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Diffraction of Spherical Scalar and Vector Waves at Axial Points of a
Circular Aperture and Disk

Kerra LEoNn McDoxarp
Department of Physics, Brigham Young University, Provo, Ulah

(Received October 25, 1961)

The following work treats Kottler’s saltus problem of diffraction of electromagnetic waves emitted by a
Hertzian oscillator source and the analogous Kirchhoff’s scalar problem of waves emitted by a point source.
The medium is a homogeneous isotropic dielectric. In the vector case a new exact solution of the basic inte-
grals is presented, at axial points only, (a) behind a circular aperture in a “black” screen, and (b) behind its
complementary “black” disk. The relative time-averaged intensity of energy flow is plotted for the disk
only. It is shown that the scalar theory predicts considerably larger values than the electromagnetic theory

for identical geometrical dispositions.

I. INTRODUCTION

HIS analysis treats the saltus problems of dif-
fraction of electromagnetic and scalar waves at
axial points of observation, (a) behind a circular aper-
ture in a “black” screen, and (b) behind its comple-
mentary disk, for finife axial source distances. A new
exact solution of the basic Kottler-Kirchhoff integrals
is presented in the vector case. This is compared with
the known exact solution of the analogous scalar prob-
lem. The work is of interest in applied physics since
there exists no previous elementary electromagnetic
solution; for the dipole field incident upon the infinitely
conducting screen (Meixner, 1953), the numerical
evaluation evidently has not been accomplished to any
great extent. As for the scalar waves, the Airy solution
of Fraunhofer diffraction is well known, whereas at
finite source distances there is the work of Lommel and
others,!2 for Fresnel diffraction, including the approxi-
mate methods based upon the Fresnel half-period zones.
For this analysis, we shall employ Mirimanov’s exact
solution of Kirchhoff’s integral formulation, Eq. (4)
below, for spherical scalar waves.? Incident plane waves,
both scalar and electromagnetic, being hardly appli-
cable here since they correspond to infinite source dis-
tances, are only briefly referred to in the later discussion
for reasons of comparison.

Kottler’s formulation* has been discussed by the
author in a paper which will be referred to hereafter as
the vector case (reference 5). The “black” screen is de-
fined here in terms of the conditions imposed upon the
complex vector disturbance q. Our exact solutions, which

! M. E. Hufford and H. T. Davis, Phys. Rev. 33, 589-97 (1929).

?W. Arkadiew, Physik Z. 14, 832 (1913).

3R. G. Mirimanov, C. R. Acad. Sci. U.R.S.S. 61, 617-20 (1948).
The analogous exact solution of Kirchhoff’s integral, at axial
points only, for plane scalar waves normally incident upon a circu-
lar aperture has been given by C. L. Andrews, Phys. Rev. 71,
777-86 (1947).

4 Friedrich Kottler, Ann. Physik 70, 405 (1923); Ann. Physik
71, 458 (1923).

5 K. L. McDonald, J. Opt. Soc. Am. 43, 641-47 (1953). See also
the sinusoidal formulation of J. A. Stratton and L. J. Chu, con-
tained in Stratton’s, Eleciromagnetic Theory (McGraw-Hill Book
Company, Inc., New York, 1941). This development makes use
of the vector analog of Green’s theorem without recourse to scalar
or vector potentials,

depend solely upon these initial assumptions, may now
be compared with the usual approximate solutions which
exploit the smallness of the wavelength A,

II. SCALAR CASE

At points on the opposite sides of a “black’ screen S,
the perturbed wave function % and its normal space
derivative du/dn are discontinuous by an amount equal
to the unperturbed wave function,

+ du
=y, —

~ omn

+ dug
- M)

ur—u=u .
- Oon

In the present discussion #o=uo(Q,t)= (1/r¢)ei ct=ro},
where A\=2x/k, and 7, is the radial distance measured
from the light source L to any point Q, as in the nota-
tion of Fig. 1. Applying Maggi’s transformation,

e—ikr 9 eik(ct—ro) eik(cl—fo) F:] e-—ikr
L e Eern e
r dn 70 ro On\ r

roxreik(ct—ro——r)
- f O T = —R@P), @)
C

(to-t+ror)rer

to the Kottler-Kirchhoff formula (cf., reference 6) the
following disturbance results in accordance with (1),

u(P,1)= euo(P,) — (1/4m)R(L,P). 3

Ly

AN\ A «

F16. 1. Diffraction by a circular aperture in a “black” screen.

