
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2006-08-03

Adaptive Control of Micro Air Vehicles Adaptive Control of Micro Air Vehicles

Joshua Stephen Matthews
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Electrical and Computer Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Matthews, Joshua Stephen, "Adaptive Control of Micro Air Vehicles" (2006). Theses and Dissertations.
756.
https://scholarsarchive.byu.edu/etd/756

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F756&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Fetd%2F756&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/756?utm_source=scholarsarchive.byu.edu%2Fetd%2F756&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

ADAPTIVE CONTROL OF MICRO AIR VEHICLES

by

Joshua Stephen Matthews

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Electrical and Computer Engineering

Brigham Young University

December 2006

Copyright c© 2006 Joshua Stephen Matthews

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Joshua Stephen Matthews

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Randal W. Beard, Chair

Date Timothy W. McLain

Date Wynn C. Stirling

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Joshua
Stephen Matthews in its final form and have found that (1) its format, citations,
and bibliographical style are consistent and acceptable and fulfill university and de-
partment style requirements; (2) its illustrative materials including figures, tables,
and charts are in place; and (3) the final manuscript is satisfactory to the graduate
committee and is ready for submission to the university library.

Date Randal W. Beard
Chair, Graduate Committee

Accepted for the Department

Michael J. Wirthlin
Graduate Coordinator

Accepted for the College

Alan R. Parkinson
Dean, Ira A. Fulton
College of Engineering and Technology

ABSTRACT

ADAPTIVE CONTROL OF MICRO AIR VEHICLES

Joshua Stephen Matthews

Electrical and Computer Engineering

Master of Science

Although PID controllers work well on Miniature Air Vehicles (MAVs), they

require tuning for each MAV. Also, they quickly lose performance in the presence

of actuator failures or changes in the MAV dynamics. Adaptive control algorithms

that self tune to each MAV and compensate for changes in the MAV during flight

are explored. However, because the autopilots on MAVs are small, many of the

adaptive control algorithms like those that employ least squares estimation may take

too much code space, memory, and/or computing power. In this thesis we develop

several Lyapunov-based model reference adaptive control (MRAC) schemes that are

both simple and efficient with the MAV autopilot resources. Most notable are the

L1 controllers that have all the benefits of traditional MRACs but have reduced high

frequency content to the actuators. The schemes control both roll and pitch through

aileron and elevator commands. Flight test results for the schemes are also compared.

ACKNOWLEDGMENTS

I would like to give thanks to Nathan Knobel and Stephen Osborne whose help

in designing, implementing, and testing the algorithms made this thesis possible. I

must also thank my wife, Rachel, and friend, Dean Anderson, for proof reading this

entire thesis. Finally, I would also like to thank Dr. Randal Beard for his guidance

and help with this thesis.

