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ABSTRACT

ARQ TECHNIQUES FOR MIMO COMMUNICATION SYSTEMS

Zhihong Ding

Electrical and Computer Engineering

Doctor of Philosophy

Multiple-input multiple-output (MIMO) communication systems employ mul-

tiple antennas at the transmitter and the receiver. Multiple antennas provide capac-

ity gain and/or robust performance over single antenna communications. Traditional

automatic-repeat-request (ARQ) techniques developed for single-input single-output

(SISO) communication systems have to be modified in order to be employed in MIMO

communication systems. In this dissertation, we propose and analysis some ARQ

techniques for MIMO communication systems.

The basic retransmission protocols of ARQ, stop-and-wait (SW-ARQ), go-

back-N (GBN-ARQ), and selective repeat (SR-ARQ), designed for SISO communi-

cation systems are generalized for parallel multichannel communication systems. The

generalized ARQ protocols seek to improve the channel utilization of multiple par-

allel channels with different transmission rates and different packet error rates. The

generalized ARQ protocols are shown to improve the transmission delay as well.

A type-I hybrid-ARQ error control is used to illustrate the throughput gain of

employing ARQ error control into MIMO communication systems. With the channel

information known at both the transmitter and the receiver, the MIMO channel



is converted into a set of parallel independent subchannels. The performance of the

type-I hybrid-ARQ error control is presented. Simulation results show the throughput

gain of using an ARQ scheme in MIMO communication systems.

When the channel state information is unknown to the transmitter, error con-

trol codes that span both space and time, so-called space-time coding, are explored in

order to obtained spatial diversity. As a consequence, the coding scheme used for ARQ

error control has to be designed in order to consider coding across both space and

time. In this dissertation, we design a set of retransmission codes for a type-II hybrid-

ARQ scheme employing the multidimensional space-time trellis code as the forward

error control code. A concept of sup-optimal partitioning of the (super-)constellation

is proposed. The hybrid-ARQ error control scheme, consisting of the optimal code

for each transmission, outperforms the hybrid-ARQ error control scheme, consisting

of the same code for all transmissions.
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Chapter 1

Introduction

1.1 Background and Motivation

Automatic-Repeat-Request (ARQ) protocols are an error control technique

for data transmission in which the receiver detects transmission errors in a message

and automatically requests a retransmission from the transmitter [49]. Most of the

ARQ techniques were developed for single-input single-output (SISO) communication

systems. When we use an ARQ protocol in a multiple-input multiple-output (MIMO)

communication system, some retransmission protocols must be generalized and new

error control coding should be designed in order to realize the full potential of MIMO

communications.

There are three basic retransmission protocols: stop-and-wait (SW-ARQ),

go-back-N (GBN-ARQ), and selective repeat (SR-ARQ) [49, 38]. The retransmission

protocols determine how retransmission requests are handled by the transmitter and

receiver. The basic stop-and-wait ARQ scheme is illustrated in Figure 1.1. The

transmitter sends a packet to the receiver and waits for an acknowledgement. A

positive acknowledgement (ACK) from the receiver indicates that the transmitted

packet has been successfully received, and the transmitter sends the next packet in

the queue. A negative acknowledgement (NAK) from the receiver indicates that

the transmitted packet has been detected in error; the transmitter then resends the

packet again and waits for an acknowledgement. Since the transmitter is idle while

waiting for the acknowledgment, this scheme is inefficient when the round-trip delay is

large. If we are willing to allow for some buffering in the transmitter, pipelined ARQ

1
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Figure 1.2: Go-Back-N ARQ with N = 4.

protocols, such as go-back-N (GBN) or selective repeat (SR), as shown in Figure 1.2

and Figure 1.3, are used.

In GBN-ARQ protocol, the transmitter sends packets in a continuous

stream. When the receiver detects an error in a received packet, it sends a retransmis-

sion request for that packet and waits for its second copy. All subsequent incoming

packets are ignored until the second packet is received. By ignoring the packets that

follow a retransmission request, receiver buffering is avoided. In SR-ARQ protocol,

buffering is allowed in both the transmitter and the receiver. In this case, the trans-

mitter sends a continuous stream of packets and re-sends only those packets that were

2
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negatively acknowledged. The SR-ARQ protocol has the highest throughput. But

receiver must be able to cope with our-of-order packets.

These three retransmission protocols were originally designed for single

channel transmission. In these systems, the transmitter sends one packet at a time

over the channel. When a temporally sequential data stream is transmitted over

M multiple-parallel channels, a block consisting of M packets is sent: one packet

over each of the constituent parallel channels. Due to the strong connection between

the temporal nature of the data stream and SW and GBN retransmission protocols,

these protocols must be generalized in order to realize the full potential of parallel

multi-channel communications.

Previous work on the retransmission protocols of multichannel ARQ in-

cludes Chang and Yang [5]; Wu, Vassiliadis, and Chung [51]; and Anagnostou and

Protonotarios [2]. The performance analysis given in those papers assume that all

of the parallel channels were identical (i.e., each has the same transmission rate and

packet error probability). A packet to be retransmitted is simply assigned to the next

available channel. Which channel is used is unimportant, since all the channels are

the same. When the channels are different, it is important which channel is used

for retransmission. This behavior was first observed by Shacham in 1987 [36] in an

3



analysis of overall resequencing delay. He noted that proper channel assignment for

retransmission could have an effect on throughput performance. Shacham and Shin

[37] described and analyzed a modified SR ARQ protocol for use over parallel channels

with the same transmission rate but different packet error rates. In this dissertation,

we present the generalized ARQ protocols that seek to improve the channel utilization

(a generalization of system throughput) when applied multiple parallel channels with

different transmission rates and different packet error rates. These generalized ARQ

protocols are later shown to improve the transmission delay performance as well.

MIMO communication systems employ multiple antennas at the transmit-

ter and the receiver. A MIMO system takes advantage of the spatial diversity that is

obtained by spatially separated antennas in a dense multipath scattering environment.

MIMO systems may be implemented in a number of different ways to obtain either a

capacity gain or to obtain a diversity gain to combat signal fading. Generally, there

are three categories of MIMO techniques. The first type exploits knowledge of the

channel at the transmitter to achieve near capacity. The second class uses a layered

approach to increase capacity. One popular example of such a system is V-BLAST

proposed by Foschini et al. [12], where full spatial diversity is usually not achieved.

The third class aims to improve the power efficiency by maximizing spatial diversity.

Such techniques include space-time block codes (STBC) [1, 43] and space-time trellis

codes (STTC) [44]. The error control coding used in MIMO communication systems

may or may not be the same as the SISO communication systems.

When the channel information is known to both the transmitter and the

receiver, the spatio-temporal vector-coding (STVC) [31] converts the MIMO channel

into a set of parallel independent subchannels. It decomposes the channel coefficient

matrix using a singular value decomposition (SVD) and uses these decomposed uni-

tary matrices as pre- and post-filters at the transmitter and the receiver to achieve

near capacity as shown in Figure 1.4. Single ARQ and multiple ARQ schemes can

be used for STVC MIMO system as shown in Figure 1.4. In the single ARQ scheme

(top plot of Figure 1.4), all the transmit antennas share a unique encoder (CRC). In

other words, the ARQ is unaware of the presence of MIMO. Multiple ARQ scheme

4
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(top) Single ARQ scheme. (bottom) Multiple ARQ scheme.

(bottom plot of Figure 1.4) uses one encoder for each transmit antenna. In this case,

each subchannel can be treated as a SISO channel and the error correction code used

on each subchannel can be the same as the one used in SISO communication systems.

Others have studied packet retransmissions in MIMO systems with channel

state information available at the transmitter. Sun and Ding et al. [42, 41] propose

linear ARQ precoders in flat-fading MIMO system with the objective of maximizing

the mutual information delivered by multiple transmissions of the same packet [42]

or minimizing the mean square error between the transmitted data and the joint

receiver output [41] . The optimal linear precoders combine the waterfilling power

loading and the optimal pairing of singular vectors in the current retransmission with

5



previous transmissions. Single ARQ scheme is used in [42, 41]. The data stream

transmitted over multiple subchannels are treated as a single packet and detected

and (re)transmitted all together. Since the substreams emitted from various trans-

mit antennas encounter distinct propagation channels and thus have different error

statistics, Zheng et al. [57] have shown that the multiple ARQ scheme results in a

throughput improvement compared with single ARQ scheme.

In this dissertation, we show the performance of a type-I HARQ scheme

of MIMO communications, where we assume that the channel information is known

at both the transmitter and the receiver. Multiple ARQ scheme is considered. A set

of multidimensional trellis code modulations (MSTTC) has been used as the error

correction code. The throughput gain of using ARQ scheme in MIMO systems has

been illustrated.

When the channel state information is unknown to the transmitter, error

control codes that span both space and time, so-called space-time coding, are explored

in order to obtained spatial diversity (Figure 1.5). Such techniques include space-time

trellis codes (STTCs) [44, 13], multidimensional space-time trellis codes (MSTTCs)

[18, 19], and space-time block codes (STBCs) [1, 43], all of which are designed for

the case that the channel state information is available at the receiver but not at the

transmitter; and unitary space-time codes (USTM) [15, 14, 16], which are designed

for the case that the channel state information is available at neither the receiver nor

the transmitter.

Seok and Lee [22] present a hybrid-ARQ scheme employing different STTCs

for each transmission which are optimal on different operating SNR ranges. These

codes were found using a computer search. The hybrid-ARQ scheme, consisting of the

optimal STTC for each transmission, outperforms the hybrid-ARQ scheme, consisting

of the same STTC for all transmissions.

In this dissertation, we consider the hybrid-ARQ scheme employing the

MSTTC as the forward error control (FEC) code. Different MSTTC codes are de-

signed for each transmission based on different partition chains of the super-constellation

of MSTTCs.

6
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Figure 1.5: MIMO communication system using space time coding.

Some other ARQ schemes combined with MIMO communications have

been proposed with channel state information at the receiver without using the stan-

dard space time coding explored for FEC MIMO channel. Samra and Ding in [34, 35]

proposed a space-time block code using symbol mapping diversity where the bit-to-

symbol mapping is adapted for each ARQ retransmission. Onggosanusi et al. [28]

introduced methods for combining packet transmissions by using zero-forcing and

minimum mean squared error (MMSE) receivers. Nguyen and Ingram [47] investi-

gated hybrid ARQ protocols for systems that use recursive space-time codes and a

turbo space-time hybrid ARQ scheme. Koike et al. [24] proposed a hybrid ARQ

scheme employing trellis-coded modulation (TCM) reassignment and antenna per-

mutation.

1.2 Contributions

• ARQ error control for parallel multichannel communications

Generalized ARQ protocols are proposed that seek to improve the channel uti-

lization and transmission delay when applied to parallel multichanel communi-

cation systems. Channel utilization and transmission delay of SW, GBN and

SR ARQ protocols over parallel multichannels are analyzed. Simulation results

show that the generalized ARQ protocols improve both the channel utilization

and transmission delay performance of SW and GBN ARQ over parallel mul-

tichannel. A conference paper [9] has been published and a journal article [7]

accepted based on this work.
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• Type-I hybrid-ARQ using MTCM spatio-temporal vector coding for MIMO

systems

In order to show the capacity gain of using ARQ scheme in MIMO systems, we

consider a type-I hybrid-ARQ scheme for MIMO communications with the chan-

nel state information at both the transmitter and the receiver. Spatio-temporal

vector coding [31] has been used to convert the MIMO channel into parallel

channels. The performance of the type-I hybrid-ARQ scheme over quasi-static

flat fading MIMO channel has been analyzed. The capacity gain of using ARQ

scheme in MIMO systems has been illustrated using simulations of a set of

multidimensional trellis code modulations. A conference paper [8] has been

published based on this work.

• A type-II hybrid-ARQ error control for multidimensional space-time trellis codes

in quasi-static flat fading channels

We present the space-time code design for hybrid-ARQ error control over MIMO

channel employing MSTTCs are the FEC codes. The MSTTCs used for retrans-

mission are designed using the sub-optimal partition of the super-constellation

of the MSTTCs. Simulation results show that the hybrid-ARQ scheme, consist-

ing of the optimal MSTTC for each transmission, outperforms the hybrid-ARQ

scheme, consisting of the same MSTTC for all transmissions. This works is in

preparation for submission to IEEE Transactions on Wireless Communications.

1.3 Organization

The remainder of this dissertation is organized as follows. Chapter 2 gives

the channel utilization expressions of the SW, GBN, and SR ARQ protocols over a

communication link consisting of multiple parallel channels with different transmis-

sion rates and different packet error rates. Generalized ARQ protocols are proposed

to improve the channel utilization when applied to multiple parallel channels. At the

end of Chapter 2, we derive the transmission delay of the SW, GBN, and SR ARQ

8



protocols over a communication link consisting of multiple parallel channels with dif-

ferent transmission rates and different packet error rates. Simulation results show

that the generalized ARQ protocols improve the transmission delay of SW and GBN

ARQ as well. In Chapter 3, we show the performance improvement of employing a

type-I hybrid-ARQ scheme in MIMO systems where we assume that the channel state

information is available at both the transmitter and the receiver. Spatio-Temporal

Vector coding [31] has been used to convert the MIMO channel into parallel chan-

nels. In Chapter 4, we present a hybrid-ARQ scheme employing the multidimensional

space-time code (MSTTC) as the FEC code. The retransmission codes are designed

based on the sub-optimal partition of the super-constellation of the MSTTC. Finally,

we offer conclusions in Chapter 5.
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Chapter 2

ARQ Error Control for Parallel Channel Communications

2.1 Introduction

Historically, automatic-repeat-request (ARQ) protocols have been designed

assuming temporally sequential communication over a single channel [49, 38]. In these

systems, the transmitter sends one packet at a time over the channel. The three basic

retransmission protocols are stop-and-wait (SW), go-back-N (GBN), and selective-

repeat (SR) [49, 38]. For the stop-and-wait (SW) ARQ protocol, the transmitter waits

until it receives an positive acknowledgement (ACK) or negative acknowledgement

(NAK) from the receiver before resuming transmission. If the round-trip delay is

large enough, then the SW ARQ protocol is inefficient and pipelined ARQ protocols,

such as go-back-N (GBN) or selective repeat (SR), are used.

When transmitting a temporally sequential data stream over a single chan-

nel communication system, the data are partitioned into packets and transmitted one-

by-one over the channel. When a temporally sequential data stream is transmitted

over M multiple-parallel channels, a block consisting of M packets is sent: one packet

over each of the constituent parallel channels. Due to the strong connection between

the temporal nature of the data stream and SW and GBN retransmission protocols,

these protocols must be generalized in order to realize the full potential of parallel

multi-channel communications.

Multiple, parallel channels can be created in the frequency domain by using

Orthogonal Frequency-Division Multiplexing (OFDM) or Discrete Multitone (DMT)

modulation [4, 33, 46], in the code domain using vector coding [26, 23], or in space

11



using multiple transmit antennas [31]. In data networks, adjacent nodes may be

connected by more than one link [37]. In this case, the multiple links present multiple

parallel channels to the transmitter.