¢ B. B. Baker and E. T. Copson, The Mathematical Theory of

Huygen'’s Principle (Oxford University Press, Oxford, England,
1950), 2nd ed.
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DIFFRACTION OF SPHERICAL

The circuital direction of C is related to the positive
side of the screen surface by the usual right-hand rule,
and the vector I connects the origin of coordinates to a
peripheral point on curve C bounding S. e=0 if the seg-
ment LP intercepts the screen surface S; otherwise,
e=1.

This expression is next applied to the computation
of the relative time-averaged intensity of energy flow
along the shadow axis of a thin circular “black” disk.
Using a screen complementary to that shown, let the
plane of the disk lie in the yz plane, the origin of co-
ordinates being coincident with the center of the disk,
and place the source point L and point of observation
P on the x axis. The vectors A and dI" are therefore
directed as shown. Eq. (3) gives

eik(ct—ro—rl) sin (00+01) 27
u(P)= adv
drrori[1—cos(8+61) ]/ 0

aeik (ct—ro—r1)

= (4
2rery tand (6,46,)

0, 6, being the angles enclosed by 7o, 7, and the z axis,
and “e” is the disk radius. In the previous value of the
unperturbed disturbance at P, substitute LP=r, cosfy
+71 cosfi= (xo—=1). Then the relative intensity at any
point P(x,,0,0) on the shadow side of the screen axis is

uu*  a®(ry cosfotr; cosh))?

uouo* 4?’021’12 tan?% (00+91)

=1[14cos(fs+86,) 2.

I/T=

O

This exact evaluation of (3) predicts a relative intensity
which varies monotonically from the value (1 —sinf,)?
directly behind the disk to 1(1+4cosfy)? at r;= .
Hence, the relative axial illumination is a maximum for
a collimated incident beam and is everywhere inde-
pendent of the wavelength . Figure 2 illustrates this
case for both a collimated incident beam, xo= 0, and a
finite source distance set equal to the radius of the disk;;
Xo=a.

If the screen is replaced by a circular aperture [for
axial points e=1 in Eq. (3)], there results the exact
relation

u(P )= (1/LP)eit(ct-—LP)

— (1/2LP)[14cos(Bo+6,) Jerk(ct—ro—r0) (6a)
The relative intensity is accordingly
I/ Iy=143[14cos(0o+6.) ]2
—[14cos(8o+61)] cosk(ro—xo+r1+x;). (6b)

Because of the last term it is evident that the relative
ntensity oscillates between the lower and upper bounds

SCALAR AND VECTOR WAVES 1945
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F1c. 2. Theoretical relative intensity distribution at axial
points behind a “black’’ circular disk of radius a. The scalar cases
pertain to all wavelengths whereas the vector cases shown are
delimited to wavelengths small compared to other length factors.

of 0 and 4 as the point of observation moves along the
% axis. Moreover, the source distance and aperture
radius affect its linear distribution. If the source is
sufficiently removed so that 6,==0, the relative intensity
varies between the limits 5/44|cos(2ra/A)| at the
aperture center, and for large increasing values of the
radius g, is not equal to unity as one would require of a
rigorous formalism. This deficiency is inherent in the
Kottler-Kirchhoff scheme and does not arise from ap-
proximations to the basic integrals. Since the amplitude
factor of the last term is a nondecreasing function of 7y,
and the phase difference 2 (71— | x,])/X is a nonincreas-
ing function, it is evident that its contribution becomes
larger but that the oscillations occur less frequently as
the point of observation moves away from the screen.
Finally, we note that when the wavelength is increased
the oscillations of the relative intensity are everywhere
less frequent. These results are in qualitative agreement
with the less formal predictions derived from the appli-
cation of the Fresnel half-period zones.” 8

