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New instruction sets have been based on tradit

Here, the latter has yielded a simple, optima

A Unique Micropt

Dennis A. Fairclough, Brigham Young University

The fundamental building block of any computerisits
instruction set. In the architecture of a new computer, the
selection of the instruction set is the most critical decision.
Thedecision is even more critical in microprocessor archi-
tecture, due to therestrictions on power dissipation, num-
ber of input/output pins, die size, speed, and chip com-
plexity.

The instruction set format is composed of the instruc-
tion, the word size to be accessed, the address mode, the
address modifiers, and the condition codes, in a binary
format. The instruction set is the group of instructions
that the system may execute, while the instruction set for-
mat is the arrangement of the instruction field, address
field, and other fields in memory.

Instruction sets appear to vary widely from computer
to computer, but a closer analysis shows that they have
many similarities. The instruction set of one micropro-
cessor can be remarkably similar to that of a different mi-
croprocessor. Different microprocessors can even share
identical instructions which are supersets of some earlier
microprocessor.

Computer instruction sets are evolutionary rather than
revolutionary in design; most are simply extensions of
earlier sets. One reason for this is the need to be program-
compatible with older computers. Another is the com-
plexity of the design task itself. This complexity also
forces a heuristic approach—designers must make heuris-
tic decisions because they lack data on how instructions
will be used.

An example of how heuristic architectural decisions are
made is detailed in a paper by Foster.! Foster relates,
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ther than on the application of scientific method.

n-member instruction set.

'essor Instruction Set

“‘Someone once asked why Stretch was designed with
eight index registers. The answer that is reported to have
been given was ‘clearly four are not enough and 16 would
be too expensive.’ In the same spirit we choose 32 bits as
the word length of our microcomputer.”’ Design deci-
sions made in this manner are typical of those made in the
design of computer instruction sets.

A very good programmer once told me, ‘“‘the instruc-
tion set on the Nova is the best that will ever be.’” Heaven
help usif thisis true of any instruction set. Instruction sets
are like high-level languages—no one is the best; there are
only languages that are less restrictive than others.

In providing for program portability, programmers
have created their own software instruction sets. The
p-code used in the UCSD Pascal system?is a good example
of a software metainstruction set. By forcing a standard
software interface, software portability is more easily
achieved. This is not all bad, as evidenced by the large
number of microprocessors using UCSD Pascal. The
UCSD approach forces transportability at the expense of
efficiency in the execution of the target-machine pro-
gram.

The above are just a few examples of architectural com-
plexity and how this complexity forces heuristic design de-
cisions. The complexity that exists in computer architec-
ture in general, and instruction set design in particular,
encourage heuristic designs and evolutionary micropro-
cessor architectures. Because computer architects gen-
erally do not know how their instructions will be used,
they find it safer to follow an existing design than to create
a new set from scratch.

May 1982

The first goal of this article is to present data on how in-
struction sets have been used. The second is to define a
scientific approach to instruction set design and then to
use that approach to construct a new microprocessor
instruction set. If we do not understand the past, we are
condemned to relive it.

Previous work

A study of the Maniac computer by Herbst, Metropo-
lis, and Wells? analyzed by Foster* showed that in the
Maniac 16 of the 36 possible instructions accounted for 90
percent of all instructions written, and 24 instructions ac-
counted for 99 percent of all instructions written. Foster?
observed that the CDC-3600 instruction set could be
reduced to one-half or one-quarter the size of the present
instructions without loss of flexibility. He demonstrated
thatif the CDC-3600instruction set was reduced from 142
instructions to 64 instructions, only two percent of the in-
structions executed would not be in the smaller instruc-
tion set. Alexander and Wortman® reported similar
results in a study of the IBM System/360.

In research by the author, studies were made of pro-
grams used on four microprocessors: the Texas Instru-
ments TMS9900, the MOS Technology MOS6502, the
Motorola MC6800, and the Motorola MC68000. A sig-
nificant number and variety of programs were analyzed.
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Table 1.
The use of microprocessor instructions.

