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Abstract: The analysis of parameter sensitivity in environmental models is an excellent
technique to assess a model’s behavior, to determine its potential utility, to support its
calibration, and to identify areas of improvement. Recent work on comparing sensitivity
analysis methods shows that the methods available today are complementary, i.e. multi-
ple methods should be used to assess a model. We present a software toolbox for global
sensitivity analysis which supports the investigation of parameter sensitivity using differ-
ent methods. The toolbox includes Regional Sensitivity Analysis, Morris Method, and a
Sobols method. The majority of these methods require input data from a Monte-Carlo-
Sampling which has to be carried out in advance, others demand for special properties
of the sampling. Therefore, in most cases, huge computational effort has to be spent to
generate several sampling data. To overcome this deficit the data from a single Monte-
Carlo-Sampling is used to train an Artificial Neural Network (ANN) which imitates the
original model. By using this approach, arbitrary samplings can be easily drawn from
the ANN-based emulator. This approach also gives an objective measure of the quality
of the sampling itself and provides criteria on how many samples are required to get
representative results. The sensitivity toolbox is part of the OPTAS module in the Jena
Adaptable Modelling System. We will present the developed sensitivity analysis toolbox
and examples of its application to the hydrological model J2000 in a catchment located
in Germany. Special attention is paid to the emulation of the model with the newly devel-
oped ANN approach which produced very promising results.

Keywords: Sensitivity Analysis, Morris Method, Regional Sensitivity Analysis, Artificial
Neural Network

1 INTRODUCTION

This article illustrates the capabilities of a sensitivity analysis toolbox which uses a meta-
model based on an Artificial Neural Network (ANN) to incorporate the power of several
widely-used sensitivity analysis methods computationally efficiently.

Saltelli [2004] defines sensitivity analysis (SA) as ”The study of how uncertainty in the
output of a model (numerical or otherwise) can be apportioned to different sources of
uncertainty in the model input.” Environmental modeling sensitivity analysis can be used
in various ways, e.g. (i) A priority ranking of the input-factors and parameters of a model
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can be assessed. Factors with strong influence on the model output should be handled
very carefully during model setup, while factors without influence could be neglected
and can be considered as candidates for model simplification. The same ranking can
also be used to guide to process of model improvement. (ii) Sensitivity Analysis helps
to improve the knowledge about the model and can be used to work out characteristic
properties. (iii) The robustness of the model parameters can be estimated. The presence
of very sensitive input factors and parameters may indicate for flaws in the underlying
assumptions of the model. (iv) The calibration of the model can be supported [Saltelli,
2004].

Recent studies have shown that the SA methods available today have distinct capabilities
of model assessment [Yang, 2011]. Consequently, to get the most out of sensitivity analy-
sis, multiple SA methods have to be applied. Usually, they require an extensive sampling
of the model’s input and/or parameter space to assess its behavior. Unfortunately, each
method demands distinct sampling properties (e.g. information about partial derivatives),
so that such a sampling often cannot be reused. Hence, huge computational effort has
to be spent to do this work several times. To overcome this deficit, a single quasi-random
sampling is used to generate a meta-model based on an Artificial Neural Network (ANN),
which imitates the original model.

2 METHODS

In the following, f (θ) → O will denote an environmental model, which maps a model
input θ ∈ Ω onto a model response O. For the sake of simplicity, O is supposed here to
be a scalar quantity and Ω an n-dimensional hypercube.

2.1 Sample Generation

Most SA methods require an (i) uncorrelated (ii) uniformly distributed, and (iii) represen-
tative sampling of the parameter space, which is easily generated by drawing as many
samples from a uniform probability distribution as needed. Unfortunately, such samplings
tend to cover the parameter space non-uniformly by forming clusters and gaps (Shirley
[1991], see figure 1(a)). When they are used for statistical analysis, clusters are overem-
phasized and gaps excluded. Thus, large samplings are needed to compute reliable
statistical measures [Saltelli et al., 2008].