Table of Contents

Acknowledgements xi

List of Tables xvii

List of Figures xix

1 Introduction 1

1.1 Problem . 1

1.2 Adaptive Control . 2

1.3 Contributions . 3

1.4 Thesis Outline . 4

2 Preliminaries 5

2.1 Notation . 5

2.2 Mathematical Model . 6

2.3 Lyapunov’s Second Method . 10

2.4 Forms of Adaptive Control . 19

2.4.1 Least Squares Adaptive Control 19

2.4.2 Dynamic Inversion . 22

2.4.3 Model Reference Adaptive Control 25

3 Adaptive Control Derivation 33

3.1 Lyapunov Based MRAC Controllers 33

xiii

3.1.1 MRAC Scheme A . 34

3.1.2 MRAC Scheme B . 43

3.1.3 MRAC Scheme C . 52

3.1.4 MRAC Scheme D . 60

3.2 L1 Controllers . 67

3.2.1 1st Order Model with One Lumped, Unknown Parameter . . . 68

3.2.2 1st Order Model with Two Lumped, Unknown Parameters . . 70

3.2.3 2nd Order Model . 73

3.2.4 Physically Motivated Model 76

4 Experimental Platform 81

4.1 Simulation . 81

4.2 Hardware . 87

5 Results 93

5.1 Simulation Results . 93

5.1.1 Lyapunov Based MRAC . 93

5.1.2 L1 Controllers . 97

5.1.3 Analysis . 102

5.1.4 Summary . 113

5.2 Flight Testing Results . 114

5.2.1 Lyapunov Based MRAC . 114

5.2.2 L1 Controllers . 122

5.2.3 Analysis . 131

5.2.4 Summary . 133

6 Conclusion 135

xiv

6.1 Finding . 136

6.2 Future Work . 136

Bibliography 139

A MRAC Code 141

A.1 Matlab Code . 141

A.1.1 MRAC A Pitch . 141

A.1.2 MRAC A Roll . 146

A.1.3 MRAC B Pitch . 151

A.1.4 MRAC B Roll . 155

A.1.5 MRAC C Pitch . 160

A.1.6 MRAC C Roll . 164

A.1.7 MRAC D Pitch . 168

A.1.8 MRAC D Roll . 172

A.2 Dynamic C Code . 176

A.2.1 MRAC A Pitch . 176

A.2.2 MRAC A Roll . 179

A.2.3 MRAC B Pitch . 183

A.2.4 MRAC B Roll . 185

A.2.5 MRAC C Pitch . 189

A.2.6 MRAC C Roll . 191

A.2.7 MRAC D Pitch . 193

A.2.8 MRAC D Roll . 196

B L1 Code 199

B.1 Matlab Code . 199

xv

B.1.1 1st Order Model with One Unknown Parameter 199

B.1.2 1st Order Model with Two Unknown Parameter 203

B.1.3 2nd Order Model . 207

B.1.4 Physically Motivated Model 212

B.2 Dynamic C Code . 218

Glossary 221

xvi

List of Tables

2.1 State Definitions . 6

4.1 Aerodynamic coefficients used in the simulations. 82

4.2 Physical parameters used in the simulations. 82

5.1 Average pitch error during simulations (desired vs. actual) 110

5.2 Average pitch error during simulations (model vs. actual) 110

5.3 L2 of the pitch error during simulations (desired vs. actual) 111

5.4 L2 of the pitch error during simulations (model vs. actual) 111

5.5 Average roll error during simulations (desired vs. actual) 112

5.6 L2 of the roll error during simulations (desired vs. actual) 112

5.7 Average roll error during simulations (model vs. actual) 112

5.8 L2 of the roll error during simulations (model vs. actual) 113

5.9 Scheme D gains . 121

5.10 Flight tests pitch results (desired vs. actual) 132

5.11 L2 norm of pitch error during flight tests (desired vs. actual) 132

5.12 Average roll error during flight tests (desired vs actual) 132

5.13 L2 norm of roll error during flight tests (desired vs actual) 133

xvii

xviii

List of Figures

2.1 Body fram coordinates . 7

2.2 Block diagram of Lyapunov MRAC structure 25

2.3 Block diagram of L1 controller structure 31

4.1 Simulink block diagram . 83

4.2 MRAC block diagram. 84

4.3 L1 controller block diagram. 84

4.4 Aviones screenshot . 85

4.5 Virtual Cockpit screenshot . 86

4.6 Hourglass path diagram . 86

4.7 The Kestrel Autopilot. 87

4.8 Diagram of the HIL communications. 88

4.9 Test Aircraft . 89

4.10 Diagram of the communication components 90

4.11 Flap deployed on Deliverance. 91

5.1 Scheme A simulation results (pitch) 94

5.2 Scheme A simulation results (roll) . 95

5.3 Scheme A simulation parameter results (roll) 96

5.4 Scheme B simulation results (pitch) 97

5.5 Scheme B simulation results (roll) . 98

5.6 Scheme C simulation results (pitch) 99

xix

5.7 Scheme C simulation results (roll) . 100

5.8 Scheme D simulation results (pitch) 101

5.9 Scheme D simulation results (roll) . 102

5.10 Scheme D simulation results (roll, commanded @ 0.105Hz) 103

5.11 L1 first-order model (1 unknown) simulation results 104

5.12 L1 first-order model (2 unknowns) simulation results 105

5.13 L1 second-order model simulation results 106

5.14 L1 physically motivated model simulation results 107

5.15 L1 physically motivated simulation parameter results (High) 108

5.16 L1 physically motivated simulation parameter results (Low) 109

5.17 PD pitch and roll on Deliverance. 116

5.18 Scheme A pitch and roll on Deliverance 118

5.19 Scheme B pitch and roll on Deliverance 119

5.20 Scheme D pitch and roll on Deliverance 120

5.21 Scheme D pitch and roll on Deliverance 121

5.22 Scheme D pitch and roll on Ray . 123

5.23 Scheme D pitch and roll on Phidipides 124

5.24 Scheme D pitch and roll with the flap deployed 125

5.25 PD pitch and roll with flap deployed 126

5.26 L1 flight test on Ray . 127

5.27 PD roll while L1 pitch running on Ray 128

5.28 PD pitch on Ray . 128

5.29 L1 flight results on Ray while landing 130

xx

Chapter 1

Introduction

1.1 Problem

Historically, unmanned aircraft (UA) have been used primarily for military

purposes such as reconnaissance, weapons delivery, battlefield communications, and

anything that is too “dull, dirty, or dangerous” for human pilots [1]. Examples of

UAs are the MQ-1 Predator (reconnaissance and weapons delivery), the RQ-4 Global

Hawk (reconnaissance), and the RQ-2B Pioneer (reconnaissance).