INSTRUCTIONS TMS9900 MO0S6502 MC6800 MC68000
EXECUTED INSTR.  CUM. INSTR.  CUM. INSTR.  CUM. INSTR.  CUM.
= 0% 8.7%  8.7% 7% 1.1% 21.1%  21.1% 303%  30.3%
<0.1 14.5 23.2 125 19.6 27.1 54.2 39 342
<0.5 29.0 52.2 107 303 27.1 81.3 211 553
<1.0 203 72.5 143 4456 6.5 87.8 118 67.1
<2.0 7.2 79.7 %68 714 0.9 88.7 105 776
<3.0 5.8 85.5 161 875 19 90.6 132 908
<4.0 7.2 92.7 3.6 911 4.6 95.2 -~ 00 908
<5.0 2.9 95.6 36 947 0.9 96.1 6.6 974
>5.0 43 99.9 54 100.1 3.7 9.8 26 100.0
TOTAL 99.9% 100.1% 99.8% 100.0%

A summary of the data is given in Table 1. The table
shows that 8.7 percent to 30.3 percent of all the micropro-
cessor instructions were never used; also 44.6 percent to
87.8 percent of the instructions were used 1 percent or
less.

The data could be misleading if you simply look at the
percentage of use. Ideally the frequency of use would
have a uniform distribution. For the microprocessors
analyzed, the uniform instruction-usage distribution
should be:

® TMS9900 1.45percent
® MOS6502 1.79 percent
* MC6800 0.93 percent
® MC68000 1.32 percent

These percentages place a figure-of-merit value on the in-
struction usage. If the instruction usage U is

U/10=UD

Where U =instruction usage and UD =uniform instruc-
tion distribution usage, then the inclusion of the instruc-
tion in the instruction set should be eliminated. Using this
criteria, we find that for the

(Equation 1.)

e TMS9900, 18 of 69 total instructions (26%),
Table 2.
The Gibson Mix.
(1) LOADS AND STORES 31.2%
(2) FIXED-POINT ADD AND 6.1
SUBTRACT
(3) COMPARES 3.8
(4) BRANCHES 16.6
(5) FLOATING-POINT ADD 6.9
AND SUBTRACT
(6) FLOATING MULTIPLY 3.8
(7) FLOATING DIVIDE 1.5
(8) FIXED-POINT MULTIPLY 0.6
(9) FIXED-POINT DIVIDE 0.2
(10) SHIFTING 4.4
(11) LOGICAL AND, OR, ETC. 1.6
(12) INSTRUCTIONS NOT 5.3
USING REGISTERS
(13)  INDEXING 18.0
TOTAL 100.0%

* MOS6502, 13 of 56 total instructions (23%),
* MC6800, 29 of 107 total instructions 27%),
* MC68000, 31 of 76 total instructions (41%),

satisfy equation 1 and should be eliminated from the in-
struction set.

The instruction set usage presented above prompts one
to ask, Is this a science or an art? Based on the data
presented, we must answer that instruction set architec-
ture is an art masquerading as a science. Knuth,® in an
article entitled ‘‘Computer Programming as an Art,”
said, ¢“. . . a transition of programming from an art to a
disciplined science must be effected. . . . we have actually
succeeded in making our discipline a science, and in a re-
markably simple way: merely by deciding to call it ‘com-
puter science.’ ’’ Computer architecture and instruction
set design are a combination of parody, art, and science.

The studies by Herbst, Metropolis, Wells, Alexander,
Wortman, and Foster, and the research reported here,
clearly indicate that a scientific approach to the design of
instruction sets is required.

The procedure is first to determine how existing in-
struction sets are used and what particular groups of
instructions predominate (and are significant). The
methodology is based on instruction group usage. Only
when the findings are in hand can a new instruction set be
designed.

Before we begin this procedure, however, we must first
investigate the history of instruction mixes, instruction
frequencies, and instruction groups.