Equation (4), due to Mirimanov (reference 3), is
incidental to his general argument so that the above
inferences, together with the remaining equations of
this section, have never been discussed. Current litera-
ture incorporates the assumption that the wavelength
A is small compared to other length factors. Such solu-
tions, however, are more cumbersome than the above
exact expressions,

ITII. VECTOR CASE

The previous problem, treated next from the stand-
point of electromagnetic theory, employs a point source
consisting of a simple harmonic Hertzian oscillator
placed on the aperture axis. The two important orienta-
tions of oscillator are directed along the aperture axis
and perpendicular thereto. The appropriate field equa-
tions, Eqs. (7) of the vecior case, are again written in

7C. F. Meyer, The Difiraction of Light, X-Rays, and Material
Parti)cles (The University of Chicago Press, Chicago, Illinois,
1934).

8F. A. Jenkins and H. E. White, Fundamentals of Optics
(Mchraw—Hill Book Company, Inc., New York, 1957), 3rd ed.,
p- 353.
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terms of Gaussian units,

4
41I'E(P)= ——K (qun)Hodr—ftblEonI‘
r

JwKJr

+DL;3{416¢1(L,P)—9?<L,P>},

M
41rH(P)=—c~ (V@) Eo'dl‘—f@lHOXdF
Jous T r
JwK m
*—VL{%C‘IH(L,P)’"SR(L,P)} X "'I'E)
c

where R is given by (2) or (6) of the vector case. For
convenience, the following quantities are also re-
produced:

EO(P>=D:£4>O(L,P)

JjwK m,
c K

Dp=A%+VpVp- ®)

1
&(Q,P)=—eiet

81

1
B(L,Q)=—eietn.

To

Figure 1 has been drawn to conform with this notation.
Observe the change in notation; vector quantities

KEITH LEON McDONALD

are here denoted by boldface type; the functions ¢
and ¢;, except whenever they occur there as polar co-
ordinates in a circular function, are here denoted by &,
and &,. The wave slowness is again A= (Kp/c?)}, ¢ being
the velocity of light in free space. u and K are the perme-
ability and specific inductive capacity of the medium,
and mo denotes the constant electric moment of the
oscillator. For fields of finite past history, or whenever
the source is subjected to amplitude variations (modu-
lation), it is necessary to resort to the earlier equations
in the vector case, Eqs. (2) or (3).

For axial positions both 7o and 7; are constants in the
integration process around the periphery of the aper-
ture. It follows that &, and ®,, as well as their total
derivatives, are likewise constants. Thus they may be
factored out of the integrands provided that no indi-
cated differentiations appear in front of the integral
sign; otherwise, it is necessary to displace the source
and point of observation to arbitrary positions, perform
the indicated operations and then evaluate the results
at the original positions. This is the present procedure.
It is worthwhile to include one intermediate step before
writing down the solutions because the computations
are quite lengthy. Although this step may be employed
in later computations for extra-axial positions of L
and P, for example, by the method of stationary phase,
it is likely that a direct operation on (7) would prove
shorter. Recalling that

37’0 XQ—XL 67’0
= == CtC.,
ax[,

axQ 7o

and denoting the total derivatives of ®; and ®; by &’
=d®o/dr¢, ®,'=d®,/dr,, it follows that

VQQ’o: (1/1’0)‘1’0’1’0= —_ VLq:’o,

VQ‘I:’1= (1/71)@1,1’1= —Vp‘bl.
Using this notation and substituting the values of