The quasi-random sequence of Halton [1960] overcomes this deficit by exploring the
parameter space more efficiently (Figure 1(b)). But high dimensional Halton Sequences
show strong correlations between their elements, in case the sequence is terminated
too early, which is clearly shown in Figure 1(c). However, excellent samplings can be
generated (see Figure 1(d)) with the Leaped Halton-Sequence, which avoids this problem
by using only every L-th element [Kocis and Whiten, 1997].

To setup the meta-model, a multi-step procedure is carried out: (i) First, the Leaped Hal-
ton Sequence is used to generate an initial sampling. (ii) The sampling is used to train
an Artificial Neuronal Network in such a way that it imitates the model response. (iii) A
K-fold cross-validation is used to estimate the agreement between the real model f (θ)
and the meta-model f̃ (θ). In case the test fails, i.e. the agreement is not acceptable,
additional samples are generated and the procedure is repeated. Otherwise, the infor-
mation content of the sampling is sufficient to reproduce most of the characteristics of
the original model f . Hence, further exploration of the input space would not lead to
much additional information, so that the procedure can be terminated successfully. The
meta-model is now able to dynamically generate samplings with arbitrary properties.
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(a) Sampling drawn from
a uniform random distribu-
tion
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(b) Halton-Sequence in di-
mension 1 and 2
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(c) Halton-Sequence in di-
mension 19 und 20
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(d) Leaped Halton-
Sequence in dimension
19 und 20

Figure 1: Comparison of four different samplings with 2,000 elements each.

The flow chart (Figure 2) summarizes
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Figure 2: Flowchart of the sampling process:
δ denotes the mean generalisation error of
the ANN, K the iterations of the crossvalida-
tion routine and D the current set of samples.

this process. In the software application,
an Artificial Neuronal Network consisting
of an input layer, one hidden layer, and
an output layer, is used. The input layer
contains n + 1 neurons, which equals
the number of input factors plus an ad-
ditional node to model a constant bias.
The hidden layer consists of 1/2 · (n+ 1)
neurons and the output layer has one
neuron. The activation function of the
hidden layer is a sigmoid function and
that of the output layer is a linear func-
tion. Prior to the training process a lin-
ear transformation normalizes the train-
ing set. The application uses the Java
and DotNet Neural Network Framework
Encog1 [Heaton Research, 2012] and
the Resilient Propagation learning rule
[Riedmiller and Braun, 1992].

2.2 Sensitivity Methods

The Regional Sensitivity Analysis of Hornberger and Spear [1981] is frequently used
for environmental modeling. It apportions the sample into acceptable (behavioral) and
unacceptable (non-behavioral) simulations. For both sets the cumulative distribution
function of the input factor under analysis is calculated. If the distributions differ sig-
nificantly from each other, the input factor is influential. The opposite statement is not
always true. However, if the distributions are similar, the input factor can be suspected
to be non-influential. To quantify the sensitivity objectively, the Kolmogorov-Smirnoff-Test
([Kendall et al., 1987] is usually applied, whose null hypothesis supposes both distribu-
tions to be identical.

The Morris Method [Morris, 1991] is based on Elementary Effects:

Ei = (f (x+ h · ei)− f (x)) /h,

which is a local measure of sensitivity. In this definition, the step length h ∈ R+ is usually
small and ei the i-th unit vector. Thus, the effect Ei can non-ambiguously be assigned
1http://www.heatonresearch.com/encog
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to the factor i. To calculate the Elementary Effects for each factor, n + 1 samples are
taken along a trajectory. Morris’ method calculates this measure at numerous points in
the parameter space, producing a set of Elementary Effects which is then statistically
evaluated. The mean (eqn. 1), absolute mean (eqn. 2), and variance (eqn. 3)

µi =
1

k

k∑
j=1

Ej
i (1)

µ∗
i =

1

k

k∑
j=1

∣∣∣Ej
i

∣∣∣ (2)

σ2 =
1

k

k∑
j=1

(
Ej

i − µi

)2
(3)

give information about the sensitivity, monotonicity, and linearity of the input factors with
respect to the model output [Norton, 2009].