Instruction mixes. The most widely quoted studyonthe
usage of instructions is that of Gibson.” Gibson at-
tempted to quantify atool—the ‘‘Gibson Mix’’—in order
to *“. . . plan and design new computers, to estimate the
worth of a computer to a user, and to plan data processing
systems.’’ Unfortunately, the Gibson Mix combined both
instruction usage, instructions not using registers, and in-
dexing. The Gibson Mix also combined instructions and
addressing modes, two entirely different processes; mix-
ing them only obscured the relationships between instruc-
tions and addressing modes.

The Gibson Mix grouped instructions by common
characteristics, according to the function they per-
formed. The Gibson Mix is shown in Table 2.

IEEE MICRO
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We must make a point in defense of Gibson’s ap-
proach—most computer architects mix instructions and
addressing modes. A good example of this mixing is the
LDA (LOAD ACCUMULATOR IMMEDIATE) in-
struction format. The LDA instruction LOADs the IM-
MEDIATE data (the source address) into the A register
(the implied destination address).

The mixing of address modes with instructions is a
common occurrence. In early computers, instructions
and address fields were mixed due to the small memory
space available. Memory space is not a major problem to-
day and there is no reason to mix address modes, instruc-
tions, and other information; in fact, there are many
reasons not to mix them. One might argue that the mixing
of instructions and address types saves bits in the instruc-
tion format and thusreduces the fetch time of the address.
The discussion on address types will demonstrate that this
is not the case.

After Gibson, and following his lead, other researchers
developed other mixes—Arbuckle one for the IBM 650,
Agarwal® and Lunde!© one for the PDP-10, Schreiber!!
one for the IBM 360, Foster!2 one for the CDC-3600, and
others!3-15 ones for other machines. Such instruction
mixes provided the basis on which the author generated
instruction groups.

Instruction frequencies. Instruction frequencies have
been investigated by Alexander!® for the IBM 360,
Shustek!” for the Amdahl 470 and Intel 8080, Shima!8 for
the Z8000, and Stritter!® for the MC68000. Instruction
frequencies record the frequency of use for individual
instructions. They suffer from many problems—one is
that in most computers instructions and addressing
modes are mixed; another is that individual instructions
do not always appear in differing computer architectures.
The lack of uniformity from one computer to another
makes individual instruction frequencies measurements
of limited usefulness.

Instruction groups. Instruction groups were originally
created by the author in May, 1976, but have not been
published until now. The groups are variations on the
Gibson Mix but with one very important difference: in-
structions in these groups are not mixed with address
modes. All instructions are pure instructions.

Instructions are divided into eight categories:

® Data movement instruction group. Instructions in
this group are LOAD, STORE, and MOVE.

* Program modification instruction group. Instruc-
tions in this group are BRANCH, JUMP, CALL
(subroutine), and RETURN (subroutine).

® Arithmetic instruction group. Instructions in this
group include ADD, SUBTRACT, MULTIPLY,
and DIVIDE.

® Compare instruction group. This group includes
both arithmetic and logical compare instructions.

® Logical instruction group. Instructions such as
AND, OR, XOR, and NOT are included in this

group.

May 1982

® Shift instruction group. Instructions in this group
are SHIFT and ROTATE.

® Bit instruction group. Bit set, clear, and test are in
this group.

® Input/output and miscellaneous instruction group.
In this group are input and output instructions and
those instructions that do not logically fit into any of
the other seven groups.

The collecting of instructions into groups masks out the
idiosyncrasies of individual instruction sets. Using these
groups allows the instruction sets of many different com-
puters to be easily and accurately analyzed.

Definitions

To provide an unambiguous working vocabulary, the
following definitions are provided:

o Instruction set. A computer’s instruction set is the set
of all instructions that can be executed.

e Instruction format (instruction set format). The in-
struction format is the binary configuration that the
instruction-bit field, the address-mode-bit field, the
address-modifier-bit field, and all other instruction-
bit fields are formatted into. The instruction format
is in a form that the control unit may easily decode
for instruction execution and address resolution.

