these (51). This approach 

has the advantage of simplifying the calibration process because there is only one 
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parameter to adjust, rather than 10. The disadvantage is that the algorithm does not 

explore all possible solutions. 

The best parameter sets found by the genetic algorithm were found to produce 

only slight advantages over the best sets found by LHD sampling (used to create the 

initial population). Because genetic algorithms require much more computing power than 

LHD sampling, this introduces the question of whether the extra effort is worthwhile 

(51). 

2.4.3 Houston, Texas Interstate Model 

Schultz and Rilett (53) address the issue of calibrating parameters which can be 

defined by distributions in their study of car-following parameters in CORSIM. They 

proposed that the genetic algorithm search for an optimal center and spread (mean and 

standard deviation) for the distribution. This method has the advantage of significantly 

reducing the number of parameters to be optimized while maintaining a continuous 

search space. Schultz and Rilett applied this method to a model of a 13.9-mile section of 

an interstate in Houston, Texas using both normal and lognormal distributions and found 

that the algorithm converged to a slightly higher fitness value with the lognormal 

distribution. 

2.5 Concluding Remarks 

This chapter presented an overview of various categories of traffic analysis tools, 

with an emphasis on microscopic traffic simulation and car-following models. A brief 

background on the history and theoretical basis of the genetic algorithm was also 
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presented, followed by a summary of recent studies which have applied genetic 

algorithms to the problem of calibrating microscopic traffic simulation models. 
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3 Calibration Program 

The genetic algorithm used for this research is based on one developed and 

written in the perl language at Texas A&M University and used by Schultz and Rilett (52, 

53). This algorithm was developed to calibrate the driver behavior and vehicle 

performance parameters associated with the FRESIM component of the CORSIM 

program. Several modifications were made to the original perl script, primarily intended 

to improve the efficiency of the program, facilitate incorporation into a GUI, and 

automate several procedures, such as calculating the length of the chromosomes and 

performing log transformations, which previously had been done manually. A stopping 

criterion was also added to terminate the algorithm if an acceptable level of error has 

been achieved.  

The CORSIM program uses input files which readily lend themselves to 

manipulation by a perl script. The CORSIM input files are text files with the extension 

*.trf. All information required for the program is recorded on lines of text, sometimes 

referred to as cards. Each record type is identified by a number at the end of the line 

which indicates what type of data can be found on that card. In order to modify specific 

CORSIM parameters, the perl script searches for the record type that contains those 

parameters and replaces that line of text with a line containing new parameters.  
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This chapter describes the genetic algorithm program and GUI developed for this 

research. This information is presented to describe the methodology and logic of the 

calibration procedure. It is also intended as a user’s manual for those wishing to apply 

this program to further research or industry applications. 

3.1 Graphical User Interface 

The modified version of the calibration program reads a text file containing all 

necessary inputs, including minimum and maximum values for each parameter to be 

optimized, and filenames for the CORSIM file to be optimized (*.trf), as well as files 

containing observed volumes and travel times. This input file also contains several 

control variables for the genetic algorithm, such as the population size, maximum number 

of iterations, and mutation and crossover probabilities. An example of an input file is 

included in Appendix A. The user can edit the input file in its current form directly; 

however, care must be taken to preserve the format of the file in order to ensure that it 

will be correctly read by the perl script. To avoid potential problems, the user may edit 

minimum and maximum parameter values and various control settings from a GUI that 

will generate the appropriate input file automatically. The interface consists of four 

dialogs: 1) File Management, 2) Calibration Control, 3) Vehicle Performance Parameters, 

and 4) Driver Parameters. Each of these is described in the sub-sections that follow. 

3.1.1 File Management 

The File Management dialog box allows the user to enter the locations of 

calibration data files on the user’s computer. The user must also specify a CORSIM input 
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file containing the geometry and other characteristics of the network being calibrated, as 

illustrated in Figure 3-1. The lower portion of the dialog allows the user to specify a 

directory where all output files will be saved.  

 

 

Figure 3-1: File Management dialog box. 

The observed volume file lists one volume for each link where actual count data is 

available. The observed travel time file provides travel time data as either travel time for 

each individual link or as total travel times over groups of consecutive links. The 

beginning and ending node of such a link group must be flagged by a node number 

between 700 and 799. These node numbers must be manually adjusted by the user in the 

CORSIM model development. In order to optimize driver behavior and vehicle 

performance parameters, the CORSIM input file must contain three optional record types: 

68 (Car-Following Sensitivity Factor), 69 (Pavement Friction Coefficients-Lag to 

Accelerate and Decelerate), and 70 (Lane Change Parameters, Minimum Separation for 

Vehicle Generation, Maximum Non-Emergency Deceleration, and HOV Lane Entry 
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Percentage). The genetic algorithm will not add cards containing calibrated parameters if 

these cards are not present in the original file. For a detailed discussion of CORSIM 

record types, refer to the CORSIM User’s Guide (1). 

At the bottom of the dialog the user can specify where the output files of the 

genetic algorithm will be written. The output files of the calibration program include a 

subdirectory for each member of the population. Each of these subdirectories contains 

three files. These subdirectories are overwritten every iteration and are primarily only 

used internally by the program. Five to seven different output files are also written (five if 

the model is being calibrated to volume or travel time, seven if the model is being 

calibrated to volume and travel time).  

 The five metadata output files written for a single MOE are named 

Play_by_Play.txt, OBJECTIVE_output.txt, PARAMETER.txt,  RUN_SITUATION.txt, 

and either volume_logfile.txt or time_logfile.txt (depending on whether the program is 

calibrating to volume or travel time). If the program is calibrating to both volume and 

travel time, log files are written for each MOE, as well as an additional file called 

both_logfile.txt. Play_by_Play.txt was added to the original program for this research. 

The formats of the other files have been slightly modified from the version developed at 

Texas A&M University. These files are now written as tab delimited tables so that they 

can more easily be imported into spreadsheet programs such as Microsoft Excel. Each 

output file is briefly described below. Examples of each output file are included in 

Appendix B. 

The Play_by_Play.txt file is a detailed log of the genetic algorithm operations 

taken by the program. The program writes out the chromosome bit strings after every 
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operation (mutation, crossover, selection) and specifies which chromosomes are being 

crossed over or mutated. This allows the user to follow how the population has changed 

over time and which operations have been the most influential in changing the 

characteristics of the population. Essentially, this file is a narration of a run of the 

calibration program.  

The OBJECTIVE_output.txt file lists the minimum, maximum, and average 

fitness values for each iteration of the genetic algorithm. The user must refer to this file to 

determine the maximum fitness value that was found by the algorithm and at which 

iteration this value first occurred. 

The PARAMETER.txt file lists the parameter sets used for each CORSIM run. The 

user may refer to this file to see how parameters are changing from iteration to iteration. 

Once the calibration is complete, the user must refer to this file to find the parameter set 

that corresponds to the greatest fitness value. 

The RUN_SITUATION.txt file is a record of the time and date at which each 

CORSIM run is completed. This can be used to determine approximately how long a 

typical CORSIM run or iteration of the algorithm has taken. This file is updated after 

every CORSIM run and can be referred to in order to determine how much time remains 

before a test is completed. 

The volume_logfile.txt and time_logfile.txt files contain the volume and travel 

time mean absolute error ratio (MAER) and fitness values for every CORSIM run 

performed by the program, often in the hundreds. In addition to the format change noted 

above, these file formats has also been modified to record the fitness values. The 

both_logfile.txt file lists the fitness values for each MOE as well as the combined fitness 
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value. The log files are updated after each iteration, so it may be referred to at any point 

during the program run to check the progress of the algorithm. Such checks are advisable 

early in the first iterations so that errors can be detected. If errors are detected early, the 

test can be aborted and errors corrected before beginning the test again. 

3.1.2 Calibration Control 

The Calibration Control dialog allows the user to specify several control variables 

for the genetic algorithm, as shown in Figure 3-2. The control variables include the 

maximum number of iterations, population size, mutation and crossover probabilities, 

acceptable error, and the fitness function parameters. The acceptable error parameter was 

added to the original algorithm for an additional stopping criterion. If the average error 

for a run falls below this value before the maximum number of iterations, the algorithm 

will stop and accept the parameters from that run as a final solution. The acceptable error 

is entered as a proportion between 0 and 1, where a value of 0 will force the algorithm to 

always perform the maximum iterations, a value of 0.1 will stop the algorithm when an 

error of less than ten percent is achieved, and a value of 1 always stop the algorithm after 

the first iteration.  

In the study by Schultz (52), sensitivity analyses were performed to determine 

appropriate values for several of these control variables. Schultz concluded that mutation 

and crossover probabilities are not major determinants of overall calibration results. 

Schultz recommended a population size of at least 20 and at least 30 iterations.  

The Calibration Control dialog also allows the user to specify the form of the 

fitness function. The fitness function employed by the calibration program can contain 



45 

three control variables: β values for both volume and travel time and an α value. The 

fitness function and the significance of these control variables are presented in Section 

3.2.1.4. 

 

 

Figure 3-2: Calibration control dialog box. 

3.1.3 Driver Behavior Parameters 

The Driver Behavior Parameters dialog box is shown in Figure 3-3. The driver 

behavior parameters include car following sensitivity factors, PITT's car following 

constant, acceleration and deceleration lag times, time to complete a lane-change 

maneuver, minimum separation for generation of vehicles, mandatory lane-change gap 

acceptance, percent of drivers yielding right-of-way to lane-changing vehicles, multiplier 

for desire to make a discretionary lane-change, and advantage threshold for discretionary 

lane-change. These parameters are discussed in the following sections. 
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Figure 3-3: Driver Behavior Parameters dialog box. 

3.1.3.1 Car-following Sensitivity Factors and PITT Constant 

The FRESIM component of CORSIM uses the PITT car-following model 

(presented in Section 2.2.1.1), expressed previously by Equation 2.3. The user is allowed 

to define the car-following sensitivity factor, k, for each of 10 different driver types. A 

driver type with a lower value of k will follow the leading vehicle more closely than a 

driver type with a higher k value. These values are entered into CORSIM and into the 
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calibration program in of hundredths of units. Thus, a k value of 1.35 would be entered as 

135. 

The calibration program gives the user the option of specifying a normal or 

lognormal distribution for the car-following sensitivity factors and calibrating the mean 

and standard deviation rather than calibrating an individual factor for each of the 10 

driver types, based on research by Schultz (52). If the 10 values are calibrated 

individually, only one pair of minimum and maximum values may be specified for the 

entire set.  

The PITT car-following constant is defined as the space in feet between vehicles 

(i.e. gap) that the driver wishes to maintain. The CORSIM default is 10 feet. The 

CORSIM Users’ Manual specifies an acceptable range of values from 3 to 10 feet (1). 

The 10 car-following sensitivity factors and the PITT car-following constant must all be 

entered on record type 68 in CORSIM. If this record type is not present, the default 

values shown in Table 3-1 are used. 

Table 3-1: Default Car-Following Parameters 

PITT
Driver Type 1 2 3 4 5 6 7 8 9 10 Constant
Value 1.25 1.15 1.05 0.95 0.85 0.75 0.65 0.55 0.45 0.35 10 ft.

Car Following Sensitivity Factors

 

 

3.1.3.2 Lag Times for Acceleration and Deceleration 

Lag times for acceleration and deceleration are expressed in units of tenths of a 

second. These parameters are intended to describe the delay motorists experience when 
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making required movements (1). The default values for both of these lag times are 0.3 

seconds. Lag times can be specified on record type 69 to override the default values. 

3.1.3.3 Lane Changing Parameters 

The lane changing parameters in the bottom half of the dialog are written to 

record type 70 in CORSIM. Lane changing parameters include time to complete the lane-

change maneuver, minimum separation for generation of vehicles, mandatory lane 

change gap acceptance, percent of drives willing to yield right-of way to merging 

vehicles, multiplier for desire to make a discretionary lane change, and the advantage 

threshold for making a discretionary lane change. This section discusses each of these. 

During lane-changing, the lane-changing vehicle and the putative leading vehicle 

in the target lane are allowed to operate in unsafe conditions (1). These conditions are 

allowed to exist for the period of time defined by the time to complete lane-change 

maneuver which is entered in units of tenths of a second. Thus, a value of 30 would 

indicate that 3 seconds are required to complete a lane-change maneuver. 

The minimum separation for generation of vehicles is the minimum rate at which 

vehicles enter the network in a given lane. While this is not strictly a lane-changing 

parameter, it affects lane-changing by controlling the supply of available gaps in the 

network. It is expressed as a time headway in units of tenths of a second. 

Mandatory lane change gap acceptance is a unitless measure used to determine 

the acceptable gap for mandatory lane changes. It can be an integer value from 1 to 6, 

where 1 indicates the most aggressive drivers (who accept the smallest gap) and 6 

indicates the least aggressive drivers (who require the largest gap) (1).  



49 

Percent of drivers desiring to merge right-of-way to lane changing vehicles 

represents the fraction of putative followers in the target lane who are willing to 

decelerate in order to increase the probability of a successful lane change. The program 

models this by allowing lane changes with a larger value of the lane changing risk factor 

when the putative follower is a cooperative driver (1).  

The multiplier for desire to make a discretionary lane change controls how likely 

drivers are to change lanes when it is perceived to improve their ability to drive at their 

preferred speed or headway. The multiplier is a value between 0 and 1 and is expressed in 

tenths of units in CORSIM, and is therefore entered as an integer value between 0 and 10 

(1). 

The advantage threshold for a discretionary lane change controls how 

advantageous a driver must perceive a lane change maneuver to be in order to change 

lanes. Like the previous parameter, this is a value between 0 and 1 and is expressed in 

tenths of units in CORSIM, and is therefore entered as an integer value between 0 and 10 

(1). Table 3-2 lists the default values for each of the lane changing parameters (1).  