In this chapter, the SW, GBN, and SR ARQ protocols are analyzed over

a communication link consisting of multiple parallel channels with different trans-

mission rates and different packet error rates. The analysis leads to definitions of

generalized ARQ protocols that improve channel utilization (a generalization of sys-

tem throughput) when applied multiple parallel channels. At the end of the chapter,

we show that the generalized ARQ protocols improve the transmission (delivering)

delay, as well.

The operation of ARQ in a system that maps sequential data to multiple,

parallel channels for transmission is somewhat different than it is for single channel

systems. The operation of ARQ error control in a multichannel system is described in

Section 2.2. In Section 2.3, it is shown that the generalized ARQ protocols take the

form of channel assignment rules for packets to be retransmitted. The channel assign-

ment rules are a function of the transmission rates and packet error rates associated

with each channel. Simulation results are presented in Section 2.4 that demonstrate

the gains of channel utilizations that can be obtained by using the proper packet-

to-channel assignment rules. In Section 2.5, the transmission (deliver) delay of ARQ

error control in a multichannel system has been derived. Simulation results demon-

strate the reductions in transmission delays that can be obtained by using the proper

packet-to-channel assignment rules. Conclusions are summarized in Section 2.6.

2.2 ARQ Error Control in a Multichannel System

The system model is illustrated in Figure 2.1. The communication link

between the transmitter and receiver consists of M parallel channels. The m-th

channel is characterized by its transmission rate Rm, measured in bits/symbol, and its

packet error rate Pm for m = 1, 2, . . . , M . We assume that the signal-to-noise (SNR)

of each channel is known. Given a modulation type, it is usually straight-forward to

compute the bit error rate or packet error rate for a given instantaneous SNR. All

12
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Figure 2.1: An abstraction of a communication system using multiple parallel chan-
nels.

channels share a set of sequence numbers which are used by the multichannel data

processor to make the packet-to-channel assignments. The number of retransmissions

is not restricted and the feedback channel is assumed error free.

Given a single input data stream, the multichannel data processor divides

the input data stream into packets and assigns a sequence number to each packet.

The sequence number preserves the sequential ordering of the packets in the input

data stream. As a consequence, when a previously transmitted packet has to be

retransmitted, it will have the lowest sequence number in the transmit queue. The

multichannel data processor assigns the next M packets in the transmit queue to the

M parallel channels. The multichannel receiver generates ACKs and NAKs for each

packet on each of the M parallel channels and reassembles the accepted packets into

a single data stream. Buffering is assumed available to handle out-of-order packet

reception.

Since the channels can operate at different transmission rates, the con-

cept of channel utilization is used in place of throughput as the performance measure.

13



Channel utilization is the average information data rate over the parallel channel mea-

sured in bits/symbol. Note that for the single channel system, the channel utilization

is the same as the normalized throughput defined in [55] and [56].

Chang and Yang [5], Wu, Vassiliadis, and Chung [51], and Anagnostou

and Protonotarios [2] investigated the throughput performance of multichannel ARQ

protocols where all of the parallel channels were identical (i.e., each has the same

transmission rate and packet error probability). Since all the channels are the same,

the throughput and transmission delay performance is not a function of packet-to-

channel assignment. Shacham [36] shown that when the channels are different, which

channel is used for retransmission will affect the overall resequencing delay of SR

ARQ. A modified SR ARQ protocol for used over parallel channels with the same

transmission rate but different packet error rates was described and analyzed in 1992

by Shacham and Shin [37].

The case of parallel channels with different transmission characteristics is

relevant to modern communication systems. Parallel channels with the same trans-

mission rate, but different packet error rates can occur in an OFDM system expe-

riencing frequency selective fading (e.g., some of the tones are suffering from more

severe fading-induced attenuation than others). The parallel channel point of view

for DMT/OFDM was exploited in [39, 6] to obtain improved bit allocation and bit

loading algorithms. Recent results reported in [29] treated DMT tones as parallel

channels that could be “clustered” to produce efficient fractional bit loading algo-

rithms that did not require significant trellis modifications in the receiver. Likewise,

parallel channels with the different transmission rates, but the same bit error rate

result in MIMO systems using spatio-temporal coding with power allocation assign-

ments obtained using a “water-filling” solution [31].

In the next section, necessary conditions for packet-to-channel assignment

rules that improve channel utilization are derived for the SW, GBN, and SR retrans-

mission protocols.
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Figure 2.2: Stop and wait ARQ for multiple parallel channel.

2.3 Packet-to-Channel Assignment Rules

A mathematical expression for the channel utilization is derived for each

of the three retransmission protocols. This expression is then used as the basis for

defining packet-to-channel assignment rules that improve the channel utilization for

each case.

2.3.1 Packet-to-Channel Assignment Rule for SW ARQ

In the SW ARQ protocol, the transmitter sends a block of M packets to

the receiver and waits for acknowledgement from the receiver before it sends the next

block of packets.

The transmitter is idle while waiting for the acknowldegment. Let D be

the “idle time” or round-trip delay measured in packet times. Suppose an ACK is

received for the packets sent on channels 1, 2, . . . , k and a NAK is received for channel

k+1. Since no buffering is provided at the receiver, the packets originally transmitted

over channels k+1, k+2, . . . , M have to be retransmitted (See Figure 2.2), no matter

they have been succefully transmitted or not. The channel utilization is derived as

following.
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The probability that the first k packets in the parallel block of M packets

is successfully transmitted is

PS(k) =























M
∏

i=1

(1 − Pi) k = M

k
∏

i=1

(1 − Pi)Pk+1 k 6= M

. (2.1)

Thus, the channel utilization can be expressed as

η =

∑M
k=1

(

∑k
i=1 Ri

)

· PS(k)

1 + D
(2.2)

where Pi and Ri are the packet error probability and the transmission rate of the ith

channel. Using the matrices

R =

















R1

R2

...

RM

















P =

















PS(1)

PS(2)
...

PS(M)

















, (2.3)

the channel utilization may be expressed in matrix form as

η =
1

1 + D
RT VP (2.4)

where RT denotes the transpose of R and V is an upper triangular matrix consisting

of all ones.

The expression (2.4) represents the channel utilization for a particular or-

dering of channels (as indicated by the position of the channel transmission rates and

channel packet error rates in the matrices R and P, respectively). Now consider a

new ordering represented by switching the order of channel index i and channel index

i + 1. In this ordering, the channel transmission rates and packet error rates are
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summarized by the matrices

R′ =
[

R1 R2 · · · Ri+1 Ri · · · RM

]T

and (2.5)

P′ =















































PS(1)

PS(2)
...

PS(i − 2)

(1 − P1)(1 − P2) · · · (1 − Pi−1)Pi+1

(1 − P1)(1 − P2) · · · (1 − Pi−1)(1 − Pi+1)Pi

PS(i + 1)
...

PS(M)















































. (2.6)

The channel utilization for this ordering of channels is

η′ =
1

1 + D
R′T VP′. (2.7)

The difference between the two channel utilizations is

(η − η′)(1 + D) = (R −R′)
T

VP + R′T V (P −P′) (2.8)

=
[

0 · · · 0 Ri − Ri+1 Ri+1 − Ri 0 · · · 0
]

VP

+ R′T V









































0
...

0

(Pi − Pi+1)
∏i−1

n=1 (1 − Pn)

(Pi+1 − Pi)
∏i−1

n=1 (1 − Pn)

0
...

0









































(2.9)
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= (Ri − Ri+1)
i−1
∏

n=1

(1 − Pn)(1 − Pi)Pi+1

+

i−1
∑

n=1

Rn

i−1
∏

n=1

(1 − Pn)(Pi − Pi+1)

−
(

i−1
∑

n=1

Rn + Ri+1

)

i−1
∏

n=1

(1 − Pn)(Pi − Pi+1)

=
[

(Ri − Ri+1) (1 − Pi)Pi+1 − Ri+1 (Pi − Pi+1)
]

×
i−1
∏

n=1

(1 − Pn) . (2.10)

A necessary condition for the original ordering to be optimal is that

∆i = (Ri − Ri+1) (1 − Pi) Pi+1 − Ri+1 (Pi − Pi+1) > 0 (2.11)

for i = 1, 2, . . . , M − 1. Five important special cases should be noted.

• All channels have identical transmission rates and packet error rates. In this

case, Ri = Ri+1 and Pi = Pi+1 for all i = 1, 2, · · · , M − 1. Then ∆i is zero for

all i. Channel ordering in the assignment rule does not matter.

• All channels have the same transmission rate but different packet error rates.

Let Ri = R be the common transmission rate for i = 1, 2, . . . , M . Then the

necessary condition (2.11) becomes

∆i = −R(Pi − Pi+1) > 0 ⇒ Pi < Pi+1. (2.12)

This means the channels should be ordered from lowest packet error rate to

highest packet error rate.

• All channels have different transmission rates but the same packet error rates.

Let P = Pi be the common packet error rate for i = 1, 2, . . . , M . Then the

necessary condition (2.11) becomes

∆i = (Ri − Ri+1)(1 − P )P > 0 ⇒ Ri > Ri+1. (2.13)

This means the channels should be ordered from highest transmission rate to

lowest transmission rate.
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• All channels have different transmission rates and different packet error rates

but the packet error rate of each channel is proportional to the transmission

rate. This case occurs when each channel is designed to have the same bit error

rate1. Let Pi = LRi for i = 1, 2, · · · , M . Then the necessary condition (2.11)

becomes

∆i = (Ri − Ri+1)(1 − Pi)LPi+1 − Ri+1L(Ri − Ri+1)

= L(Ri − Ri+1)[(1 − Pi)Pi+1 − Pi+1]

= L(Ri − Ri+1)[−PiPi+1] > 0. ⇒ Ri < Ri+1. (2.14)

This means the channels should be ordered from lowest transmission rate (lowest

packet error rate) to highest transmission rate (highest packet error rate). We

will show later that this case can be applied into MIMO communication system

when the channel state information is available at both the transmitter and the

receiver.

• All channels have different transmission rates and different packet error rates

but all packet error rates satisfy Pi � 1 for i = 1, 2, · · · , M . In other words,

the packet error rates of the channels are relatively small. In this case, the

necessary condition (2.11) implies that

(Ri − Ri+1) Pi+1 >
Ri+1 (Pi − Pi+1)

1 − Pi

≈ Ri+1 (Pi − Pi+1) (2.15)

⇒ Ri

Pi
>

Ri+1

Pi+1
. (2.16)

The interpretation of this result is that the channels should be ordered (in

descending order) based on the ratio of transmission rate to packet error rate.

Note that the second and third special cases are special cases of this scenario.

1To see that this is so, let Pb be the common bit error rate for each channel and suppose that
the packet length, L (measured in symbols), is also the same for each channel. The number of bits
transmitted in a length-L packet over channel m with rate Rm is Lb,m = LRm. The packet error
rate may be expressed as Pm = 1 − (1 − Pb)

Lb,m ≈ Lb,mPb. Substituting we obtain Pm ≈ LPbRm

which may be expressed as LRm using L = LPb.
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In all cases, the ordering is based on a quantitative measure of the channel

quality. A channel with a higher transmission rate, or lower packet error rate (or both)

has a higher quality. The reason the higher quality channels should be ordered first

lies in the details of how the SW ARQ protocol assigns sequentially available packets

in the transmit queue to the parallel channels. If a transmission in the first channel

fails, then the packets sent in channels 2 and higher must also be retransmitted. This

must be the case since SW ARQ does not provide any buffering at the receiver for

reordering packets received out of order.

2.3.2 Packet-to-Channel Assignment Rule for GBN ARQ

In the GBN ARQ protocol, the transmitter sends packets to the receiver

continuously and does not wait for acknowledgements from the receiver. The ac-

knowledgement for each transmission block arrives after a round-trip delay of N ×M

packets (e.g., N blocks of M packets). During this interval, N−1 blocks of M packets

have also been transmitted. For GBN ARQ, no buffering is available at the receiver.

When a NAK is received for a particular packet, all the subsequent packets in the

block, together will all packets in the subsequent N − 1 blocks, are discarded by the

receiver and must be resent by the transmitter.

Let S be the average number of accepted blocks prior to a NAK. S may

be expressed as

S =
∞
∑

k=1

k ·
[

M
∏

i=1

(1 − Pi)

]k [

1 −
M
∏

i=1

(1 − Pi)

]

= [1 − PS(M)]
∞
∑

k=1

k · P k
S (M)

=
PS(M)

1 − PS(M)
. (2.17)

The channel utilization for GBN ARQ is

η =
S

N + S

M
∑

i=1

Ri +
1

N + S

M−1
∑

k=1

(

k
∑

i=1

Ri

)

PS(k)

1 − PS(M)
. (2.18)
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Using the matrices

R̄ =

















R1

R2

...

RM−1

















P̄ =

















PS(1)

PS(2)
...

PS(M − 1)

















, (2.19)

the channel utilization may be expressed in matrix form as

η =
S

S + N

M
∑

i=1

Ri +
1

N + S
· 1

1 − PS(M)
R̄T V̄P̄ (2.20)

where V̄ is an upper triangular matrix consisting of all ones.

Note that the first term in (2.20) does not change with re-ordering of the

channel index. The matrix form of the second term is also similar to the matrix form

of (2.4) for SW-ARQ. Applying the same line of reasoning to this case produces the

same necessary condition (2.11) for improved channel utilization.

2.3.3 Packet-to-Channel Assignment Rule for SR ARQ

In the SR ARQ multichannel protocol, the transmitter sends packets to the

receiver continuously and re-sends only those packets that were negatively acknowl-

edged. The packets at the receiver are out of order. Assuming a sufficiently large

buffer at the receiver to reassemble the packets received out of order, the channel

utilization can be expressed as

η =

M
∑

i=1

Ri · (1 − Pi). (2.21)

Reordering the channel indexes in (2.21) does not effect the channel utilization. Thus,

channel utilization is independent of the channel assignment for the SR ARQ protocol.

2.4 Simulation Results of Channel Utilization

2.4.1 Accuracy of the Channel Utilization Expressions

Computer simulations were used to assess the accuracy of the channel

utilization expressions derived in Section 2.3. For our numerical example, we consider
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a four channel system (i.e. M = 4) where the idle time of SW-ARQ is D = 2

block times and the round-trip delay of the GBN-ARQ is N = 3 block times. To

illustrate the effect of different channel characteristics on the channel utilization, we

adopt the same technique used in [37]: Pi+1/Pi is a constant (which we call rP ) for

i = 1, 2, . . . , M − 1; Ri+1/Ri is a constant rR for i = 1, 2, . . . , M − 1.

The results are summarized in Figure 2.3 where we see that the simulation

results matched the analytical expressions exactly.