® Address field. The address field is that portion of the
instruction format that defines the unique bit con-
figurations for the specific address types.

e Instruction field. The instruction field is that portion
of the instruction format that defines the unique bit
configurations for the instruction (operation code).

e Instruction (operation code). The instruction (op-
code) is an object that instructs the control unit
which operation to perform.

® Addresstype. The address typerefersto a general ad-
dressing method used to obtain the final effective ad-
dress for a memory unit. The address type is made up
of the address mode and the address modifier.

® Address mode. The address mode is the algorithm by
which the address of a memory unit is calculated.
These addressed units include flip-flops (bits), regis-
ters, and main memory.

® Address modifier. The address modifier provides the
modification to a memory address (effective ad-
dress) just prior to actually addressing memory. In-
dexing is an example of an address modifier.

e Source address. The source address is the modified
effective address from which address data is read.

¢ Destination address. The destination address is the
modified effective address to which data is written.

® Pure instruction. A pure instruction is an object

' (field) that contains only operation-code informa-
tion.

® Pure address mode and modifier. A pure address
mode is an object (field) that contains only address-
ing information.

Authorized licensed use limited to: Brigham Young University. Downloaded on January 27, 2009 at 16:39 from IEEE Xplore. Restrictions apply.
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Instruction groups

The instruction group method allows the classification
of instructions by function. It provides a convenient way
to compare, on a common basis, the instruction sets of
many different computers. However, it can only be used
to compare instruction sets on machines having similar
architectures. This work concentrated on von Neumann-

OMITN ZO—=—0CD—0OZE-—

DATA MOVEMENT INSTRUCTION GROUP
PROGRAM MODIFICATION INSTRUCTION GROUP
ARITHMETIC INSTRUCTION GROUP

COMPARE INSTRUCTION GROUP

LOGICAL INSTRUCTION GROUP

SHIFT INSTRUCTION GROUP

BIT INSTRUCTION GROUP

INPUT/OUTPUT AND MISCELLANEQUS
INSTRUCTION GROUP

style register-to-register and memory-to-memory archi-
tectures.

The data on instruction groups were obtained by ana-
lyzing programs written for the TMS9900, the MOS6502,
the MC6800, and the MC68000. Programs were random-
ly selected and were of many differing types. The pro-
grams analyzed included applications programs, assem-
blers, interpreters, compilers, monitors, kernels, op-

PmMIM ZTo——-0OCDHDANZE—

4.15%

133%  043% o

vi vii Vil

OmMITN ZO0——0CD—ANZE—

0.04%

1
wil vinn
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erating system libraries, process control and process
monitoring routines, and system utilities.

There are two distinct ways to obtain instruction usage
data: one is a static instruction-frequency count; the
other is a dynamic instruction-frequency count. The static
count is obtained by counting instructions as they appear
in a program listing. The dynamic count is obtained by
counting instructions as they are executed by the com-

OmMmITM ZO——-0OCDANZE—

IBM 360/370

OmMmIM Zo——-0OCDANZ—

May 1982

puter. There is an excellent correlation between static and
dynamic instruction frequency counts, as shown by
Myers?0 and Alexander and Wortman.’

The data displayed in Figure 1 are based on static fre-
quency counts. The figure shows the distribution of in-
struction usage by instruction group for seven machines.
In each part of Figure 1, the instruction groups are given
roman numeral designations—these appear along the

NOVA 1210

OmMI™IM ZO—=-0OCDANIZ—

i 1.44% 1.46%

L § T 1
vi vil vii

LITTON COMPUTER

Zo—=-0OCTI—HNZE —

omDD™

2.00% 1 41% 2:12%

0.59%
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Table 3.
Summary of instruction group means.