Eo, Ho of (8) into (7), there obtains for the electric
intensity (denoting unit vectors by caret symbol),

my my
47E(P)=— —- fcbo’%’drx fofi——X P &, [A%?Po+By /7, JdT
K Jr K r

m, d i mo m d
-——K-— . f’o@l—— (@ol/fo) l'ol’onF‘f"41!'6[1\2(024)1-*—@1’/1’1]1:[,"—; . f’po'PL41re[1’1;— (@1’/71)]
r PL

dfo K

71

my my
~—NR(L,P)—— V.V R(L,P). (9)
K K

The indicated differentiation in the last term is not written out since the operation is straightforward and rather
lengthy. The continuity of all integrands with respect to points L and ( is a sufficient condition for the interchange
of the operations of differentiation and integration. Introducing the idemfactor I, the differentiated integrand con-
tains eight symmetric dyadic terms. Forming the scalar product with mo/K as a prefactor or postfactor is therefore

Downloaded 13 Feb 2009 to 128.187.0.164. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



DIFFRACTION OF SPHERICAL SCALAR AND VECTOR WAVES 1947

immaterial. The expression for the magnetic intensity is considerably simpler,

¢ M 1 a
41rH (P) 5 St il {Aﬁmzf@;fb{dl‘ﬁ+ ““i’olq);fdrf‘x"*‘f?’og“ (@o!/?’o) ?ofo . (irf'l }
r r drg

Jop K T ry
ij my . (rerl)-dl“
_‘”“(“_"X { f@o’@{i’o) XdF+ ?pL47re<I>1’ (L,P)+ ‘I’gf@lrg—“‘w
¢ \K r r (ro r1t+ror)

‘I’o‘I’l'dF (rorl—f—rorl)(rerl)-dI‘
+(IX r;)——-——~—— &Py . (1
r (to-t1+rory) r fo[l'()' ritror
Equations (9) and (10), being applicable to apertures of quite arbitrary shape, are next specialized according to
the geometrical disposition of Fig. 1. The following substitutions are necessary: I'=14,9+%.{, n=a cosy, { =g siny,

ro=1.(—x0)+im+if, n=1(—2)+1,n+1.8, 10-d0=0, r,-d0'=0, Fdr=0. Considering the simplification of (9),
one is led to the following definite integrals

fdl‘ X Yol;— 1r422[ — leixix-}-xoiyi,,-}—xgiziz]

r

f roro X AT =7mx0a?[ 21,3, — 1,8, — 1.5, ]
r

f [IXry-drotrd X 11 - d0 )= 27a?[ 25083, — 218 6y — 232, ]
r

27 2T
f rordy= / riredy=ma? 2 (xox1/a®)t 441,40, 12, ].
4] 0

The remaining terms are derived from these as special cases. Performing the necessary simplifications, the total
E vector is next written for the two principal orientations of my.

T-Case (mO = izﬁl@) .

2rmea (ax:Py'®) axy d x? d Bo-+64
47rE(P)=41rEo(P)e+i¢ {‘_““‘-—*‘—‘1)1—*—- (‘I’o’/ro)—[A?w?‘bn‘f" (@0’/70)4——— "‘*((I’o,/fo):]‘bl Ctl’l( )
rory ro  dro ro dry
q’a’(bl sin (00—!-01) 23!70(1@0!@1 sin (90+§1)

+ 2z (xro+x07y) - + (7o~ 2g?) By,

rori[1—cos(Bo+61) ]2 ro’ri[1—cos(fo+6,)] 7o' [ 1—cos(6o+6:) ]

Za(rlxo—i—rgx,)%@l sin (@0+01)
*% *2(36071‘*‘%’1?’0)2@{)@1 v (1 )
rérd[1—cos(6o+6,) 2 ro'ri¥[1—cos(6o+6:)

¢ has been retained in place of unity to delineate its coefficient terms
o
Eo (P) = i,E[Asz‘IJo (L,P) +‘I’0" (L,P)] 3

e=1, since the aperture axis lies in the geometrically illuminated region. This is the exact expression for E(P)
when mo=2,mo. Observe that E(P) is directed along the aperture axis. Consider next the more important

O-Case (mO = iymo) :