Micro air vehicles (MAV) are a type of UA that is becoming popular on the

battlefield. MAVs are easily transported and deployed by soldiers in the field. Because

MAVs have become smaller, cheaper, and easy to transport, non-military applications

are gaining interest. As non-military uses become more popular, creating user-friendly

MAVs is essential for commercial viability. MAVs are finding their way into law

enforcement, crop surveillance, fire fighting, communication relays, search and rescue,

etc. However, most commercial autopilots must be hand-tuned when installed in

an aircraft. This typically involves an experienced remote control (RC) pilot flying

the MAV to tune proportional-integral-derivative control (PID) gains and trim the

airplane. Such a process can be expensive and time intensive. Furthermore, due

to inexact manufacturing processes, temperature sensitivities, crashes, and changing

atmospheric conditions, the tuned values vary from aircraft to aircraft and sometimes

on each airplane throughout the day. For many applications, tuning the autopilot

can range from annoying to unacceptable. Also, even though MAVs are decreasing in

price, the loss of an aircraft can still be expensive. Thus, an autopilot should be self

tuning and fault tolerant. Adaptive control schemes show promise for fulfilling these

requirements.

1

The focus of this thesis is adaptive control of fixed-wing MAVs. Experience has

shown that PID values are different for each MAV, even if they have the same physical

geometry. Adaptive control is an approach at allowing one autopilot to control every

MAV while requiring minimal tuning. Because of the physical size of the MAVs,

a small autopilot is used that has limited code space, memory, and computational

resources. Also, the aerodynamic parameters for the MAVs are unknown. Thus the

adaptive autopilot code must have a small footprint, require little computation and

memory to run, and be able to adapt itself to any fixed-wing MAV.

1.2 Adaptive Control

Adaptive control is a term used to describe a large class of control systems.

Simply put, adaptive control algorithms adapt to unknown parameters in a plant.

This does not mean that an adaptive controller is the optimal controller for a sys-

tem. Instead, adaptive controllers are able to control plants with parameters that are

unknown or changing. To illustrate this idea let us look at traditional PID control.

PID control is the swiss army knife of control theory. It can control a large

set of plants, and its intent is to drive the error between a desired reference signal

and the output of the plant to zero. It does this by operating on that error and

passing the result to the plant’s input. The proportional part amplifies the error,

it is used to drive the error to zero. The integral part amplifies the integral of the

error, it is used to eliminate steady-state error. And the derivative part amplifies the

derivative of the error, it is used to reduce oscillations caused by the previous two

parts. These three signals are added together and passed to the plant’s input. PID

gain controllers are manually tuned for each system to satisfaction of the operator.

However, as the plant’s parameters change, the PID controller may need to be re-

tuned. Parameter variation can be caused by changes in environmental conditions,

state changes (i.e. airplane dynamics changing as a result of airspeed, angle of attach,

and sideslip angle), time progression, etc. For MAVs, this means that a PID controller

that is tuned in one flight regime may not work as well or become unstable under

2

another flight regime, thus requiring re-tuning. Adaptive control typically does not

suffer from this problem.

The goal of adaptive control is to adjust to unknown or changing plant pa-

rameters. This is accomplished by either changing parameters in the controller to

minimize error, or using plant parameter estimates to change the control signal.

Therefore, there are many different approaches to adaptive control. In this thesis

three different types of adaptive control are discussed–least square estimation adap-

tive control, dynamic inversion using neural networks, and model reference adaptive

control (MRAC). Least squares adaptive control uses least squares estimation to per-

form online system identification. The parameter estimates for the system are then

used in the controller. Dynamic inversion is the process of inverting the dynamics of

the system to make control design easier. When neural networks are used in conjunc-

tion with dynamic inversion, the neural network can learn to invert the dynamics of

the plant on-the-fly, thereby adapting to changing parameters. Finally, MRACs use

a reference model to update parameter estimates. These estimates are used to help

drive the system error to zero.

1.3 Contributions

This thesis has two main contributions. They are the application of two va-

rieties of MRAC to MAVs. The first type of MRAC is a Lyapunov based MRAC.

Lyapunov based MRACs are not new, but do not seem to have been applied to MAVs.

The second is an extension to Lyapunov MRACs, known as L1 adaptive controllers.

L1 controllers are relatively new and are actively being researched. To the author’s

knowledge, this is the first real-world implementation of an L1 adaptive flight con-

troller appearing in the literature, [2–4]. In this thesis, four adaptive schemes will be

derived for each type of MRAC. The results of these schemes will be compared and

contrasted.

3

1.4 Thesis Outline

This thesis is divided into six chapters. Chapter 2 introduces notation, de-

scribes the system model for MAVs, presents important theories for this thesis, and

discusses different type of adaptive control. Chapter 3 derives the different adap-

tive schemes tested in this thesis. Chapter 4 describes the experimental platforms.

Chapter 5 give the results of simulation and flight testing of the adaptive algorithms.

Finally, Chapter 6 is the thesis summary and conclusion.