ASSEMBLY LANGUAGE | i 1 % v Vi Vil Vit
PROGRAMS BY DATA PROG. ARITH. COMP.  LOGIC. SHIFT BIT 170
COMPUTER TYPE MOVE MODIF. &
MISC.
1. M0S6502 (8-BIT) 40.72 26.24 11.49 3.84 5.85 7.04 3.92 0.90
2. MC6800 (8-BIT) 59.52 26.54 4.35 3.68 415 1.33 0.43 0.00
3. TMS 9900 (16-BIT) 36.71 37.24 10.64 6.77 2.36 2.15 4.09 0.04
4. MC68000 (16-BIT) 43.52 26.13 12.09 9.15 5.03 2.65 2.36 0.07
5. NOVA1210 (MINI) 37.74 26.53 14.28 10.15 6.08 2.32 1.44 1.46
6. IBM 360/370 61.48 16.30 13.14 3.80 1.70 3.58 0.00 0.00
7. LITTON COMPUTER 37.24 43.16 9.23 4.05 2.20 1.41 2.12 0.59
SUBTOTAL MEAN =100% 45.28 28.73 10.75 5.92 3.91 2.93 2.05 0.44
STANDARD DEV. 9.89 8.14 3.02 2.57 1.69 1.82 1.46 0.53
VARIANCE 97.72 66.27 9.11 6.63 2.86 3.32 2.14 0.28

horizontal axis. Table 3 is a summary of the data shown in

Figure 1. Table 4 shows a summary of the average, by in-

struction group. Table 4 shows that three instruction

groups account for 84 percent of all instructions exe-

cuted. Five groups account for the remaining 16 percent.
Fitting a function to the data of Table 4 yields

Sy =27"

where #n is the instruction group number. The function
f(n) of Equation 2 is shown in Figure 2. This function will
serve as the guideline in designing a new instruction set.
The most emphasis will be placed on the groups with the
highest projected usage. Table 5 shows the function f(n)
for each instruction group.

(Equation2.)

Instruction set design

What is an optimal instruction set? How is an optimal
instruction set designed? One might answer that an op-
timal instruction set is one that contains the fewest in-
structions. Minsky?? showed, using automata theory,
that two instructions, decrement (and jump if zero) and

Table 4.
Statistical average of instruction group usage.

add one, ‘“. . . can do anything an existing computer can
do.”” Turing?* demonstrated that a simple machine with
an infinite serial magnetic tape and some simple
algorithms could perform any computational task. But
are these theoretical instruction sets optimal? The answer
is most obviously no!

Due to the complexity of computer instruction sets, no
satisfactory answer has been provided to the question,
What is an optimal instruction set? A number of machine-
independent algorithms have been shown to be optimal;
however, such algorithms can be implemented in a
number of different instruction sets. Memory utilization
and execution speed vary depending on the programmer,
instruction set, and computer system used.

The position of this paper is that a near-optimal in-
struction set can be constructed based on the instruction
group data previously presented. A near-optimal instruc-
tion set is one that provides the user the powerful func-
tions he requires. The thesis is that a near-optimal instruc-
tion set (or NOIS, as we will call it) is one that allows the
user (programmer) to do what is required in an easy, effi-
cient manner, with minimal memory usage, and with rea-
sonable execution speed. The NOIS is a general-purpose
instruction set rather than a special-purpose one.

Table 5.
Probability instruction function.

FREQUENCY OF INSTRUCTION
INSTRUCTION GROUP FREQ. OF GROUP f(n) CUM. %
GROUP USAGE, % USE, CUM. %
| DATA MOVEMENT GROUP 45 45 '
] PROGRAM MOD. GROUP 29 74 ' 50.00% 50.00%
Il ARITHMETIC GROUP 10 84 I 25.00 75.00
IV COMPARE GROUP 6 ) n 12.50 87.50
V. LOGICAL GROUP 4 94 v 6.25 93.75
VI SHIFT GROUP 3 97 v 3.13 96.88
Vil BIT GROUP 2 99 Vi 1.56 98.44
Vil 1/0 AND MISC. GROUP 1 100 vil 0.78 99.22
Vil 0.39 99.61
TOTAL 100%
14 IEEE MICRO
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The NOIS provides

® pure instructions,

¢ pure address modes,

¢ pure address modifiers,

¢ an efficient and uniformly coded instruction format,

¢ orthogonality between instructions and addressing
usage, and

¢ a uniform and consistent appearance to the user.

