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THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 52,

NUMBER 3 1 FEBRUARY 1970

Asymptotic Evaluation of WKB Matrix Elements. II. Use of Langer’s Uniform
Asymptotic Wavefunctions™

WesLEY D. Smrty AND RusseLL T Pack

Department of Chemistry, Brigham Young University, Provo, Utah 84601
(Received 4 August 1969)

An improvement in a previous procedure for the analytic asymptotic evaluation of integrals arising
in the quantum-mechanical theory of inelastic molecular collisions is presented. The integrals are evaluated
using Langer’s uniform asymptotic wavefunctions and the higher-order saddle-point or steepest-descents
method. It is found that the Langer functions give no better results than WKB functions, but the higher-
order steepest-descents corrections produce a marked improvement. The result is a simple method for
evaluating a large class of integrals with an error of 0.19,-2.1%,.

I. INTRODUCTION

In order to determine the scattering cross sections in
any distorted-wave treatment! of inelastic atomic and
molecular collisions, one must evaluate certain integrals
(often called 8 integrals?) of the form

T / " (N V(G dr, (1)
0

where V(r) is an off-diagonal matrix element of the
perturbing intermolecular potential over internal-state
wavefunctions. The scattering wavefunctions Gi(r)
satisfy

(BGi/dr)+ (k2—U)Gi=0, (2)

subject to the boundary conditions G;(0) =0 and
Gi(r)—k 2 sin(ka—gmlitns) .

r—o
Here k;= (2uE;/h2)'? is the wavenumber associated
with the relative motion of the two particles, u their
reduced mass, /; their relative orbital angular momen-
tum, and %; the phase shift. The effective potential

Ui= Qu/B)Wi(r) +1,(l+1) /72

is the sum of the intermolecular potential and a centri-
fugal potential.

Two problems are encountered in the evaluation of
the I,... First, exact solutions of (2) are not known for
most U/;; one must either find adequate approximate
solutions or integrate (2) numerically. Second, the
integrand of (1) oscillates rapidly making accurate
numerical evaluation difficult and tedious.

In a previous paper® (herein called Paper I), co-
authored by one of us, a means was presented by which
the I, were evaluated by asymptotic analytic methods.

* This research was supported in part by grants from Research
Corporation and from the Brigham Young University Research
Fund.

1See, e.g., K. Takayanagi, Advan. At. Mol. Phys. 1, 149
(1965).

N. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisions (Oxford University Press, London, 1965), 3rd ed., p.
350.

¢ . T Pack and J. S. Dahler, J. Chem. Phys. 50, 2397 (1969).

WKB wavefunctions were used for the G: and the
integration was performed by the lowest-order saddle-
point method along a path on which the integrand did
not oscillate. The results were surprisingly good for such
a simple method.

In this paper, the same problem is considered, but
two changes in procedure are made to improve accuracy.
Higher-order terms are included in the saddle-point or
steepest-descents method, and Langer’s uniform asymp-
totic wavefunctions*™® are used instead of WKB func-
tions. Langer’s functions are everywhere excellent
approximations to the solutions of (2); far from the
classical turning points they reduce to the WKB solu-
tions, but unlike the WKB functions they remain
smooth and continuous near the turning points.

The results obtained are compared with the results of
Paper I and with the exact values of I, using the
respulsive exponential potential as an example.

II. EVALUATION OF THE MATRIX ELEMENTS

A. The Uniform Asymptotic Wavefunctions

Let the potentials U; be repulsive in the turning-
point region (see Fig. 1) so that each state has only

one turning point.? In this case the appropriate Langer
functions are**

Gi= (m/w/) PAi(—w,), (3)
where Ai is the Airy function, w; is given by
wi(r) = (353, 4
and the .S; are the action integrals’
Se= [ pa, (5)

4R. E. Langer, Phys. Rev. 51, 669 (1937).