Table 3-2: Default Values for Lane Changing Parameters 

CORSIM
Parameter Actual Entry
Minimum Separation for Generation of Vehicles 2 seconds 20
Time to Complete Lane Change Maneuver 1.6 seconds 16
Mandatory Lane Change Gap Acceptance 3 3
Percent of Drivers Yielding to Merging Vehicles 20% 20
Multiplier for Desire to Make Discretionary Lane Change 0.5 5
Advantage Threshold for Discretionary Lane Change 0.4 4

Default Value
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3.1.3.4 Vehicle Performance Parameters 

The Vehicle Performance Parameters dialog box allows the user to set minimum 

and maximum values for the vehicle performance parameters to be calibrated, as shown 

in Figure 3-4. Maximum non-emergency deceleration indicates the rate at which a 

vehicle will decelerate in a non-emergency situation. It is expressed in tenths of a foot per 

second squared. Maximum non-emergency freeway deceleration is specified for each of 

nine vehicle types. With nine vehicle types and 10 driver types, there are 90 possible 

driver-vehicle combinations in a CORSIM simulation. The default maximum non-

emergency deceleration rate for all nine vehicle types is 80 feet per second squared. 

 

 

Figure 3-4: Vehicle Performance Parameters dialog box. 



51 

3.2 Genetic Algorithm Implementation 

Once the input file has been created, whether manually or by the GUI, it can be 

input into the calibration program. The program consists of an initialization step followed 

by many iterations illustrated in Figure 3-5. Each of the steps illustrated in the diagram is 

described in the sections that follow. 

3.2.1 Initialization 

During initialization, an initial population is created, the binary bit strings are 

converted to decimal values, each parameter set is run through CORSIM, a fitness 

function is evaluated for each chromosome, and the initial population goes through the 

selection procedure.  

3.2.1.1 Creation of Initial Population 

First, the program calculates the number of bits necessary to store the range of 

each parameter being optimized using Equation 3-1. 
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where: ni  =  bits required for the range of values for parameter i, 

 xmin  =  minimum value for parameter i, 

 xmin  =  minimum value for parameter i, and 

 p  =  precision required for parameter i. 

 

The total length of a chromosome is the sum of the required number of bits for 

each parameter being optimized, as given by Equation 3-2. 
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where:  Lc =  length of the chromosome, and 

 k  =  number of parameters to be optimized. 

 

Figure 3-5: Genetic algorithm procedure. 
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Note that that these chromosomes do not store the actual values of the parameters, 

but rather a position within the range of possible values. The values stored in the bit 

string chromosomes will be used together with the minimum and maximum values to 

calculate actual parameter values, as described in Section 3.2.1.2. 

Once the chromosome length has been calculated, an initial population can be 

created. The population is represented by a randomly generated P by Lc binary array, 

where P is the population size and Lc is the chromosome length.  

3.2.1.2 Conversion to Decimal Values 

The initial population is next used to generate parameter sets for the population of 

size, P. The portion of the chromosome representing each parameter is converted to a 

decimal value using the Equation 3-3. 

j

n

j

jn Xx
i

i∑
=

−=
1
2  (3-3) 

where:  x  =  decimal value of the binary bit string, 

 ni  =  length of the bit string, and 

 Xj  = binary value of position j in the bit string. 

 

An actual value for the parameter is calculated using Equation 3-4. 
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where:  R  = decimal value of the parameter being optimized. 
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The car following sensitivity factors for driver types 1 through 10 may be 

adjusted separately, or a distribution (normal or lognormal) may be specified. In the latter 

case, the chromosomes, minima, and maxima are not stored. Rather, means and standard 

deviations are stored and parameter values are calculated from these once they have been 

converted to decimal values.  

3.2.1.3 Initial CORSIM Runs 

Each of the parameter sets is used to update a copy of the original CORSIM input 

(*.trf) file and CORSIM is run on each of these new input files. Once all of these runs are 

completed, volume and travel time data are read from the CORSIM output files (*.out) 

and the fitness function is evaluated for each chromosome in the population. 

3.2.1.4 Fitness Function 

The fitness function used for this genetic algorithm is an exponential function of 

the MAER for volume, time, or a linear combination of the two exponentials. Thus the 

fitness function for either volume or time can be expressed Equation 3-5 (52). 

))((100 MAEReF β=  (3-5) 

where:  F  = fitness of a chromosome for a given measure of effectiveness, 

 β  = constant, and 

 MAER  = MAER value for the given MOE, calculated by Equation 3-6. 
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where:  N  =  number of links or link groups (for aggregate MOEs), 

 
O
nx   =  observed value of the MOE on link n, and 

  
S
nx   =  simulation estimate of the value of the MOE on link n. 

 

If the model is to be calibrated for both volume and travel time, the fitness 

function becomes a weighted average of the two fitness values, where the user specifies a 

control factor, α, to determine the relative weights of the measures of effectiveness. 

When α is 0.5, volume and fitness are weighted equally. A value of α less than 0.5 will 

favor volume in the calibration and a value greater than 0.5 will favor volume. Thus, the 

total fitness is given by Equation 3-7 (52). 

( ) ( )( )VTTTOTAL FFF αα −+= 1  (3-7) 

where: FTOTAL = total fitness, 

 α = control factor,  

 FTT = travel time fitness, and  

 FV = volume fitness.  

 

The exponential fitness function makes the genetic algorithm a maximization 

problem and favors smaller decreases in the MAER value as the magnitude of the fitness 

value increases. 

3.2.1.5 Selection 

Once fitness values have been calculated, the population is ready for the selection 

step of the algorithm. The selection method employed initially is a simple roulette wheel 
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selection, where the probability that a chromosome, i, will be selected to survive to the 

next iteration is given by Equation 3-8.  
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where: Pi =  the probability that chromosome i will survive, 

 Fi  =  fitness value of chromosome i, and  

 I  =  population size. 

 

Chromosomes are randomly selected according to their respective probabilities 

and copied into a new population. The selection process continues until a new population 

of the same size of the initial population has been created. Because the more fit 

chromosomes have a higher probability of selection, this new population is likely to 

contain multiple copies of the most fit chromosomes and no copies of the least fit 

chromosomes. 

3.2.2 Iterations 

The steps described above comprise the initialization subroutine of the genetic 

algorithm. Once the creation, evaluation, and selection of the initial population is 

complete, the algorithm will iteratively perform the crossover, mutation, evaluation, and 

selection steps until it converges to a solution, or until a maximum number of iterations 

has been reached. 
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3.2.2.1 Crossover 

The first iterative operation performed by the genetic algorithm is crossover, 

which is illustrated previously in Figure 2-2. In the crossover subroutine, each 

chromosome in the selected population has an equal probability of being selected, copied, 

and mated with another chromosome to create a new chromosome. This probability is 

defined by the user before the algorithm begins. When two chromosomes have been 

selected, a start position and crossover length are randomly selected and a simple two-

point crossover is performed. The two new chromosomes created by this operation then 

replace the first two chromosomes in the existing population that were not created in this 

crossover subroutine. For example, if six chromosomes are selected for crossover, the 

operation will be performed three times. The offspring of the two selected chromosomes 

will replace the chromosomes in the first and second positions of the existing population. 

The offspring of the next two selected chromosomes will take the third and fourth 

positions and the offspring of the last two selected chromosomes will take the fifth and 

sixth positions.  

3.2.2.2 Mutation 

Once crossover is completed, the chromosomes left in the population that were 

not replaced by offspring may mutate. Chromosomes are selected for mutation based on a 

user-defined probability. The first chromosome selected for mutation is copied into the 

first position in the population not occupied by the offspring of the previous crossover 

(the seventh position, in the case of the previous example). A randomly chosen bit on this 

copy is then changed (from a 1 to a 0 or from a 0 to a 1). If further chromosomes are 

selected for mutation, their mutants will replace the next position in the population after 
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the previous mutant. Continuing with the previous example, if the first six positions in the 

population are occupied by the offspring of the crossover operation and three 

chromosomes are mutated, these mutants will occupy positions seven, eight and nine of 

the new population. 

3.2.2.3 Evaluation 

After crossover and mutation, the population contains new chromosomes in the 

first several positions, while the final positions are occupied by members of the previous 

iteration. The new members of the population are evaluated in the manner previously 

described. Binary bit strings are converted to decimal values, which are then used to 

calculate parameter values. A CORSIM input file (*.trf) is created with each of these new 

parameter sets and evaluated using CORSIM. Finally, fitness values are calculated for 

each new chromosome.  

Note that additional CORSIM runs are not performed for members of the previous 

iteration which have survived to the current iteration. Rather, the fitness values that were 

calculated the first time these chromosomes were introduced to the population are 

retained for the entire life of the chromosome.  

Once the new members of the population have been thus evaluated, the selection 

subroutine is called and implemented as described in Section 3.2.1.5. The iteration steps 

are then repeated until a stopping criterion has been met. 

3.3 Concluding Remarks 

This chapter presents a description of the parameters controlling the calibration 

program as well as how these parameters are entered into the GUI that was developed for 
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this research. The specific CORSIM parameters that can be modified by the calibration 

program were also described. Finally, the operations and underlying logic of the 

calibration program were described. Chapter 4 describes how data was collected for use 

as inputs to the calibration program described in this chapter. 
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4 Data Collection 

The output of a microscopic traffic simulation model can only be as accurate as 

the data used for model input, calibration, and validation. The purpose of this study is to 

demonstrate a methodology that can be applied to any linear freeway network. The data 

collected for this study would not necessarily be appropriate for addressing site-specific 

design and analysis, but they do provide a basis for a model of a hypothetical network for 

demonstration purposes.  

This chapter describes the sources of the data used for this study as well as the 

methodologies employed to collect and reduce the data. The location of the network 

being simulated is described first, followed by the procedures used to obtain geometry, 

volumes, and travel time data.  

4.1 Test Site 

The Wasatch Front comprises Weber, Davis, Salt Lake, and Utah Counties and is 

home to about three quarters of the population of the State of Utah (54). As the 

population between the Provo and Salt Lake City metropolitan areas increases, so will the 

traffic along the Interstate 15 (I-15) corridor as new residents commute to their 

destinations. The population in Utah County is projected to increase by 87 percent by the 

year 2030. During this same period, employment Salt Lake and Utah Counties is 
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expected to increase by 70 percent and housing units in Utah County by 99 percent. The 

I-15 corridor is currently operating near capacity and demand is projected to exceed 

capacity over almost all of I-15 by 2030 (55).  

I-15 is the only major arterial connecting the Provo and Salt Lake City 

metropolitan areas. Construction of additional arterials to relieve congestion on I-15 is 

inhibited by the geography of the corridor, which is bound by the Uinta Mountains to the 

East and Utah Lake to the West. 

The calibration methodology presented in this research was tested on a 

hypothetical network based on a 13-mile section of I-15, running through the cities of 

Orem, American Fork, Pleasant Grove, and Lehi, Utah, shown in Figure 4-1. This portion 

of the Utah County I-15 corridor is currently under study by UDOT for a Draft 

Environmental Impact Statement exploring alternatives to mitigate congestion (55). This 

section was chosen for this research because of the availability of data resulting from the 

priority UDOT has placed on the corridor. Additionally, its proximity to Brigham Young 

University made it possible to collect additional calibration data, as needed. 

4.2 Data Collection and Reduction 

The required data for any simulation model include inputs to the model, 

calibration data, and validation data. In order to ensure accurate evaluation of the model, 

it is important that these data sets are not correlated. For example, if the model is being 

calibrated to volume data, the calibration data should not be calculated from the model 

input data, or vice versa. One reason why it would not be appropriate to draw site-

specific conclusions from this study is that this is exactly what was done, as will be 
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discussed in Section 4.2.2. For this study, model inputs included geometry and volume 

data. Volumes and travel time were used for calibration and validation.  

 

 

Figure 4-1: Location of the I-15 test site. 

4.2.1 Geometry Data  

Geometry data for the test networks were taken from a CORSIM file provided by 

UDOT which was created by Wilbur Smith Associates in January 2002. This file was 
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modified to include only FRESIM elements (i.e., only on-ramps, off-ramps, and mainline 

freeway links). The original geometry file was subdivided into two separate networks, 

northbound and southbound. The northbound network was used for calibration and the 

southbound network for validation. 

4.2.2 Volume Data 

Volume data was obtained from counts recorded by UDOT on February 13, 2006. 

The count data included turning movements at all on- and off-ramps in the corridor. The 

complete count data are included in Appendix C. These were used as input entry volumes 

for the CORSIM model. The mainline entry volumes for both the northbound and 

southbound networks were calculated from published values of average annual daily 

traffic (AADT) (56). These AADTs were converted to directional hourly volumes using 

the directional (D) and peak hour (K) factors published by UDOT (57). These 

calculations are summarized in Table 4-1. Intermediate and exit mainline volumes were 

computed by adding and subtracting ramp volumes from the mainline entry volumes.  

Figure 4-2 is a schematic diagram of the network showing these network counts.  

Table 4-1: Calculation of Mainline Entry Volumes 

D  
Location AADT K (Southbound) Northbound Southbound
South of Exit 269 99,830 8.6% 0.51 4,379
North of  Exit 284 123,605 8.6% 0.51 5,421

Peak Hour Volume = 
AADT × K × D
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4.2.3 Travel Time Data  

This sub-section describes the methods used to collect travel time data in the field 

and reduced to obtain speed profiles and travel times. 