4

Chapter 2

Preliminaries

2.1 Notation

This thesis adopts the following notations. Lower case letters are scalars, while

bold lower case letters and lower case Greek letters are vectors. Matrices are indicated

by capital Roman or capital Greek letters. Estimates of states or parameters are

indicated by carets. A tilde indicates an error signal (i.e. φ̃ = φ−φm). We use | · | as

the absolute value of a scalar while we use ||·|| as the vector norm or the matrix norm

(i.e. ||x|| is a vector norm and ||A|| is a matrix norm). Because we are only concerned

with the continuous case, states, inputs, and parameters that depend on time will

be in the form of x(t) unless context allows the argument to be dropped. In some

instances frequency and time domains are mixed using the convention C (s) {f(t)}
to mean that the time domain function f(t) is operated on by the frequency domain

function C (s). Table 2.1 defines some of the notation used in this thesis.

Throughout this thesis, the projection operator is used. The projection oper-

ator ensures that the parameter estimates remain within a certain bound. To define

the projection operator, let g(b) = 0 be a function that defines the surface of the set

S such that S = {b ∈ Rn|g(b) ≤ 0}. The normal of the surface is 5g(b). Further-

more, the set Si is the interior of the set S, and So is the boundary of S. The initial

parameter estimate, b0, is chosen such that b0 ∈ S. The operator is defined as

ProjS (a,b) =





a b ∈ Si or b ∈ So and aT 5 g(b) ≤ 0(
I − 5g(b)5g(b)T

5g(b)T5g(b)

)
a b ∈ So and aT 5 g(b) > 0

0 otherwise

.

(2.1)

5

Table 2.1: State Definitions
φ, θ, ψ roll, pitch, yaw angles

φd,θd desired roll and pitch angles
φm, θm reference model roll and pitch angles
p, q, r roll, pitch, yaw rates

α, β angle of attack, sideslip angle
χ, γ ground track, climb angle

δe, δa, δr elevator, aileron, rudder commands
V airspeed

S, b, c̄ wing area, wing span, average cord length
Jij inertial moments about i and j axes
C∗ aerodynamic coefficients

Ĵ∗ Constants that depend on J

The projection operator reduces to

ProjS (a, b) =





a b
¯

< b < b̄

a b = b̄ and a ≤ 0 or b = b
¯

and a ≥ 0

0 otherwise

(2.2)

in the scalar case. Further discussion about the projection operator can be found

in [5].

2.2 Mathematical Model

The mathematic model for the MAVs is a fixed-wing aircraft model that as-

sumes a symmetry in the body frame (see Figure 2.1) x − z plane, being either a

flying-wing or fuselage design. This implies that the inertia matrix is of the form

J =




Jx 0 −Jxz

0 Jy 0

−Jxz 0 Jz


 .

We use this matrix to develop the equations of motion for our model. Notice the

symmetry across the diagonals.

6

Figure 2.1: The body frame coordintes for the MAV model.

The translational kinematics and dynamics of our six degree-of-freedom model

(6-DOF) are given by

ṗn = cos θ cos ψu + (sin φ sin θ cos ψ − cos φ sin ψ)v

+ (cos φ sin θ cos ψ + sin φ sin ψ)w, (2.3)

ṗe = cos θ sin ψu + (sin φ sin θ sin ψ − cos φ cos ψ)v

+ (cos φ sin θ sin ψ − sin φ cos ψ)w, (2.4)

ḣ =u sin θ − v sin φ cos θ − w cos φ cos θ, (2.5)

u̇ =rv − qw − g sin θ + CX(x, δ), (2.6)

v̇ =pw − ru + g cos θ sin φ + CY (x, δ), and (2.7)

ẇ =qu− pv + g cos θ cos φ + CZ(x, δ), (2.8)

where

• pn is the position north,

• pe is the position east,

• h is the altitude,

• u is the velocity out the nose,

7

• v is the velocity out the right wing,

• w is the velocity out the belly,

• x is the state vector, and

• δ is the control vector.

Also, the aerodynamic forces are

CX(x, δ) =
ρV 2

airS

2m

[
CX0 + CXαα + CXq

c̄q

Vair

+ CXδe
δe

]
,

+
ρSprop

2m
Cprop

[
(kδt)

2 − V 2
air

]
, (2.9)

CY (x, δ) =
ρV 2

airS

2m

[
CY0 + CYβ

β + CYp

bp

2Vair

+ CYr

br

2Vair

+ CYδa
δa + CYδr

δr

]
, and

(2.10)

CZ(x, δ) =
ρV 2

airS

2m

[
CZ0 + CZαα + CZq

c̄q

Vair

+ CZδe
δe

]
, (2.11)

and are assumed to be linear. This should be an appropriate model as the MAVs in

this thesis are not high-performance aircraft. The rotational kinematics and dynamics

of the MAVs are

φ̇ =p + q sin φ tan θ + r cos φ tan θ, (2.12)