2.4.2 Comparison of Different Assignments in AWGN Channel

To illustrate the effect of different packet-to-channel assignment ordering

rules, we compare our optimal rule (OR) with three other rules:

• Dynamic Reverse Rule (DRR): The packets are assigned across the parallel

channels dynamiclly, while the channels are ordered in the reverse order relative

to the ordering defined by OR.

• Static Rule (SR): Order the channels according to OR and retransmit a NAK’ed

packet on the same channel as the original transmission.

• Static Reverse Rule (SRR): Order the channels in the reverse order as defined

by OR and retransmit a NAK’ed packet on the same channel as the original

transmission.

The rules are defined to illustrated the impact of “doing the wrong thing” (DRR)

and “doing nothing” (SR and SRR). The gain of the optimal rule over the other rules

is given as

G =
ηOR − ηx

ηx

(2.22)

where x is DRR, SR or SRR.

For the case where all the channels have the same transmission rate but

different packet error probabilities, rR = 1 and P = [ P1 rP P1 r2
P P1 r3

P P1 ] with

rP > 1. Figure 2.4 shows the channel utilization gain G as a function of P1 and rP ,

for SW-ARQ and GBN-ARQ.
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Figure 2.3: Comparison of computer simulations with analytical expressions for chan-
nel utilization for the three ARQ protocols: (top) stop-and-wait; (middle) go-back-N ;
(bottom) selective-repeat. In all cases, R1 = 1 bit/symbol and rR and rP are kept to
be equal to simplify the presentation.
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For the case where all channels have the same packet error probability

but different transmission rates, rP = 1 and R = [ R1 rRR1 r2
RR1 r3

RR1 ] with

rR < 1. Figure 2.5 shows the channel utilization gain G as a function of P1 and rR

for SW-ARQ and GBN-ARQ.

For the case where all channels have different transmission rates but the

same bit error rates, the packet error rates are proportional to the transmission rates

(this was the forth special case treated in Section 2.3.1). In this case rP = rR = r > 1.

For the optimal rule,

R =
[

R1 rR1 r2R1 r3R1

]

and

P =
[

P1 rP1 r2P1 r3P1

]

.

Figure 2.6 plots the channel utilization gain G as a function of r and P1 for SW-ARQ

and GBN-ARQ.

The simulation results for SW-ARQ and GBN-ARQ presented above sug-

gest the following:

1. Assigning a packet to be retransmitted to the “worst” available channel pro-

duces the greatest reduction in over all channel utilization. This is demonstrated

by the fact that the DRR consistently has the worst channel utilization.

2. The two “static” assignment rules do not achieve the channel utilization of

the OR, which is a “dynamic” assignment rule. This suggests that a properly

ordered dynamic assignment rule is needed to optimize channel utilization.

3. The gain of the OR over the other rules considered increases as the difference

between the channels becomes more pronounced. This is illustrated by the fact

that G increases as P1 increases (see Figures 2.4 – 2.6), as rP increases (see

Figure 2.4), as rR decreases (see Figure 2.5), or as r increases (see Figure 2.6).

The above simulations are done for static AWGN channel. In the next

section we will show some analysis and simulations for quasi-static MIMO channel.
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2.4.3 Comparison of Different Assignments in Wireless Channels

Simulations were also performed for a MIMO system with 4 transmit anten-

nas and 4 receive antennas using spatio-temporal vector coding [31]. Spatio-temporal

vector coding over a frequency non-selective MIMO channel H is accomplished by

computing the singular value decomposition of the channel matrix: H = UΛV∗ and

using the right singular vectors (columns of V) as the bases for the transmitted se-

quences and the left singular vectors (columns of U) as the matched filters. The

vector of matched filter outputs may be expressed as

R = U∗HVZ + ν = ΛZ + ν (2.23)

where ν is the vector of noise samples and and Z is the vector of information symbols.

In this way, spatio-temporal vector coding creates rank(H) parallel commu-

nication channels. The gains of each of the channels is given by its singular values λn

which is the element (n, n) in the matrix Λ. Different information rates are assigned

to each of the sub-channels using a spatio-temporal water-filling and bit-allocation

solution to achieve capacity.

Simulations were performed using two 4 × 4 channel matrices: the first

was the IID MIMO channel where H consists of 16 zero-mean unit-variance complex

Gaussian random variables. The second channel was measured in an indoor environ-

ment as described in [48]. The channel matrix is assumed constant during one packet

interval but varies from packet to packet.

A set of Gray-coded M-PSK modulation schemes for M = 2, 4, 8, 16, 32, 64

was used to provide transmission rates of 1, 2, 3, 4, 5, and 6 bits/symbol, respectively.

The binary reflected Gray code described in [25] was used for the bit-to-symbol map-

ping. The symbols were indexed 0, 1, . . . , M − 1 starting with the point 1 + j0 and

proceeding in the counter-clockwise direction.

Since this set of modulation schemes provide finite granularity in the trans-

mission rates, the operations such as rounding the result of water-filling and bit allo-

cation solution to a finite number may not be optimal. A bit loading algorithm [4] is
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used in stead to allocate power and bit to the parallel channels subject to a pre-ARQ

bit error rate constraint.

After the bit loading operation, the channels are ordered λ1 ≥ λ2 · · · ≥ λr

so that the transmission rates of the r sub-channels satisfy R1 ≥ R2 · · · ≥ Rr while

the packet error rate of the r channels satisfy P1 ≥ P2 · · · ≥ Pr. Thus, this scenario

matches the forth special case in Section 2.3. The packet-to-channel assignment rule

developed in Section 2.3 requires the packets to be ordered from lowest transmission

rate to highest transmission rate (that is, in the reverse order from above). The

channel utilization using that assignment rule was simulated and designated ηopt.

To model the effect of “doing nothing,” the channel ordering λ1 ≥ λ2 · · · ≥
λr was left in place and packets to be retransmitted were inserted in the next available

channel without regarding for the channel number. The channel utilization for this

case was also simulated and designated ηstatic.

The simulation results are summarized in Figures 2.7 and 2.8 for the SW

ARQ protocol (with idle time D = 2) and the GBN ARQ protocol (with N = 3),

respectively. In these plots, the channel utilization gain

G =
ηopt − ηstatic

ηstatic

(2.24)

is plotted as a function of packet length.

Observe that substantial gains in channel utilization can be realized, espe-

cially as the packet length increases and the pre-ARQ bit error rate increases. The

optimal assignment rule produces a channel utilization that is better than the channel

utilization that results from doing nothing. The simulation results again suggest that

for SW-ARQ and GBN-ARQ a properly ordered dynamic assignment rule is needed

to optimize channel utilization.
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Figure 2.7: Performance comparison for the multichannel SW-ARQ retransmission
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(bottom) BYU channel.
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2.5 Transmission Delay Analysis

The transmission delay performance of multichannel ARQ protocols have

been studied in Chang and Yang’s paper[5], where all the channels in the multichannel

system are assumed to be identical. In this section, we will derive the transmission

delay expressions for the ARQ protocols of multichannel system as shown in Figure

2.1. We will start with the case in which all the channels have the same transmission

rate but different packet error rates. Then the result will be extended to the case

in which all the channels have both different transmission rates and different packet

error rates. Some simulation results will be presented in order to show that the

packet-to-channel assignment rules we derived to maximize the channel utilization of

the system will also minimize the transmission delay of the system.

2.5.1 Transmission Delay Expressions

Consider a system with M parallel channels between the transmitter and

the receiver. The transmission rates of the M channels are the same. The round-trip

signal propagation delay is assumed to be N block times. The transmission delay is

measured from the instant at which a packet is transmitted for the first time till the

time it is successfully received by the receiver.

Parallel Channels with Same Transmission Rate: SW-ARQ

In this section, we have extended the result given in [5], where all the

channels are assumed to be identical, to the case that all the channels have the same

transmission rate but different packet error rate. Similar to the process given in [5],

we define Nt(i) to be the expected number of transmissions that a packet has to go

through, given that its first transmission is placed on channel i for i = 1, · · · , M . Let

Pi be the probability that the first transmission of an arbitrarily selected packet is

placed on channel i. Then the average number of transmissions that an arbitrarily

selected packet has to go through before it is successfully received by the receiver is

Nt =
∑M

i=1 PiNt(i).
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The leading packet is the packet whose retransmission depends only on

whether its own transmission is erroneous, and its erroneous transmission will force

all of its following packets to be retransmitted. According to our transmission scheme,

the leading packet is the packet that is placed on channel number 1. Thus, Nt(1) is

just the average number of transmissions for the leading packet to go through, which

is given as Nt(1) = 1/(1 − P1).

Notice that when a packet is transmitted on channel number 2, the er-

rors of the leading packet (the packet transmitted on channel number 1) will cause

the retransmission of that packet. When the leading packet is received successfully,

which will take Nt(1) transmissions on average, there are two cases of the packet on

channel number 2: it is received successfully together with the leading packet; or it

is rejected by the receiver. For the second case, in the next transmission, the packet

initially transmitted on channel number 2 becomes the leading packet and will take

Nt(1) transmissions on average before it is received successfully. Based on the above

analysis, we get

Nt(2) = (1 − P2)Nt(1) + P2Nt(1) + P2Nt(1)

=
1 − P2

1 − P1

+
P2

1 − P1

+
P2

1 − P1

=
1 + P2

1 − P1

. (2.25)

Similarly,

Nt(3) = (1 − P2)(1 − P3)Nt(1) + (1 − P2)P3Nt(1) + (1 − P2)P3Nt(1)

+ P2Nt(1) + P2Nt(2)

=
(1 − P2)(1 − P3)

1 − P1
+

(1 − P2)P3

1 − P1
+

(1 − P2)P3

1 − P1
+

P2

1 − P1
+

P2(1 + P2)

1 − P1

=
1 + P2 + P3 + P 2

2 − P2P3

1 − P1
. (2.26)

If we keep on doing the same process, we get

Nt(i) ≈
1 +

∑i
k=2 Pk +

∑i−1
k=2 P 2

k +
∑

{k,l:2≤k<l≤i,k+l≤i+1} PkPl −
∑

{k,l:2≤<l≤i,k+l>i+1} PkPl

1 − P1

(2.27)

where all the higher order terms with order ≥ 3 are ignored.
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In order to obtain Pi, we further define Yi to be the probability that a

new packet is transmitted on channel i in a block, given that there is at least one new

packet attempted across channel 1, · · · , M in that block. Under joint operation, we

get

Y1 =

∏M
k=1(1 − Pk)

1 − P1

=
M
∏

k=2

(1 − Pk),

...

Yi =

∏M
k=1(1 − Pk) +

∏M−1
k=1 (1 − Pk)PM + · · · +∏M−i+1

k=1 (1 − Pk)PM−i+2

1 − P1

=

M−i+1
∏

k=2

(1 − Pk), and

...

YM =

∏M
k=1(1 − Pk) +

∏M−1
k=1 (1 − Pk)PM + · · · + (1 − P1)P2

1 − P1
= 1. (2.28)

Let Z = Y1 + · · · + YM , where Z represents the average number of new

packets transmitted across channel 1, · · · , M in a block. Then Pi = Yi/Z.

For SW-ARQ, the average transmission delay can be obtained as

DelaySW = (Nt − 1) ∗ NT + T (2.29)

where T is the block transmission time.

Parallel Channels with Same Transmission Rate: GBN-ARQ

For any packet whose first transmission is placed on channel i for i =

1, · · · , M , the number of retransmissions depends not only on whether its own trans-

mission is erroneous but also the transmission of the packets previous to this packet

in the same block and the packets in the previous N − 1 blocks. As shown in [5],

these packets can be classified into two categories.

• Packets 1, · · · , i, M + 1, · · · , M + i, · · · , (N − 1)M + 1, · · · , (N − 1)M + i, in

which the occurrence of the leading failure results in adding extra N slots to the

delay of the test packet. The total number of packets in this category is i ∗ N ,
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each i packets in the same block contributing an average of Nt(i) − 1 leading

failures. Thus, the total contribution to the average delay of the test packet is

N ∗ [Nt(i) − 1] ∗ N slots.

• Packets i+1, · · · , M, M + i+1, · · · , 2M, · · · , M(N − 2)+ i+1, · · · , M(N − 1),

in which the occurrence of a leading error adds extra N − 1 slots in the first

round, and adds N slots starting from the second round to the delay of the test

packet. The probability of having a leading failure in packets i + 1, · · · , M is

fm−i = 1 −∏M
k=i+1(1 − Pk). Thus, the average contribution to the delay of the

test packet i+1, · · · , M is fm−i(N −1)+[Nt(M)−Nt(i)−fm−i]N ×(N −1). So

the total contribution to the average delay of the test packet from this category

is (N − 1){fm−i(N − 1) + [Nt(M) − Nt(i) − fm−i]N}.

Let D(i) be the average transmission delay of a packet whose first trans-

mission takes place in a slot on channel i. From the description above, we get

D(i) = [Nt(i)−1]∗N2+fm−i(N−1)2+[Nt(M)−Nt(i)−fm−i]∗(N−1)∗N +1. (2.30)

For GBN-ARQ, the average transmission delay can be obtained as

DelayGBN =
M
∑

i=1

D(i)Pi × T. (2.31)

Parallel Channels with Same Transmission Rate: SR-ARQ

Due to the fact that in SR-ARQ a retransmission request for a packet does

not depend on the transmission status of other packets, the transmission delay of the

multichannel system is just the average of the transmission delay of each channel.

DelaySR =

[

(
∑M

i=1 Pi) × N
∑M

i=1(1 − Pi)
+ 1

]

× T. (2.32)

Note that for selective repeat ARQ, packets arrive at the receiver out of

order and have to be resequenced. The overall delay of SR-ARQ should be the summa-

tion of the transmission delay and the resequencing delay. Even though the packet-to-

channel assignment rule does not affect the channel utilization and the transmission
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delay of SR-ARQ as we have shown in equation 2.29, it is expected to affect the

resequencing delay of the multichannel SR-ARQ protocol. We have not considered

the resequencing delay in our analysis. Shacham and Shin [37] have described and

analyzed a multichannel SR-ARQ protocol which provided lower resequencing delay

over parallel channels with the same transmission rate but different packet error rates

than assigning packets to channels statically.

Parallel Channels with Different Transmission Rates

Since the M parallel channels may have different transmission rates, if the

transmission rate of the original transmission channel is higher than the transmission

rate of the retransmission channels, then the packet to be retransmitted might be

chopped into several segments and retransmitted on several channels. If the trans-

mission rate of the original transmission channel is lower than the transmission rate of

the retransmission channel, then the packet to be retransmitted might be combined

with some other information to form a new packet. So it is nonsense to analyze the

transmission delay of the whole packet transmitted on one particular channel. In

order to simplify the analysis, we use the concept of sub-packet. First, we assume

that the transmission rates of the M channels have a common factor R. Let the

transmission rate of the mth channel be Rm for m = 1, · · · , M .. Then the packet

transmitted on the mth channel will be divided into km = Rm/R sub-packets, where

the information data within each sub-packet will always be transmitted or retrans-

mitted together. The transmission delay is measured from the instant at which a

sub-packet is transmitted for the first time till the time it is successfully received by

the receiver.