4.2.3.1 Field Data Collection 

Travel time data was collected using test cars. The average-car technique, as 

described by Roess et al. (58), was applied. This method was chosen because it 

minimized the dangers that would be associated with attempting to pass specific numbers 

of vehicles, as in the floating-car technique, or driving as fast as possible, as in the 

maximum car technique. A driver using the average car technique is instructed to drive at 

the approximate speed of the traffic stream (58).   

Three vehicles were used as test cars and are referred to here as Vehicles 1, 2, and 

3. These vehicles were a 1997 Nissan Altima, a 2004 Jeep Grand Cherokee, and a 2001 

Saturn SL1, respectively. Vehicles 2 and 3 each made one northbound run and one 

southbound run. Vehicle 1 made three runs in each direction, for a total of five runs in 

each direction. A driver and a passenger were assigned to each vehicle and given a global 

positioning system (GPS) unit. The passenger was instructed to use the GPS unit to 

record the vehicle’s position approximately once every second. Because of variations in 

signal strength, weather, and the attentiveness of the person operating the GPS unit, data 

was not successfully recorded for the entire length of every run.  

4.2.3.2 Data Reduction 

The latitude and longitude coordinates recorded by the GPS units were converted 

to Universal Transverse Mercator (UTM) coordinates using the spreadsheet developed by 
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Professor Steve Dutch at the University of Wisconsin at Green Bay (59). The calculations 

in this spreadsheet use the formulae given by Snyder (60). Once the coordinates had been 

converted to UTM coordinates, the approximate distance between each point was 

calculated using the distance formula given in Equation 4-1. 

)()( 1212 yyxxd −+−=   (4-1) 

where: d  = distance between the two points, 

 xi  = easting of point i, and 

 yi  = northing of point i. 

 

The approximate speed of the vehicle at each point (excluding the first) was then 

calculated based on the calculated distance and elapsed time between that point and the 

previous point. The speeds thus calculated are only rough estimates as the position data 

collected by the GPS units are accurate to within several meters. Those points with 

calculated speeds of greater than 150 miles per hour were eliminated from the data set. In 

order to further improve the reasonableness and smoothness of the speed profiles, the 

speeds were taken as the average of the previous 20 points. For the first 20 points in a 

data set, the average of all previous points was used.  

 

4.2.3.3 Results 

This subsection presents travel time estimates from the northbound and 

southbound runs. 
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Speed profiles were created by plotting the speeds thus calculated versus the 

distance traveled, as illustrated in Figure 4-3 through Figure 4-7, for runs 1 through 5, 

respectively. All vehicles appear to have experienced reductions in speed around mile six. 

The data points were also color-coded for speed plotted on a map of the corridor, as 

illustrated in Figure 4-8 through Figure 4-12, for runs 1 through 5, respectively. The data 

points on the speed maps range in color from green to red, with the highest speeds 

represented by green dots and the lowest speeds by red dots. Vehicle 1 was used for 

northbound runs 2, 3, and 4 and southbound runs 3, 4, and 5. Vehicle 2 was used for run 

1, both northbound and southbound. Vehicle 3 was used for northbound run 5 and 

southbound run 2. Each data set collected by vehicles 2 and 3 was more complete than 

any collected by vehicle 1, but vehicle 1 performed more runs.  
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Figure 4-3: Speed profile for northbound run 1. 
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Figure 4-4: Speed profile for northbound run 2. 
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Figure 4-5: Speed profile for northbound run 3. 
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Figure 4-6: Speed profile for northbound run 4. 
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Figure 4-7: Speed profile for northbound run 5. 
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Figure 4-8: Speed map for northbound run 1. 
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Figure 4-9: Speed map for northbound run 2. 
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Figure 4-10: Speed map for northbound run 3. 
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Figure 4-11: Speed map for northbound run 4. 
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Figure 4-12: Speed map for northbound run 5. 
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The time recorded for data points collected at intersections of on- and off-ramps 

with the mainline freeway were used to calculate travel times between those points. 

Times for all data points collected at all on- and off-ramps are shown in Table 4-2. Blank 

cells in this table indicate that no data point was recorded close to that location for that 

run. Table 4-3 shows the travel times that were calculated from the data in Table 4-2. 

Segments were chosen such that travel times were available from at least three different 

runs, in order to have the largest possible sample size from which to compute an average.  

Table 4-2: Times Recorded at Node Locations for Northbound Runs 

Location 1 2 3 4 5
Exit 269 off 17:28:24 17:20:16
University Parkway, Orem on 17:28:52 18:33:47 17:20:47
Exit 271 off 17:29:47 18:34:52 17:35:17 17:21:49
Center St., Orem on 17:30:19 17:22:24
Exit 272 off 17:31:16
800 North, Orem on 17:32:24
Exit 273 off 18:07:50 17:36:03 17:23:10
1600 North, Orem on 18:08:26 17:36:37 17:24:34
Exit 275 off 17:37:00 18:38:20 * 17:28:30
Pleasant Grove Blvd. on 17:37:51 17:29:18
Exit 276 off 17:38:08 18:39:20 17:29:36
500 East, American Fork on 17:38:56 17:30:12
Exit 278 off 17:40:25 18:41:22 17:31:31
Main St., American Fork on 17:40:58 18:41:53 17:31:59
Exit 279 off 17:41:35 18:42:20 17:32:36
Main St., Lehi on 17:41:58 18:42:43 17:33:00
Exit 282 off 17:43:56 18:44:24 17:34:56
1200 West, Lehi on 17:44:32 18:45:03 18:17:35 17:35:36
Exit 284 off 17:45:12 17:36:22
Alpine on

Run Number

*Interpolated from points on either side.  
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Table 4-3: Northbound Travel Times 

1 2 3
Exit 269, on Exit 271, off 55 65 62 60.7 5.1 4
Exit 271, off Exit 275, off 433 208 401 347.3 121.7 2277
Exit 275, off Exit 276, off 68 60 66 64.7 4.2 3
Exit 276, off Exit 278, off 137 122 115 124.7 11.2 19
Exit 278, off Exit 279, off 70 58 65 64.3 6.0 6
Exit 279, off Exit 282, on 177 163 180 173.3 9.1 13

Required 
Runs

Run Number
Segment Travel Time (seconds)

Start End Average
Standard 
Deviation

 

 

The final column of Table 4-3 shows the number of runs that would be required 

for the computed average to be within five seconds of the actual travel time, with 95 

percent confidence. This was computed using Equation 4-2 (58). 

2

2296.1
e

sN ≥  (4-2) 

where:  N = required sample size, 

 s = sample standard deviation (seconds), and 

 e = tolerance (5 seconds). 

 

Because of the magnitude of the sample standard deviations, more runs would be 

required to obtain accurate travel time estimates. Additionally, run 2 would likely be 

removed from the computations because the data were recorded between 6:30 and 6:45 

pm, which is slightly later than the evening peak. Hence, the travel time recorded for run 

2 between the off-ramp of Exit 271 and the on-ramp of Exit 275 (shown in the second 

row of Table 4-3) is significantly less than for runs 1 and 3. For this reason, the computed 

value for the required number of runs is unusually high. In spite of these shortcomings, 
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the average values computed here are sufficient to demonstrate the calibration 

methodology. The travel time values shown in Table 4-3 were used as inputs to the 

calibration program. 

Speed profiles were also created for the southbound runs and are shown in Figure 

4-13 through Figure 4-17, for runs 1 through 5, respectively. Speed maps for the 

southbound runs are shown in Figure 4-18 through Figure 4-22, for runs 1 through 5, 

respectively.  
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Figure 4-13: Speed profile for southbound run 1. 
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Figure 4-14: Speed profile for southbound run 2. 
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Figure 4-15: Speed profile for southbound run 3. 
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Figure 4-16: Speed profile for southbound run 4. 
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Figure 4-17: Speed profile for southbound run 5. 



81 

 

 

Figure 4-18: Speed map for southbound run 1. 
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Figure 4-19: Speed map for southbound run 2. 



83 

 

 

Figure 4-20: Speed map for southbound run 3. 
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Figure 4-21: Speed map for southbound run 4. 
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Figure 4-22: Speed map for southbound run 5. 
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The times of the data points collected at the on- and off-ramps are shown in Table 

4-4. Larger sample sizes (four runs) were possible for the southbound data.  

Table 4-4: Times Recorded at Node Locations for Southbound Runs 

Location 1 2 3 4 5
Exit 284 off
Alpine on 17:48:47 17:40:39 18:47:59 18:19:47
Exit 282 off 17:49:28 17:41:25 18:49:00 18:20:23
1200 West, Lehi on 17:50:05 17:42:00
Exit 279 off 17:43:51 18:51:13 18:22:43
Main St., Lehi on 17:52:11 18:51:30 18:23:03
Exit 278 off 0.74515 17:44:45
Main St., American Fork on 0.74551 17:45:19 18:52:35 18:24:04
Exit 276 off 17:54:54 17:46:38 18:53:40 18:25:11 17:57:27
500 East, American Fork on 17:55:28 17:47:09 18:54:06 17:57:57
Exit 275 off 17:55:53 17:47:36 17:58:23
Pleasant Grove Blvd. on 17:56:23 17:48:13 17:58:56
Exit 273 off 17:58:02 18:28:20 18:00:27
1600 North, Orem on 17:58:35 17:50:50 18:56:47 18:28:51
Exit 272 off 17:58:58 17:51:16 18:01:20
800 North, Orem on 17:59:23 17:51:46 18:29:44 18:01:47
Exit 271 off 17:59:56 18:30:14 18:02:16
Center St., Orem on 18:00:21 17:52:39 18:30:36 18:02:42
Exit 269 off 18:01:18 17:53:31 18:03:37
University Parkway, Orem on 0.75118 0.74581

Run Number

 

 

Table 4-5 shows these calculated travel times. The final column indicates the 

required sample size for 95 percent confidence that the true average is within five 

seconds of the calculated average. Required sample sizes were computed using the 

formula given previously in Equation 4-2. While the southbound travel time data has a 

lower standard deviation than the northbound data, additional runs would still be required 
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for 95 percent confidence that the average of this data set represents the true average 

travel time for the evening peak on this network. The travel times presented in Table 4-5 

were used for validation of the parameter sets generated by the calibration program. 

Table 4-5: Southbound Travel Times  

1 2 3 4 5
Exit 284 on Exit 282, off 41 46 61 36 46.0 10.8 18
Exit 282, off Exit 278, on 244 234 215 221 228.5 13.0 26
Exit 278, on Exit 273, on 303 331 252 287 293.2 33.0 167
Exit 272, on Exit 271, on 58 53 52 55 54.5 2.6 1

Travel Time (seconds)

Average
Standard 
Deviation

Required 
Runs

Segment

Start End
Run Number

 

4.3 Concluding Remarks 

This chapter describes the sources of the volume and geometry data that were 

used as inputs to the CORSIM model being calibrated in this research. It also discussed 

the methodology that was utilized to collect and reduce the travel time data used to 

calibrate that model. Chapter 5 describes how these data were used with the calibration 

program presented in Chapter 3 to determine an optimal set of driver behavior parameters 

for the northbound network. 
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5 Calibration Procedure 

The calibration procedure used for this analysis comprised three steps. First, 

sensitivity analyses were performed to determine which parameters should be included in 

the calibration and to find the appropriate population size. Next, the calibration was 

performed with the genetic algorithm using the parameters selected based on the 

sensitivity analysis. Finally, the best parameter set from the calibration was validated on a 

separate network. This chapter describes each of these steps in the calibration procedure. 

5.1 Sensitivity Analysis 

Two sensitivity analyses were performed prior to running the calibrating 

parameter sets with the genetic algorithm. First, test CORSIM runs were performed for a 

minimum and maximum value for each parameter that could be included in the 

calibration, with all others held constant at the default values. Next, tests were run to 

determine an optimum population size for the genetic algorithm. This section describes 

the methodology and results for both of these analyses. 

5.1.1 Parameter Selection  

The purpose of the first set of sensitivity analyses was to determine which 

parameters have a significant enough effect on the outcome of the simulation to be 
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included in the calibration. Nine MOEs for the network were examined as part of this 

analysis. These include:  vehicle-miles, vehicle-minutes, the ratio of moving time to total 

trip time, average content, current content, speed, total delay, travel time per vehicle mile, 

and delay time per vehicle mile. Of these, only average content and speed are shown and 

discussed in this chapter. The results for all nine MOEs are presented in Appendix D.  

Average content and speed were chosen as representative MOEs for two reasons. 

First, the parameters that failed the test based on both of these MOEs also failed for the 

remaining seven. Second, these two measures are closely related to the MOEs to which 

the model was to be calibrated (volume and travel time). Average content is the total 

number of vehicle seconds accumulated on all links over the course of the simulation, 

divided by the duration of the simulation in seconds. The relationship between density 

and average content is given in Equation 5-1 (1).  

Ln
CD =  (5-1) 

where:  D = density (vehicles per lane-mile), 

 C = average content (vehicles), 

 L =  length of segment (miles), and 

 n =  number of lanes. 

 

Volume is related to density by Equation 5-2. 

V = SD (5-2) 

where: V =  volume (vehicles per hour), and 

 S =  speed (miles per hour). 
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Combining Equations 5-2 and 5-2 yields the relationship shown in Equation 5-3. 

S
VLnC =  (5-3) 

 

The sensitivity analysis used for parameter selection comprised three steps. First, 

the simulation was run 10 times with default values for all parameters. Each of these 

default runs used a different random number seed in order to determine the amount of 

variability that existed in the model based solely on random vehicle arrival. The results of 

these test runs are shown in Table 5-1. 