% For good discussions of uniform asymptotic functions and of
phase-integral (WKB) methods, see R. B. Dingle, Appl. Sci.
Res. BS, 345 (1965); and J. Heading, An Introduction to Phase-
Integral Methods (Methuen and Co., Ltd.,, London, 1962),
respectively.

®A. Erdelyi, Asymptotic Expansions (Dover Publications,
Inc., New York, 1956), p. 98.

7 'This notation for the S; differs by a phase factor from the
definition used in Paper I.
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Ulr!

m

F16. 1. The relationship of the turning points r, and r, to the
wavenumbers & and &, and to the effective potential energy U (R)
in the case of U,,=U,=U.

with p,= (k2—U;)¥2. The classical turning point 7; is
defined by pi(r;) =0. The Airy function is an entire
function of w; and is real for real w,. For real #>7;, w; is
real and positive; for real »<r;, w; is real and negative.
The function w’'=dw;/dr is never zero. Therefore, G;
is an entire function of r and is real for real 7.

The Airy functions can be written in terms of Bessel
(Hankel) functions in several ways. For example, one
convenient form is®

Gi=(Si/8p:) [ e/*Hy® (S:) +e*H15P (S5) 1. (6)

The Hy;3® are analytic functions of S; on —7 < argS;<
w. Their complex conjugates have the property that

(130 (2) I*=H1® (2*). (7

Hence, for real r>r;, which implies that both S; and p;
are real, one has

G,= RC(TS«;/ZP;) 1/26i1r/6H1/3(1)(Si) . (8)

This equation also holds for real r<r;. To see this, con-
sider the behavior of p; and S; starting from r>7; and
moving left. Near the turning point, let z,=r—r;, and
expand p; and S; for small z;. The results are

p[= U (r:) 1242 9

and

S3— U (r:) 11225 (10)

thus, as 7 passes 7; in the upper half-plane, arg p; changes
from O to n/2 and arg S; changes from 0 to 3w/2. This
suggests defining the quantities

q=eepi= (Uimki)

3 ri
Si<= exp (— %) Si= / qudr.

E 8 Handbook of Mathematical Functions, M. Abramowitz and L
A. Stegun, Eds. (Dover Publications, Inc., New York, 1965),

p. 447

(11)

and’

(12)

SMITH AND R. T PACK

Thus defined, both ¢; and .S; are real and positive for
real #<r;. Then (8) becomes

Gi= Re(rS:%e'/2q;) 2050 (2725 <),
— (wSiei /8 13eiTIS T, 5 (5125 <)
+ (7.S:%emin/8¢:) VeI H s (e 5 X))
= (1S:/8pa) V¥ et 1130 (S;) ~—e o Hy 5™ (e771S,) ].
(13)

Using the analytic continuation formulas® for Hy;® in
(13), one recovers (6) as asserted.

We can also write (3) in terms of Bessel functions
another convenient way. By letting 8;=¢7%".5; in (6)
and by employing the analytic continuation formulas®
one obtains

Gi= (wS:/8p:) 2O ;0 (8). (14)

In this expression, arg $; stays in the domain on which
the Hankel functions are analytic for all » of interest.

B. The Matrix Elements

Consider a typical molecular collision problem in
which U, nearly equals U, and in which k,> k., so that
tm<rn (see Fig. 1). In this case it was shown in Paper I
that the WKB integrand of (1) could be put into a form
which had a saddle point at R<7,. Since the Langer
functions reduce to the WKB functions except near the
turning points, the Langer integrand of (1) is expected
to behave similarly. Hence, we split the integral into
two parts:

Imn=11+12, (15)
where
R
L= / Ga(N V(A Ga(r)dr, (16)
0
and
L= [ Gatn V(") Ga(r)dr. 17
R
y
C,
Cs
R ;”m ;‘n w x

F1c. 2. The contour of integration for the case U,=U,. R
is the saddle point; Cs is the path of steepest descents. It starts
paraliel to the imaginary axis but curves to the right faster than
the lowest order path of steepest descents used in Paper L.

? Reference 8, p. 361.
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EVALUATION OF WKB MATRIX ELEMENTS.