Let [k1, k2, · · · , kM ] be the number of sub-packets transmitted on the M

parallel channels. Let K =
∑M

j=1 kj be to total number of sub-packets transmitted

on the M channels. The M parallel channels can be treated as K pseudo-channels,

where the transmission rates of all pseudo-channels are the same, while the packet

error rate of each pseudo-channel is equal to the packet error rate of the real channel

it is located on. That is R′
1 = R′

2 = · · · = R′
K = R, P ′

1 = · · · = P ′
k1

= P1,
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P ′
k1+1 = · · · = P ′

k1+k2
= P2, and so on. The result we got in Section 2.5.1 can be

applied on the pseudo-channels since the transmission rates of the pseudo-channels

are equal.

For SR-ARQ, the average transmission delay is

DelaySR =

[

(
∑K

j=1 P ′
j) × N

∑K
j=1(1 − P ′

j)
+ 1

]

× T. (2.33)

According to our analysis in Section 2.5.1, the average delay of the sub-

packet for SW-ARQ and GBN-ARQ will be given as (2.29) and (2.31) where the

summation is taken from 1 up to K. We need to evaluate the expression of Nt(j) and

Yj for each pseudo-channel j = 1, · · · , K.

For each pseudo-channel, we have

Y1 =

M
∏

k=2

(1 − Pk),

Y2 =

N2
∏

k=2

(1 − Pk),

...

Yj =

Nj
∏

k=2

(1 − Pk), and

...

YM = 1 (2.34)

where

Nj =







L − 1 ∃L ∈ {1, · · · , M} : kL + · · ·+ kM < j, kL−1 + · · ·+ kM ≥ j

M otherwise

It is a little involved to get the expression of Nt(j) for j = 1, · · · , K, since it

will depend on the relationship of the number of pseudo-channels on each real channel

and the transmission states. Fortunately, for all the sub-packets transmitted on the

pseudo-channels of one real channel, we have

Nt(j) ≈ Nt(i), jth pseudo-channel ∈ ith channel, (2.35)
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with some difference on the second and higher order terms which can be ignored if

the packet error rate is small.

2.5.2 Simulation Results of Transmission Delay

Accuracy of the Transmission Delay Expressions

Computer simulations were used to assess the accuracy of the transmission

delay expressions derived in Section 2.5.1. For our numerical example, we consider

a four channel system (i.e. M = 4) where the idle time of SW-ARQ is D = 2 block

times and the round-trip delay of the GBN-ARQ is N = 3 block times. We will first

examine the results for the parallel channel with the same transmission rate, where

the transmission rates of all the channels are 1 bit/symbol, while the ratio of the

packet error rates between adjacent channels Pi+1/Pi is a constant (which we call rP )

for i = 1, 2, . . . , M − 1.

The results are summarized in Figure 2.9. As we can see from Figure 2.9,

for SW-ARQ and GBN-ARQ, the analytical expression and the simulation results

diverge as the packet error rates getting larger. This is because we ignore the higher

order terms with order ≥ 3 in (2.27). For small packet error rate, the simulation re-

sults matched the analytical expressions exactly. For SR-ARQ, the simulation results

matched the analytical expressions exactly.

Next, we will examine the results for the parallel channel with different

transmission rates, where we let: Pi+1/Pi be a constant (which we call rP ) for i =

1, 2, . . . , M − 1; Ri+1/Ri be a constant rR for i = 1, 2, . . . , M − 1.

The results are summarized in Figure 2.10. For SW-ARQ and GBN-ARQ,

the analytical expression and the simulation result diverge even faster as the packet

error rates getting larger. This is because we ignore both the higher order terms with

order ≥ 3 and some terms with order 2 in (2.35).

Comparison of Different Assignments in AWGN Channel

Instead of deriving the packet-to-channel assignment ordering rule that

minimized the transmission delay for SW-ARQ and GBN-ARQ, we will compare the
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Figure 2.9: Comparison of computer simulations with analytical expressions for trans-
mission delay for the three ARQ protocols: (top) stop-and-wait; (middle) go-back-N ;
(bottom) selective-repeat. In all cases, the parallel channels have the same transmis-
sion rate, R = 1 bits/symbol. The ratio of the packet error rate between adjcent
channels, rP , is kept to be a constant.
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Figure 2.10: Comparison of computer simulations with analytical expressions for
transmission delay for the three ARQ protocols: (top) stop-and-wait; (middle) go-
back-N ; (bottom) selective-repeat. In all cases, R1 = 1 bit/symbol and rP = rR to
simplify the presentation.
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optimal rule (OR) that maximize the channel utilization and the three other rules

(DRR, SR, and SRR) we defined in Section 2.4.

The reduction of the optimal rule over the other rules on the transmission

delay is given as

R =
Delayx − DelayOR

Delayx

(2.36)

where x is DRR, SR or SRR.

The three cases defined in Section 2.4.2 have been simulated. For the first

case, Figure 2.11 shows the reduction of the transmission delay R as a function of

P1 and rP for SW-ARQ and GBN-ARQ. For the second case, Figure 2.12 shows the

reduction of the transmission delay R as a function of P1 and rR for SW-ARQ and

GBN-ARQ. For the third case, Figure 2.13 shows the reduction of the transmission

delay R as a function of r and P1 for SW-ARQ and GBN-ARQ.

The simulation results presented above suggest the following:

1. The reductions of the transmission delay of OR over the other rules are always

positive, which means the optimal rules we derived in 2.3 that maximize the

channel utilization also minimize the transmission delay for SW-ARQ and GBN-

ARQ.

2. Assigning a packet to be retransmitted to the “worst” available channel pro-

duces the greatest accretion in overall transmission delay. This is demonstrated

by the fact that the DRR consistently has the worst transmission delay.

3. The two “static” assignment rules do not achieve the transmission delay of

the OR, which is a “dynamic” assignment rule. This suggests that a properly

ordered dynamic assignment rule is needed to optimize transmission delay.

4. The reduction of the OR over the other rules considered increases as the dif-

ference between the channels becomes more pronounced. This is illustrated by

the fact that R increases as P1 increases (see Figures 2.11 – 2.13), as rP in-

creases (see Figure 2.11), as rR decreases (see Figure 2.12), or as r increases

(see Figure 2.13).
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Figure 2.11: Transmission delay comparison for the case where the channels have the
same transmission rate but different packet error probabilities.
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2.6 Conclusions

In this chapter, we have shown that the SW and GBN retransmission pro-

tocols must be generalized when used in a multichannel communication system. The

generalization takes the form of packet-to-channel assignment rules. A general con-

dition governing the packet-to-channel assignment rules was derived and important

special cases were pointed out. Simulation results were used to demonstrate the that

1) the packet-to-channel assignment impacts channel utilization and transmission de-

lay when the channels are different and 2) the optimal assignment rule produces a

channel utilization (transmission delay) that is better than the channel utilization

(transmission delay) that results from doing nothing. The gain (reduction) increases

as the difference between the channels becomes more pronounced.
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Chapter 3

Type-I Hybrid-ARQ Using MTCM STVC for MIMO Systems

In Chapter 2, we have shown that in parallel multichannel communication

systems, the conventional ARQ protocols for single channel communications have to

be generalized in order to realize the full potential of parallel multi-channel commu-

nications. In this chapter, we will show the performance improvement of employing

type-I hybrid-ARQ scheme in MIMO systems where we assume that the channel

state information is available at both the transmitter and the receiver. An idealis-

tic retransmission protocol that maximizes the channel utilization is described and

analyzed.

3.1 Introduction

Due to the fact that a multiple-input multiple-output (MIMO) channel can

offer a significant capacity gain over a traditional single-input single-output (SISO)

channel, MIMO systems are today regarded as one of the most promising research

areas of wireless communications. In order to approach the theoretical limit of such

systems, techniques that exploit maximally the spatial diversity brought by the multi-

ple antennas are used. However, the complexity of these techniques grows enormously

as channel utilization approaches the theoretic channel capacity limit. It is well known

that hybrid-ARQ techniques can be used to improve the bit error rate performance

of coded signaling schemes without a significant increase in decoder complexity. The

cost of this approach is throughput which will reduce the overall channel utilization.

In this chapter, we combine type-I hybrid-ARQ techniques with Spatio-Temporal
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Vector Coding (STVC) [31] over a quasi-static flat-fading MIMO channel. The com-

plexity versus channel utilization trade-off demonstrates that hybrid-ARQ offers an

effective solution to the complexity problem.

Tu [46] proposed a Multi-Channel Modulation (MCM) technique which

is based on the concept of creating multiple mutually orthogonal subchannels over

which independent streams of data can be sent without inter-channel interference.

Raleigh [31] extended MCM to the MIMO channel and named it spatio-temporal

vector-coding (STVC) and suggested the use of Multidimensional Trellis Coded Mod-

ulation (MTCM) [30, 10] for the coding scheme in the STVC structure.

In order to demonstrate the concept, we use the Yamamoto-Itoh algorithm

given in [52]. Rasmussen and Wicker [32] proposed a method for modifying MTCM

systems for use in type-I hybrid-ARQ protocols over AWGN and fading SISO channel

based on the Yamamoto-Itoh algorithm [52].

In this chapter, we demonstrate how type-I hybrid-ARQ protocols can be

used in the slowly varying MIMO channel using STVC. The MTCM-HARQ scheme

provides improved channel utilization and reliability performance relative to that

provided by a FEC scheme over slowly varying MIMO channel.

This chapter is organized as follows. The system model is described in

Section 3.2. In Section 3.3 the performance of the protocol is considered for the very

slowly varying MIMO channel. Upper and lower bounds for the decoded probability of

error and retransmission will be derived. Section 3.4 contains a series of examples that

include both analytical and simulation results. Conclusions are given in Section 3.5.

3.2 System Model

3.2.1 Channel Model

A discrete-time baseband channel model with MT transmission antennas

and MR receiver antennas is considered. With the flat-fading assumption, the channel

matrix H with dimension (MR×MT ) describes the channel. Entries of H, hij represent

the equivalent baseband channel gains between jth transmit and ith receive antennas.

The hij are usually modeled as normalized, circularly symmetric complex Gaussian
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random variables. It is assumed that the channel varies very slowly, so that H can be

assumed to be constant during one packet interval but vary from packet to packet.

In the discrete-time model, let Z = [Z1, Z2, · · · , ZMT
]T be the transmitted

symbols on MT antennas, where

Zn = [zn,1, zn,2, · · · , zn,N+w] n = 1 · · ·MT , (3.1)

N is the packet length, and w is the number of dummy symbols required to zero-out

the encoder shift registers. The corresponding received symbols on the MR receiver

array, R = [R1, R2, · · · , RMR
]T , is

R = HZ + n (3.2)

where

Ri = [ri,1, ri,2, · · · , ri,N+w] i = 1 · · ·MR (3.3)

and n is the equivalent baseband noise whose elements are zero-mean complex Gaussian

random variables noise with variance σ2 = N0/2.

3.2.2 Spatio-Temporal Vector Coding

STVC is best described using the singular value decomposition (SVD) of

the channel matrix H. Let H = UHΛHV∗
H be the SVD of H, where λH,n is the n-th

singular value. If the channel state information is available at both the transmitter

and the receiver, the STVC parallel channel [31] is written

R = U∗
HHVHZ + ν = U∗

HUHΛHV∗
HVHZ + ν = ΛHZ + ν. (3.4)

Thus the MIMO channel can be considered as a set of parallel independent subchan-

nels whose number equals the rank of H matrix, and the subchannel gains are given

by the singular values λH,n.

In a parallel channel communication system, power and bit distributions

algorithms [46], [31] are used to maximize data rate subject to a probability of error

constraint. The rate maximizing water-filling solution and bit allocation for the STVC
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channel becomes

λZ,n =

(

ξ − σ2α

|λH,n|2
)+

(3.5)

bn = log2

(

1 +
λZ,n|λH,n|2

ασ2

)

bit/symbol (3.6)

where α is the code gap 1 [31] which is determined by the probability of error of the

system. The energy of the transmitted packet Zn on each subchannel n is λZ,n. The

energy in each subchannel at the receiver equals the energy at the transmitter λZ,n

multiplied by the channel gain λH,n.

Under the quasi-stationary channel condition the number of bits calculated

by (3.6) is constant on each subchannel during one packet interval, so we use an

MTCM encoder which can support bn bits/symbol on subchannel n during one packet

interval. The MTCM encoder, as illustrated in Figure 3.1, consists of three sections.

These sections are the binary convolutional encoder, the multi-D signal set mapper,

and the 2-D signal set mapper.

Binary
Convolution

Encoder
R=k/(k+1)

Multi-D
Signal Set
Mapper

2-D
Signal Set
Mapper

xk

x2

x1

zk

z2

z1

z0

yL

y1

k bits k+1 bits L symbols

Figure 3.1: General multidimensional trellis code modulation encoder.

The efficient rate, Reff, of the code is defined as the average number of

information bits transmitted during each 2-D signal period T . With k bits input

into the encoder and L 2-D symbols output, we have Reff = k/L. The efficient

1The code gap is difference between the SNR required to achieve the target probability of error
at the desired data rate and the SNR required to achieve a theoretical capacity equal to the desired
data rate.
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rate is the indicator of the bit resolution (granularity). It is not possible to achieve

infinite granularity with MTCM codes. The granularity of possible bit allocations is

determined by the dimensionality of the MTCM code [46].

3.2.3 MTCM and Type-I Hybrid-ARQ

The key to modifying an FEC decoder for use in a type-I hybrid-ARQ

protocol is the identification of a source of reliability information within the decoding

process [50]. The path metrics calculated during Viterbi decoding provide such a

source of information. In [32] and [52], the surviving path and the best non-surviving

path are compared at each node at each stage in the decoding process. If the difference

in the path metrics of the two paths is smaller than a threshold u, then the survivor

is declared unreliable. Once a surviving path is declared unreliable, it will remain so

regardless of the results of later comparisons. If all survivors are labeled as unreliable

at some level, then the decoder requests a retransmission of the packet.

A simple retransmission protocol is described as follows: At a certain trans-

mission time, suppose a packet is transmitted over a subchannel which can support

s bits/symbol. Now suppose the modified MTCM decoder produces a retransmission

request for that packet. At the next transmission time, there are k =rank(H) sub-

channels available for the retransmission. For now, we only consider the case that

the retransmission subchannel is chosen as the subchannel which can support exactly

s bit/symbol. The other subchannels are used to transmit new packets. If there is

no suitable subchannel, the packet will be stored in the buffer until a suitable sub-

channel is available. Clearly, this retransmission protocol uses the channel with the

best efficiency even though it could have very poor delay performance. As such, the

performance of this retransmission protocol is an upper bound on the performance of

any real retransmission protocol.