Table 5-1: Selected MOEs Resulting from Varying Random Number Seeds 

Run 
Number

Random 
Number 

Seed

Average 
Content 

(vehicles)
Speed 
(mph)

1 8871 1618.1 58.1
2 7981 1613.0 58.2
3 3641 1617.7 58.3
4 8351 1612.0 58.2
5 8151 1654.0 57.2
6 1151 1591.1 58.4
7 6487 1610.7 58.3
8 2887 1623.2 57.9
9 6723 1650.5 57.6

10 1467 1603.8 58.4
1619.4 58.1

19.4 0.4
62.9 1.3

Average:
Standard Deviation:
Range:  
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Next, the simulation was run with the minimum and maximum values of every 

parameter under consideration. For each of these runs, the values of all variables not 

being tested, including the random number seeds, were held constant at their default 

values. For the PITT car-following constant, mandatory lane change gap acceptance, 

multiplier for desire to make a discretionary lane change, and advantage threshold for a 

discretionary lane change, these values corresponded to the minimum and maximum 

allowed by CORSIM. The ranges for all other parameters were those determined by 

Schultz (52) based on reasonableness criteria. 

Because the random number seeds were held constant for all of these runs, any 

variability in the model output between runs using the minimum and maximum values of 

a particular parameter was entirely the result of the difference in those parameter values. 

The focus of this analysis was not to determine whether the parameter sets yielded 

accurate results, but rather to determine whether significant changes in the value of a 

particular parameter might have a significant effect on the model output. 

For parameters that can be described by a distribution (i.e. car-following 

sensitivity for 10 driver types and maximum non-emergency freeway deceleration for 

nine vehicle types), all values were set to the same extreme. For example, all 10 driver 

types were assigned a car following sensitivity factor of 30 for the minimum case and 

150 for the maximum case. The results of these test runs are shown Table 5-2.  

The final step of the parameter selection sensitivity analysis was to compare the 

observed ranges resulting from changing a single parameter value while holding the 

random number seed constant, to the observed range resulting from varying the random 

number seed while holding all parameters constant, shown in Table 5-3.  
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Table 5-2: Ranges of MOEs from Varying Parameter Values 

Parameter Values
Average 
Content

Speed 
(mph)

1 1629.1 57.57
10 1657.0 56.28

Range 9 27.9 1.29
1 2580.7 29.76

10 1640.5 57.67
Range 9 940.2 27.91

1 1615.5 58.19
6 1640.2 57.90

Range 5 24.7 0.29
10 1690.9 54.74
60 1598.2 58.70

Range 50 92.7 3.96
5 1615.0 57.98

40 1637.8 57.76
Range 35 22.8 0.22

10 1423.4 59.58
30 1629.7 58.09

Range 20 206.3 1.49
3 1590.1 59.35

10 1613.0 58.21
Range 7 22.9 1.14

40 1570.3 60.13
120 1583.4 59.17

Range 80 13.1 0.96
Acceleration lag time 1 1568.3 59.61

10 1606.2 59.27
Range 9 37.9 0.34

Deceleration lag time 1 1650.5 56.99
10 1629.1 57.67

Range 9 21.4 0.68
30 2118.8 40.78

150 1521.7 61.14
Range 120 597.1 20.36

Network MOEs

Minimum separation for generation of vehicles

Maximum non-emergency  deceleration 

Car following sensitivity factors 

Time to complete lane change maneuver

Pitt's car following constant

Multiplier for desire to make discretionary lane change

Percent of drivers yielding to merging vehicles

Advantage threshold for discretionary lane change

Mandatory lane change gap acceptance
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Table 5-3: Default Ranges and Results of Sensitivity Analysis 

Average Content 
(vehicles) Speed (mph)

Default Range 62.9 1.3
Mandatory Lane Change Gap 
Acceptance 24.7 0.3

Time to Complete Lane 
Change Maneuver 92.7 4.0

Percent of Drivers Yielding to 
Merging Vehicles 22.8 0.2

Minimum Separation for 
Generation of Vehicles 206.3 1.5

Multiplier for Desire to Make 
Discretionary Lane Change 27.9 1.3

Advantage Threshold for 
Discretionary Lane Change 940.2 27.9

PITT Car Following Constant 22.9 1.1

Maximum Non-emergency 
Freeway Deceleration 13.1 1.0

Acceleration Lag Time 37.9 0.3

Deceleration Lag Time 21.4 0.7

Car Following Sensitivity 
Factors 597.1 20.4

 

 

Based on the results shown in Table 5-3, mandatory lane change gap acceptance, 

percent of drivers desiring to yield right-of-way to merging vehicles, the multiplier for 

desire to make a discretionary lane change, the PITT car following constant, maximum 

non-emergency freeway deceleration, and acceleration and deceleration lag times were 

all omitted from the calibration, as illustrated by the bold values for average content and 

speed. The variation in network MOEs that resulted from these parameters being set to 

their minimum and maximum values was no greater than the variation that resulted from 
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simply varying the random number seed. As mentioned previously, although only 

average content and speed are shown here, the parameters that failed based on both of 

these MOEs also failed based on all nine MOEs examined. 

5.1.2 Determination of Population Size 

A second analysis was performed to determine the optimum population size for 

the genetic algorithm. The results of prior research on this issue differ widely, with 

recommendations ranging from 4 (4) to 20 (52). The recommendation of a population 

size of 4 by Cheu et al. (4) is based on initial testing in which population sizes of 4, 10, 

and 40 were each tested in a genetic algorithm which included 400 total CORSIM runs, 

assuming that a run is made for every chromosome at every iteration. Thus, the tests 

included 100 iterations for a population of 4, 40 iterations for a population of 10, and 10 

iterations for a population of 40. In these initial tests, the smallest population converged 

to the highest value by the end of 400 runs.  

For Schultz’s tests (52), the algorithm was run for a predetermined number of 

iterations rather than a predetermined number of runs. Populations of 10, 20, 30, and 40 

chromosomes were each run for 30 iterations. In these tests, the larger populations 

reached better fitness values, although the algorithm took considerably more time to 

reach these values (considering that each iteration with 40 chromosomes takes 

approximately four times as long as a population of 10 chromosomes). 

For this research, tests were run to further explore this question. Test runs of the 

genetic algorithm were performed with population sizes of 5, 10, 15, 20, 25, and 30. One 

hundred iterations were performed for each of these population sizes. The results of these 
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runs are shown in Figure 5-1. The larger populations tended to begin and end at higher 

fitness values. Smaller populations tended to begin and end at lower fitness values, but 

converged more quickly and with greater increases between the initial and final fitness 

values. It may be possible to capitalize on the advantages of both small and large 

populations by starting the algorithm with a large population size in order to achieve a 

high initial fitness value and reducing the population size after the first iteration.  

In order to test this possibility, an algorithm was run with an initial population of 

30, which was reduced to 5 after the first iteration. The results of this hybrid population 

size are shown in Figure 5-2, compared to the initial tests with population sizes of 5 and 

30. In this case, populations of both 5 and 30 still converged to a higher fitness value than 

the hybrid population. This result is not necessarily conclusive because the initial 

populations are randomly generated, so initial fitness values are largely a matter of 

chance. Tests on each population size were repeated to obtain a larger sample size from 

which to draw a better conclusion. 
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Figure 5-1: Comparison between population sizes. 



97 

65

70

75

80

0 10 20 30 40 50 60 70 80 90 100

Iteration

Fi
tn

es
s V

al
ue

   
  

5 Chromosomes
30 Chromosomes
Hybrid 

 
Figure 5-2: Comparison of hybrid, smallest, and largest populations. 

The average results of both sets of runs are tabulated in Table 5-4. In these tests 

the hybrid population and the population of 5 chromosomes increased by the greatest 

percentage over 100 iterations, but population sizes between 20 and 30 still reached the 

highest final fitness values.  The fitness values were computed using the fitness function 

given previously in Equations 3-5 through 3-7.  

Table 5-4: Average Results of Population Size Analysis 

Initial 
Fitness

Final 
Fitness

Absolute 
Increase

Percent 
Increase

5 Chromosomes 67.57 71.73 4.16 6%
10 Chromosomes 69.40 72.34 2.93 4%
15 Chromosomes 71.05 73.19 2.14 3%
20 Chromosomes 70.93 74.07 3.15 4%
25 Chromosomes 71.14 74.65 3.50 5%
30 Chromosomes 71.51 74.17 2.66 4%
Hybrid 68.32 72.14 3.82 6%  
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In addition to the final value, the time required to reach this value is also an 

important consideration in selecting a population size. These average times are shown in 

terms of both number of iterations and hours in Figure 5-3.  
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Figure 5-3: Comparison of average time required between population sizes. 

Based on the results of this analysis, a population size of 25 was chosen for the 

calibration procedure with 30 iterations. Further research is required to determine 

whether population size is related to final fitness value and whether there is an advantage 

to varying the size of the population over the life cycle of the algorithm. Davis (50) has 

had success with varying the values of genetic algorithm parameters such as probabilities 

of crossover and mutation and population size using a technique called adaptive operator 

fitness. Applying this technique to the calibration algorithm may improve efficiency. 
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5.2 Calibration 

Based on the results of the sensitivity analyses, the calibration program was run 

with a population of 25 chromosomes for 30 iterations. Car-following sensitivity factors, 

the advantage threshold for a discretionary lane change, the minimum separation for 

generation of vehicles, and the time required to complete a lane change maneuver were 

included in the calibration. All other parameters were held constant at default values. 

As discussed in Section 3.2.1.4, the calibration program allows the user to 

calibrate based on observed volumes, observed travel times, or a weighted average of the 

two fitness values (Equation 3-7). The weight placed on each MOE is specified by the 

value of α in the calibration parameters dialog. An α value of 0.5 weights volume and 

travel time equally. An α value greater or less than 0.5 places more weight on travel time 

or volume, respectively. Normally, the value of α would be chosen based on the intended 

application of the model and whether it is more critical for the model to accurately 

predict traffic volumes or travel times. For example, if the purpose of the simulation is to 

evaluate travel demand management strategies that are intended to reduce the peak hour 

commute time between neighboring cities, greater emphasis should be placed on travel 

time and α should be set to a value greater than 0.5. If the purpose is to determine 

whether the capacity of a facility will fall below demand as result of a possible lane 

closure, greater emphasis should be placed on volume and α should be set to a value less 

than 0.5. 

 Section 2.3.5.4 suggests that selecting a fitness function that includes too many 

MOEs may unnecessarily complicate the algorithm. It is possible that there may be an 

advantage to calibrating a model to volume or travel time rather than a linear combination 



100 

of the two, even when both measures are of interest. In order to determine the effects of 

different combinations of these two measures, the calibration program was run five times 

with α values of 0.0, 0.25, 0.5, 0.75, and 1.0. Running the calibration with α values of 0 

or 1 is equivalent to calibrating to only volume or travel time, but when both sets of field 

data were included as inputs, the program calculated fitness values for both, although 

only one of the two values was used in the selection process. The changes in MAER 

values between the parameter sets found by each of these calibration tests, compared to 

the MAER values resulting from the default parameters sets are illustrated in Figure 5-4.  

When only travel time was included in the fitness function, the MAER value of 

volume actually increased. In all other cases, there was improvement in both MAER 

values.   
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Figure 5-4: Change in volume MAER versus decrease in travel time MAER. 
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The results illustrated in Figure 5-4 are shown in more detail in Table 5-5, which 

shows the fitness and MAER values resulting from the default parameter sets and the 

calibrated parameter sets.  

The upstream volume (the volume of vehicles exiting the network) and the total 

travel time for all mainline links are also shown in Table 5-5. Note that a decrease of 

approximately 87 percent in the travel time MAER value may represent a difference in 

total travel times that varies by 25 seconds.  

The five resulting parameter sets are given in Table 5-6. The parameter sets 

shown in Table 5-6 were applied to a model of the southbound network as part of the 

validation procedure, which is described in the following section. 

5.3 Validation 

The final parameter set from each of the five calibration runs (shown in Table 

5-6) were applied to a model of the southbound direction of the same section of I-15 that 

was used for calibration. For each parameter set, one CORSIM run was performed and 

the results were compared to field data collected as described in Chapter 4. MAER values 

were calculated for volumes and travel time.  

