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Abstract: Mathematical modelling of decentralised water supply options requires a finer
temporal resolution than models of centralised regional systems. To avoid having to run
a coarse scale model with the timestep needed for the fine scale model, the latter can be
upscaled to a larger timestep. One way of doing this is to use a surrogate model.

This paper presents a nearest-neighbour surrogate model for upscaling a detailed cluster
scale urban water model from a sub-daily to a monthly time scale. The approach con-
sists of running a detailed cluster model with a fine temporal resolution using a historical
rainfall timeseries, adjusting the daily rainfall values by clipping peaks and assigning rain-
fall occurring near the end of a month to the following month, and then aggregating the
output and corrected input timeseries to monthly timesteps. This set of monthly values
is then used as a surrogate model in subsequent simulations, using nearest-neighbour
sampling to select an appropriate output value for a given monthly rainfall.

It was found that the surrogate model performs well in emulating the detailed model at a
monthly timestep, producing a good model fit and succeeding in reproducing autocorre-
lation while running faster than the detailed model by several orders of magnitude.

Keywords: Rainwater Tanks; Upscaling; Surrogate Modelling

1 INTRODUCTION

The last three decades have seen many important changes to the manner in which the
Australian water sector approaches the planning, provision and management of urban
water cycle services, with new approaches taken within the stormwater sector [Lloyd
et al., 2002; Mouritz, 1996; Wong and Eadie, 2000] . In more recent years, drought and
dwindling storage levels have also become major drivers of water resource efficiency and
the development of new and innovative ways to meet our urban centres needs. A key
element of this change has been the emergence (and in some cases the re-emergence)
of decentralised management strategies such as rainwater tanks, stormwater harvesting
ponds and greywater systems for the provision of water cycle services such as water
supply, stormwater management and waste water disposal. While the localised benefits
of these systems are well understood, this is less true for the impacts of their widespread
adoption at the regional scale.

Regional scale models typically operate on a monthly or annual scale, with long simu-
lation periods or replicate simulation runs required for regional water resource planning.
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Models of on-site residential rainwater tanks, however, require temporal scales of no
more than daily timesteps to capture the system dynamics of the fill, spill and draw down
cycles that occur [Mitchell et al., 2008]. Even if only average monthly output values are
of interest, as would be the case when investigating the impact of distributed rainwater
tanks on a regional system, rainwater tank models can not simply be run with average
monthly input values. Instead, the output of a model run with a fine timestep has to
be aggregated to monthly values, leading to long model run times. This temporal scale
modelling requirement presents an important challenge for the incorporation of the water
supply savings from rainwater tanks into regional scale headworks models.

To avoid this problem, the rainwater tank model itself, rather than its output variables,
can be upscaled. One way of doing this is to generate a meta-model or surrogate model
[Bierkens et al., 2000, p. 105], that captures the emergent properties of the detailed
model but takes less time to run.

One surrogate model for upscaling a rainwater tank model from a daily to a monthly
timestep is presented in Kuczera [2008]: The approach consists of running a model of
a house with a rainwater tank at a daily timestep using a long simulation period, then
aggregating the model input and output to monthly values. These aggregated sets of
inputs and outputs are then used as a lookup table in monthly simulations: Instead of re-
running the detailed model, the monthly input value is used to select the corresponding
monthly output value. This constitutes a nearest-neighbour surrogate model [Altman,
1992; Fonseca et al., 2010]. In order to preserve some of the variance in the output
values, the surrogate model described in Kuczera [2008] randomly selects one of the k
nearest neighbours in the lookup table.

In this paper, we present extensions of the nearest-neighbour surrogate model described
in Kuczera [2008] that improve its performance.

2 METHODS

For this study, a detailed model of a house with a rainwater tank and a surrogate model
emulating the detailed model, both described in Kuczera [2008], were recreated. The
performance of the model was analysed, and two additional input variables — a daily
rainfall clipping value and a carryover period — were investigated. An extended surrogate
model using the additional input variables was proposed and its performance in emulating
the detailed single-house model was compared to that of the basic surrogate model. The
extended surrogate model was then tested for its ability to emulate detailed models of
five residential clusters in Canberra, Australia with monthly varying demand.