By using (14) for both G, and G, in (16), we can
write I; in the form

R 1/2
Il= (%?7!’) ei”/s./ V(f) (imj") H1/3(1) (8,,,) H1/3(1) (Sn) df.
0

m 1

(18)

This integrand dies exponentially on this interval mak-
ing I, very small and readily estimated using either
numerical or analytic methods.

Since G, and the range of integration are both real,
we can substitute (8) for G,, in (17) and then (14) for

G, to obtain!®

® SnSp\/2
I,= Re(} e"”/‘*/Vr( )
2 (4'"') " ( ) P

XH1/3(1) (Sm) H1/3(1) (Sn) d?’.

(19)

The evaluation of this integral is greatly facilitated by
the fact that the integrand has a saddle point at R
on the real axis. [Substitution of either (3) or (6) into
(1) yields an integrand which does not.] In addition,
the integrand is an analytic function, so that we are
free (by Cauchy’s theorem) to deform the contour of
integration to follow C,, the path of steepest descents,
as shown in Fig. 2. On such a path the integrand no
longer oscillates, and the difficulties inherent in (1)
are avoided.

At this point probably the most accurate method of
evaluating 7., would be by numerical contour integra-
tion of I; and I along C; and Cs, respectively. However,
it is usually possible to continue analytically and
obtain a value for I,,, which has better accuracy than
is either needed or justified by the distorted-wave
approximation that gave rise to the integrals.

Let us first consider ;. Since I; is expected to be
small (it was neglected in Paper I), and since the
saddle point R usually lies far to the left of #,, I3 can be
approximated with sufficient accuracy by employing
the first terms of the Hankel functions’ asymptotic
expansions'—the WKB functions. Changing to the
real quantities ¢; and S5, one then finds that

1 R
I~ / V(7) (gne) " exp(— Su<— Su<)dr.  (20)
0

An asymptotic representation of I; can be obtained
by the method of integration by parts.>!3 We write

1 fR , 1
~ — —12 -
I~ /0 dr V() (qngs) "2 (gmtga)

d
X (—) exp(— Sn<—5n<).
dr

10 It is assumed that V'(r) is real.

11 Reference 8, p. 364.

12 Reference 6, p. 26.

BE. T. Copson, Asymplotic Expansions (Cambridge Univer-
sity Press, Cambridge, England, 1967), p. 13.

1I 1383

Integrating by parts and noting that exp(—.5;<)—0 as
r—0 for most potentials, we find that

I~V (R)[gn(R) gu(R) 172

X[gn(R) +¢u(R) I exp[— Sn<(R) —S<(R) ]

1

R ¢4
~3) (d—r R4 (qmqn)‘lﬂ(qmﬂn)“])

X exp(— Sn<—S.<)dr.

The integrand of the second term can be rewritten in a
form involving the derivative of the exponentials and
again integrated by parts. Repetition of this process
yields an asymptotic series for [y, but for our purposes
the first term is sufficient. Thus, we have

I~V (R)[gn(R) gu(R) 72
X[gn(R)+¢u(R) T exp[— Sn<(R) — S.<(R)]. (21)

Next let us evaluate I, by the method of steepest
descents. If the path of integration C, stays sufficiently
far from the turning points, the Hankel functions in
(19) can be replaced by their asymptotic expansions.!
In terms of ¢; and S;<, (19) can then be written

Ir~— Regi ; V(2) (gngn) 2
2

X exp(Su<— Su<) DuCudz, (22)

where 7=3 has become a complex variable. This equa-
tion is now identical to the WKB approximation of
Paper I except for the correction terms D, and C,
defined by the asymptotic series™

D, =1+0.069444(S,,<)~1+0.037134(S,,<) 2

40.037993(S,,<)34--+, (23)
and
Cr,=1-0.069444(5,<)"40.037134(5,<) 2
—0.037993 (S, <) - --. (24)

To perform the steepest-descents evaluation, we write
(22) in the form

o= — Rebi / o(s) explh(=)dz,  (25)