3.3 Performance Analysis

Through an extension of the techniques used in Rasmussen et al. [32] and

Biglieri et al. [3], upper and lower bounds for the reliability and channel utilization
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performance of the scheme are derived for the case of the very slowly varying MIMO

channel. The channel utilization, χ is defined as the average achievable data rate over

the MIMO channel measured in bits/symbol.

3.3.1 Upper Bound on Bit Error Rate

Assume Zn is the packet transmitted over subchannel n. According to

equations (3.5) and (3.6), for fixed values of σ and α, the energy of packet Zn and

the number of bits that Zn can support are functions of λH,n, the n-th singular

value of the channel matrix H. The number of bits calculated by equation (3.6)

determines the properties of the MTCM encoder over the subchannel. That is, the

free minimum squared Euclidean distance d2
free, the number of nearest neighbors Nfree,

and the transfer function of the error state diagram T (D, I) are also functions of λH,n.

Now consider a packet Z transmitted on certain subchannel, with transmit

energy λZ and channel gain λH , which can support b(λH) bits/symbol. The MTCM

code can be characterized by d2
free(λH), Nfree(λH), and T (D, λH). Let ZL be a trellis

path that diverges from Z and remerges after precisely L branches. The pairwise error

probability P{Z → ZL|λH, u} shall be defined as the probability that ZL survives as

a reliable path when compared with Z at the node at which that two paths remerge

under the condition that the singular value of the channel is λH , i.e.,

P{Z → ZL|λH , u} = P{‖
√

λZλHZ − R‖2 − ‖
√

λZλHZL − R‖2 ≥ u} (3.7)

where R is the received packet. Using well known techniques, we have

P{Z → ZL|λH , u} ≤Q





√

λZλ2
Hd2

free(λH) + 2u

2N0





× exp

(

λZλ2
Hd2

free(λH)

4N0

)

× exp

[

−λZλ2
H‖Z − ZL‖2

4N0

]

. (3.8)

A union bound argument can be used to derive an upper bound on Pe, the

probability that an error event occurs during the decoding of a packet received on
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a given transmission. Since trellis codes are in general nonlinear, the summation is

taken over all possible transmitted code packets Z as well as over all possible error

event lengths L:

Pe (λH , u) ≤
Nstages
∑

L=1

∑

Z

∑

ZL

P{Z} · P{Z → ZL|λH , u} (3.9)

where Nstages is the number of stages in the decoding trellis. Following [32], substi-

tuting (3.8) into (3.9) produces the upper bound

Pe (λH , u) ≤ Q





√

λZλ2
Hd2

free(λH) + 2u

2N0





× exp

(

λZλ2
Hd2

free(λH)

4N0

)

T (D, λH)

∣

∣

∣

∣

D=γ

(3.10)

where

γ = exp

(

−λZλ2
H

4N0

)

. (3.11)

T (D, λH) is used to enumerate the squared Euclidean distances ‖Z − ZL‖2. We

assume that the bit allocation algorithm is same for the first transmission and all

subsequent retransmissions of the packet. (If not, the analysis will be more complex.

The error probability is composed of two parts: the error probability on the first

transmission and the error probability on any subsequent retransmissions. The error

probability for a retransmitted packet is a function of the retransmission probability

Pr,ML discussed in the next Section.)

Pe(u) can be calculated by averaging over λH :

Pe(u) ≤
∫

f(λH)Pe(λH , u)dλH (3.12)

where f(λH) is the distribution of the singular values of the channel matrix H. The

distribution of the singular values of the channel matrix can be obtained through

channel measurement. In this dissertation, the evaluation of (3.12) are done using

Monte Carlo simulations.
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The upper bound on the probability of bit error in a packet received on a

given transmission is thus

Pb(u) ≤
∫

f(λH)

b(λH)
Q

(

√

λZλ2
Hd2

free(λH) + 2u√
2N0

)

× exp

(

λZλ2
Hd2

free(λH)

4N0

)

∂

∂I
T (D, I, λH)

∣

∣

∣

∣

I=1,D=γ

dλH (3.13)

where γ is defined by (3.11) and b(λH) is the number of bits transmitted on the channel

with singular value λH . Note that since the channel gains hi,j are assumed known

and are also assumed constant over the packet, the error probability is minimized by

using a code designed to maximize d2
free.

3.3.2 Lower Bound on Channel Utilization

According to [32], the following upper bound is obtained for the retrans-

mission probability Pr(λH , u) for the subchannel with singular value λH :

Pr(λH , u) ≤ 1 − (1 − Pr,ML(λH , u))Nstages−1 (3.14)

where

Pr,ML(λH , u) ≤
Nstages
∑

L=1

∑

Z

P{Z}
∑

ZL

P{Z ↔ ZL|λH , u} (3.15)

is the probability that the comparison at the node through which the ML path passes

results in a declaration of unreliability. The upper bound on Pr,ML(λH , u) is [32]

Pr,ML(λH , u) ≤



Q





√

λZλ2
Hd2

free(λH) − 2u

2N0



 + Q





√

λZλ2
Hd2

free(λH)

2N0









×exp

(

λZλ2
Hd2

free(λH)

4N0

)

T (D, λH)

∣

∣

∣

∣

D=γ

(3.16)

where γ is defined by (3.11).

The channel utilization of the system is determined in part by the retrans-

mission protocol as we have shown in Chapter 2. We assume that the bit allocation

algorithm is same for the first transmission and all the retransmitted packets. Then

the channel utilization of the MIMO system is the sum of the channel utilization of
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each subchannel and averaged by the distribution of λH . If a selective-repeat scheme

with infinite buffering is assumed [52], then the channel utilization of the MIMO

system is bounded below by

χ(u) =

∫ MT
∑

n=1

f(λH,n)
N

(N + w)
· b(λH,n)

× (1 − Pr(λH,n, u))dλH,n

≥
∫ MT
∑

n=1

f(λH,n)
N

(N + w)
· b(λH,n)

× (1 − Pr,ML(λH,n, u))Nstages−1dλH,n. (3.17)

3.3.3 Lower Bound on Bit Error Rate

A lower bound on bit error rate can be obtained through the use of the

probabilities of most significant error events [32]. Given a received packet R and the

choice between Z and Zd, the receiver will select the wrong packet if

‖
√

λZλHZ − R‖2 − ‖
√

λZλHZd − R‖2 ≥ u. (3.18)

A lower bound on Pe is then derived as follows [32]

Pe(λH , u) ≥ Nfree(λH)Q

(

λZλ2
Hd2

free(λH) + u√
2N0λZλHdfree(λH)

)

(3.19)

and the probability of bit error in a received packet is bounded below by

Pb(u) ≥
∫

f(λH)
Nfree(λH)

b(λH)
Q

(

λZλ2
Hd2

free(λH) + u√
2N0λZλHdfree(λH)

)

dλH . (3.20)

3.3.4 Upper Bound on Channel Utilization

Consider significant error events, the receiver will request a retransmission

whenever the received packet R and the two suggested code packets Z and Zd satisfy

the condition

|‖
√

λZλZ − R‖2 − ‖
√

λZλHZd − R‖2| < u. (3.21)
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Using the same approach as before the following is obtained:

Pr,ML(λH , u) ≥Nfree(λH)Q

(

λZλ2
Hd2

free(λH) − u√
2N0λZλHdfree(λH)

)

− Nfree(λH)Q

(

λZλ2
Hd2

free(λH) + u√
2N0λZλHdfree(λH)

)

. (3.22)

The channel utilization of the system is then upper bounded by

χ(u) ≤
∫ MT
∑

n=1

f(λH,n)
N

(N + w)
b(λH,n)

× (1 − Pr,ML(λH,n, u))Nstages−1dλH,n. (3.23)

3.4 Analytical and Simulation Results

3.4.1 Tightness of Bounds

The following examples illustrate the tightness of the bounds and the per-

formance improvements provided by modifying the MTCM decoder for type-I hybrid-

ARQ error control over a slowly varying MIMO channel. In the simulation examples

that follow, we use a set of six 4-dimensional 8-state trellis codes [30], each of which

provides a different channel utilization measured in bits/symbol. The parity-check

polynomials of these encoders written in octal are listed in Table 3.1, each of which

provides a different Reff measured in bits/T. These codes offer a bit granularity of

1/2 bit per 2-dimensional symbol. The number of transmitted symbols per block is

N = 64. The transfer functions for the MTCM codes were derived using the method

outlined in [27].

The channel is modeled as a simple 4×4 STVC channel. Since the bounds

on channel utilization and error probability are a function of the random channel

gains in the matrix H, Monte Carlo simulations were used to produce the numerical

values shown in the plots that follow.

Comparing actual performance to the bounds is not straightforward for

an STVC system since an MTCM code is selected (from the set of available codes)

to maximize the channel utilization while keeping the bit error rate constant. The

tightness of the bounds is tested using the code gap α [31]. In general, the code gap

decreases as the probability of error increases.
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Table 3.1: Parity check polynomial of the four dimensional 8-state trellis codes.

Reff (bit/T) M-PSK q h2 h1 h0 d2
free Nfree d2

next Nnext

1.0 4 1 04 02 11 12 5 - -
1.5 4 0 04 06 11 8 5 - -
2.0 8 1 04 02 11 4 2 5.172 16
2.5 8 0 04 06 11 2.929 16 - -
3.0 16 1 04 02 11 1.476 16 - -
3.5 16 0 04 06 11 0.761 16 - -

Simulations have been performed to test the tightness of the bounds. The

simulations are based on the transmission of 10000 packets for α = 2 dB, α = 3 dB,

and α = 4 dB. For α = 5 dB and α = 6 dB, 40000 packets were sent. Figures 3.2

and 3.3 show bit error rate and channel utilization, respectively, as a function of the

coding gap for SNR2 = 10 dB and u = 0.5. As expected, the code gap decreases

for increasing bit error rate as demonstrated in Figure 3.2. The relationship between

channel utilization and code gap is more interesting. For large α, the channel utiliza-

tion decreases with increasing α because the bit error rate decreases with increasing

α as demonstrated before. For small α the channel utilization decreases with de-

creasing α since smaller α correspond to higher operating bit error rates which are

accompanied by an increased number of retransmissions which reduce the channel

utilization.

These figures demonstrate that the upper bound is much tighter than the

lower bound. In the analytical results that follow, only the upper bound is used. It

should be noted that the number of transmitted packets allows for reliable simulation

data for the BER performance down to 10−5. Bellow this threshold the reliability of

the simulation data is degrading.

2SNR is defined as SNR= PT /(MT MRσ2)
∑k=rank(H)

n=1 |λH,n|2
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Figure 3.2: Code gap α versus decoded bit error rate for the set of MTCM codes used
in the simulations. The upper bound and lower bounds for bit error rate are plotted
for comparison. The system SNR is 10 dB and the MTCM decoder is modified for
hybrid-ARQ error control using u = 0.5.

3.4.2 Analytical Results Using Water-Filling Algorithm

The upper bounds of channel utilization of the FEC and HARQ systems

using practical coding schemes are compared with the information capacity for the

discrete-time STVC channel which is given by [31]

CMR,MT
=

K
∑

n=1

log2

(

1 +
λZ,n|λH,n|2

σ2

)

bits/transmission (3.24)

where λZ,n is found from the spatio-temporal water-filling solution

λZ,n =

(

ξ − σ2

|λH,n|2
)+

. (3.25)

Figures 3.4 and 3.5 show the upper bounds for χ as a function of SNR for Pb = 10−6

and Pb = 10−5, respectively, for different values of u (u = 0 corresponds to the FEC

case). The information capacity for the 4 × 4 STVC is also plotted for comparison.
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Figure 3.3: Channel utilization χ versus code gap α for the set of MTCM codes used
in the simulations. The upper bound and lower bounds for channel utilization are
plotted for comparison. The system SNR is 10 dB and the MTCM decoder is modified
for hybrid-ARQ error control using u = 0.5.

The performance improvement relative to FEC is obvious. At SNR = 10

dB and bit error rate Pb = 10−6, the code gap for the FEC system is 6 dB while for

the hybrid-ARQ system using u = 1.5 it is 5.2 dB. In contrast, for an FEC system,

the code gap can be reduced by either keeping the code fixed and allowing higher

BERs or by keeping the BER fixed and using codes with more states. Figures 3.4

and 3.5 show that the code gap can be reduced by 0.8 dB with a ten-fold increase

in BER from 10−6 to 10−5, while [30] shows that the code gap can be reduced by

about 1 dB by using a set of 64-state trellis codes. Thus HARQ systems allows us to

decrease the code gap α without increasing complexity.

Note that it is not true, in general, that higher u offers smaller code gaps.

Figure 3.5 shows that at a bit error rate of 10−5, increasing u beyond 1.5 actually
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Figure 3.4: The upper bounds of channel utilization at Pb = 10−6 using water-filling
solution.

increases the code gap at SNR = 10 dB. This is a consequence of the increased number

of retransmissions accompanying this value of u.

3.4.3 Analytical Results Using Bit-Loading Algorithm

For practical data transmission, the water-filling solution and bit allocation

algorithm given in Section 3.2 is not optimal, due to the fact of finite granularity and

non-unique code gap.

In reality, we can have only finite granularity. Suppose we have granularity

∆ (∆ = 0.5 in our case). Ad hoc operations such as rounding to an number k ×∆ of

bits/symbol form the code for the method given in Section 3.2 may not be optimal.

The code gap is not unique for different MTCM codes.

Because of finite granularity and non-unique code gap, bit-loading algo-

rithm is used instead. One known optimal loading algorithm is the Hughes Hartog

algorithm [4]. It initially assigns zero power to all subchannels and allocates power
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Figure 3.5: The upper bounds of channel utilization at Pb = 10−5 using water-filling
solution.

to the channel which needs the lowest amount to increase its rate by ∆ bit/symbol.

This process is iterated until the power budget is used or until the small remaining

power cannot increase the rate of any channel.

In general, it is possible to use a two-dimensional look-up table, S(Pe, s),

that contains the required SNR for the desired BER (Pe) and the number of bits s.

The code gap is included in the required SNR so that this bit loading algorithm allows

non-unique code gap. The content of the look-up table are actually several sets of

threshold for different desired BER (Pe). Instead of changing the α in the infinity

granularity case to reach the desired BER, in the finite granularity case, we change

the threshold to reach the desired BER. Once one value S(Pe, sk) in the look-up table

is selected, the required transmit energy is simply

Pk(sk) =
S(Pe, sk)σ

2

|λH,n|2
. (3.26)

The look-up table S(Pe, s) for our code set is shown in Table 3.2, where the SNR is
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presented in dB. The upper bounds of channel utilization at Pb = 10−5 are shown in

Figure 3.6, which is compared with the result of the water-filling solution(dashed line).

The channel utilization for the bit-loading algorithm is higher than the water-filling

solution, which shows that the later is not optimal. Both of these two algorithms

share the same pattern when µ is changing.