Sobols method [Sobol, 1993] is recommended by Saltelli et al. [2008] because it is
model-independent, can estimate the influence of input factors over the whole range
of variation, tolerate effects of interaction between parameters, and can estimate the
combined effect of groups of parameters. The key idea is to decompose the total variance
of the model output into

Vf (x) =
∑
i

Vxi
+
∑
i,j

Vxi,j
+
∑
i,j,k

Vxi,j,k
+ · · ·+ Vx1...n

.

In this formula, the term Vxi
= Vxi

(
Exĩ

(f (x) |xi)
)

denotes the conditional variance of
the model output if the i-th parameter is fixed and all other parameters can vary freely.
This is a natural way to define the main effect of an input factor

Si =
Vxi

Vx (f (x))
.

In the same way, groups of parameters can be handled, e.g. the combined effect of xi
and xj is simply defined as Si = Vxi,j

/Vx (f (x)), allowing the identification of interactions
between parameters. Finally, the total effect

STi = 1− Vx¬i

Vx (f (x))

accounts for the main effect and all interactions of a factor (the meaning of ¬i is ’all but
i’).

2.3 The Hydrological Model J2000

The distributed, process-oriented model J2000 was developed for hydrological simu-
lation of the upper meso- and macro scale [Krause, 2001]. It is implemented in the
Jena Adaptable Modeling System (JAMS2 Kralisch and Krause [2006]), which is a soft-
ware framework for component-based development and application of environmental
models. The model describes the hydrological processes as encapsulated process
modules. In addition to the simulation of the runoff generation and runoff concentra-
tion processes, J2000 also offers routines for regionalization and correction of climate
and precipitation input data, model calibration, and visualization [Kralisch et al., 2007].
2http://jams.uni-jena.de/
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Figure 3: Topography of the Ilm catchment

In J2000, the spatial representation of
a catchment is based on the concept
of Hydrological Response Units (HRUs).
HRUs are homogenous regarding their
physiography (e.g. topographic features,
land use, soil properties). Therefore,
it is possible to assign a characteristic
hydrological process response to each
HRU [Flügel, 1996]. They are connected
by a lateral routing scheme to simulate
lateral water transport processes either
with their downhill successor HRU or with
a river reach they are drain in. River

reaches themelves are always connected with their downstream reach. The model sim-
ulates relevant hydrological processes, such as evapotranspiration, snow accumulation
and melt, soil-water balance and groundwater processes, for each HRU separately.

3 STUDY AREA

The well-investigated catchment of the Ilm is selected to demonstrate the described
methods using the model J2000. The Ilm has its source in the central part of the
Thuringian Forest, which is located in central Germany. The catchment has a size of
155 km2 and an elevation range of 500m. The dominating land use of the catchment is
coniferous forest (60%), grassland (12%), and settlement (10%). The hydrological sys-
tem is influenced mainly by lateral flow processes and snow melt. The average annual
temperatures in the catchment are around 6− 7 ◦C. In the higher parts, annual precipita-
tion is larger than 1,400 mm.

4 APPLICATION
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Figure 4: Progress of the learning
process

Validation of the meta-model
The sensitivity analysis was carried out for the
full set of 34 parameters of the model J2000, so
that the effect of these parameters on the Nash-
Sutcliffe efficiency between the simulated and ob-
served catchment discharge is assessed. For rea-
sons of clarity and comprehensibility only a subset of seven parameters is discussed
here. Those parameters are a rain and a snow parameterizing the interception of rain
and snow on the vegetation of the catchment. soilConcRD1 and soilConcRD2 influence
the dynamics of the surface runoff and interflow. initRG1 defines the initial storage of one
of the two groundwater storages. ACAdaptation controls the capacity of the large pore
storage of the soil and baseTemp influences the snow melt process.