The MAER values for each of the five validation runs are shown in Table 5-7. In 

these tests, the calibrated parameters sets did not present any consistent advantage over 

the default parameters for either volume or travel time. This could be because the 

southbound direction has very different driver behavior characteristics than the 

northbound network. 
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Table 5-5: Fitness and MAER Values of Default and Calibrated Parameter Sets  

α

Value with 
Default 

Parameters

Value with 
Calibrated 
Parameters

Absolute 
Difference

Percent 
Difference

0 Total Fitness: 74.5397 79.5793 5.0396 6.8%
Volume Fitness: 74.0479 79.5793 5.5314 7.5%
Travel Time Fitness: 76.0152 74.5851 -1.4301 -1.9%
Volume MAER: 0.0601 0.0457 -0.0144 -24.0%
Travel Time MAER: 0.8776 0.1173 -0.7603 -86.6%
Upstream Volume (veh/hr) 5130 5156 26 0.5%
Total Travel Time (sec) 1063.1 1082.7 19.6 1.8%

0.25 Total Fitness: 74.5397 78.6103 4.0706 5.5%
Volume Fitness: 74.0479 79.4058 5.3579 7.2%
Travel Time Fitness: 76.0152 76.2236 0.2084 0.3%
Volume MAER: 0.0601 0.0461 -0.014 -23.3%
Travel Time MAER: 0.8776 0.1086 -0.769 -87.6%
Upstream Volume (veh/hr) 5130 4995 -135 -2.6%
Total Travel Time (sec) 1063.1 1062.9 -0.2 0.0%

0.5 Total Fitness: 74.5397 77.9244 3.3847 4.5%
Volume Fitness: 74.0479 79.4258 5.3779 7.3%
Travel Time Fitness: 76.0152 76.4229 0.4077 0.5%
Volume MAER: 0.0601 0.0461 -0.014 -23.3%
Travel Time MAER: 0.8776 0.1076 -0.77 -87.7%
Upstream Volume (veh/hr) 5130 5039 -91 -1.8%
Total Travel Time (sec) 1063.1 1069.0 5.9 0.6%

0.75 Total Fitness: 74.5397 77.0334 2.4937 3.3%
Volume Fitness: 74.0479 76.7785 2.7306 3.7%
Travel Time Fitness: 76.0152 77.1184 1.1032 1.5%
Volume MAER: 0.0601 0.0528 -0.0073 -12.1%
Travel Time MAER: 0.8776 0.1039 -0.7737 -88.2%
Upstream Volume (veh/hr) 5130 5052 -78 -1.5%
Total Travel Time (sec) 1063.1 1055.5 -7.6 -0.7%

1 Total Fitness: 74.5397 77.1775 2.6378 3.5%
Volume Fitness: 74.0479 69.3531 -4.6948 -6.3%
Travel Time Fitness: 76.0152 77.1775 1.1623 1.5%
Volume MAER: 0.0601 0.0732 0.0131 21.8%
Travel Time MAER: 0.8776 0.1036 -0.774 -88.2%
Upstream Volume (veh/hr) 5130 5012 -118 -2.3%
Total Travel Time (sec) 1063.1 1058.5 -4.6 -0.4%  
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Table 5-6: Parameter Sets Generated by Five Calibration Tests 

Parameter 0 0.25 0.5 0.75 1
Car-following sensitivity factor for driver type 1 150 150 150 150 150
Car-following sensitivity factor for driver type 2 150 150 150 150 150
Car-following sensitivity factor for driver type 3 150 150 150 146 150
Car-following sensitivity factor for driver type 4 137 113 121 107 123
Car-following sensitivity factor for driver type 5 101 54 72 54 70
Car-following sensitivity factor for driver type 6 61 30 40 33 36
Car-following sensitivity factor for driver type 7 38 30 30 30 30
Car-following sensitivity factor for driver type 8 30 30 30 30 30
Car-following sensitivity factor for driver type 9 30 30 30 30 30
Car-following sensitivity factor for driver type 10 30 30 30 30 30
Time to complete lane-change maneuver 42 56 32 45 23
Minimum separation for generation of vehicles 13 26 10 26 16
Multiplier for desire to make a discretionary lane change 8 4 5 5 5
Advantage threshold for discretionary lane change 8 1 8 6 5

α

 

Table 5-7: Results of Validation Tests 

Volume Travel Time
Default: 7 14

α
0.00 9 16
0.25 20 13
0.50 9 15
0.75 22 13
1.00 8 14

Error (%)

 

 

The studies by Cheu et al. (4) and Schultz (52) suggest that drivers in the peak 

direction display different driving behavior than drivers in the off-peak direction. 

However, this section of I-15 has a directional factor of 0.51, indicating that the peak 

direction is not well-defined. There may also be a bottleneck in the northbound direction 
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that does not exist in the southbound direction. Figure 4-12 shows significant slowing at 

the sharp curve in the roadway near 1600 North in Orem (Exit 273). Figure 4-18 shows 

that this slowing did not occur in the southbound direction. 

 Another possibility is that the parameters were over-fit to the northbound data. 

Over-fitting can occur when parameters are adjusted to force a model to fit calibration 

data too closely, masking any possible inaccuracies in the calibration data. In practice, the 

engineer should have an idea of how accurate the calibration data is and should not 

attempt to calibrate parameters to yield model outputs with less error than the model 

inputs are likely to contain; however, quantifying the degree of uncertainty in a 

calibration data set can be very difficult. 

5.4 Concluding Remarks 

The chapter described the procedure that was used to calibrate a CORSIM model 

to volume and travel time data. This was done in three steps: initial sensitivity analyses, 

calibration using the calibration program described in Chapter 3, and validation of the 

resulting parameter set on a separate network.  

The initial sensitivity analysis demonstrated a simple method whereby it can be 

determined whether adjusting the values of a particular parameter can result in greater 

variability in model outputs than is caused by random variation within the CORSIM 

model. Those parameters which were thus determined not to have a large impact on the 

model outputs were excluded from the analysis. A second part of the sensitivity analysis 

suggested that, holding the number of iterations constant, larger populations (20 to 25 
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chromosomes) tend to reach higher fitness values than smaller populations (5 to 10 

chromosomes). 

The calibration step of the procedure was carried out with five different forms of 

the same fitness function, each assigning a different relative importance to volume and 

travel time. The fitness functions that included both of these MOEs, but did not weight 

them equally, showed the greatest overall reduction in the MAER values for both MOEs. 

In the validation step, the parameter sets found by calibrating a model of the 

northbound network were applied to the southbound network. By and large, parameter 

sets calibrated to the northbound network provided little improvement over the default 

parameters when applied to the southbound network.  
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6 Conclusion 

The first four chapters of this thesis introduced the goals and objectives of this 

research, summarized the methods used by the calibration program to find an optimal set 

of driver behavior parameters for a CORSIM model of a linear freeway network, and 

outlined methods used to collect and reduce volume and travel time data for use as a 

baseline in the calibration procedure. 

Chapter 5 described how the procedures and data presented in the previous 

chapters were applied in the calibration of a hypothetical linear freeway network based 

on a 13-mile section of I-15. This section summarizes the main conclusions that can be 

drawn from the sensitivity analysis, calibration, and validation procedures and makes 

recommendations regarding possible areas of future research.  

6.1 Sensitivity Analysis 

The sensitivity analysis comprised two parts. The first examined the effects that 

extreme values of each calibration parameter have on the CORSIM model output. The 

second examined the effect that population size has on the convergence of the genetic 

algorithm. The following sections summarize some of the conclusions that can be drawn 

from these analyses, as well as questions that were raised that may warrant further 

research. 
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6.1.1 Sensitivity Analysis Conclusions 

Based on the first part of the analysis, the parameters specifying mandatory lane 

change gap acceptance, percent of drivers willing to yield right of way to merging 

vehicles, multiplier for desire to make a discretionary lane change, the PITT car-

following constant, maximum non-emergency freeway deceleration, and acceleration and 

deceleration lag times did not appear to have a significant effect on the model output and 

therefore were not included in the simulation. That is not to say that these parameters can 

be set to any arbitrary value, but as long as they are kept within a reasonable range, the 

accuracy of the model did not appear to be significantly affected. 

The second part of the sensitivity analysis determined that larger population sizes 

(between 20 and 30 chromosomes) do tend to yield higher final fitness values than 

smaller sizes (between 5 and 15 chromosomes), when the number of iterations is held 

constant. If the time required to perform the calibration is held constant, using smaller 

population sizes or possibly decreasing the size of the population over the course of the 

calibration may present a distinct advantage.  

6.1.2 Questions Raised by Sensitivity Analysis  

Interactive effects of the calibration parameters were not considered in the 

analysis of the effects that extreme values have on the model outputs. For example, 

although several parameters were excluded because they did not have an effect when all 

other values were held constant at the CORSIM default values, the effect of these 

parameters may be mitigated or intensified when the values of the other parameters 

change. This is a question that should be further addressed. 
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Additionally, the question of whether larger population sizes may be more 

appropriate in earlier iterations than in later iterations was briefly addressed in the second 

part of the sensitivity analysis. This could be explored more fully in future research. 

6.2 Calibration 

Five calibration tests were run, each with a different fitness function, assigning 

relative weights of 100/0, 25/75, 50/50, 75/25, and 0/100 to volume and travel time 

fitness, respectively. The following sections summarize some of the conclusions that can 

be drawn from these calibration tests, as well as areas that may warrant further research. 

6.2.1 Calibration Conclusions 

When the model was calibrated to travel time alone, decreases in travel time error 

were accompanied by increases in volume error. When both MOEs were included in the 

calibration, a reduction in error was observed for both MOEs. This suggested that it may 

be advisable to include both MOEs in the calibration if possible, even when only one 

MOE is of interest for a particular study.  

6.2.2 Questions Raised by Calibration 

The above conclusions are based on only one test for each fitness function. 

Because of the stochastic nature of the genetic algorithm on which the calibration 

program is based, it is not apparent whether it would always be best to include both 

volume and travel time in the calibration procedure. While this question is beyond the 
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scope of this thesis, it would be an interesting question to explore through further 

research. 

6.3 Validation  

The validation step consisted of applying the calibrated parameters from the 

northbound network to the southbound network and comparing the accuracy of the results 

of the model with the calibrated parameters to those of the model with default values. The 

following sections summarize the conclusions that can be drawn from the validation runs, 

as well as questions that were raised that could be further explored. 

6.3.1 Validation Conclusions 

On the southbound network, the calibrated parameters did not represent any 

improvement over the default values. This could be because the southbound direction has 

very different driver behavior characteristics than the northbound network. This theory is 

supported by Cheu’s (4) and Schultz’s (52) research, which suggest that drivers exhibit 

very different behavior, depending on conditions of the network (such as peak direction). 

However, this section of I-15 has a directional factor of 0.51, indicating that the peak 

direction is not well-defined. The speed data shown in Figure 4-3 through Figure 4-22 

suggest that there may be a bottleneck in the northbound direction that could affect driver 

behavior on the northbound network. Because the calibration data is of not as accurate as 

would be required for any site-specific conclusions, it is also likely that the parameters 

have been over-fit to the data used for calibration of the northbound network. 
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6.3.2 Questions Raised by Validation 

It would be beneficial to determine a way to calibrate to an optimal level of error 

in order to find the parameter set that may not provide the best possible fit for one 

specific network, but will provide an acceptable fit for a large class of networks having 

similar characteristics. It would be useful to develop a method to find this optimal error to 

yield more widely applicable parameter sets.  

6.4 Concluding Remarks 

The importance of calibrating a microscopic traffic simulation model to local 

conditions cannot be overemphasized. One critical aspect of calibration is the 

determination of appropriate driver behavior parameters for a particular locality. This 

thesis addressed several issues with regards to calibrating driver behavior parameters that 

can aide engineers and researchers in creating models that more accurately reflect reality.  

The purpose of this research was three-fold:  1) to develop a user-friendly GUI for 

an automated calibration program that could easily by utilized by a practicing engineer, 

2) to determine which driver behavior parameters ought to be included in such a 

calibration procedure by performing necessary sensitivity analyses, and 3) to demonstrate 

an automated calibration procedure using local data. The GUI developed for this research 

suited these purposes very well and provides a framework that an engineer can use to 

quickly and easily implement and automated calibration procedure with any 

programming skills or familiarity with the format of the CORSIM input (*.trf) file. The 

sensitivity analyses performed in Chapter 5 determined that over half of the available 

calibration parameters could be omitted from these calibration tests without significantly 
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affecting the outcome. Finally, the calibration procedure demonstrated in this research 

was successful in finding parameter sets that improved the accuracy of the model, relative 

to the default parameter values.
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Appendix A. Sample Input File for Calibration Program 

Input File for Genetic Algorithm Calibration of CORSIM 
Date Created; Saturday, April 29, 2006 
 
MOE;volume 
 
Files; 
Observed Volumes;C:\Documents and Settings\ct224\Desktop\Thesis\nb_no_ramp_link.txt 
Observed Links; 
Observed Travel Times; 
CORSIM Input;C:\Documents and Settings\ct224\Desktop\Thesis\nb_nohov_OD.trf 
 
Output Directory;C:\Documents and Settings\ct224\Desktop\15_pop 
 
Calibration Control; 
Maximum Number of Iterations;100 
Population Size;15 
Probability of Mutation;0.3 
Probability of Crossover;0.5 
 
Fitness Function; 
Alpha;0.5 
Travel Time Beta;2.5 
Volume Beta;5 
 
Calibration Parameters; 
Car Following Sensitivity Distribution;lognormal 
       prec. Min Max No 
Car Following mean    ;0.1 30 150 1 
Car Following standard distribution  ;0.1 2 50 1 
Pitt Constant     ;1 3 10 1 
Lag to accelerate     ;1 1 10 1 
Lag to decelerate     ;1 1 10 1 
Time to complete lane change   ;1 10 60 1 
Vehicle generation separation   ;1 10 30 1 
Collision Avoidance time   ;1 1 6 1 
Percent Yielding to Mergers   ;1 5 40 1 
Lane Change Desire    ;1 1 10 1 
Lane change advantage    ;1 1 10 1 
Max non-emergency deceleration for veh 1 ;1 70 120 1 
Max non-emergency deceleration for veh 2 ;1 70 120 1 
Max non-emergency deceleration for veh 3 ;1 40 100 1 
Max non-emergency deceleration for veh 4 ;1 40 100 1 
Max non-emergency deceleration for veh 5 ;1 40 100 1 
Max non-emergency deceleration for veh 6 ;1 40 100 1 
Max non-emergency deceleration for veh 7 ;1 40 100 1 
Max non-emergency deceleration for veh 8 ;1 70 120 1 
Max non-emergency deceleration for veh 9 ;1 70 120 1 
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Appendix B. Sample Files from Calibration Program 