A pure instruction is one that contains only instruction in-
formation and is not contaminated with address-mode or
other noninstruction information. A pure address mode
or pure address modifier contains only addressing infor-
mation. The power of this instruction set design is achieved
by maintaining purity in all the instruction format fields.

The fewest number of bits should be used to huffman-
encode every field in the instruction format; however, in
no case should these fields be mixed to obtain additional
efficiency. The efficiency obtained by mixing format
fields is sacrificed to provide control-unit design efficien-
cy. In the long term this provides improvements in both
memory space and execution speed.

Pure instruction formats are effective in providing
characteristics such as orthogonality. Orthogonality
allows each instruction to use every address mode or
modifier in exactly the same manner. This uniformity ap-
plies to addressing, word sizes, access methods, and
condition-code testing and setting. Orthogonality must
be maintained above format-field encoding efficiency.
Uniformity, consistency, and purity must be maintained
over all other considerations. These design restrictions do
not have a significant effect on execution speed.

Contrary to advertisements in popular trade journals, a
large instruction set is a liability, not an asset. An instruc-
tion should be added to an instruction set only when a new
function cannot possibly be supported by existing instruc-
tions, or when the function can be supported, but only
with significant deterioration of programmer or com-
puter system efficiency.

Instructions. The designer, when unencumbered by
parody, previous architectures, and program-compatibil-
ity restrictions, has a rich opportunity to create a near-
optimal instruction set. He begins by selecting a single
function for each of the eight instruction groups, one
that, with the required operands, can encompass the
functions of the whole group.

Data movement group. A single instruction will be used
to provide the functions required by the data movement
group:

MOVE, source, destination

MOVE moves data from the source address to the desti-
nation address. The effective address (EA) of both the
source- and destination-address fields is determined by
the address mode and address modifier.

The MQVE instruction accounts for 50 percent of all
instructions executed (see Table 5).

Program modification group. The functions required
by the program modification group can also be provided
by the MOVE instruction. To provide JUMP or
BRANCH operations, the source address is the address of

May 1982
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Figure 2. Generalized instruction usage
function f(n) = 2",

where to BRANCH to, and the destination address is the
program counter (PC):

MOVE address, PC

To provide a JUMP or BRANCH operation on condi-
tion, the instruction is written

MOVE source, destination, CC

where CC is the condition code. The movement of data
from source address to destination occurs only when the
condition code is satisfied.

The MOVE instruction may also provide a JUMP or
BRANCH to a subroutine on condition:

MOVE source 1, dest 1, source 2, dest 2, CC

where source 1 =program counter, destination 1 =stack
or first word of the subroutine, source 2 =subroutine ad-
dress, destination 2 = program counter, and CC = condi-
tion code. The MOVE instruction is executed only if the
condition code is satisfied. A RTN (return subroutine on
condition) is provided by a two-operand MOVE instruc-
tion and with a condition code:

MOVE source, destination, CC

where source = stack or first word of the subroutine, des-
tination = program counter, and CC = condition code.

Note that the first two instruction groups, or 75 percent
of all instructions executed, are satisfied by the MOVE
instruction and various address types. Decoding of the
instruction field (opcode)is simplified significantly by the
large reduction in the number of instructions required.

Arithmetic group. Arithmetic instructions require
three address fields:

® source 1 =address of value 1 (arith),

® source 2 =address of value 2 (arith), and

e destination = addr of result (arith) =value 1 op
value 2.

Authorized licensed use limited to: Brigham Young University. Downloaded on January 27, 2009 at 16:39 from IEEE Xplore. Restrictions apply.