2.1 Detailed Model

Initially a model of a single house with a rainwater tank and constant daily water de-
mand was created using the modelling platform Urban Developer [eWater Cooperative
Research Centre, 2011]. This model was designed to replicate one of the configura-
tions used in Kuczera [2008], that is, a harvestable roof area of 75m?, a tank size of
2500L, a total daily water demand of 150 Lcap~"d~" with 86 % of the water demand
potentially being satisfied by tank water and an occupancy of 2.7 cap. The demand was
varied throughout the day according to a pattern with a morning peak at 6 am and an
evening peak at 7 pm. The simulation was run using the 6 minute pluviograph data from
the Sydney Observatory Hill weather station for the period from 1959 to 2010 [Bureau of
Meteorology, Commonwealth of Australia, 2011].
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2.2 Basic Surrogate Model

The tank yield calculated using the detailed model was then averaged over each month
of the simulation period to produce an average daily value. These results were stored in
a resource file together with the corresponding total monthly precipitation. A scatterplot
of the resource file is shown in Figure 1.a.
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Figure 1. a) Resource file for the surrogate model, generated using the detailed model
with historical rainfall data. b) Scatterplot comparing the output of the detailed model to
the output of surrogate model using the resource file shown in a).

As can be seen in the scatterplot, the tank yield is positively correlated with monthly pre-
cipitation. There is a well defined linear relationship between tank yield and precipitation
up to 75 mm/month: Points on this line correspond to months where all rainfall was stored
in the rainwater tank and subsequently used. With increasing precipitation, the relation-
ship becomes less well defined. For instance a monthly rainfall of 150 mm can coincide
with tank yields between 75Ld~' and 300Ld~".

The resource file is used in the surrogate model, which can be expressed as

9(pm) = g(px)

where g(pm) is the average daily tank yield returned by the surrogate model given a
monthly precipitation pn; px is @ monthly precipitation value drawn randomly from the k
precipitation values in the resource file that are most similar to p,;, and g(px) denotes the
average daily tank yield in the resource file that corresponds to px. Generally, the square
root of the number of data points is a sensible choice for the value of k [Lall and Sharma,
1996].

This surrogate model can be used to generate a tank yield timeseries from a rainfall
timeseries at a monthly timestep. To analyse the performance of the surrogate model in
emulating the detailed model, both were run with the same synthetic rainfall timeseries.
The rainfall timeseries was generated using the DRIP model [Heneker et al., 2001] with
a 6-minute timestep based on the historical Sydney Observatory data.

For use in the surrogate model, the rainfall timeseries was first aggregated to a monthly
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timestep. For each month in the aggregated rainfall timeseries, the surrogate model then
randomly returned the tank yield for one of the k = 25 nearest data points in the resource
file, generating a monthly tank yield timeseries. The detailed model used the rainfall time-
series directly, generating a daily tank yield timeseries, which was then also aggregated
to a monthly timestep. Figure 1.b) shows a scatterplot comparing the two monthly tank
yield timeseries: the surrogate model output resembles the detailed model output well for
lower tank yields, but the variance increases significantly for larger yields. The average
Nash-Sutcliffe efficiency [Nash and Sutcliffe, 1970] of 100 runs of the surrogate model is
0.47 with a standard deviation of 0.03. Given the simplicity of the model, the performance
is quite good. There is, however, still room for improvement.

2.3 Extended Surrogate Model

To improve the model performance, factors causing scatter in the resource file were in-
vestigated. It was found that departures from the linear relationship between monthly
precipitation and tank yield were mainly caused by two effects: Spillage from the tank
due to high intensity rainfall events, and precipitation occurring near the end of a month,
which fills the tank but does not contribute to tank yield in the same month. To correct
for these effects, it is proposed to use a corrected monthly precipitation in the surrogate
model instead of the total monthly precipitation.

Large rainfall events: To correct for the spillage caused by high intensity rainfall events,
the measured daily rainfall can be clipped, that is, all rain above a certain daily threshold
is assumed to not contribute to the tank yield.

Rainfall occurring near the end of the month: Rain falling in the last days of a month
would fill the tank and be used in the following month. The closer the rain occurs near
the end of the month, the less it contributes to the tank yield during that month. To correct
for this, a linearly decreasing weight can be applied to the daily rainfall values towards the
end of a given month when calculating the monthly sum. Conversely, rain falling near the
end of the preceding month can be included in the current months sum using a linearly
increasing weight.