θ̇ =q cos φ− r sin φ, (2.13)

ψ̇ =q sin φ sec θ + r cos φ sec θ, (2.14)

ṗ =Ĵ1pq − Ĵ2qr +
1

2
ρV 2S

b

2

[
Cp0 + Cpβ

β

+ Cpp

bp

2V
+ Cpr

br

2V
+ Cpδa

δa + Cpδr
δr

]
, (2.15)

q̇ =
Jxz

Jy

(r2 − p2) +
Jz − Jx

Jy

pr

+
1

2Jy

ρV 2c̄S
[
Cm0 + Cmαα + Cmq

c̄q

V
+ Cmδe

δe

]
, (2.16)

8

ṙ =Ĵ3pq − Ĵ4qr +
1

2
ρV 2S

b

2

[
Cr0 + Crβ

β + Crp

bp

2V

+ Crr

br

2V
+ Crδa

δa + Crδr
δr

]
, (2.17)

` =
1

4
bρV 2

air

(
C`0 + C`β

β + C`p

bp

2V
+ C`r

br

2V
+ C`δa

δa + C`δr
δr

)
, (2.18)

m =
1

2
c̄ρV 2

air

(
Cm0 + Cmαα + Cmq

c̄q

2V
+ Cmδe

δe

)
, and (2.19)

n =
1

4
bρV 2

air

(
Cn0 + Cnβ

β + Cnp

bp

2V
+ Cnr

br

2V
+ Cnδa

δa + Cnδr
δr

)
, (2.20)

where

Cp0 = Ĵ3C`0 + Ĵ4Cn0 , Cpβ
= Ĵ3C`β

+ Ĵ4Cnβ
,

Cpp = Ĵ3C`p + Ĵ4Cnp , Cpr = Ĵ3C`r + Ĵ4Cnr ,

Cpδa
= Ĵ3C`δa

+ Ĵ4Cnδa
, Cpδr

= Ĵ3C`δr
+ Ĵ4Cnδr

,

Cr0 = Ĵ4C`0 + Ĵ3Cn0 , Crβ
= Ĵ4C`β

+ Ĵ3Cnβ
,

Crp = Ĵ4C`p + Ĵ3Cnp , Crr = Ĵ4C`r + Ĵ3Cnr ,

Crδa
= Ĵ4C`δa

+ Ĵ3Cnδa
, Crδr

= Ĵ4C`δr
+ Ĵ3Cnδr

,

Ĵ1 = Jxz(Jx−Jy+Jz)

JxJz−J2
xz

, and Ĵ2 =
Jz(Jz − Jy) + J2

xz

JxJz − J2
xz

.

Furthermore, we make the following assumptions:

A1: V , θ, φ, p, r, q can be measured or estimated by on-board sensors.

A2: The pitch angle is limited to −θ̄ ≤ θ ≤ θ̄ where θ̄ < π/2.

A3: The roll angle is limited to −φ̄ ≤ φ ≤ φ̄ .

A4: The pitch angle θ = γ + α.

A5: The sideslip angle β = ψ − χ.

The control algorithms in this thesis deal only with pitch and roll attitude

hold. Therefore, attention is restricted to pitch angle, roll angle, pitch rate, and roll

rate equations. All other states are treated as measured states when used in the pitch

9

and roll equations and are otherwise ignored. The exceptions are α and β as they

cannot be measured on the MAVs.

2.3 Lyapunov’s Second Method

When working with nonlinear or time-varying systems, it can be difficult or

impossible to prove stability of an equilibrium point using classic control theory. The

Russian mathematician, Aleksandr Lyapunov, developed an alternative method to

determine stability when conventional methods fail. His method is based on the idea

that all solutions starting at points surrounding a stable equilibrium point stay near

the equilibrium point. The equilibrium point is unstable otherwise [6]. Lyapunov

functions can be thought of as energy-like functions. A system that is not gaining

energy is stable, whereas, a system that is gaining energy is unstable. We introduce

the following theorems as they will be used in this work. The theorems use the idea

of class K and class KL functions found in [6]. The following theorems are restated

as found in [6]. For all theorems, let x =
[
x1 x2 · · · xn

]T

.

Theorem 2.3.1 Let x = 0 be an equilibrium point for the nonautonomous system

ẋ = f (t,x) and D ⊂ Rn be a domain containing x = 0. Let V : [0,∞)×D → R be

a continuously differentiable function such that

W1 (x) ≤V (t,x) ≤ W2 (x) and (2.21)

V̇ =
∂V

∂t
+

∂V

∂x
f (t,x) ≤ 0, (2.22)

∀t ≥ 0 and ∀x ∈ D where W1 and W2 are continuous positive definite functions on

D. Then, x = 0 is uniformly stable.

Proof: see [6].