Y Hi;3®(Sy) also contains a dying exponential term. But if
Risenough smaller than ,, that the use of the asymptotic formulas
is valid, the dying term is negligibly smaller than the terms kept.
For a discussion of this point, see G. N. Watson, A Treatise on
the Theory of Bessel Functions (The Macmillan Company, New
York, 1944), 2nd ed., p. 201. It should be noted that neglect
of this dying term also implies that J; is negligible because the
integrand of I [see Eq. (20)] is a dying exponential smaller
than the one ignored in /.. However, we keep I; as an index of
the accuracy of this approximation.

Downloaded 04 Mar 2009 to 128.187.0.164. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



1384 wW. D.

where

h(z) = S,<— 8.5+ IV (2) — % Ing.qn, (26)

and

g(2) = D,C,. (27)

Now in the wusual higher-order steepest-descents
method g(z) and its derivatives would be involved in
the determination of the path of steepest descents.
However, like many asymptotic series,”® those in g(z)
are not usually differentiable. Hence, the best estimate
possible for the effect of g(z) is that of the lowest-order
steepest descents or saddle-point method,

I=— Re%ig(R)/ exp[k(z) dz. (28)

However, we do want to find higher-order terms due to
©(z). Following Copson,*® we let

h(z) =h(R)—1. (29)

The saddle point R is the point at which 4'(R) =0. The
path of steepest descent is that path C; on which £ is
real and positive. Thus, (28) becomes

o= — Relig(R) explh(R)] / " exp(—2) %d:. (30)
0

Expanding dz/d¢ in an asymptotic power series,

ds Ny
— = > A 31
7 Eo (31)

one obtains

N ©
= — Relig(R) exp[h(R)]Y Ax / exp(—£) ndl,
n=0

0
(32)
N
= — Re}ig(R) exp[A(R)] 2 4.T[(#+1)/2]. (33)
n=0
The coefficients 4, are given by the residues!®
A= (2i)! f [h(R)—h(z) T-"0ds,  (34)

in which the path of integration is a small closed contour
around R. The 4, are readily evaluated and expressed
in the form

An= explir(n+1)/2][2/k®(R)]J"t1Q,,

where ™ (R) are the derivatives of 4(z) evaluated at

(35)

15 Reference 6, pp. 14-17; N. G. De Bruijn, Asymptotic Methods
in Analysis (I\orth Holland Publ. Co., Amsterdam, 1958), p. 17.
18 Reference 13, p. 65.

SMITH AND R. T PACK

R. The first few @, are
@o=1,
Q1= —d,
@e= —3da+ (15/8) dg2,
@3 = — 2d3+6d1do—4d:?,
— 5022 dsd+ AP A — 2P d Ao+ P
@s= — 3ds+12(dui+ dsds) — 30 (di2ds+ did?)

+60dy*dy— 21d7%,
— 3de 2 (dads+ dude) +- 53 d2— (556%) do?ds
— 233 ddods— Hd P28 3 dyd P+ 2402 d 24,2
— 435S e S, (36)
where the d, are given by the ratios
=20 (R)[(n+2) | KO (R) . (37)

Now the @, are real and A®(R) is positive; thus, /o
becomes
2 ><n+1>/2

B=te) el (R X (10

(nt1)
2

XT < ) @G, Re(enm/2),

Sinceonly terms with# even will make any contribution,
we let =2k and write

I,=3g(R) exp[h(R)]

X k+1/2
g )'“(;ﬁZ(T))H T (k+3) Q. (38)

The first term in the sum is the result of Paper I. If it
is factored out, we can write

1,=9g(R)T(R), (39)
where

9=13 explA(R) J[w/2h® (R) ]

is the approximation for I,,. obtained in Paper I, and,

(40)

K k
T(R)= ¥ (=1 ) eerrnes @

k=0

h®(R)

is a correction due to the higher-order steepest-descent
method. The series T(R) converges for a few terms and
then begins to diverge— a behavior typical of asymptotic
series. The maximum accuracy possible with such series
is achieved by truncating them at the smallest term, and
the error is of the same order of magnitude as that
smallest term.” The other asymptotic series in (39),

17 Reference 6, p. 11; Ref. 13, p. 6.
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EVALUATION OF WKB MATRIX ELEMENTS. II

g(R), which represents the difference between the
Langer functions and the WKB functions, is a correction
for the divergences of the WKB functions.