The ANN was able to imitate the model, well. Only 6,528 samples were required to
achieve a Nash-Sutcliffe Efficiency of more than 0.8 between the original model and the
meta-model. This estimation is based on a ten-fold cross-validation. Figure 4 shows the
progress of the learning process. Shortly after the start of the procedure, the similarity
between the model and the meta-model is quite high, but it drops rapidly to a minimum of
-0.13 at 1152 samples. Afterwards, the quality of the meta-model improves continuously.
The reason for this non-monotonic behavior is not fully understood right now. The learn-
ing process will also stagnate eventually. It seems plausible that the complexity of the
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Artificial Neuronal Network is not sufficient to learn every detail of the model’s behaviour.
For the scope of this article, the quality is sufficient but if a higher quality is required, the
complexity of the ANN could be enlarged. To dig deeper into detail, the original sampling

ACAdaptation a_rain a_snow baseTemp soilConcRD1 soilConcRD2initRG1

1 5 2 83 5 2 106 ‐9 3‐3 1 53 2 43 1 74

Ilm

Figure 5: Regional Sensitivity Analysis calculated from the original sampling (upper row)
and from a sampling of the meta-model (lower row). The dotted line shows the cumulative
distribution function of the behavioral parameter set and the solid black line that of the
non-behavioral set.

and a sampling generated by the meta-model (with 6.000 samples) are used to apply
the Regional Sensitivity Analysis. The RSA method does not demand any special re-
quirements of the sampling, so that a comparison is easily possible. Figure 5 shows the
cumulative distribution functions of the behavioral (solid line) and non-behavioral (dotted
line) parameter set for both samplings. At the first glance, the differences between the
upper and lower plots are hardly recognizable. The RSA plots of the meta-model tend to
be a little bit more noisy and the distance between both distribution functions is smaller.
The relative difference between both sensitivity indices varies from 7% to 80% percent,
but the absolute difference is always lower than 4%. This verification indicates that the
discrepancy between the model and the meta-model is acceptable.

Application 1: Parameter Ranking
RSA, Morris’ method and Sobols method provide sensitivity indices,
which can be used to create a priority ranking of the input parame-
ters. To make the sensitivity indices comparable, they are linearly nor-
malized. Figure 6 shows the comparison of the several measures.

Gehlberg

Parameter ACAdaptation a_rain a_snow baseTemp initRG1 soilConcRD1 soilConcRD2

RSA 0.05371 0.06183 0.14486 0.01909 0.01602 0.03975 0.08448

Main Effect 0.010845601 0.00817855 0.43640326 0.00856202 0.00650627 0.06627858 0.19571195

Total Effect 0.014751358 0.00023317 0.21077354 0.00862237 0.01323977 0.02544967 0.30991215

Morris Method 0.069906315 0.04999255 0.10271954 0.0417102 0.01396955 0.05367604 0.11997249

Ilm

Parameter ACAdaptation a_rain a_snow baseTemp initRG1 soilConcRD1 soilConcRD2

RSA 0.09089 0.02204 0.03145 0.05569 0.01276 0.03121 0.16413

Main Effect 0.034265577 0.02241943 0.02857026 0.03176177 0.02417036 0.03312227 0.12321677

Total Effect 0.008551237 0.00015397 0.01983404 0.02983758 0.01323977 0.0375785 0.18835479

Morris Method 0.045324133 0.03076592 0.02555665 0.04762579 0.01396955 0.03211706 0.05909026

0 0.05 0.1 0.15 0.2

ACAdaptation

a_rain

a_snow

baseTemp

initRG1

soilConcRD1

soilConcRD2

Ilm

RSA

Total Effect

Morris Method

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

ACAdaptation

a_rain

a_snow

baseTemp

initRG1

soilConcRD1

soilConcRD2

Wilde Gera

RSA

Total Effect

Morris Method

Figure 6: Parameter ranking for the
Ilm catchment. The x-axis repre-
sents the sensitivity of the param-
eter.

The resulting priority rankings of the three SA
methods are not equal, but the same parameters
are classified as sensitive. Consistently, soilCon-
cRD2 is the most sensitive parameter by far. The
parameters ACAdaptation, baseTemp and soil-
ConcRD1 have some influence, but do not domi-
nate the model response. The other parameters
are less or not sensitive. The total effect puts more
weight on the sensitive parameter while neglect-
ing the others. Morris’ Method and RSA are very
similar, but the total effect differs heavily for the pa-
rameters ACAdaptation and a rain.