This theorem is applied by first defining a Lyapunov function over some domain

D that is bounded by positive definite functions. If the derivative of the Lyapunov

function is nonincreasing, the system is stable. In other words, if the energy-like

function is not increasing in energy it is stable, but convergence to the equilibrium

point is not guaranteed.

10

Example: Take the system

ẋ1 = −x1 and

ẋ2 = 2x1 − x2, (2.23)

and define the Lyapunov candidate function

V =
1

2
x2

1 +
1

2
x2

2.

This Lyapunov function satisfies the first part of Theorem 2.3.1. Taking its derivative

yields

V̇ = x1ẋ1 + x2ẋ2,

= −x2
1 + 2x1x2 − x2

2, and

= − (x1 − x2)
2 ≤ 0. (2.24)

Equation (2.24) completely satisfies Theorem 2.3.1, therefore the system (2.23) is

uniformly stable.

Theorem 2.3.2 Suppose the assumptions of Theorem 2.3.1 are satisfied with inequal-

ity (2.22) strengthened to

V̇ =
∂V

∂t
+

∂V

∂x
f (t,x) ≤ −W3(x),

∀t ≥ 0 and ∀x ∈ D where W3 is a continuous positive definite function on D. Then,

x = 0 is asymptotically uniformly stable. Moreover, if r and c are chosen such that

the ball, Br, is defined as Br = {||x|| ≤ r} ⊂ D and c ≤ min||x||=rW1, then every

trajectory starting in {x ∈ Br|W2 (x) ≤ c} satisfies

||x (t)|| ≤ β (||x (t0)|| , t− t0) ,

11

for some KL function β. Finally, if D = Rn and W1 (x) is radially unbounded, then

x = 0 is globally uniformly asymptotically stable.

Proof: see [6].

Theorem 2.3.2 simply extends Theorem 2.3.1 such that if the energy-like func-

tion is decreasing, the system is converging to the equilibrium point asymptotically.

Furthermore, if the domain encompasses all of Rn, the convergence holds globally.

Example: Take the system

ẋ1 = −x1 + x2 and

ẋ2 = −x1 − x2, (2.25)

and define the Lyapunov candidate function

V =
1

2
x2

1 +
1

2
x2

2.

This Lyapunov function satisfies the first part of Theorem 2.3.1. Taking its derivative

we get

V̇ = x1ẋ1 + x2ẋ2,

= −x2
1 + x1x2 − x1x2 − x2

2, and

= −x2
1 − x2

2. (2.26)

Equation (2.26) satisfies Theorem 2.3.2 over the domain Rn, therefore the system

(2.25) is globally uniformly asymptotically stable.

Lemma 2.3.3 (Barbalat’s Lemma) Let φ : R → R be a uniformly continuous func-

tion on [0,∞). Suppose that limt→∞
∫ t

0
φ (τ) dτ exists and is finite. Then,

φ (t) → 0 as t →∞.

Proof: see [6].

12

Theorem 2.3.4 Let D ⊂ R be a domain containing x = 0 and suppose f (t,x) is

piecewise continuous in t and locally Lipschitz in x, uniformly in t, on [0,∞) ×D.

Furthermore, suppose f (t,0) is uniformly bounded for all t ≥ 0. Let V : [0,∞)×D→
R be a continuous differentiable function such that

W1 (x) ≤ V (t,x) ≤ W2 (x) and

∂V

∂t
+

∂V

∂x
f (t,x) ≤ −W (x) ,

∀t ≥ 0, ∀x ∈ D, where W1 (x) and W1 (x) are continuously positive definite functions

and W (x) is a continuous positive semidefinite function on D. Choose r > 0 such

that the ball Br ⊂ D and let ρ < min||x||=rW1 (x). Then, all solutions of ẋ = f (t,x)

with x0 ∈ {x ∈ Br|W2 (x) ≤ ρ} are bounded and satisfy

W (x (t)) → 0 as t →∞.

Moreover, if all the assumptions hold globally and W1 (x) is radially unbounded, the

statement is true for all x (t0) ∈ Rn.

Proof: see [6].

Therefore, if solutions start in the ball, Br, then x(t) → {x ∈ D | W (x) = 0}
as t → ∞. This, unfortunately, only guarantees convergence to a set that satisfies

W3(x) = 0 and not convergence to the equilibrium point. However, it may be possible

to show that some, or all, of the states go to zero in order for x(t) to be a member of

the above set.

Example: Let

ẋ = −x− xe−t (2.27)

be a system with a Lyapunov candidate function

V =
1

2
x2.

13

Taking derivative of the Lyapunov function derivative gives us

V̇ = xẋ,

= −x2 − x2e−t, and

= −x2
(
1 + e−t

) ≤ 0.