Using these corrections, the surrogate model becomes

9(gm) = g(qk)

where gn, is the corrected rainfall for month m, and qx is a corrected monthly rainfall
drawn randomly from the k corrected precipitation values in the resource file that are
most similar to g,. The corrected monthly rainfall is calculated as

n n

o ~ d-(hm-—-c .
Gn = minCi.Pma) — . %mm(cﬁpm,d)

a=1 d=nm—=Co 2

Nm—1
d—(nmp—c :
+ Z % : mln(C1,Pm,d)
d=Nm_1—C2

where ny, is the number of days in month m, pn, 4 is the precipitation on day d of month
m, ¢ is the threshold above which daily rainfall is clipped, and ¢, is the number of days
at the end of the current and the preceding month that contribute to the monthly total
with a lower weight. The parameters can be determined by using a steepest ascent hill
climbing algorithm which searches for the values that maximise the correlation coefficient
between g and g in the resource file. For the system configuration used here, with a tank-
replaceable water use of 348 Ld~" and a 2500 L tank, the optimal parameters were found
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to be ¢; = 12mm and ¢, = 7d. The value of ¢, is roughly equal to the ratio of tank size
to tank-replaceable water use, and therefore the number of days it would take to use up
all the water starting with a full tank.

Figure 2.a shows the resource file for the surrogate model using corrected precipitation
with the optimal parameter set. The relationship between the yield and the corrected
monthly precipitation exhibits less variance than the relationship between yield and total
monthly precipitation (Figure 1.a).
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Figure 2. a) Resource file for the surrogate model, generated using the detailed model
with historical rainfall data. b) Scatterplot comparing the output of the detailed model to
the output of surrogate model using the resource file shown in a).

When using the corrected monthly precipitation instead of the total monthly precipitation
to calculate tank yields from a synthetic rainfall timeseries, the model output is much
closer to the output of the detailed model. This can be seen when comparing the scat-
terplot of the extended surrogate model and the detailed model (Figure 2.b) to the scat-
terplot of the basic surrogate model and the detailed model (Figure 1.b). There are far
fewer outliers, and the variance is significantly less for larger yields. The average Nash-
Sutcliffe efficiency of 100 runs of the extended surrogate model is much higher at 0.75
with a standard deviation of 0.01.

In a more complicated model setup, the water demand may vary by the month. To take
this into account, instead of choosing a value from the k nearest neighbours in terms of
just the corrected monthly precipitation, the month itself can be used as an additional pre-
dictor. In order to give the two dimensions of the search space (month and precipitation)
equal weight, they can be normalised by dividing by their respective standard deviations
[G. Kuczera, pers. comm. 2011].

2.4 Case Study

In order to see how the extended surrogate model performs in emulating more compli-
cated model setups, five models of residential clusters were set up based on different
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areas in Canberra, Australia in terms of occupancy and roof area. Model areas were
chosen to reflect the actual housing mix in Canberra: Three of the five areas are predom-
inantly made up of single houses, one of terraced flats, and one of apartment buildings.
Roof areas were estimated from aerial imagery, and household sizes were taken from
2006 census data [Australian Bureau of Statistics, 2006], which for each cluster reports
the number of households with a given number of occupants. Household size and roof
area were randomly matched for this study. The average values used in the models are
shown in Table 1. The harvestable roof area was assumed to be 50% of the total roof
area, and the demand characteristics were reflect that used in Ravalico et al. [2011]:
Indoor water use was assumed to be 188.4 L/cap d, 76 % of which are replaceable with
tank water [Troy and Randolph, 2006], while outdoor water use was assumed to vary by
month, between 17 Ld~" in July and 1285Ld~" in January for the complete household
[McMahon and Weeks, 1973], all of which was assumed to be potentially satisfied using
tank water. None of the parameters used in the case study were tuned to optimise the
model performance, and no study areas were omitted from the results.