Application 2: Identifiability
The behavioral cumulative distribution function of
the RSA plot can be used to find identifiable model
parameters. A steep increase of the distribution
function indicates the optimal region of the param-

eter. In Figure 5, ACAdaptation, baseTemp, and soilConcRD2 seem to be identifiable.
The RSA plots indicate that their optimal value is located within the ranges [0, 3] , [−9, 2],
and [1, 4]. The real optimal values are approximately 1.0, 0.3, and 2.0, which were deter-
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mined by calibrating the using the evolutionary optimization method of Shuffled Complex
Evolution [Duan et al., 1992].

Parameter a rain a snow ACAdaptation baseTemp soilConcRD1 soilConcRD2 initRG1
Morris Method 4.21 1.35 2.58 0.92 0.52 6.12 9.9
Morris Method* 0.00 0.00 0.02 0.05 0.20 0.07 9.8

∆ 100% 100% 100% 14% 44% 100% 3%
Variability 22% 48% 32% 220% 60% 33% 14%

Table 1: Results of Morris’s method

Application 3: Linearity and monotonicity
Morris’ Method can be used to determine whether or not an input factor affects the model
response in a linear and monotonic way. For this purpose, the mean µ, the absolute
mean µ∗ and the variance σ2 of the Elementary Effects are compared among each other.
A significant difference between µ and µ∗ implies non-monotonic behaviour of the input
factor. The variability σ2/µ is a measure for linearity. The model is linear in the parame-
ters if the variance is zero, while a larger value indicates non-linearity. Since it is unlikely
to find linearity and monotony in an efficiency measure, the total amount of the discharge
from the catchment is analyzed instead. The results are summarized in Table 1. Ex-
cept for initRG1 all parameters show non-monotonic behaviour. This seems plausible,
because initRG1 controls the initial amount of water in the groundwater storage. The
other parameters do not consistently increase the amount of discharge. The variability
indicates that the parameter initRG1 and a rain show mostly linear behaviour. a snow,
ACAdaptation, soilConcRD1, and soilConcRD2 is somehow linear and baseTemp mostly
non-linear.
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Figure 7: Parameter interaction effects:
Ilm(upper right triangle)

Application 4: Parameter Interaction
Even non-influential input factors could
have a strong effect when interacting
together with other parameters. While
most sensitivity analysis methods are not
capable of handling groups of input fac-
tors, Sobols method can easily accom-
plish this task. The difficulty is to find
interesting interacting groups because
there are as much as 2n groups. How-
ever, this is not in the scope of this arti-
cle. We demonstrate interaction effects
by showing the sensitivity of parameter
groups of two, so that direct interactions can be uncovered. Figure 7 indicates that most
of the parameters do barely interact directly or the effect is too small to become visible in
the analysis (white cells in Fig. 7). baseTemp and a snow compensate their effects. Pos-
itive interactions are observable for the a rain interacting with a snow and soilConcRD2
interacting with a snow.

5 CONCLUSION

This article presents a toolbox for sensitivity analysis which uses an Artificial Neural Net-
work as a meta model to efficiently apply several sensitivity analysis methods at once.
The article shows that the artificial neural network requires less than 104 samples gen-
erated from a quasi-random sequence to learn the behavior of the complex distributed
hydrological model J2000. It becomes clear that the results of the sensitivity analysis
from the meta-model do not differ much from the results of the sensitivity analysis based
on the original model. In contrast, there is an enormous gain in runtime performance
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during the sampling. Generating the input data for the ANN took approximately 24 hours
on a parallel computer with 48 computing units. As shown in this article, each applica-
tion, would have required a new sampling and thus additional time each without the ANN.
Using the ANN the whole process of setting up the artifical neural network and applying
the sensitivity analysis took about one minute on a conventional notebook.

Future work is focusing on applying the presented methodology to other catchments and
models. Additional tools for Factor Fixing, Risk Analysis and Tradeoff Analysis will be
added to the toolbox.
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