We define

W (x(t)) = x2

so that

V̇ = −x2
(
1 + e−t

) ≤ −W (x(t)). (2.28)

If we integrate Equation (2.28), we get

∫ t

t0

V̇ (t, x(τ))dτ ≤ −
∫ t

t0

W (x(τ))dτ,

−
∫ t

t0

V̇ (t, x(τ))dτ ≥
∫ t

t0

W (x(τ))dτ, and

V (t0, x(t0))− V (t, x(t0) ≥
∫ t

t0

W (x(τ))dτ.

Because V (t, x) is decreasing, the left hand side of the equation is finite. Because of

Lemma 2.3.3, this implies

W (x(t)) → 0 as t →∞,

which implies

x(t) → {x ∈ D | W (x(t)) = 0} .

If we let r = ∞, all solutions of ẋ = −x − xe−t are bounded. But since W (x) = x2,

the set where W (x) = 0 contains only the equilibrium point. Thus,

x(t) → 0 as t →∞.

14

Theorem 2.3.5 Let D ⊂ R be a domain containing x = 0 and suppose f (t,x) is

piecewise continuous in t and locally Lipschitz in x for all t ≥ 0 and x ∈ D. Let

x = 0 be an equilibrium point for ẋ = f(t,x) at t = 0. Let V : [0,∞)×D → R be a

continuously differentiable function such that

W1(x) ≤ V (t,x) ≤ W2 (x) ,

V̇ (t,x) =
∂V

∂t
+

∂V

∂x
f (t,x) ≤ 0, and

V (t + δ, φ(t + δ; t,x))− V (t,x) ≤ −λV (t,x), 0 < λ < 1,

∀t ≥ 0, ∀x ∈ D, for some δ > 0, where W1 (x) and W1(x) are continuously positive

definite functions on D and φ(τ ; t,x) is the solution of the system that starts at (t,x).

Then, the origin is uniformly asymptotically stable. If all the assumptions hold globally

and W1(x) is radially unbounded, then the origin is globally uniformly asymptotically

stable. If

W1(x) ≥ k1 ||x||c ,W2(x) ≤ k2 ||x||c , k1 > 0, k2 > 0, c > 0

then the origin is exponentially stable.

Proof: see [6].

Theorem 2.3.5 states that asymptotic or exponential stability can be inferred

as long as the Lyapunov function is decreasing. This holds even if the Lyapunov

function’s derivative is negative semi-definite.

Example: Looking at the previous example V̇ ≤ 0. And because V is decreasing,

V (t + δ, φ(t + δ; t, x))− V (t, x) ≤ −λV (t, x).

Moreover, by letting k1 = 1
2

and k2 = 2, V is bounded above and below such that

1

2
||x||2 ≤ V (t, x) ≤ 2 ||x||2 .

15

Therefore by using Theorem 2.3.5 we can determine that this system is globally

exponentially stable.

For the following theorem, we are considering the system

ẋ = f(t,x), (2.29)

where f : [0,∞)×D → Rn is piecewise continuous in t and locally Lipschitz in x on

[0,∞)×D, and D ⊂ Rn is a domain that contains the origin [6].

Theorem 2.3.6 Let D ⊂ Rn be a domain that contains the origin and V : [0,∞)×
D→ R be a continuously differentiable function such that

α1(||x||) ≤ V (t,x) ≤ α2 (||x||) and

∂V

∂t
+

∂V

∂x
f (t,x) ≤ −W3(x), ∀ ||x|| ≥ µ > 0,

∀ t ≥ 0 and ∀ x ∈ D, where α1 and α2 are class K functions and W3(x) is a

continuous positive definite function. Take r > 0 such that Br ⊂ D and suppose that

µ < α−1
2 (α1(r))

Then, there exists a class KL function β and for every initial state x(t0), satisfying

||x(t0)|| ≤ α−1
2 (α1(r)), there is T ≥ 0 (dependent on x(t0) and µ) such that the

solution of (2.29) satisfies

||x(t)|| ≤ β(||x(t0)|| , t− t0), ∀ t0 ≤ t ≤ t0 + T and (2.30)

||x(t)|| ≤ α−1
1 (α2(µ)), ∀ t ≥ t0 + T, (2.31)

Moreover, if D = Rn and α1 belongs to class K∞, then (2.30) and (2.31) hold for

any initial state x(t0), with no restriction on how large µ is.

Proof: see [6].

16

This theorem states that if a ball, Br, is selected such that the Lyapunov

candidate function is decreasing for ||x|| > µ, where and µ ∈ Br, then ultimate

boundedness can be determined. This theorem is useful when the derivative of the

Lyapunov candidate function is indeterminate around the equilibrium. The cause

of indeterminance maybe a positive definite term or a term that is indeterminate or

unknown but has an upper bound.