15



16

For addition, an ADD instruction is provided:
ADD source 1, source 2, destination

Subtraction is provided by the instruction:
SUB source 1, source 2, destination

Multiplication and division are provided by the instruc-
tions:

MULT source 1, source 2, destination
DIV source 1, source 2, destination

The MULT and DIV instructions create problems related
to results, value sizes, precision, and sign extension,
however. Such problems have been solved before—their
solutions are well-documented in the literature.

Five instructions now account for 87.5 percent of all in-
structions executed (Table 5).

Compare group. All of the instructions in the compare
instruction group may be satisfied by the instruction:

SUB source 1, source 2, destination

where source 1 =value 1, source 2 =value 2, and destina-
tion = status register =value 1—value 2. An arithmetic
COMPARE is really just a subtraction that has the status
register as its destination address.

Five instructions now account for 93.75 percent of all
instructions executed.

Logical group. The logical instruction group cannot be
supported by any of the previously defined instructions.
The address fields required are

e source 1 =address of value 1 (boolean),

¢ source 2 =address of value 2 (boolean), and

e destination =result (boolean)=value 1 operator
value 2.

The three essential boolean operators are AND, OR, and
XOR (the exclusive OR):

e AND =source 1, source 2, destination,
® OR =source 1, source 2, destination, and
e XOR =source 1, source 2, destination.

The eight instructions defined thus far now represent
96.88 percent of all instructions executed.

Shift group. The shift instruction group also cannot be
supported by any previously defined instruction. A
SHIFT instruction, then, must be added to the instruction
set:

SHIFT source, destination, type, count

The address modes to be provided are

® source = address value to be shifted,

e destination = destination address of the
shifted value,

® direction =shift direction (right/left),

e type =shift type (arith/logical), and

e count = shift count 1 through maximum —1.

Nine instructions now represent 98.44 percent of all in-
structions executed.

Bit group. Of all the instruction groups, this one is the
most widely acclaimed and least used. Only one instruc-
tion, MOVE bit (MOVEB), is provided for this group:

MOVEB source, destination

where source =source bit address, and destination =
destination bit address.

Ten instructions now account for 99.22 percent of all
instructions executed.

Input/output and miscellaneous group. No additional
instructions are provided for this group. All the micro-
processors analyzed used memory-mapped 170, which
opens pins on the integrated circuit package for other im-
portant functions without placing a significant restraint
on the 170 capability of the microprocessor. Interrupts
are handled by hardware; the return from an interrupt
uses a four-operand MOVE instruction to place the
return address in the program counter and the status in
the status register.

Since no additional instructions are needed for 1/0,
just ten instructions account for 100 percent of all instruc-
tions executed.

Summary of basic instructions. By group, the ten in-
structions are

I Data movement MOVE

II Program modification = (MOVE)

III  Arithmetic ADD, SUB, MULT,
and DIV

IV Compare (SUB)

A" Logical AND, OR, XOR

VI  Shift SHIFT

VII Bit MOVEB

VIII 1/0 and misc. none

Extended instructions. There are a few other instruc-
tions that are not essential to the instruction set, but which
add significantly to its programming flexibility. By ex-
amining the data on arithmetic instruction frequency, we
can see that 2.5 percent of the instructions are increment
instructions and 2.5 percent are decrement instructions.

 These high percentages justify the extension of the set to

include such instructions. The instructions to increment
by one to four and decrement by one to four are

INC value, destination
DEC value, destination

Combined instructions. Shustek!” and Stritter!® per-
formed research to determine if any two or more instruc-
tions could be effectively combined into a single instruc-
tion. The author researched this possibility on the pre-
viously discussed microprocessors and concluded that
very few useful combined instructions could be identi-
fied. Only two were determined to be significant enough
to be included in the instruction set:

I/DBRC source 1, destination, CC
MOVEM source 1, source 2, destination, count

I/DBRC (increment/decrement and BRANCH on
condition code) tests the source to be equal to the condi-
tion code. If the equality is satisfied, the BRANCH to the
destination address is not taken. If the equality is not
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satisfied, the branch is taken and the source address is in-
cremented or decremented by one, prior to the BRANCH
to the destination address. The I/DBRC instruction is
very useful in loop control.