We have thus obtained formulas (21) and (39) as an
asymptotic estimate of I,,,=I1+7,. The determintion
of the S; (discussed in Paper I) completes the evalua-
tion of the matrix element.

III. EXAMPLE. THE REPULSIVE
EXPONENTIAL POTENTIAL

Consider again the example used in Paper I. Let
bn=1,=0, W,=W,=Cexp(—r/a),and V= 2u/ROW,.
If 7 is measured in units of @ (about 0.2 A) and E in
units of #2/2ug® (typically about 40°K), then one has
E;=k? and U=De™ with D~4X108% In these units
typical vibrational and rotational constants are 8,=
2000°K =50 and 6,=2°K =0.05.

Jackson and Mott®® have solved both (2) and (1)
exactly for this potential. We now compare our asymp-
totic results with their exact formula in the limits of
large (vibrational) energy exchange and small (reso-
nance) energy exchange. The results for rotational
transitions lie between those of these two limits but are
not discussed here because they do not reduce to simple
formulas.

A. Vibrational Transitions

If vibrational energy is exchanged, we have k,2—
k42> 30, and for energies even slightly above threshold,
the exact result®® reduces to?

L. (exact) =7 (k,2—k,2) expl— (kn—Fkn)7]. (42)

As in Paper I, the saddle point R is determined to a
good approximation by
U(R) = (kn*—Fka?)?, (43)
and the WKB lowest-order saddle-point result of Paper
Iis
g=e(2m)"12],, (exact); (44)

hence, I..(asymptotic), as obtained in the previous

TasiLe 1. Correction terms for vibrational transitions with

Fn?—kn?=150.
E,
(°K) kn? ki® g(R)
40 1 51 1.0002
160 4 54 1.0002
280 7 57 1.0001
360 9 59 1.0001
640 16 66 1.0001
1440 36 86 1.0001
4000 100 150 1.0001

18 J. M. Jackson and N. F. Mott, Proc. Roy. Soc. (London)
A137, 703 (1932).

1385

TaBrLe II. Correction terms for resonance transitions with

kn2=k2=Fk2%
I
(°K) & g(R) I
40 1 0.9738 0.1060
160 4 1.0968 0.0449
280 7 1.0508 0.0272
360 9 1.0402 0.0190
640 16 1.0366 0.0081
1440 36 1.0130 0.0013
4000 100 1.0041 0.0001

section of this paper, becomes
I..(asymptotic) = I1-+¢(R) T(R) e(2x) V2L, (exact) .

(45)
Using (43) one finds that for n>2,

B (R) =2, (46)

approximately. Upon evaluating the 4, we then obtain

T(R)=(1-1/1240.0034722-+0.0026813+- - +),

= (0.92282), (47)

where we have truncated at the smallest term (K=3).

The correction term g(R) depends on the values of
k. and k, and does not reduce to a simple expression.
Its values can be calculated using (23), (24) and the
formula’

S<=2[U(R) —k2]t2—2k; tan=Y{[ U (R) — k2]1k: ).
(48)

Typical values, which are always slightly greater than
one, are tabulated in Table I.

The integral I; also depends on &, and %, and does not
reduce to a constant. However, in this case U;(R) is
very large, and one can readily see from (21) and (48)
that I)~e® is completely negligible for vibrational
transitions.