B.1:  Sample CORSIM Input File 
Created by TSIS Fri Feb 02 15:41:57 2007 from TNO Version 61                     
Created by TSIS Wed Jan 17 17:55:14 2007 from TNO Version 52                   0 
Created by TSIS Thu Nov 02 17:56:47 2006 from TNO Version 52                   0 
Created by TSIS Wed Jan 30 01:11:28 2002 from TNO Version 52                   0 
Created by TSIS Tue Jan 29 22:06:08 2002 from TNO Version 52                   0 
Created by TSIS Tue Jan 29 15:15:04 2002 from TNO Version 52                   0 
12345678 1 2345678 2 2345678 3 2345678 4 2345678 5 2345678 6 2345678 7 234567    
                                      12  262001Wilbur Smith Associates    0   1 
       1   0   0  15     7981 0606  1              8 445        7781    7581   2 
3600                                                                           3 
                  60                                                           4 
   0       0   0   0   0   0   0   0   0   0   1    CORSIM                     5 
 266  15   8 32550 3 91 1627 92 1628         1 9                              19 
 765 266  15 20880 3                         1                                19 
 264 765 266 35580 3 92  400                 1 9                              19 
 263 264 765 10400 3                         1                                19 
   7 266  15  3541 1                         9                                19 
 762 263 264 17550 3 91 1730101  874         1                                19 
 261 762 263 19000 3                         1                                19 
   1 762 263  4791 3                        10                                19 
 260 261 762 40340 3 92 1500                 1 9                              19 
  15   8  14 24670 3                         1                                19 
  10   8  14 10881 1                         9                                19 
  15   98006 10671 1                         1                                19 
   8  14  17 26530 3 91  500 92  200         1 9                              19 
  14  17 727 25840 3                         1                                19 
  18  17 727  9861 1                         9                                19 
  17 727  29106350 3 91  500 92  800         1 9                              19 
 727  29 739 31970 3                         1                                19 
 727  358012 15081 1                         1                                19 
  37  29 739 12611 1                         9                                19 
  29 739  59 30940 3 91  800 92  500         1 9                              19 
 739  59  68 27470 3                         1                                19 
 739  648017 12901 1                         1                                19 
  63  59  68 12261 1                         9                                19 
  59  68 777 42500 3 91  500                 1                                19 
  68 777  72 40920 3 92  500                 1 9                              19 
 777  72 774 29140 3                         1                                19 
 777  678020 12821 1                         1                                19 
  53  72 774 14471 1                         9                                19 
  72 774  76 33930 3 91  500 92  300         1 9                              19 
 774  76 793 25740 3                         1                                19 
 774  798026 12611 1                         1                                19 
  78  76 793 11751 1                         9                                19 
  76 793  92107860 3 91  300 92  500         1 9                              19 
 793  92  98 36560 3                         1                                19 
 793  898033 19071 1                         1                                19 
  87  92  98 13991 1                         9                                19 

 
    98  97  99 34970 3                         1                                19 
  98  948029 20631 1                         1                                19 
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  85  97  99 12371 1                         9                                19 
  97  998040 74950 3 91  200                 1                                19 
  14  198008 10791 1                         1                                19 
 765   28005  4001 1                         1                                19 
 261   38001  3541 1                         1                                19 
8004 260 261     0 3                         1                                19 
8007  10   8     1 1                         1                                19 
8009  18  17     1 1                         1                                19 
8013  37  29     1 1                         1                                19 
8018  63  59     1 1                         1                                19 
8019  53  72     1 1                         1                                19 
8025  78  76     1 1                         1                                19 
8034  87  92     1 1                         1                                19 
8024  85  97     1 1                         1                                19 
8003   7 266     1 1                         1                                19 
8002   1 762     1 3                         1                                19 
 266  15 0 0   0 41065       1375      1375                   431500 100      20 
 765 266 0 0   0 41065                                               100      20 
 264 765 0 0   0 41065       2500      2500                          100      20 
 263 264 0 0   0 41065                                               100      20 
   7 266 0 0   0 11060                                               100      20 
 762 263 0 0   0 41065                                        431500 100      20 
 261 762 0 0   0 41065                                               100      20 
   1 762 0 0   0 11055                                               100      20 
 260 261 0 0   0 41065       2500      2500                          100      20 
  15   8 0 0   0 41065                                               100      20 
  10   8 0 0   0 11035                                               100      20 
  15   9 0 0   0 11035                                               100      20 
   8  14 0 0   0 41065       1085      1085                   431500 100      20 
  14  17 0 0   0 41065                                               100      20 
  18  17 0 0   0 11035                                               100      20 
  17 727 0 0   0 41065       1182      1182                   431500 100      20 
 727  29 0 0   0 41065                                               100      20 
 727  35 0 0   0 11035                                               100      20 
  37  29 4 0   0 11035                                               100      20 
  29 739 0 0   0 41065       1004      1004                   431500 100      20 
 739  59 0 0   0 41065                                               100      20 
 739  64 0 0   0 11065                                               100      20 
  63  59 0 0   0 11065                                               100      20 
  59  68 0 0   0 41065                                        431500 100      20 
  68 777 0 0   0 41065       1092      1092                          100      20 
 777  72 0 0   0 41065                                               100      20 
 777  67 0 0   0 11065                                               100      20 
  53  72 0 0   0 11065                                               100      20 
  72 774 0 0   0 41065       1056      1056                   431500 100      20 
 774  76 0 0   0 41065                                               100      20 
 774  79 0 0   0 11065                                               100      20 
  78  76 0 0   0 11065                                               100      20 
  76 793 0 0   0 41065       1151      1151                   431500 100      20 
 793  92 0 0   0 41065                                               100      20 
 793  89 0 0   0 11065                                               100      20 
  87  92 0 0   0 11065                                               100      20 
  92  98 0 0   0 41065       1121      1121                   431500 100      20 
  98  97 0 0   0 41065                                               100      20 
  98  94 0 0   0 11065                                               100      20 
  85  97 0 0   0 11065                                               100      20 
  97  99 0 0   0 41065                                        431500 100      20 
  14  19 0 0   0 11035                                               100      20 
 765   2 0 0   0 11065                                               100      20 
 261   3 0 0   0 11065                                               100      20 
8004 260 0 0   0 11065                                                        20 
8007  10 0 0   0 11065                                                        20 
8009  18 0 0   0 11065                                                        20 
8013  37 0 0   0 11065                                                        20 
8018  63 0 0   0 11065                                                        20 
8019  53 0 0   0 11065                                                        20 
8025  78 0 0   0 11065                                                        20 
8034  87 0 0   0 11065                                                        20 
8024  85 0 0   0 11065                                                        20 
8003   7 0 0   0 11065                                                        20 
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8002   1 0 0   0 11065                                                        20 
 266  15   84980   9 742                                                      25 
 765 266  15 100                                                              25 
 264 765 2664736   2 549                                                      25 
 263 264 765 100                                                              25 
   7 266  15 100                                                              25 
 762 263 264 100                                                              25 
 261 762 263 100                                                              25 
   1 762 263 100                                                              25 
 260 261 7623549   31123                                                      25 
  15   8  14 100                                                              25 
  10   8  14 100                                                              25 
  15   98006 100                                                              25 
   8  14  175291  19 632                                                      25 
  14  17 727 100                                                              25 
  18  17 727 100                                                              25 
  17 727  295807  35 324                                                      25 
 727  29 739 100                                                              25 
 727  358012 100                                                              25 
  37  29 739 100                                                              25 
  29 739  595804  64 538                                                      25 
 739  59  68 100                                                              25 
 739  648017 100                                                              25 
  63  59  68 100                                                              25 
  59  68 777 100                                                              25 
  68 777  725681  67 676                                                      25 
 777  72 774 100                                                              25 
 777  678020 100                                                              25 
  53  72 774 100                                                              25 
  72 774  764872  791237                                                      25 
 774  76 793 100                                                              25 
 774  798026 100                                                              25 
  78  76 793 100                                                              25 
  76 793  925116  89 171                                                      25 
 793  92  98 100                                                              25 
 793  898033 100                                                              25 
  87  92  98 100                                                              25 
  92  98  975678  94 716                                                      25 
  98  97  99 100                                                              25 
  98  948029 100                                                              25 
  85  97  99 100                                                              25 
  97  998040 100                                                              25 
  14  198008 100                                                              25 
 765   28005 100                                                              25 
 261   38001 100                                                              25 
8004 260 261 100                                                              25 
8007  10   8 100                                                              25 
8009  18  17 100                                                              25 
8013  37  29 100                                                              25 
8018  63  59 100                                                              25 
8019  53  72 100                                                              25 
8025  78  76 100                                                              25 
8034  87  92 100                                                              25 
8024  85  97 100                                                              25 
8003   7 266 100                                                              25 
8002   1 762 100                                                              25 
   1 762   2 1    100  250                                                    32 
8004 2604397   5   0  100                                    34 33 33         50 
8007  10 943   3   0  100                                   100               50 
8009  18 840   3   0  100                                   100               50 
8013  37 535   3   0  100                                   100               50 
8018  63 553   3   0  100                                   100               50 
8019  53 428   3   0  100                                   100               50 
8025  78 415   3   0  100                                   100               50 
8034  87 892   3   0  100                                   100               50 
8024  85 716   3   0  100                                   100               50 
8003   7 986   0   0  100                                   100               50 
8002   11736   0   0  100                                    34 33 33         50 
 125 115 105  95  85  75  65  55  45  35  10                                  68 
                   3   3                                                      69 
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  22  16   3   5   2   4  80  80  80  80  80  80  80  80  80  80  15          70 
   0                                                                         170 
8006   57799   26572                                                         195 
8012   45070   39719                                                         195 
8017   39575   42843                                                         195 
8020   29877   47769                                                         195 
8026   24197   50098                                                         195 
8033   16080   61196                                                         195 
8029   10993   67516                                                         195 
8040    3400   77800                                                         195 
8008   55641   31544                                                         195 
8005   57947   20504                                                         195 
8001   60027   13004                                                         195 
8004   63980    6007                                                         195 
8007   57862   26939                                                         195 
8009   55202   32011                                                         195 
8013   44238   40303                                                         195 
8018   38765   43161                                                         195 
8019   28554   48168                                                         195 
8025   23635   50927                                                         195 
8034   15353   62014                                                         195 
8024   10695   68769                                                         195 
8003   57635   21864                                                         195 
8002   59135   13767                                                         195 
   1   58979   13807                                                         195 
   2   57597   20479                                                         195 
   3   59752   12904                                                         195 
   7   57420   21899                                                         195 
   8   57304   27966                                                         195 
   9   57434   26557                                                         195 
  10   57448   26887                                                         195 
  14   55844   30181                                                         195 
  15   57300   25499                                                         195 
  17   53907   31893                                                         195 
  18   54835   31558                                                         195 
  19   55275   31098                                                         195 
 727   45306   38149                                                         195 
  29   42691   39991                                                         195 
  35   44400   39355                                                         195 
  37   43903   39641                                                         195 
 739   40005   41526                                                         195 
  53   28592   46849                                                         195 
  59   37527   42715                                                         195 
  63   38729   42468                                                         195 
  64   38992   42326                                                         195 
  67   28827   46740                                                         195 
  68   33761   44685                                                         195 
  72   27154   47021                                                         195 
 774   24183   48660                                                         195 
  76   22467   50579                                                         195 
 777   29894   46028                                                         195 
  78   23422   49894                                                         195 

79   23582   49769                                                         195 
 793   15458   58778                                                         195 
  94    9984   67758                                                         195 
  97    8743   68725                                                         195 
  98   10685   65817                                                         195 
  99    4800   75100                                                         195  
 260   61868    9165                                                         195 
 261   59683   12557                                                         195 
 762   58642   14147                                                         195 
 263   57679   15614                                                         195 
 264   57403   16598                                                         195 
 765   57361   20156                                                         195 
 266   57340   22244                                                         195 
 263 264  01                                                                 196 
   1   0   0                                                                 210 
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B.2:  Sample OBJECTIVE_output.txt 
Itr Avg_Fit Max_Fit Min_Fit Time_Recorded 
1 75.0553 77.3692 73.3506 Sat Feb 10 12:34:48 2007 
2 75.6810 77.3692 74.5545 Sat Feb 10 12:48:48 2007 
3 75.8281 77.3692 74.6448 Sat Feb 10 13:04:09 2007 
4 76.2657 77.3692 75.4096 Sat Feb 10 13:23:23 2007 
5 76.2681 77.3692 75.4583 Sat Feb 10 13:41:06 2007 
6 76.2681 77.3692 75.4583 Sat Feb 10 13:57:19 2007 
7 76.2771 77.3692 75.5979 Sat Feb 10 14:10:49 2007 
8 76.2842 77.3692 75.6377 Sat Feb 10 14:21:40 2007 
9 76.3272 77.3692 75.7487 Sat Feb 10 14:43:12 2007 
10 76.5629 77.3692 75.8969 Sat Feb 10 15:05:57 2007 
11 76.6559 77.3692 75.9280 Sat Feb 10 15:19:13 2007 
12 76.6831 77.3692 75.9280 Sat Feb 10 15:35:27 2007 
13 76.7210 77.3692 75.9280 Sat Feb 10 15:54:09 2007 
14 76.7210 77.3692 75.9280 Sat Feb 10 16:04:53 2007 
15 76.7210 77.3692 75.9280 Sat Feb 10 16:25:20 2007 
16 76.7929 77.3692 76.1189 Sat Feb 10 16:42:38 2007 
17 76.8979 77.3692 76.2374 Sat Feb 10 17:06:21 2007 
18 76.9636 77.3692 76.3071 Sat Feb 10 17:17:03 2007 
19 76.9636 77.3692 76.3071 Sat Feb 10 17:32:57 2007 
20 76.9636 77.3692 76.3071 Sat Feb 10 17:54:36 2007 
21 76.9801 77.3692 76.3071 Sat Feb 10 18:06:16 2007 
22 77.0254 77.3692 76.4721 Sat Feb 10 18:20:14 2007 
23 77.0254 77.3692 76.4721 Sat Feb 10 18:37:48 2007 
24 77.0254 77.3692 76.4721 Sat Feb 10 18:54:49 2007 
25 77.0981 77.9244 76.4721 Sat Feb 10 19:13:08 2007 
26 77.0981 77.9244 76.4721 Sat Feb 10 19:19:41 2007 
27 77.1633 77.9244 76.4721 Sat Feb 10 19:36:50 2007 
28 77.1633 77.9244 76.4721 Sat Feb 10 19:58:32 2007 
29 77.1633 77.9244 76.4721 Sat Feb 10 20:15:51 2007 
30 77.1670 77.9244 76.4721 Sat Feb 10 20:29:00 2007 
31 77.2883 77.9244 76.9080 Sat Feb 10 20:48:51 2007 
32 77.3109 77.9244 76.9080 Sat Feb 10 21:08:02 2007 
33 77.3109 77.9244 76.9080 Sat Feb 10 21:22:10 2007 
34 77.3109 77.9244 76.9080 Sat Feb 10 21:39:04 2007 
35 77.3343 77.9244 76.9080 Sat Feb 10 21:53:11 2007 
36 77.3343 77.9244 76.9080 Sat Feb 10 22:09:34 2007 
37 77.3343 77.9244 76.9080 Sat Feb 10 22:28:28 2007 
38 77.3574 77.9244 77.1341 Sat Feb 10 22:42:28 2007 
39 77.3574 77.9244 77.1341 Sat Feb 10 23:03:19 2007 
40 77.3574 77.9244 77.1341 Sat Feb 10 23:25:03 2007 