L Tamo[  ax axy d ad Bo-+0,
47I'E(P) =4 Eo (P)E‘i‘ly—“—“ - o’@ll‘{"—"@l—- (@0'/70) - [21\2w2¢0+— -(<I)0'/ro)+2¢0’/ro]d>1 ctn( )
K 7071 70 dro 7o dVO
2ax,:3¢'®, 2ax,(ro+r)Ped &, sin(f¢-+61)
+ - - ! +[2a2(ro+r1)ro®g’+r1 (ngz—az)‘?o} ! ’ .
reri[1—cos(@+61)] rér2[1—cos(8o+6,) ] ro'ri[ 1—cos(6o-+61) I?
&P, sin (fo-+861)
—2a%(ro+r1)? } (12)
1’04712[1 —CO08 (00+91}]3
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1948 KEITH LEON McDONALD

Again e=1. Its coefficient is the unperturbed intensity
Mo
47 Eo(P)= 4WE/2,,[A%2<I>1 (L,P)+®/(L,P)/rLp].

Observe that E(P) is everywhere directed along the y axis. The corresponding expressions for H(P) are con-
siderably simpler. Performing the indicated operations in (10), one finds that the x-Case leads to H(x,)=0, #,<0;
the aperture axis is a fixed line of vector singular poinis of the time dependent H field. By symmetry the magnetic
lines of force are circles about this axis. Hence, for axial points, the r-Case is trivial and will not be furtherdiscussed.

Finally, in the o-Case (mo=1,m0):

’

momw( € a*P,
41I'H (P) = 47I'H|)(P) €+’iz K {f—[Azwkpo‘["I’o’/fo] +

Jwu 71

K
—I: (a¥/r0)®o®1+2a(x0/70)B' Py ctn(

[

202¢0¢ 1

00+01)
2

2a(rox1+171%0) PP,

+ — c
[ rori[1—cos(Bo+61)] re¥ri[1—cos(fo+6:)]

ij 4rmy
4aHy(P)= —— ——<I>K o (L,P)i.;
c

e=1.

Observe that H(P) is everywhere parallel to the z axis
and perpendicular to E(P) so that the Poynting vector
is along the aperture axis. This solves the problem of
diffraction by an aperture.

The solution pertaining to the complementary screen,
the “black’ circular disk, is now readily demonstrated
by use of Eq. (3) of the wector case, which may be
referred to as the aperture formula. In this paper the
complex vector disturbance § (=q in the present nota-
tion) is obtained by carrying out the integration process
over the surface .S of the aperture and its boundary, in
accord with the right-hand rule. From this expression
one may derive an alternate formula which is suited to
problems in diffraction by an obstacle. By a process
of continuous deformation the unperturbed field qo is
obtained from the above expression by replacing the
screened surface with an aperture. The resulting contour
integrals cancel and there remains only the surface
integral K=4rq, taken over the closed surface sur-
rounding the source distribution. The result is the well-
known Larmor-Tedone equation,

drqu(P)t)= / / [[(lo:la_n P —‘IO]

A 01’1

i)
- —qo]}dS‘ (14)
7, OnlLot

As before, r; connects the point of observation with the
point Q in the integration process. Subtracting this
result from the aperture formula, one obtains the alter-
nate expression

) ir
41rq(P,t)=41rqo—{Kc—ivp f —[ f qodt]-dl‘
A T 71

-4 l[q]><dr}. (15)

71

o) o

K. is the same as the K in the aperture formula except
that the integration is now taken over the surface S,
of the “black” screen and the contour integration fol-
lows in the opposite direction, in agreement with the
right-hand rule relative to the obstacle surface. But the
above quantity in brackets is precisely the initial aper-
ture formula for the complementary screen. Hence, it
is evident that the formalism rigorously predicts a
principle of complementary vector disturbance,

q(): q+ (Ic; (16)

q. now denoting the complex vector disturbance of the
complementary screen. The scalar analog of this prin-
ciple is verified by Eqgs. (4) and (6a). Likewise, the
significance of Eo, Hy, in (7) and (11) of the vector case
is now apparent.’ The field components for the “black”
circular disk are thus obtained from those for the
circular aperture by subtracting the latter from the
unperturbed field components given in Eq. (8). This
completes the solution.