Finally, substituting (47) for T(R) in (45) and
1.0001 for g(R), we have

L (asymptotic) = 1.00081,,, (exact). (49)

However, if we neglect the Langer corrections to the
WKB approximation by setting g(R) =1, the WKB,
corrected by the higher-order steepest-descents terms
only, is just as accurate:

Iin(WKB) =9T(R) =1.00071 ., (exact). (50)

B. Resonant Transfer of Internal Energy

For resonant transition, k.2=%.2=%2, and the exact
result reduces to?

Inn(exact) =k. (51)

Downloaded 04 Mar 2009 to 128.187.0.164. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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In this case R is defined by U (R) = 2k? and the result of
Paper I is

9= (3m) V2L, (exact); (52)

thus, the result of this paper is
I..(asymptotic) = I1+g(R) T'(R) (37) 2L, (exact).
(53)

Here the 4™ (R), for n=2 through 6, are 1, 3, 13, 75,
and 541, respectively, so that from (41),

T(R) = (1—140.031254- - )

=0.78125, (54)

where we have again truncated the sum at the smallest
term (K=2). Ignoring g(R) and I, we find

Ln(WKB) =9T(R) =0.9792] na(exact).  (55)

The corrections I; and g(R) are obtained by noting
that the action integrals in this case reduce to

Sn<=8,<=(2—7/2)k=0.4292k, (56)
so that (21) becomes
Ii~% exp(—0.8584k). (57)

Values of g(R) and I, calculated for a range of & values
are listed in Table II. It is clear that in

I (asymptotic) = I1+g(R) (0.9792) Iun(exact)  (58)
they make significant changes, but that those changes
do not constitute any systematic improvement.

IV. DISCUSSION

From the results on the example problem we can
make a number of observations and conclusions which
should apply to any potential which has a shape similar
to the repulsive exponential. First, the corrections I,
due to the exponentially dying part of the integrand,
and g(R), due to the use of the Langer functions, do
not improve the results; they serve only as indices of
the validity of the asymptotic approximations used.™
Equally good or better results are obtained much more
simply using WKB functions (including higher-order
steepest-descents terms). Second, the accuracy ob-
tained with the WKB functions, 0.07%,-2.08%, in-
dicates that asymptotic methods and asymptotic
wavefunctions are capable of giving very nearly exact
results. [It is possible that the 0.07% is somewhat
fortuitous. Both (43) and (44) are approximate, and

SMITH AND R.
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numerical calculations indicate that these approxima-
tions may change the asymptotic result by almost 19 ].
In either case, the error is considerably less than the
error inherent in the distorted-wave approximation
which is implied when the integrals (1) are used to
calculate cross sections. These asymptotic methods are
easily applied to different problems; hence, laborious
numerical integration of (2) and (1) should usually be
unnecessary.

Finally, let us comment on some earlier work using
Langer and WKB functions. Using methods similar to
those presented here and in Paper I, Shin' has evaluated
matrix elements equivalent to these for the repulsive
exponential potential. The error in his results was a few
tenths of a percent at higher energies but became much
larger at lower energies. However, as Shin noted, and
as (50) also shows, this error was due to approximations
made in evaluating the action integrals .5; and was not
due to the WKB approximation.

Langer’s wavefunctions have been used by Hartmann
and Slawsky? in the numerical integration of matrix
elements equivalent to I,. using the SSH potential,

W=C exp(—r/a)—e.

Their results differ from the exact results by 0.49, at
high energies but as much as 22.39, at low energies.
Since the SSH potential differs from the repulsive
exponential only by a constant, one has the same equa-
tion (2) to solve for the G; except that E; is replaced by
E+e. Hence, our analysis using this potential gives
the same formulas as those for the repulsive exponential
potential except with a shifted &;. Furthermore, (42) is
valid for the entire energy range they considered.
Hence, our (49) holds, and it is clear that the large
error in Hartmann and Slawsky’s result at low energies
is an error in their numerical integration rather than in
the Langer functions. Shin®® has attempted unsuccess-
fully to match Hartmann and Slawsky’s results for the
SSH potential using WKB functions. From (50) we see
that the discrepancy is not a consequence of the WKB
approximation but is probably due to Shin’s use of a
different range parameter, a.
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