 

 

B.3:  Sample RUN_SITUATION.txt 
ITR CHROM TIME_FINISHED 
0 1 Sat Feb 10 11:57:02 2007   
0 2 Sat Feb 10 11:58:01 2007   
0 3 Sat Feb 10 11:58:57 2007   
0 4 Sat Feb 10 11:59:54 2007   
0 5 Sat Feb 10 12:00:53 2007   
0 6 Sat Feb 10 12:01:51 2007   
0 7 Sat Feb 10 12:02:47 2007   
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0 8 Sat Feb 10 12:03:45 2007   
0 9 Sat Feb 10 12:04:42 2007   
0 10 Sat Feb 10 12:05:38 2007   
1 1 Sat Feb 10 12:16:13 2007   
1 2 Sat Feb 10 12:17:09 2007   
1 3 Sat Feb 10 12:18:06 2007   
1 4 Sat Feb 10 12:19:04 2007   
2 1 Sat Feb 10 12:37:14 2007   
2 2 Sat Feb 10 12:38:09 2007   
2 3 Sat Feb 10 12:39:06 2007   
3 1 Sat Feb 10 12:54:16 2007   
3 2 Sat Feb 10 12:55:15 2007   
3 3 Sat Feb 10 12:56:14 2007   
3 4 Sat Feb 10 12:57:13 2007   
3 5 Sat Feb 10 12:58:11 2007   
3 6 Sat Feb 10 12:59:10 2007   
3 7 Sat Feb 10 13:00:08 2007   
4 1 Sat Feb 10 13:07:59 2007   
4 2 Sat Feb 10 13:08:57 2007   
4 3 Sat Feb 10 13:09:55 2007   
4 4 Sat Feb 10 13:10:54 2007   
5 1 Sat Feb 10 13:24:23 2007   
5 2 Sat Feb 10 13:25:23 2007   
5 3 Sat Feb 10 13:26:22 2007   

 
 

B.4: Sample time_logfile.txt 
Genetic Algorithm Program was started at Sat Feb 10 12:08:59 2007  
ITR Chrom Sum  Error  Pct_Error Fitness 
 0 1 0.9177 0.1147 11.4717 75.0668 
 0 2 0.9067 0.1133 11.3337 75.3262 
 0 3 1.1098 0.1387 13.8723 70.6941 
 0 4 0.8442 0.1055 10.5521 76.8125 
 0 5 0.8656 0.1082 10.8199 76.2999 
 0 6 0.8864 0.1108 11.0800 75.8054 
 0 7 0.8116 0.1014 10.1445 77.5993 
 0 8 0.8636 0.1079 10.7949 76.3476 
 0 9 1.3671 0.1709 17.0892 65.2313 
 0 10 0.9401 0.1175 11.7516 74.5434 
 0 11 0.8520 0.1065 10.6500 76.6248 
 0 12 0.8895 0.1112 11.1185 75.7325 
 1 1 0.8498 0.1062 10.6221 76.6783 
 1 2 0.8953 0.1119 11.1907 75.5959 
 1 3 0.9401 0.1175 11.7516 74.5434 
 1 4 0.8953 0.1119 11.1907 75.5959 
 1 5 0.9177 0.1147 11.4717 75.0668 
 1 6 0.8304 0.1038 10.3801 77.1435 
 1 7 0.9316 0.1164 11.6447 74.7427 
 1 8 0.8304 0.1038 10.3801 77.1435 
 1 9 0.9401 0.1175 11.7516 74.5434 
 1 10 1.3671 0.1709 17.0892 65.2313 
 2 1 0.8636 0.1079 10.7949 76.3476 
 2 2 0.8272 0.1034 10.3397 77.2215 
 2 3 0.8116 0.1014 10.1445 77.5993 
 2 4 0.9592 0.1199 11.9899 74.1005 
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 2 5 0.9177 0.1147 11.4717 75.0668 
 2 6 0.8272 0.1034 10.3397 77.2215 
 3 1 0.9113 0.1139 11.3915 75.2174 
 3 2 0.8388 0.1049 10.4853 76.9409 
 3 3 0.9113 0.1139 11.3915 75.2174 
 3 4 0.9536 0.1192 11.9203 74.2295 
 3 5 0.8596 0.1075 10.7455 76.4420 
 3 6 0.8442 0.1055 10.5521 76.8125 
 3 7 0.8715 0.1089 10.8939 76.1590 
 4 1 0.9421 0.1178 11.7763 74.4973 
 4 2 0.8773 0.1097 10.9664 76.0211 
 4 3 0.9014 0.1127 11.2676 75.4508 
 4 4 0.9067 0.1133 11.3337 75.3262 
 5 1 0.9401 0.1175 11.7516 74.5434 
 5 2 1.1098 0.1387 13.8723 70.6941 
 
 
B.5: Sample volume_logfile.txt 
Genetic Algorithm Program was started at Sat Feb 10 12:08:59 2007  
ITR Chrom Sum Error Pct_Error Fitness 
 0 1 1.1182 0.0589 5.8852 74.5084 
 0 2 1.3367 0.0704 7.0351 70.3452 
 0 3 0.9617 0.0506 5.0615 77.6411 
 0 4 1.1832 0.0623 6.2274 73.2443 
 0 5 1.2308 0.0648 6.4780 72.3324 
 0 6 1.0640 0.0560 5.5999 75.5789 
 0 7 1.1766 0.0619 6.1925 73.3723 
 0 8 1.1313 0.0595 5.9541 74.2521 
 0 9 1.1900 0.0626 6.2630 73.1139 
 0 10 0.9101 0.0479 4.7899 78.7025 
 0 11 1.0689 0.0563 5.6261 75.4800 
 1 1 0.9576 0.0504 5.0402 77.7236 
 1 2 1.1112 0.0585 5.8483 74.6461 
 1 3 0.9101 0.0479 4.7899 78.7025 
 1 4 1.1112 0.0585 5.8483 74.6461 
 1 5 1.1182 0.0589 5.8852 74.5084 
 1 6 1.2192 0.0642 6.4170 72.5533 
 1 7 1.2028 0.0633 6.3304 72.8680 
 1 8 1.2192 0.0642 6.4170 72.5533 
 1 9 0.9101 0.0479 4.7899 78.7025 
 2 1 1.1313 0.0595 5.9541 74.2521 
 2 2 1.0112 0.0532 5.3223 76.6353 
 2 3 1.1766 0.0619 6.1925 73.3723 
 2 4 0.9710 0.0511 5.1103 77.4517 
 2 5 1.1182 0.0589 5.8852 74.5084 
 2 6 1.0112 0.0532 5.3223 76.6353 
 2 7 1.0744 0.0565 5.6548 75.3717 
 3 1 1.0799 0.0568 5.6839 75.2622 
 3 2 0.9917 0.0522 5.2197 77.0294 
 4 1 1.1568 0.0609 6.0885 73.7548 
 4 2 1.0005 0.0527 5.2659 76.8513 
 4 3 1.2619 0.0664 6.6416 71.7429 
 4 4 1.3367 0.0704 7.0351 70.3452 
 5 1 0.9101 0.0479 4.7899 78.7025 
 5 2 0.9617 0.0506 5.0615 77.6411 
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 5 3 1.0043 0.0529 5.2857 76.7753 
 5 4 1.1225 0.0591 5.9079 74.4236 
 5 5 1.0675 0.0562 5.6183 75.5091 
 5 6 1.1551 0.0608 6.0792 73.7890 
 5 7 1.1313 0.0595 5.9541 74.2521 
 6 1 0.9710 0.0511 5.1103 77.4517 
 6 2 1.3540 0.0713 7.1261 70.0258 
 
 
B.6:  Sample both_logfile.txt 
Genetic Algorithm Program was started at Sat Feb 10 12:08:59 2007  
ITR Chrom Fit_Time Fit_Vol Fit_Both 
0 1 75.0668 74.5084 74.5084 
0 2 75.3262 70.3452 70.3452 
0 3 70.6941 77.6411 77.6411 
0 4 76.8125 73.2443 73.2443 
0 5 76.2999 72.3324 72.3324 
0 6 75.8054 75.5789 75.5789 
0 7 77.5993 73.3723 73.3723 
0 8 76.3476 74.2521 74.2521 
0 9 65.2313 73.1139 73.1139 
0 10 74.5434 78.7025 78.7025 
0 11 76.6248 75.4800 75.4800 
0 12 75.7325 72.8712 72.8712 
1 1 76.6783 77.7236 77.7236 
1 2 75.5959 74.6461 74.6461 
1 3 74.5434 78.7025 78.7025 
1 4 75.5959 74.6461 74.6461 
1 5 75.0668 74.5084 74.5084 
1 6 77.1435 72.5533 72.5533 
1 7 74.7427 72.8680 72.8680 
1 8 77.1435 72.5533 72.5533 
2 1 76.3476 74.2521 74.2521 
2 2 77.2215 76.6353 76.6353 
2 3 77.5993 73.3723 73.3723 
2 4 74.1005 77.4517 77.4517 
2 5 75.0668 74.5084 74.5084 
2 6 77.2215 76.6353 76.6353 
2 7 76.5010 75.3717 75.3717 
2 8 75.8467 73.3616 73.3616 
3 1 75.2174 75.2622 75.2622 
3 2 76.9409 77.0294 77.0294 
3 3 75.2174 75.2622 75.2622 
3 4 74.2295 75.9198 75.9198 
4 1 74.4973 73.7548 73.7548 
4 2 76.0211 76.8513 76.8513 
4 3 75.4508 71.7429 71.7429 
4 4 75.3262 70.3452 70.3452 
4 5 76.6507 72.0145 72.0145 
5 1 74.5434 78.7025 78.7025 
5 2 70.6941 77.6411 77.6411 
5 3 75.6179 76.7753 76.7753 
5 4 76.8291 74.4236 74.4236 
5 5 74.0762 75.5091 75.5091 
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B
.7: Sam

ple PA
R

A
M

E
T

E
R

.txt 

                         

Genetic Algorithm Program was started at Thu Feb  8 15:38:35 2007  
  
 ######### ITERATION:  0 ############  
Chrom P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25
 P26 P27 P28 
1  150 150 150 150 128 74 35 30 30 30 10 3 3 42 17 3 20 5 6 80 80 80 80 80 80 80 80 80  
2  150 150 150 121 74 43 30 30 30 30 10 3 3 21 28 3 20 1 4 80 80 80 80 80 80 80 80 80  
3  150 150 150 150 135 84 38 30 30 30 10 3 3 13 26 3 20 1 9 80 80 80 80 80 80 80 80 80  
4  150 150 150 118 61 32 30 30 30 30 10 3 3 13 16 3 20 5 5 80 80 80 80 80 80 80 80 80  
5  150 150 150 150 142 94 41 30 30 30 10 3 3 40 26 3 20 2 5 80 80 80 80 80 80 80 80 80  
6  150 150 150 150 149 115 63 37 30 30 10 3 3 40 19 3 20 5 10 80 80 80 80 80 80 80 80 80  
7  150 150 150 150 127 75 38 30 30 30 10 3 3 50 26 3 20 8 1 80 80 80 80 80 80 80 80 80  
8  150 150 145 103 47 30 30 30 30 30 10 3 3 24 25 3 20 4 8 80 80 80 80 80 80 80 80 80  
9  150 150 150 150 114 56 31 30 30 30 10 3 3 39 16 3 20 4 10 80 80 80 80 80 80 80 80 80  
10  150 150 150 150 138 88 39 30 30 30 10 3 3 57 23 3 20 1 4 80 80 80 80 80 80 80 80 80  
 
 ######### ITERATION:  1 ############  
Chrom P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25
 P26 P27 P28 
1  150 150 150 150 123 70 36 30 30 30 10 3 3 33 24 3 20 6 6 80 80 80 80 80 80 80 80 80  
2  150 150 150 150 127 75 38 30 30 30 10 3 3 50 26 3 20 8 3 80 80 80 80 80 80 80 80 80  
3  150 150 150 150 127 75 38 30 30 30 10 3 3 56 28 3 20 8 1 80 80 80 80 80 80 80 80 80  
4  150 150 150 150 138 88 39 30 30 30 10 3 3 51 21 3 20 1 4 80 80 80 80 80 80 80 80 80  
5  150 150 150 150 127 75 38 30 30 30 10 3 3 50 26 3 20 8 1 80 80 80 80 80 80 80 80 80  
6  150 150 150 150 114 56 31 30 30 30 10 3 3 39 16 3 20 5 10 80 80 80 80 80 80 80 80 80  
7  150 150 150 134 84 40 30 30 30 30 10 3 3 16 25 3 20 4 1 80 80 80 80 80 80 80 80 80  
 
 ######### ITERATION:  2 ############  
Chrom P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25
 P26 P27 P28 
1  150 150 150 124 69 35 30 30 30 30 10 3 3 50 23 3 20 6 2 80 80 80 80 80 80 80 80 80  
2  150 150 150 150 138 88 39 30 30 30 10 3 3 57 23 3 20 1 4 80 80 80 80 80 80 80 80 80  
3  150 150 150 150 114 56 31 30 30 30 10 3 3 39 16 3 20 9 10 80 80 80 80 80 80 80 80 80  
4  150 150 150 150 148 103 44 30 30 30 10 3 3 47 14 3 20 5 10 80 80 80 80 80 80 80 80 80  
5  150 150 150 150 130 89 53 34 30 30 10 3 3 29 12 3 20 1 4 80 80 80 80 80 80 80 80 80  
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B.8: Sample Play_by_Play.txt (excerpt) 
 
Entering selection sub, Fitness values are: 1: 73.0460537548437 
2: 74.4661833895158 
3: 73.5425125442163 
4: 76.1462854828598 
5: 73.0460537548437 
 
After selection, fitness values are: 1: 74.4661833895158 
2: 73.0460537548437 
3: 73.0460537548437 
4: 73.0460537548437 
5: 73.0460537548437 
 
After initialization: 
111110101000000100111000100100010001011 
110110111100000101110101111101100101001 
110110111100000101110101111101100101001 
110111010000101001111000110000101011001 
110110111100000101110101111101100101001 
 
Just started the Crossover sub. 
 