These results are corroborated next for diffraction by
the black disk in the optical region of the spectrum. The
appropriate approximations are A<z, 71, . In (12) and
(13) one introduces the simplifications ®¢'= — 27 j&o/},
&y = —47%Po/N?, with similar expressions for ®;, and
omits terms like ®ob'raL, (®o)2r572, etc., compared with
terms like ®¢”, (®¢")2, ®¢'P/, etc. To obtain an estimate
on the error incurred in this procedure let us choose a
local wavelength A=5X10"% cm (green light) and r,,
r>>1 cm. Then each term omitted contributes a frac-
tional error not greater than one part in 20 000. Re-
calling that E(P) and H(P) are complex vectors, the
time averaged Poynting vector in the —x direction is
I_,=—1, (c/16m) (EXH*+ E*XH), with a similar

? The author wishes to correct a printing error which appears in
the latter equation, reference 3; the second right-hand term in the
expression for 4vH(P) should be multiplied by the gradient
operator V.
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DIFFRACTION OF SPHERICAL SCALAR AND VECTOR WAVES

expression I_; for the unperturbed field. Performing
the above simplifications one thus obtains, for the
o-Case, the relative intensity at axial points behind the
disk,

a*(xe—x1)
J..,(xl) =I_,,~/,I_zo= [M] 'FHFE'l—O()\),
ror1
1 1 2xo(xo--x1)
<4

FHz——— T b
ro 11 ro(roritaexi+a?)

Fg=ﬁ(i_i)+ 2—a"/rd) (x0—21)
ro\ry 1y

(rors+xox+a?) ’
Analogous to (5), this quantity is independent of the
wavelength so long as O(\) remains negligible. Letting
xg— oo there obtains

2a aP
el —],
ri+x n

for collimated incident light. Hence, J_.(0)=+%, which
value is § that of the scalar prediction for the identical
geometrical disposition. Further, as 2, — — o, J_;—
1—0. The predictions of (18) are shown in Fig. 2 by
the dashed curve; the diffracted relative intensity
has everywhere smaller values than those predicted by
the scalar theory. Likewise, when xo=a, (17) shows
that J_.(0)=0.003791, which value increases to the
asymptotic value J_,(— «)=0.5308. On the scalar
theory the latter value was shown to be 0.7286.

Likewise, from (12), (13), and (16), one computes the
relative intensity for the o-Case at points of the aper-
ture axis,

Tl = 1+[MTFHFE

an

(18)

47’07‘ 1
a*(xo—2x,) 2r
—————(Fy+Fg) cos—
4rery A

X(ro—zotri—|2:]). (19)

1949

\ is again the local wavelength. The second term is the
diffracted relative intensity of Eq. (17). That quantita-
tive agreement with the scalar theory is obtained may
be verified by comparing (19) with (6b), term by term.

Since the axis of the aperture represents a critical
point on the lateral intensity distribution curve, the
region of interest is expected to be sufficiently broad to
permit of experimental verification. However, in the
microwave region recent experimental data exist, only
for plane incident waves, at points of observation not
greatly removed from the neighborhood of the circular
aperture.® ! Further experimental data may be found
in the papers of H. Severin,’® and J. Meixner and W.
Andrejewski,'s which treat on the incident plane wave-
front. Additional references may be found in Meixner’s
paper treating on the incident dipole field,'? in the re-
view article of C. J. Bouwkamp,!® and in the 1953 pro-
ceedings of the McGill symposium.”® At optical wave-
lengths there are only qualitative experimental (photo-
graphic) data for both the aperture and disk ; the pre-
cision of measurement is not comparable with that
obtainable by present day electronic-photometric tech-
niques. Microwave measurements for the circular
aperture at finite source distances (point sources) have
never been discussed to our knowledge. Moreover, the
diffraction of microwaves by the disk has never been
undertaken.

0 H. L. Robinson, J. Appl. Phys. 24, 35 (1953).

(1;511{). E. Houston and R. H. Noble, J. Appl. Phys. 22, 1295

2M. J. Ehrlich, S. Silver, and G. Held, J. Appl. Phys. 26,
336-45 (1955). P g
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