The MOVEM (MOVE multiple) instruction moves the
number of bytes in the count field from the source ad-

dress(es) to the destination address(es). MOVEM is useful

in string manipulation.

Restrictiveness and efficiency

Onemight argue that the instruction set is unnecessarily
restrictive; however, it is adequate to efficiently perform
every necessary function. The question that then arises is,
How well? This was determined by comparing the num-
ber of NOIS instructions required to implement various
compiler functions to the number of MC68000 instruc-
tions required to implement those functions. Programs
were first written in MC68000 Pascal and compiled. The
compiled code was then disassembled into MC68000
assembler mnemonics and also coded in NOIS assembler
mnemonics. The results of this comparison are shown in
Table 6.

No attempt was made to optimize the code as generated
by the MC68000 Pascal compiler. The MC68000 instruc-
tions were replaced by the NOIS instructions on a line-by-
line basis. With some optimization, the efficiency of the
NOIS instructions over the MC68000 instructions could
have been increased by another 15 to 20 percent over that
indicated by Table 6. This optimization would have made
the NOIS 25 percent to 42 percent more efficient than the
MC68000 instructions.

When instructions are separated from instruction for-
mats and analyzed as pure instructions, an interesting
number of things become clear. One is that the powerin a
computer system resides in surprisingly few instructions.
In the case of the NOIS, there are only ten basic and four
extended instructions. If the instruction groups for the
NOIS follow the f(n)=2"" function, one instruction,
MOVE, will represent 75 percent of all instructions ex-
ecuted, and four instructions, MOVE, ADD/SUB,
MULT, and DIV, will represent 87.5 percent of all in-
structions executed.

A single bit may be used for the MOVE operation code,
and a maximum of four to eight bits for all other opera-
tion codes. This minimal encoding frees all the remaining
bits for use in encoding the address mode, address modi-
fier, word size, and condition code fields.

The power of the NOIS is provided by a few pure in-
structions and a very rich addressing capability—further
research has revealed that most of the power comes from
the richness of the latter. Moreover, the importance and
capability of pure addressing modes are almost as signifi-
cant as the pure instructions. Address usage data is the
basis on which to develop addressing modes and modi-
fiers.

May 1982

Table 6.
Number of instructions used in assembly language
routines—NOIS vs. MC68000.

PASCAL NOIS INSTRUCTIONS
CONSTRUCT VS.
MC68000 INSTRUCTIONS
FOR —-22%
WHILE - 9%
IF THEN/ELSE —-15%
REPEAT-UNTIL -10%

Floating-point instructions were not included in the
NOIS. Such instructions can be provided on a separate
chip. Other capabilities, such as transcendental and BCD
functions, can also be placed on a separate chip.

The near-optimal instruction set is based on an analy-
sis of instruction usage by groups rather than by indi-
vidual instructions. The grouping of instructions by func-
tion allowed addressing modes and individual machine
idiosyncrasies to be stripped out. The function
f(n)=2"", where n is the instruction group number,
allowed the author to predict how the NOIS will be used.

The greatest effort was placed on creating and opti-
mizing the instructions in the first four groups, which
represent 93.75 percent of all instructions that will be ex-
ecuted. Less effort was allocated to the remaining instruc-
tions in the other groups.

The NOIS is a powerful yet simple tool. Its instructions
are few and easy to use and remember. They are also or-
thogonal to the addressing modes.

A simulator for the NOIS was written in Pascal and was
used to explore various algorithms. This exercise pro-
duced concise and efficient code. The next task will be to
build the hardware needed to execute the near-optimal in-
struction set.
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