Chromosome 1 not selected. 
Chromosome 2 not selected. 
After Crossover: 
111110101000000100111000100100010001011 
110110111100000101110101111101100101001 
110110111100000101110101111101100101001 
110111010000101001111000110000101011001 
110110111100000101110101111101100101001 
 
Starting to mutate!. 
Chromosome 1 not selected. 
Chromosome 2 not selected. 
Chromosome 3 not selected. 
Chromosome 4 not selected. 
Chromosome 5 not selected. 
Size new set to 0. 
After Mutation: 
111110101000000100111000100100010001011 
110110111100000101110101111101100101001 
110110111100000101110101111101100101001 
110111010000101001111000110000101011001 
110110111100000101110101111101100101001 
 
Entering Evaluation subroutine!. 
Calculated a fitness function for the first 0 guys. 
They are:  
Now, the entire fitness array is:  
73.0460537548437  
74.4661833895158  
73.5425125442163  
76.1462854828598  
73.0460537548437  
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Make an array of only the last 0 guys 
Sorted the values of FITNESS_FINAL. Now they are:  
76.1462854828598  
74.4661833895158  
73.5425125442163  
73.0460537548437  
73.0460537548437  
 
Changed the order of the chromosomes according to fitness values. 
After evaluation: 
110111010000101001111000110000101011001 
110110111100000101110101111101100101001 
110110110001100010010110001101011110101 
100110101000001111001010001001001100010 
110111010000101001111000110000101011001 
 
Entering selection sub, Fitness values are: 1: 76.1462854828598 
2: 74.4661833895158 
3: 73.5425125442163 
4: 73.0460537548437 
5: 73.0460537548437 
 
After selection, fitness values are: 1: 73.0460537548437 
2: 73.5425125442163 
3: 73.0460537548437 
4: 76.1462854828598 
5: 76.1462854828598 
 
After selection: 
110111010000101001111000110000101011001 
110110111100000101110101111101100101001 
110110110001100010010110001101011110101 
100110101000001111001010001001001100010 
110111010000101001111000110000101011001 
 
Just started the Crossover sub. 
 
Chromosome 1 not selected. 
Chromosome 2 selected. 
Copied chromosomes 1 and 4 into 1 and 2. 
Crossed over bits 31 through 33 between 1 and 2. 
After Crossover: 
110111010000101001111000110000101011001 
110111010000101001111000110000101011001 
110111010000101001111000110000101011001 
110111010000101001111000110000101011001 
110111010000101001111000110000101011001 
 
Starting to mutate!. 
Chromosome 1 not selected. 
Chromosome 2 not selected. 
Chromosome 3 not selected. 
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Appendix C. Traffic Volume Counts from UDOT 

Table C.1: Traffic Volume Counts from UDOT 

Left Thru Right Left Thru Right Left Thru Right Left Thru Right
284 Alpine

SB Ramps 0 0 0 1160 0 77 0 312 187 210 324 0
 NB Ramps 214 0 116 0 0 0 112 1359 0 0 321 604
E. Frontage Rd & SR-92 0 0 0 24 0 242 225 1247 0 0 683 30

282 Lehi 1200 West
SB Off Ramp & 1200 W 0 0 917 219 925 25 0 177 171 540 109 0
SB On Ramp & US-89 99 917 49 193 1441 2 0 0 0 0 0 0
NB Ramps & 1200 W. 82 0 89 0 0 0 796 517 0 0 567 0
2100 N & 1200 W 107 5 9 0 0 0 0 418 188 65 460 91

279 Lehi Main Street
850 E & Main St 154 78 222 139 179 35 54 908 119 274 1205 250
SB Ramps &Main St 0 0 0 313 3 192 0 781 487 137 1538 0
NB Ramps & Main St 1024 8 213 0 0 0 222 872 0 0 653 185

278
SB Ramps & Main St 0 0 0 400 4 50 0 376 179 259 587 0
NB Ramps & Main St 248 11 428 0 0 0 51 725 0 0 600 366
US-89 & Main St 28 13 28 846 14 257 333 798 21 12 682 593

276
SB Ramps & 500 East 0 0 0 231 118 213 0 420 91 365 313 0
NB Ramps & 500 East 14 0 524 0 0 0 164 487 0 0 665 389
620 South & 500 East 246 17 113 24 36 34 64 903 43 111 775 31

275 Pleasant Grove
SB Ramps & P. G. Blvd 0 0 0 273 7 25 0 177 200 483 72 0
NB Ramps & P. G. Blvd 40 5 279 0 0 0 111 339 0 0 516 419

273 1600 North Orem
SB Ramps & 1600 N. 0 0 0 539 0 115 0 306 289 509 345 0
NB On Ramp & 1600 N. 0 0 0 0 0 0 116 728 0 0 854 724
NB Off Ramp & 1600 N. 203 107 322 109 0 386 86 642 0 0 980 102

272 800 North Orem
SB Ramps & 800 N. 0 0 0 856 0 58 0 468 204 558 388 0
NB Ramps & 800 N. 120 0 622 0 0 0 113 1211 0 0 817 830
1200 West & 800 N. 187 210 115 62 152 100 125 1458 250 83 1362 74

271 Orem Center Street
SB Ramps & Center St. 0 0 0 657 6 114 0 538 241 596 283 0
NB Ramps & Center St. 52 3 494 0 0 0 176 1019 0 0 828 807
1200 West & Center St. 258 288 107 85 196 198 143 1129 240 103 1179 124

269 University Parkway

Ramps & University Pkwy 222 0 901 1521 0 230 260 551 241 998 476 1476
Sandhill Rd & University 
Pkwy 414 256 342 180 241 558 554 1867 551 380 1979 159

Peak Hour Traffic Volumes

American Fork Main Street

American Fork 500 East

Northbound Southbound Eastbound Westbound
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Average 
Content

Speed 
(mph)

Vehicle-
Miles

Vehicle-
Minutes

Moving 
Time/Total 
Trip Time

Current 
Content

Total Delay 
(veh-min)

Travel 
Time 

(min/veh-
mile)

Delay 
Time 

(min/veh-
mile)

Default Range 62.9 1.3 2171.7 3773.9 0.021 106.0 2351.8 0.02 0.03
Mandatory Lane Change Gap Acceptance 24.7 0.3 973.0 1483.5 0.004 26.0 538.8 0.01 0.00
Time to Complete Lane Change Maneuver 92.7 4.0 1251.9 5560.8 0.060 59.0 6611.8 0.08 0.07
Percent of Drivers Yielding to Merging Vehicles 22.8 0.2 948.8 1364.7 0.003 6.0 436.4 0.01 0.00
Minimum Separation for Generation of Vehicles 206.3 1.5 9857.7 12376.5 0.024 243.0 3250.1 0.02 0.03
Multiplier for Desire to Make Discretionary Lane Change 27.9 1.3 532.6 1674.1 0.018 77.0 1972.1 0.03 0.02
Advantage Threshold for Discretionary Lane Change 940.2 27.9 17805.7 56412.2 0.427 1893.0 71919.7 0.98 0.96
Pitt's Car Following Constant 22.9 1.1 483.6 1373.4 0.019 74.0 2017.9 0.02 0.02
Maximum Non-emergency Freeway Deceleration 13.1 1.0 728.8 788.6 0.013 55.0 1245.2 0.01 0.01
Acceleration Lag Time 37.9 0.3 1714.7 2271.1 0.004 11.0 536.8 0.00 0.01
Deceleration Lag Time 21.4 0.7 113.8 1284.8 0.010 67.0 1096.0 0.01 0.01
Car Following Sensitivity Factors 597.1 20.4 6622.4 35828.2 0.311 1024.0 41342.6 0.49 0.48

Table D.1: Default Ranges and Results of Sensitivity Analysis 
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Table D.2: Ranges of MOEs from Varying Parameter Values 

Parameter
Parameter 

Values
Average 
Content

Speed 
(mph)

Vehicle 
Miles

Vehicle 
Minutes

Time/Total 
Trip Time

Current 
Content

Delay (veh-
min)

(min/veh-
mile)

Delay Time 
(min/veh-mile)

1 1629.1 57.57 93795.3 97748.8 0.896 1644 10155.79 1.04 0.11
10 1657.0 56.28 93262.7 99422.9 0.878 1721 12127.86 1.07 0.13

Range 9 27.9 1.29 532.6 1674.1 0.018 77 1972.07 -0.03 -0.02
1 2580.7 29.76 76800.3 154841.1 0.471 3642 81925.27 2.02 1.07

10 1640.5 57.67 94606.0 98428.9 0.898 1749 10005.55 1.04 0.11
Range 9 940.2 27.91 17805.7 56412.2 0.427 1893 71919.72 0.98 0.96

1 1615.5 58.19 93997.7 96929.2 0.906 1675 9146.19 1.03 0.10
6 1640.2 57.90 94970.7 98412.7 0.902 1649 9684.97 1.04 0.10

Range 5 24.7 0.29 973.0 1483.5 0.004 26 538.78 -0.01 0.00
10 1690.9 54.74 92561.3 101455.3 0.854 1739 14861.59 1.10 0.16
60 1598.2 58.70 93813.2 95894.5 0.914 1680 8249.77 1.02 0.09

Range 50 92.7 3.96 1251.9 5560.8 0.060 59 6611.82 0.08 0.07
5 1615.0 57.98 93646.8 96901.1 0.903 1654 9430.36 1.03 0.10

40 1637.8 57.76 94595.6 98265.8 0.900 1660 9866.74 1.04 0.10
Range 35 22.8 0.22 948.8 1364.7 0.003 6 436.38 -0.01 0.00

10 1423.4 59.58 84805.2 85405.2 0.928 1492 6133.62 1.01 0.07
30 1629.7 58.09 94662.9 97781.7 0.904 1735 9383.72 1.03 0.10

Range 20 206.3 1.49 9857.7 12376.5 0.024 243 3250.10 -0.02 -0.03
3 1590.1 59.35 94373.7 95405.7 0.924 1583 7215.49 1.01 0.08

10 1613.0 58.21 93890.1 96779.1 0.905 1657 9233.37 1.03 0.10
Range 7 22.9 1.14 483.6 1373.4 0.019 74 2017.88 -0.02 -0.02

40 1570.3 60.13 94420.6 94215.3 0.935 1587 6151.96 1.00 0.07
120 1583.4 59.17 93691.8 95003.9 0.922 1642 7397.16 1.01 0.08

Range 80 13.1 0.96 728.8 788.6 0.013 55 1245.20 -0.01 -0.01
Acceleration lag time 1 1568.3 59.61 93483.4 94100.6 0.927 1610 6843.52 1.01 0.07

10 1606.2 59.27 95198.1 96371.7 0.923 1621 7380.28 1.01 0.08
Range 9 37.9 0.34 1714.7 2271.1 0.004 11 536.76 0.00 -0.01

Deceleration lag time 1 1650.5 56.99 94055.0 99029.5 0.888 1709 11058.09 1.05 0.12
10 1629.1 57.67 93941.2 97744.7 0.898 1642 9962.09 1.04 0.11

Range 9 21.4 0.68 113.8 1284.8 -0.010 67 1096.00 0.01 0.01
30 2118.8 40.78 86408.7 127128.7 0.639 2568 45905.67 1.47 0.53

150 1521.7 61.14 93031.1 91300.5 0.950 1544 4563.04 0.98 0.05
Range 120 597.1 20.36 6622.4 35828.2 0.311 1024 41342.63 0.49 0.48

Network MOEs

Minimum separation for 
generation of vehicles

Maximum non-
emergency  deceleration 

Car following sensitivity 
factors 

Time to complete lane 
change maneuver

Pitt's car following 
constant

Multiplier for desire to 
make discretionary lane 

Percent of drivers 
yielding to merging 

Advantage threshold for 
discretionary lane change

Mandatory lane change 
gap acceptance
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