Table 3.2: The look-up table used in the bit-loading algorithm.

s (bit/symbol) 0.5 1 1.5 2 2.5 3 3.5
Pe = 10−2 0.87 2.53 4.75 7.11 9.58 12.4 15.3
Pe = 10−3 1.87 3.7 5.73 8.16 10.6 13.46 16.4
Pe = 10−4 3.17 4.71 6.6 9.1 11.48 14.35 17.3
Pe = 10−5 3.65 5.59 7.38 9.925 12.25 15.15 18.1

3.5 Conclusions

A system combining type-I hybrid-ARQ error control with adaptive-MTCM

over a slowly varying MIMO channel has been analyzed. Upper and lower bounds for

the decoded probability of error and retransmission were derived. The bound on the

probability of retransmission was used to create a bound on the channel utilization,

measured in bits/symbol. A simple, though ideal, retransmission scheme was defined

and incorporated into the MTCM STVC system. Simulation results showed that the

upper bound on decoded bit error rate and channel utilization is tight. The upper

bound was used to demonstrate that using a set of relatively simple 8-state trellis

codes, the type-I hybrid-ARQ modifications reduce the code gap by approximately

1 dB. This performance improvement was realized without a reduction in quality of

service or an increase in code complexity. While for an FEC system, the code gap of

the set of 8-state trellis codes can be reduced by about 1 dB by using a set of 64-state

trellis codes. It appears that the use of more complex trellis codes, modified for type-I

hybrid-ARQ, will provide even more substantial reductions in the code gap.
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Figure 3.6: The upper bounds of channel utilization at Pb = 10−5 using bit-loading
algorithm.
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Chapter 4

A Type-II Hybrid-ARQ Error Control for MSTTCs

In Chapter 2 and Chapter 3, we discussed how hybrid-ARQ error control

can be employed in MIMO systems when the channel state information is known

to both the transmitter and the receiver. When the channel state information is

unknown to the transmitter, the MIMO channel can not be manipulated into parallel

channels using singular value decomposition as we have shown in Chapter 2 and

Chapter 3. The coding schemes, known as space-time coding, are used across both

space and time to maximize the link performance. In this chapter, we address how

hybrid-ARQ error control can be combined with multidimensional space-time trellis

codes when the channel state information is known to the receiver but unknown to

the transmitter.

4.1 Introduction

Hybrid automatic repeat request (ARQ) schemes combine forward error

correction (FEC) code and retransmission scheme [49]. A proper combinatin of a FEC

code and ARQ scheme provides lower frame error rate (FER), and higher throughput.

Yu et al [54] have shown that hybrid-ARQ error control using different TCM outper-

form the hybrid-ARQ error control consisting of the same TCM for all transmission.

By using the same state transition diagram for retransmission, an effficient decoding

method was exploited.

Recently, space-time trellis codes (STTCs), proposed by Tarokh et al. [44],

Guey et al. [13], have been widely studied as an FEC code used in MIMO commu-

nication systems for high data rate wireless transmission. In quasi-static flat fading
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channel, the rank and the determinant criterions are used to optimize the code design

[44]. Seok and Lee [22] presented a hybrid-ARQ scheme employing STTCs as the FEC

codes. Each transmission in their HARQ scheme used different STTCs. These codes

were found using a computer search. The hybrid-ARQ scheme, consisting of the op-

timal STTC for each transmission, outperforms the hybrid-ARQ scheme, consisting

of the same STTC for all transmissions.

More recently, Ionescu et al. [18] [20] [19] introduced a Euclidean type dis-

tance and showed that the determinant criterion can be strengthened. The modified

determinant criterion (equal eigenvalue criterion) is used to design a class of multidi-

mensional space-time trellis codes (MSTTCs) for QPSK with two transmit antennas

which outperforms the optimum STTCs with one receive antenna and outperforms

most of the known STTCs with two receive antennas [20]. The multidimensional

space-time codes were proved, by Yan and Ionescu [53], to be generalized coset codes,

and thus geometrically uniform.

In this chapter, we consider the hybrid-ARQ scheme employing MSTTCs

as the FEC codes. The multidimensional space-time codes used for retransmissions

are designed using partition chains on the super-constellation that are different from

the partition chain used for the original transmission. The partitioning used for

retransmission is sub-optimal. The codes designed based on the sub-optimal partition

chains are by themselves not optimal codes. But when combined with the code

used for the original transmission, they provide better error control than using the

same code for all transmissions. We will show that the MSTTCs based on the sub-

optimal partitioning are also geometrically uniform. Geometrical uniformity of the

MSTTCs makes the performance analysis simplified, since the distance profiles of

geometrically uniform code are transparent to the choice of the reference codeword

[11]. Theoretical performance analysis and simulation results show that hybrid-ARQ

scheme, consisting different MSTTCs for each transmissions, outperforms the hybrid-

ARQ scheme, consisting the same MSTTCs for all transmissions.

This chapter is organized as follows: Section 4.2 includes a brief review

of multidimensional space-time trellis codes. Section 4.3 describes the hybrid-ARQ
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scheme for MSTTCs and the system performance analysis. Code design criterion and

the code design are given in Section 4.4. We also show in Section 4.4 the geometrical

uniformity of the retransmission codes. Section 4.5 provides the simulation results

and the conclusions are stated in Section 4.6.

4.2 Review of Multidimensional Space-Time Trellis Codes

4.2.1 Motivation and Design Criterions

Multidimensional space-time trellis codes were proposed by Ionescu et al.

[18, 20, 19] on frequency non-selective fading MIMO channels. Consider a system

with MT transmit antennas and MR receive antennas. Let l be the frame length. A

codeword is the concatenation of all symbols sent over all of the MT antennas during

the corresponding l consecutive symbol epochs. The transmitted codeword starting

at time t can be expressed as a l × MT code matrix

S =

















s1
t s2

t . . . sMT

t

s1
t+1 s2

t+1 . . . sMT

t+1

...
...

. . .
...

s1
t+l−1 s2

t+l−1 . . . sMT

t+l−1

















where sn
t+i, i = 0, · · · , l − 1, n = 1, · · · , MT , is the symbol transmitted on the nth

antenna at time slot t+ i. Let H be the MT ×MR channel matrix, where the elements

of H, hij, represent the channel attenuation coefficients between transmit antenna i

and receive antenna j. The l × MR receive matrix is given by

Y =
√

Es/MTSH + N (4.1)

where Es is the total average energy available at the transmitter over a symbol period,

and N is the additive noise.

Assume i.i.d. quasi-static Rayleigh fading with perfect channel state in-

formation at the receiver. Let E be the code matrix of another codeword. For a

maximum-likelihood receiver, the probability of decoding E when S is transmitted
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has been shown in [44] to be upper bounded by

P (S → E) ≤
(

r
∏

i=1

λi

)−1

(Es/2N0)
−rMR (4.2)

where r is the rank of the difference matrix DSE = S−E, and λi are the eigenvalues

of D∗
SE

DSE. By the determinant criterion [44], one must maximize
∏r

i=1 λi. Suppose

l ≥ MT , Ionescu [19, 20] has shown that by Hadamard’s theorem [17], the eigenvalue

product for some square, positive definite matrix A = [aij ] assumes its maximum

value if and only if A is diagonal. Once D∗
SE

DSE is diagonalized, the product of its

diagonal elements is maximized if and only if they are rendered equal, that is λi = λ,

for i = 1, · · · , MT , and their sum, tr(D∗
SE

DSE) = λMT , is also maximized. It has also

been shown in [19, 18] that tr(D∗
SE

DSE) =
∑r

i=1 λi = d2(S,E) is a squared Euclidean

distance between code matrix S and E.

Based on the above observation, Ionsecu proposed an equal eigenvalue

criterion (EEC): In i.i.d., MT transmit antenna, quasi-static Rayleigh fading with

perfect CSI, an upper bound to the pairwise error probability is made as small as

possible if and only if, for all pairs S, E, the Euclidean squared distances tr(D∗
SE

DSE)

are made as large as possible, and D∗
SE

DSE = (tr(D∗
SE

DSE)/MT )IMT
. For suboptimal

codes the main diagonal elements of the matrices D∗
SE

DSE should be as close as

possible to each other (or tr(D∗
SE

DSE)/MT ), and for which the row-wise sum of the

absolute values of the elements off the main diagonal is as small as possible for each

row. It is also shown that the pairwise error probability is lower bounded by

P (S → E) ≥ Q





√

Esd2 (S,E)

2N0



 . (4.3)

The orthogonal space-time block codes (OSTBC) given in [43], which in-

cluded the Alamouti scheme [1] as a special case, obey the the aforementioned (op-

timal) equal eigenvalue criterion structure. Consider a constellation M with 2b el-

ements. A OSTBC maps k symbols selected from the constellation to a p × MT

matrix. Elements of the p × MT matrix will be transmitted over the MT transmit

antennas during p transmission epochs. Thus kb bits are sent during each p transmis-

sions. Let R = k/p be the rate of OSTBC, then the throughput of OSTBC is b × R
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bits/symbol/transmission. It has been asserted by [43] that, a generalized orthogonal

design can be found with size (k, p)

(k, p) =



















(2, 2) if MT = 2

(4, 4) if MT = 3, 4

(8, 8) if MT = 5, 6, 7, 8

(4.4)

for a real constellation such as PAM; a generalized complex orthogonal design can be

found with size (k, p)

(k, p) =



















(2, 2) if MT = 2

(3, 4) if MT = 3, 4

(MT , 2MT ) if MT = 5, 6, 7, 8

(4.5)

for a complex constellation such as PSK and QAM. Let G be the orthogonal design

given in [43], such that G∗G = aI for some constant a. For a constellation M of

size 2b and (k, p) pair given in (4.4) and (4.5), there are L = 2bk, p × MT matrices

generated by G.

Orthogonal space-time block codes provide diversity gain only with no

coding gain. Concatenating an encoder with OSTBCs would decrease the through-

put, i.e., with 4PSK, two transmit antennas, the throughput would be less than 2

bits/symbol/transmission, even though the OSTBCs for two transmit antennas reach

the full transmission rate (R = 1). Ionescu et al. [19, 20] presented a multidimen-

sional space-time trellis codes (MSTTCs) designed with the equal eigenvalue criterion

to achieve full diversity gain and provide coding gain without decreasing the overall

throughput. The orthogonal space-time block codes are used as the building blocks in

MSTTCs. In order to introduce coding gain and keep the throughput bk/p unchanged,

one must have more than 2bk matrices. This requires augmenting the optimal matrix

set. The set of all p×MT matrix building blocks used for MSTTCs can be regarded

as a super-constellation M. Some matrix pairs in the augmented set M will not obey

the equal eigenvalue structure. Rather than enforcing equal eigenvalue criterion on

all valid code matrix pairs S and E, one can focus on those that dominate perfor-

mance. The design goal of MSTTCs becomes insuring that difference code matrices
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pertaining to an error event path (EEP) in the trellis of length k ≤ k′ transitions (kp

modulator symbols) be optimal for k′ as large as possible, and as close to optimal as

feasible for k > k′.

4.2.2 Construction of the MSTTCs

The design of a MSTTC is similar to the schemes proposed for multiple

trellis coded modulation [10]. First, set partitioning of the super-constellation M with

respect to maximize the distance between the elements in the subsets is performed.

For each block of kb input bits, m bits are sent to the rate m/n convolutional encoder

and generate n coded bits while kb−m bits are uncoded as shown in Figure 4.1. Let

Q = 2kb+z, for z a positive integer, be the number of elements (p × MT matrices) in

the super-constellation M. Since the kb − m + n bits are used to select a p × MT

matrix from the super-constellation, thus the rate of the convolutional encoder has

to satisfy the constraint n−m = log2(Q)− kb, i.e., n−m = z. The n coded bits are

used to select one of the 2n partitions of the super-constellation at the nth level of

the super-constellation’s partition tree. The kb − m uncoded bits are used to select

a p × MT matrix within the designated partition. The number of states, q, in the

convolutional encoder should satisfy q > 2m. Generally, for fixed q, there are several

options for MSTTC encoder. The option providing the best performance is usually

chosen as the MSTTC.

As shown in (4.5), for a complex constellation M with more than two

transmit antennas, the OSTBC does not have full rate. Some quasi-orthogonal space

time block codes have been proposed with full rate for three and four transmit an-

tennas with full diversity [40] and without full diversity [45]. Jafarkhani and Has-

sampour [21] propose a family of multidimensional space-time trellis codes using the

quasi-orthogonal space time block codes as building blocks in the trellis code for four

transmit antennas. In this Chapter, we will focus on the case of two transmit antennas

with QPSK. This is the case considered by Ionescu et al. [19, 20] in his comparison

of the MSTTCs and the STTCs with transmission rate 2 bits/symbol/transmission.
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Figure 4.1: General Encoder of multidimensional space-time trellis.

For two transmission antennas and QPSK constellation, the (k, p) pair re-

lationship is (k, p) = (2, 2) as shown in equation (4.5). For two transmission antennas

and complex constellation, the possible orthogonal designs are

G1 =





a b

b∗ −a∗



 and

G2 =





a b

−b∗ a∗



 .

The super-constellation for MSTTCs generated by the orthogonal designs has 32 = 25

2 × 2 matrices whose entries are from 4PSK constellation. The matrices in the first

and the second half of the super-constellation are generated by G1 and G2, respectively.

Each 2×2 matrix Mi defines the 4PSK symbols to be sent over the MT = 2 transmit
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antennas, during two consecutive symbol epochs. The 32 matrices are:

M0 =





1 3

0 0



 M8 =





3 3

0 2



 M16 =





3 1

0 0



 M24 =





1 1

0 2





M1 =





1 2

1 0



 M9 =





3 2

1 2



 M17 =





3 0

1 0



 M25 =





1 0

1 2





M2 =





1 1

2 0



 M10 =





3 1

2 2



 M18 =





3 3

2 0



 M26 =





1 3

2 2





M3 =





1 0

3 0



 M11 =





3 0

3 2



 M19 =





3 2

3 0



 M27 =





1 2

3 2





M4 =





0 3

0 1



 M12 =





2 3

0 3



 M20 =





2 1

0 1



 M28 =





0 1

0 3





M5 =





0 2

1 1



 M13 =





2 2

1 3



 M21 =





2 0

1 1



 M29 =





0 0

1 3





M6 =





0 1

2 1



 M14 =





2 1

2 3



 M22 =





2 3

2 1



 M30 =





0 3

2 3





M7 =





0 0

3 1



 M15 =





2 0

3 3



 M23 =





2 2

3 1



 M31 =





0 2

3 3



 .

The mapping between the matrix elements and the 4PSK constellation is given in

Figure 4.2.