Table 1. Parameters of the case study cluster models

Name Number of Houses Average Roof Area/m? Average Occupancy
Collier St 39 164.4 2.9
Mackenzie St 53 204.5 2.5
Cockle St 41 178.3 2.6
Dodgshun St 36 75.3 2.0
Kogarah Ln 8 328.8 30.2

Each model was run using the historical rainfall data from the Canberra Airport weather
station for the period from 1960 to 2010, and with a 50-year synthetic rainfall timeseries
generated using the DRIP model. The model results from the run using historical data
were used to generate the resource files for the surrogate model. For each model clus-
ter, the parameters ¢y and c. for the surrogate model were determined using a steepest
ascent hill climbing algorithm that optimised the correlation coefficient between the cor-
rected monthly precipitation and the monthly tank yield. 100 realisations of yield time-
series for the synthetic rainfall timeseries were generated using the surrogate model.
Those from the synthetic timeseries served as a test case for comparing the surrogate
model output to the detailed model output. The detailed model was run on a 2.3 GHz
CPU, taking about 90 minutes for a 50-year period; generating the 100 realisations using
an R script takes only about 20 seconds on a 3 GHz CPU.

3 RESULTS AND DISCUSSION

The goodness of fit measures of mass balance error and Nash-Sutcliffe efficiency in
relation to the output of the detailed model, and the autocorrelation function up to lag 12
were calculated for each of the generated series; the results are presented in Table 2.

The mass balance error is smaller than 5% for all clusters, which would be acceptable
for many applications. For all clusters, a Nash-Sutcliffe efficiency of approximately 0.8
is obtained with low variance. For clusters with small tanks, an important factor for the
good performance is the correction of monthly rainfall: If the cutoff ¢; is not used, the
Nash-Sutcliffe efficiency drops to about 0.65 for the clusters with small tanks. For larger
tanks with fewer spill events, reflected by larger calibrated values for ¢y, the impact of the
correction becomes less important.
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Table 2. Parameters for the surrogate models and goodness of fit measures with stan-
dard deviations for 100 runs of the surrogate model on synthetic rainfall data. The aver-
age autocorrelation function up to a lag of 12 months of the surrogate model outputs and
of the detailed model is shown in black and orange, respectively.

Cluster / Tank Size ci O MBE NSE Autocorrelation Function
(std dev) (std dev)

[mm]  [-] (%] -] -]

Collier / 5kL 49 4 1.89 0.86 08~
(0.80) (0.01) —o02! ”
Mackenzie / 1 kL 10 1 3.29 0.81 0.3 =~ -
(0.77) (0.01) -02 —
Cockle / 1 kL 21 2 1.85 0.80 02 ™ v
(0.63) (0.01) —o02l
Dodgshun / 1 kL 30 1 —3.61 0.82 08 >
(0.91) (0.01) —o02!
Kogarah / 50 kL 45 6 —3.80 0.80 02— .
° (1.09)  (002) o3 ——

The autocorrelation functions of the surrogate model output match that of the detailed
model output well. This ability of the surrogate model to reproduce the autocorrelation
function is due in part to the use of the rainfall recorded on the last ¢, days of the pre-
vious month, and in part to the use of the month as a predictor. In the Kogarah model,
the total demand does not vary much between the months (see Table 1), since the vari-
able outdoor demand is only a small fraction of the total demand in multilevel apartment
buildings. In this case, if ¢, = 0 in the Kogarah model, the autocorrelation function of the
average monthly tank yield would resemble that of the rainfall timeseries: In the synthetic
timeseries used in these examples, it would drop very quickly. However, if the monthly
demand varies strongly between the months, the use of the month as a predictor would
lead to a reasonably good reproduction of the autocorrelation function even if ¢, = 0. In
all cases, however, even a small value of ¢, = 1d will improve the reproduction of the
autocorrelation function.

4 CONCLUSIONS

The presented surrogate model is found to perform well in emulating the detailed node-
link model at a monthly level, especially considering its simplicity and the much shorter
run time. The consistently high NSE and the good reporduction of the autocorrelation
function indicate that the surrogate model could serve as an adequate replacement for
the detailed model in applications where short model run times are essential.

The surrogate model has been implemented as a plug-in for the modelling environment
eWater Source IMS, which provides for a user-friendly and efficient way to upscale mod-
els without the need for processing the output of the detailed model using external tools
[Fareed Mirza, pers. comm. 2011-10-28].

The general surrogate modelling approach could be adapted to be applied to other
model setups, such as wastewater reuse or semi-centralised stormwater harvesting. This
makes it possible to investigate the influence of innovative decentralised supply options
on regional water supply systems with a high degree of confidence, allowing for the ex-
ploration of new approaches in water resources management.
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