For all i, j ∈ {0, · · · , 15}, i 6= j, (Mi − Mj)
∗(Mi − Mj) has equal eigen-

values, from the set {2, 4, 6, 8}; the same holds for all i, j ∈ {16, · · · , 31}, i 6= j. For

all i ∈ {0, · · · , 15}, j ∈ {16, · · · , 31}, (Mi − Mj)
∗(Mi − Mj) does not have equal

eigenvalues. The super-constellation is first partitioned into two subsets (index set

{0, · · · , 15} and {16, · · · , 31}). Then each half is partitioned into subsets based on

the eigenvalues of various (Mi −Mj)
∗(Mi −Mj). For simple expression, we generate

the partitioning chain, as shown in Figure 4.3, from Table I in [53]. In Figure 4.3, the

indexes of the matrices in the super-constellation have been used and the elements in

the subsets are ordered by the indexes of the uncoded bits.
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Figure 4.2: Indexing for the 4PSK constellation points.

For QPSK, we have b = 2. For two transmit antenna MT = 2. Since the

super-constellation has Q = 32 = 25 = 2bk+1 elements, the rate of the convolutional

encoder has to be m/(m + 1). All possible MSTTC encoders for QPSK with two

transmit antennas are shown in Figure 4.4 with the possible memory v and number

of state q = 2v.

For the 8-state MSTTC, there are three candidates, while for the 16-state

MSTTC, there are four candidates. The 8- and 16-state MSTTCs for QPSK with

two transmit antennas with the best performance have been given in [20], where the

8-state MSTTC is of the form (b) in Figure 4.4, while the 16-state MSTTC is of

the form (c) in Figure 4.4. The MSTTCs outperform the optimum STTCs (of equal

complexity1) with one receive antenna and outperform most of the known STTCs with

two receive antennas. It is shown in [53], that MSTTCs are geometrically uniform.

The encoder and the trellis diagrams of the 8-state MSTTC for QPSK with two

transmit antennas are given in Figure 4.5 and Figure 4.6, respectively. The encoder

and the trellis diagrams of the 16-state MSTTC are given in Figure 4.7 and Figure

4.8, respectively.

1Complexity is indicated by the product between the number of states and the number of tran-
sitions emerging from each state, normalized to one modulator symbol epoch.
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Figure 4.3: The super-constellation partition chain of the MSTTCs. The elements in each subset are ordered by increasing
decimal value of corresponding uncoded bit pair.
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Constellation
2^5 Matrices5 bits

(a)

(b)

(c)

(d)

Figure 4.4: Possible Encoders of multidimensional space-time trellis code for QPSK
with two transmit antennas.

2/3 Convolutional
Encoder v=3

X(k)_2 X(k)_3

Code 
Sequence












=

00100

01001

10010
TGX(k)_0

X(k)_1

{C0 , … , C7}

Select Matrix 
from Ci

Figure 4.5: Encoder for the best 8-state multidimensional space-time trellis code.
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C0 C2 C1 C3 S0

C4 C6 C5 C7 S1

C2 C0 C3 C1 S2

C6 C4 C7 C5 S3

C1 C3 C0 C2 S4

C5 C7 C4 C6 S5

C3 C1 C2 C0 S6

C7 C5 C6 C4 S7

C0
C2

C1
C3

C4

C6

C5
C7

Figure 4.6: Trellis diagram of the 8-state MSTTC.

3/4 Convolutional
Encoder v=4

X(k)_3














=

0001000

0010001

0100010

1000100

TGX(k)_0

X(k)_1

X(k)_2

Select Matrix 
from Di

{D0 , … , D15}

Code 
Sequence

Figure 4.7: Encoder for the best 16-state multidimensional space-time trellis code.
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D0 D4 D2 D6 D1 D5 D3 D7                S0

D8 D12 D10 D14 D9 D13 D11 D15         S1

D4 D0 D6 D2 D5 D1 D7 D3               S2

D12 D8 D14 D10 D13 D9 D15 D11         S3

D2 D6 D0 D4 D3 D7 D1 D5                S4

D10 D14 D8 D12 D11 D15 D9 D13         S5

D6 D2 D4 D0 D7 D3 D5 D1               S6

D14 D10 D12 D8 D15 D11 D13 D9         S7

D1 D5 D3 D7 D0 D4 D2 D6                S8

D9 D13 D11 D15 D8 D12 D10 D14         S9

D5 D1 D7 D3 D4 D0 D6 D2                S10

D13 D9 D15 D11 D12 D8 D14 D10         S11

D3 D7 D1 D5 D2 D6 D0 D4                S12

D11 D15 D9 D13 D10 D14 D8 D12         S13

D7 D3 D5 D1 D6 D2 D4 D0                S14

D15 D11 D13 D9 D14 D10 D12 D8         S15

Figure 4.8: Trellis diagram of the 16-state MSTTC.
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4.2.3 An Example

In this section, we will take the 8-state MSTTC as an example and il-

lustrate how the encoder and the decoder work. With the transmission rate of 2

bits/symbol/transmission, there are 4 bits corresponding to two consecutive symbol

epochs. The first two bits are sent to the convolutional encoder and the encoder out-

puts a label in {0, · · · , 7} to select a signal partition from {C0, · · · , C7} (Figure 4.3).

The coded bits will also determine the state transition on the trellis. The second

two bits are uncoded and are used to select a 2× 2 matrix from the partition chosen

by the coded data bits. A sequence of data bits are mapped to a sequence of 2 × 2

square sub-matrices, i.e., a codeword. Note that in the trellises shown in Figure 4.6

and Figure 4.8, transitions from even states use only matrices from first half of the

super-constellation, while transitions from odd states use only matrices from second

half of the super-constellation. As a consequence, D∗
SE

DSE has equal eigenvalues for

any difference matrix DSE corresponding to error event path of length k ≤ 2 (i.e., up

to four 4PSK symbols).

Consider the all zero input sequence

d0 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. (4.6)

The all zero coded bits select the solid black line as shown in Figure 4.9. The four

matrices on the solid black line are the elements of sub-constellation C0. The all zero

uncoded bits select the first matrix in the sub-constellation C0, which is circled in

Figure 4.9. Let us consider an other sequence

d1 = [0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1]. (4.7)

The convolutional encoder input is [01, 10, 11, 00]; the output is [010, 101, 000, 110].

The decimal equivalent of the output sequence is [2, 5, 0, 6], which represent the sub-

constellation index of each state transition. The trellis path determined by the coded

bits is shown as the dashed black line in Figure 4.9. The four matrices on the first

segment of the dashed black line belong to subset

C2 =











0 2

1 1









2 2

1 3









0 0

3 1









2 0

3 3











. (4.8)
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The uncoded bits [11] selected the forth matrix





2 0

3 3



 . (4.9)

The four matrices on the second segment of the dashed black line belong to subset

C5 =











3 1

0 0









1 1

0 2









3 3

2 0









1 3

2 2











. (4.10)

The uncoded bits [00] selected the first matrix





3 1

0 0



 . (4.11)

The four matrices on the third segment of the dashed black line belong to subset

C0 =











1 3

0 0









3 3

0 2









1 1

2 0









3 1

2 2











. (4.12)

The uncoded bits [10] selected the second matrix





3 3

0 2



 . (4.13)

The four matrices on the forth segment of the dashed black line belong to subset

C6 =











2 1

0 1









0 1

0 3









2 3

2 1









0 3

2 3











. (4.14)

The uncoded bits [11] selected the forth matrix





0 3

2 3



 . (4.15)

So the index of the QPSK sequence transmitted on the first and the second antenna

are [2, 3, 3, 0, 3, 0, 0, 2]T and [0, 3, 1, 0, 3, 2, 3, 3]T , respectively. Given the channel coef-

ficients between the transmit and receive antennas and the additive noise, the received
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signal corresponding to the sequence d1 is









































−0.3095 + 0.0018i

−1.3051 + 1.8240i

−0.0746 − 0.2637i

−1.0528 − 0.7063i

−1.3153 + 1.5568i

−0.1388 + 0.2471i

−1.0331 − 0.3079i

−0.1665 + 1.0929i









































=









































−1 − i +1 + i

+1 − i +1 − i

+1 − i −1 + i

+1 + i +1 + i

+1 − i +1 − i

+1 + i −1 − i

+1 + i +1 − i

−1 − i +1 − i













































−0.6210 + 0.1817i

−1.0755 + 0.0310i



+









































−0.0947 + 0.4297i

−0.2559 + 0.4740i

−0.5025 − 0.0489i

0.2972 + 0.3429i

−0.2661 + 0.2068i

−0.3536 − 0.1808i

0.2731 − 0.7797i

0.0045 − 0.0001i









































.

(4.16)

Decoding using the Viterbi decoder is performed in two steps

1. At each branch in the trellis, the decoder compares the received signal to each

of signals allowed for that branch. The metric is taken as the Frobenius norm

between the received signal and the product of H and the possible transmit

signal. The branch is labeled with a metric of the allowed signal closest to the

received signal. In other word, the branch metric is the minimum Forbenius

norm between the allowed signal and the received signal.

2. The Viterbi algorithm is then applied to the trellis, with the surviving partial

paths corresponding to the path with the lowest accumulated metric.

The metrics at each branch in the trellis are shown in Table 4.1 with the

branch metric being underlined. The Viterbi Decoding is shown in Figure 4.10 The

highest partial path metrics are labeled at each node, and the corresponding surviving

paths are denoted by the black lines. The non-surviving paths are denoted by grey

lines.
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Figure 4.9: Trellis diagram of the 8-state MSTTC.
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Table 4.1: The metrics of the Viterbi decoder.
Stage 1 Metric Stage 2 Metric Stage 3 Metric Stage 4 Metric
S0 → S0 [8.32 6.62 9.93 8.24] S0 → S0 [0.56 6.45 3.22 9.11] S0 → S0 [5.73 0.27 14.50 9.03] S0 → S0 [6.62 3.33 7.73 4.44]
S0 → S1 [16.07 7.21 9.35 0.48] S0 → S1 [5.39 4.99 4.67 4.28] S0 → S1 [7.57 7.44 7.32 7.20] S0 → S1 [9.54 8.36 2.71 1.53]
S0 → S2 12.49 10.80 5.76 4.07] S0 → S2 [2.25 8.14 1.53 7.42] S0 → S2 [10.24 4.77 9.99 4.53] S0 → S2 [10.59 7.30 3.76 0.47]
S0 → S3 [11.90 3.04 13.52 4.66] S0 → S3 [3.71 3.30 6.37 5.97] S0 → S3 [3.06 2.94 11.83 11.70] S0 → S3 [5.57 4.39 6.68 5.49]

S1 → S4 [1.74 6.62 3.05 7.93] S1 → S4 [5.55 10.43 4.34 9.21] S1 → S4 [5.87 3.74 7.32 5.20]
S1 → S5 [3.60 2.20 7.47 6.07] S1 → S5 [12.87 10.64 4.12 1.89] S1 → S5 [10.39 3.75 7.32 0.68]
S1 → S6 [0.46 5.33 4.33 9.21] S1 → S6 [9.32 14.19 0.57 5.44] S1 → S6 [8.13 6.00 5.06 2.94]
S1 → S7 [4.88 3.48 6.19 4.79] S1 → S7 [9.11 6.87 7.89 5.66] S1 → S7 [8.12 1.48 9.58 2.94]
S2 → S0 [5.39 4.99 4.68 4.28] S2 → S0 [7.57 7.44 7.32 7.20] S2 → S0 [9.54 8.36 2.71 1.53]
S2 → S1 [0.56 6.45 3.22 9.11] S2 → S1 [5.73 0.27 14.50 9.03] S2 → S1 [6.62 3.33 7.73 4.44]
S2 → S2 [3.71 3.30 6.37 5.97] S2 → S2 [3.06 2.93 11.83 11.70] S2 → S2 [5.57 4.39 6.68 5.49]
S2 → S3 [2.25 8.14 1.53 7.42] S2 → S3 [10.24 4.77 9.99 4.53] S2 → S3 [10.59 7.30 3.76 0.47]
S3 → S4 [3.59 2.20 7.47 6.07] S3 → S4 [12.87 10.64 4.12 1.89] S3 → S4 [10.39 3.75 7.32 0.68]
S3 → S5 [1.74 6.62 3.05 7.93] S3 → S5 [5.55 10.43 4.34 9.21] S3 → S5 [5.87 3.74 7.32 5.20]
S3 → S6 [4.87 3.48 6.18 4.79] S3 → S6 [9.11 6.87 7.89 5.66] S3 → S6 [8.12 1.48 9.58 2.94]
S3 → S7 [0.46 5.33 4.33 9.21] S3 → S7 [9.32 14.19 0.58 5.44] S3 → S7 [8.13 6.00 5.06 2.94]

S4 → S0 [10.24 4.77 9.99 4.53] S4 → S0 [10.59 7.30 3.76 0.47]
S4 → S1 [3.06 2.94 11.83 11.70] S4 → S1 [5.57 4.39 6.68 5.49]
S4 → S2 [5.73 0.27 14.50 9.03] S4 → S2 [6.62 3.33 7.73 4.44]
S4 → S3 [7.57 7.44 7.32 7.20] S5 → S3 [9.54 8.36 2.71 1.53]
S5 → S4 [9.32 14.19 0.58 5.44] S5 → S4 [8.13 6.00 5.06 2.94]
S5 → S5 [9.11 6.87 7.89 5.66] S5 → S5 [8.12 1.48 9.58 2.94]
S5 → S6 [5.55 10.43 4.34 9.21] S5 → S6 [5.87 3.74 7.32 5.20]
S5 → S7 [12.87 10.64 4.13 1.89] S5 → S7 [10.39 3.75 7.32 0.68]
S6 → S0 [3.06 2.94 11.83 11.70] S6 → S0 [5.57 4.39 6.68 5.49]
S6 → S1 [10.24 4.77 9.99 4.53] S6 → S1 [10.59 7.30 3.76 0.47]
S6 → S2 [7.57 7.44 7.32 7.20] S6 → S2 [9.54 8.36 2.71 1.53]
S6 → S3 [5.73 0.27 14.50 9.03] S6 → S3 [6.62 3.33 7.73 4.44]
S7 → S4 [9.11 6.87 7.89 5.66] S7 → S4 [8.12 1.48 9.58 2.94]
S7 → S5 [9.32 14.19 0.57 5.44] S7 → S5 [8.13 6.00 5.06 2.94]
S7 → S6 [12.87 10.64 4.12 1.89] S7 → S6 [10.39 3.75 7.32 0.68]
S7 → S7 [5.55 10.43 4.34 9.21] S7 → S7 [5.87 3.74 7.32 5.20]
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Figure 4.10: Viterbi Decoding.
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4.3 System Performance of Hybrid-ARQ using MSTTCs

We denote the MSTTC codeword of the τ th transmission as

Sτ =

















sτ (1)

sτ (2)
...

sτ (l/MT )

















where sτ (k), k = 1, · · · , l/MT , is the MT × MT transmitted matrix symbol over the

[(k − 1) ∗MT + 1]th to the kM th
T symbol period of the τ th transmission. The channel

is assumed to be quasi-static flat fading, i.e., the channel remains constant during

a frame and vary from one frame to another. The received signal matrix of the τ th

transmission

Yτ =

















yτ(1)

yτ(2)
...

yτ (l/MT )

















is given by

Yτ =
√

Es/MTSτHτ + Nτ (4.17)

where yτ (k) is the MT × MR receive matrix corresponding to sτ (k), Es is the total

average energy available at the transmitter over a symbol period, Hτ is the MT ×MR

channel matrix during the τ th transmission, and Nτ is the additive noise during the

τ th transmission. The elements of the channel matrix are modeled as independent

samples of a zero-mean complex Gaussian random variable with variance 0.5 per

dimension. The additive noise on each receive antenna at each symbol time is mod-

eled as independent samples of a zero-mean complex Gaussian random variable with

variance N0/2 per dimension.

In order to use the same Viterbi decoder at the receiver, the MSTTCs for

each transmission must have the same state transition diagram [54, 22]. After the J th

transmission, consecutively received sequences are combined and decoded by a single
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Viterbi decoder. The branch metrics at time k is given by

J
∑

τ=1

‖yτ (k) −
√

Es/MT ŝτ (k)Hτ‖2 (4.18)

where ‖·‖ is the Frobenius norm and ŝτ (k) denotes the possible transmitted sig-

nal of the corresponding trellis state over the τ th transmission. The path with

the smallest sum of branch metric gives the estimated codeword. For conventional

code combining HARQ scheme, the same codes are used for each transmission, i.e.,

s1(k) = s2(k) = · · · = sJ(k), for k = 1, · · · , l/MT . We would like to design a set of

different codes for different transmission, such that the over all performance is better

than the conventional HARQ scheme.

Let S1, · · · ,SJ be the codewords corresponding to the information data IS

of the J transmissions. We consider the matrix

S =

















S1 0 . . . 0

0 S2 . . . 0
...

...
. . . 0

0 0 . . . SJ

















where 0 denotes the all-zero l×MT matrix. The input output relation of the codewords

associated with IS can be expressed as

Y =
√

Es/MTSH + N (4.19)

where

Y =











Y1

...

YJ











H =











H1

...

HJ











N =











N1

...

NJ











.

The ML detection for IS is given by

ÎS = arg min
IS→S

‖Y −
√

Es/MTSH‖2. (4.20)
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Now consider another information data IE corresponding to the codewords E1, · · · ,EJ .

Let

E =

















E1 0 . . . 0

0 E2 . . . 0
...

...
. . . 0

0 0 . . . EJ

















.

The conditional pairwise error probability (PEP) between IS and IE is given by

P (IS → IE|H) = P
(

‖Y −
√

Es/MTSH‖2 > ‖Y −
√

Es/MTEH‖2
)

. (4.21)

By using the same manipulation of [19], average pairwise error probability is lower

bounded by

P (IS → IE) ≥ Q





√

Esd2 (S, E)

2N0



 (4.22)

= Q





√

Es

∑J
τ=1 d2 (Sτ ,Eτ)

2N0



 (4.23)

where d(A, B) is an Euclidean type distance on space-time code defined in [19] as

d(A, B) = (
∑q

i=1 σ2
i (A − B))1/2, where q = rank(A − B) and σi, i = 1 · · · , q are the

singular values of A − B. The derivation from equation (4.22) to equation (4.23)

comes from the fact that d2(S, E) =
∑Q

i=1 σ2
i (S − E) =

∑J
τ=1

∑M(τ)
m=1 σ2

m(Sτ − Eτ) =
∑J

τ=1 d2(S,E), where Q = rank(S −E), M(τ) = rank(Sτ −Eτ ) for τ = 1, · · · , J , and

Q =
∑J

τ=1 M(τ).

The frame error rate (FER) is obtained by averaging the union of all the

error events. FER performance of MSTTC is dominated by the squared Euclidean

distance over the shortest error event path (EEP), i.e., d2
free. Let N(dfree) be the

average number of sequences that are distance dfree from the transmitted sequence.

The FER is approximated by

Pe ≈ N(dfree)Q





√

Esd2
free

2N0



 . (4.24)
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In Section 4.4, we will design a set of codes such that the over all minimal

distance between the codewords is maximized. We assume that errors are perfectly

detected and the feed back channel is error free.

4.4 Code Design of the Hybrid ARQ scheme

According to equation (4.24), increasing the overall d2
free after J transmis-

sions can reduce the frame error rate. For the conventional code combining HARQ

scheme, which uses the same code for all transmissions, the d2
free increases at a con-

stant rate upon successive retransmission, i.e, the d2
free of the combined code is a

multiple of the d2
free of the code used for each transmission. By designing different

(supplementary) MSTTCs for each transmission, it is possible to improve the rate by

which d2
free increases with the number of transmissions,

The concept of supplementary code design for hybrid-ARQ scheme was

proposed by Yu et al. [54] for SISO channel communication, where a supplementary

trellis-coded modulation (TCM) codes were obtained through the computer search.

In Section 4.4.1, we will show that the optimal MSTTCs for each transmission can

be obtained using different partition chain of the super-constellation for each trans-

mission.

4.4.1 Super-Constellation Partition Chains and Code Design

As shown in equation (4.24), the frame error rate (FER) performance is

dominated by the squared Euclidean distance over the shortest error event path

(EEP), i.e., d2
free. For the 8-state MSTTC, d2

free occurs over the parallel transitions

(the transitions connecting a pair of states directly); while for the 16-state MSTTC,

d2
free occurs over the non-parallel transitions (two paths emerging from the same state

and then merging into another state in at least two trellis stages).

The TCM codes of hybrid-ARQ scheme over SISO channel given in [54]

are designed using computer search to maximize the over all free distance after re-

transmission. Their algorithm only works for the case that the d2
free occurs over the
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non-parallel transitions For hybrid-ARQ schemes using MSTTCs, instead of follow-

ing the idea of Yu et al. given in [54], we come up with a code design procedure for

retransmissions using a sub-optimal partition chain. As will shown in Section 4.4.2,

the new code designed using the sub-optimal partition chain is also geometrically

uniform.

The sub-optimal partitioning of the first, the second and the third trans-

missions are given in Figure 4.11. In part (a) of Figure 4.11, Ci, i = 0, · · · , 7, are

used in the 8-state MSTTCs for the initial transmission; Di, i = 0, · · · , 15, are used

in the 16-state MSTTCs for the initial transmission. In part (b) of Figure 4.11,

C ′
i , i = 0, · · · , 7, are used in the 8-state MSTTCs for the second transmission; D ′

i,

i = 0, · · · , 15, are used in the 16-state MSTTCs for the second transmission. In

part (c) of Figure 4.11, C ′′
i , i = 0, · · · , 7, are used in the 8-state MSTTCs for the

third transmission; D ′′
i , i = 0, · · · , 15, are used in the 16-state MSTTCs for the third

transmission. We could keep on design new partition for later on retransmissions or

use the partitioning repeatly. In this dissertation, we will just stop after three trans-

missions. For the subsets Ci, i = 0, · · · , 7, the intra set distance is 8 or 16, while for

the subsets C ′
i and C ′′

i , i = 0, · · · , 7, the intra set distance is 12 or 8 correspondingly.

The minimal squared Euclidean distance (SED) within each subset is kept unchanged

(minimal SED=8). And the overall minimal SED after retransmissions is increased.

The design procedure based on the sub-optimal partition chain works fine for the case

where d2
free occurs over parallel transitions.

For the subsets Di, i = 0, · · · , 15, the intra set distance is 16, while for the

subsets D ′
i and D ′′

i , i = 0, · · · , 15, the intra set distance is 12. The intra set minimal

SED is decreased while the inter set minimal SED is increased which is acceptable

since d2
free of the 16-state MSTTC does not occurs over parallel transitions, i.e, the

intra set distance does not dominate the FER performance. The design procedure

based on the sub-optimal partition chain works fine for the case where d2
free occurs

over non-parallel transitions.

Before we compare the performance of the conventional hybrid-ARQ scheme

and the new scheme, we would like to show that the codes designed base on the
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{0,1,…,15} {16,…,31}

(c)

Figure 4.11: The super-constellation partition chain of the initial, the second, and
the third transmission for QPSK with two transmit antennas.
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sub-optimal partition chain are geometrically uniform, which will simplify the perfor-

mance analysis since the distance profiles are transparent to the choice of a reference

codeword if a code is geometrically uniform [11].

4.4.2 Geometrical Uniformity of the Codes

An outline proof will be presented for the 8-state MSTTC used for the

second transmission. The proof of the other codes is similar. Following the notation

of [53], let R1, R2, and R3 denote the reflection operation about the x, y axes and

the origin respectively. And let R0 denotes no reflection. let U(M) be the generating

group for M as defined in [53]. Consider the group

U(M′) =











R0 R0

R0 R0









R2 R3

R3 R2









R1 R3

R3 R1









R3 R0

R0 R3











(4.25)

as the generating group of C ′
0. The sub-optimal partition of the thirty-two code

matrices into the eight cosets given in part (b) of Figure 4.11 is induced by the factor

group U(M)/U(M′), where M
′ is chosen to be C ′

0.

The cosets of U(M)/U(M′) that correspond to C ′
0 · · ·C ′

7 are

U ′,





R3 R2

R2 R3



U ′,





R2 R2

R2 R2



U ′,





R1 R0

R0 R1



U ′, (4.26)





R0 R1

R2 R3



U ′,





R3 R3

R0 R0



U ′,





R2 R3

R0 R1



U ′, and





R1 R1

R2 R2



U ′, (4.27)

respectively, where U ′ is short for U(M′). Let

f(a2, a1, a0) =





R0 R1

R2 R3





a2




R2 R2

R2 R2





a1




R3 R2

R2 R3





a0

, (4.28)

then f : (Z2)
3 → U(M)/U(M′) is a isomorphism between A = (Z2)

3 and U(M)/U(M′).

Under this isomorphism, the of U(M′) corresponding to C ′
0 · · ·C ′

7 are the images of

(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1) respectively. The la-

bel map m : A → M/M
′ is an isometric labeling with the induced one-to-one map

of U(M)/U(M′) → M/M
′. So the 8-state MSTTC based on the sub-optimal coset
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partitioning given in part (b) of Figure 4.11 is a generalized coset codes in the sense

of [11], and there by geometrically uniform. In a similar way, one can show that the

other MSTTCs are also geometrically uniform.

4.4.3 Performance Comparison

Geometrical uniformity of the MSTTCs based on the optimal and the

sub-optimal coset partitioning make the performance analysis simplified, since the

distance profiles of geometrically uniform code are transparent to the choice of the

reference codeword.

The combined d2
free’s of the conventional and the new hybrid-ARQ scheme

are summarized in Table 4.2 for 8- and 16-state MSTTCs. The ’>’ sign in the table

represents the distance contribution by the matrix pairs which do not satisfy the equal

eigenvalue condition.

Table 4.2: Comparison of the d2
free.

q initial 2nd transmission 3rd transmission
conventional new conventional new

8 8 16 20 24 32
16 >8 >16 24 >24 40

The overall d2
free after retransmission(s) using different codes that is optimal

over each transmission is larger than the d2
free using unique code for all transmissions.

4.5 Simulation Results

A system with 2 transmit-antenna and 1 receive-antenna is used. The

frame length is 130 symbols. The transmission rate is 2 bits/symbol/transmission.

Figure 4.12 and 4.13 show the FER performance of the 8-state and 16-state MSTTCs

employing two types of HARQ schemes. HARQ I represents the conventional code

combining hybrid-ARQ scheme using unique code for all transmissions. HARQ II
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represents the code combining hybrid-ARQ scheme using the different code designed

for each transmission.

0 1 2 3 4 5 6 7
10

−2

10
−1

10
0

SNR (dB)

F
E

R

HARQ I and II, 1st trans.
HARQ I, 2nd trans.
HARQ II, 2nd trans.
HARQ I, 3rd trans.
HARQ II, 3rd trans.

Figure 4.12: Frame error rate for the 8-state MSTTCs.

4.6 Conclusions

As the simulation result indicated, hybrid-ARQ scheme using different code

further improves the FER performance of the conventional code combining by about

0.5 dB after 2nd transmission, and by about 0.8 dB at after 3rd transmission.

The sub-optimal partition chain of the super-constellation is proposed for

the hybrid-ARQ scheme using MSTTCs. The hybrid-ARQ scheme, consisting of

the optimal MSTTC for each transmission, outperforms the hybrid-ARQ scheme,

consisting of the same MSTTC for all transmissions.
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Figure 4.13: Frame error rate for the 16-state MSTTCs.

93



94



Chapter 5

Conclusions

In this dissertation, issues about using ARQ in MIMO communication sys-

tems have been addressed. Historically, ARQ techniques have been designed for SISO

communication systems. This work analyzed and developed the ARQ retransmission

protocols and some error control codes for ARQ combined MIMO communication

systems. The major contribution can be divided into several parts.

5.1 Contributions

In Chapter 2, the channel utilization and transmission delay expressions are

derived for a communication link consisting of multiple parallel channels with different

transmission rates and different packet error rates. Generalized retransmission ARQ

protocols for SW and GBN ARQ are proposed to improve the channel utilization and

transmission delay when applied to multiple parallel channels.

Chapter 3 examines the performance improvement of employing a type-

I hybrid-ARQ scheme in MIMO systems where we assume that the channel state

information is available at both the transmitter and the receiver. Spatio-temporal

Vector coding [31] has been used to convert the MIMO channel into parallel channels.

Upper and lower bounds for the decoded probability of error and retransmission

are derived. These bounds are used to demonstrate that the type-I hybrid-ARQ

modifications reduce the code gap without a reduction in quality of service or an

increase in code complexity.

Chapter 4 presents a hybrid-ARQ scheme employing the multidimensional

space-time code (MSTTC) as the FEC code. The concept of sub-optimal partition
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chain of the super-constellation is proposed. The sub-optimal partition chains are

used to design the retransmission error control codes which serve as supplementary

codes of the previous transmissions.

5.2 Areas of Future Work

The delay of SR-ARQ consists of the transmission delay and the resequenc-

ing delay. We have not consider the resequencing delay in Chapter 2. Even though

the packet-to-channel assignment rule does not affect the channel utilization and the

transmission delay of SR-ARQ as we have shown in Chapter 2, but it is expected to

effect the resequencing delay of the multichannel SR-ARQ protocol. Shacham and

Shin [37] described and analyzed a modified SR ARQ protocol for used over parallel

channels with the same transmission rate but different packet error rates. It will be

our future work to extend the result to the case that all the channels have different

transmission rates and different packet error rates.

We assume slow fading channel over all this dissertation. The performance

and code design of ARQ technique in fast fading channels can be studied.

The super-constellation given in Chapter 4 is for MIMO communication

system with 2 transmit antennas and QPSK. We might want to extend the super-

constellation and the partition method of the super-constellation to the case of any

number of transmit antennas and any constellation.
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