Example: Define the system as

ẋ1 = M − x1 and

ẋ2 = M − x2, (2.32)

where M is an unknown positive constant. We define the Lyapunov candidate func-

tion as

V =
1

2
xTx,

which is bound above and below by class K functions such that

(
α1(||x||) =

1

2
||x||2

)
≤ V (||x||2) ≤ (

α2(||x||) = 2 ||x||2) .

Taking the derivative yields

V̇ = xT ẋ,

= xT


−x + M


1

1





 ,

= − ||x||2 + MxTy, where y =
[
1 1

]T

, and

≤ − ||x||2 + M
√

2 ||x|| ,

where we have used the relation xTy ≤ ||x|| ||y||. Observe that the derivative is

negative as long as − ||x||2 dominates M
√

2 ||x||. Setting µ = M
√

2 ||x|| and applying

Theorem 2.3.6 we get that ||x|| is bounded by ||x|| ≤ M
√

2.

17

Lemma 2.3.7 Let

f(θ, φ, ψ) = θ − ψ̃T
[
φ + ψ̇

]
. (2.33)

be a piecewise continuous function, where ψ̃ = ψ̂−ψ. Furthermore, let θ be a piecewise

continuous, time-varying function and ψ and φ be time-varying vectors of size a. Also,

let each entry in ψi ∈ Si, and define ψ̂ to be the estimate of ψ. If we define the update

law for ψ to be

ψ̇ = ProjS (−φ, ψ) , (2.34)

where we are using the projection operator defined by Equation (2.1), then,

f(θ, φ, ψ) ≤ θ. (2.35)

Proof: Using the definition of the projection operator in (2.1) we have

ψi ∈ Si, 0 ≤ i ≤ a. (2.36)

Equation (2.34) and Equation (2.36) imply the following three cases.

Case 1: One or more entries are |ψi| < ψ̄i.

Each entry defined by this case has the derivative ψ̇i = −φi, and therefore are

canceled out by counterparts in φ. Therefore, f(θ, φ, ψ) reduces to

f(θ, φ, ψ) = θ.

Case 2: ψi = ψ̄i for one or more entries.

Entries where ψi = ψ̄i and −φ is negative are set to ψ̇i = −φi by the pro-

jection operator, which cancels with the appropriate φi terms. However, the

entries where ψi = ψ̄i and −φ is positive, the projection operator sets ψ̇ = 0.

Equation (2.33) becomes

f(θ, φ, ψ) = θ + ψ̃T φ. (2.37)

18

But since ψi ∈ Si, we have ψ̂i ≥ ψi, which means that ψ̃ is positive and φ is

negative. Thus, the terms for this case are negative. Equation (2.37) becomes

f(θ, φ, ψ) = θ + ψ̃T φ ≤ θ.

Case 3: ψi = −ψ̄i for one or more entries.

For the entries where ψi = −ψ̄i and −φ is negative, the projection operator sets

ψ̇ = 0. Equation (2.33) becomes

f(θ, φ, ψ) = θ + ψ̃T φ. (2.38)

But since ψi ∈ Si, we have ψ̂i ≤ ψi, which means that ψ̃ is negative and φ is

positive. Thus, the terms for this case are negative. Equation (2.38) becomes

f(θ, φ, ψ) = θ + ψ̃T φ ≤ θ.

The combined result of these three cases is

f(θ, φ, ψ) ≤ θ.

2.4 Forms of Adaptive Control

In the following sections we will discuss different types of adaptive control,

namely least squares estimation, dynamic inversion with neural networks, and model

reference adaptive control. Least squares estimation, dynamic inversion, and the

MIT rule are included for completeness. A brief mathematical development of each

is presented and their advantages and disadvantages are discussed.

2.4.1 Least Squares Adaptive Control

Least squares estimation uses the outputs of a system and estimates the plant

parameters to minimize the squared error. A controller can then use the parameter

estimates to adapt. Reference [7] is used for the derivation below. When using least

19

squares estimation we minimize the cost function

J =
1

2

∣∣∣
∣∣∣y(t)− Φ(t)θ̂

∣∣∣
∣∣∣
2

, (2.39)

where

ϑT (t) = [ϑ1(t) ϑ2(t) · · ·ϑn(t)] ,

ΦT (t) = [ϑ(1) ϑ(2) · · ·ϑ(t)] ,

θ̂T (t) =
[
θ̂1(t) θ̂2(t) · · · θ̂n(t)

]
, and

yT (t) = [y(1) y(2) · · · y(t)] , (2.40)

and Φ(t) is a matrix of inputs, ϑ(t) is a vector of inputs, θ̂ is a vector of parameters,

and y(t) is a vector of outputs. From calculus we know that the minima occurs when

Φ(t)θ̂ = y(t). If Φ is an m×n matrix, θ̂ is n×1, and y is m×1 we can solve for the

minimum by

ΦT (t)Φ(t)θ̂(t) = ΦT (t)y(t),

⇒ (
ΦT (t)Φ(t)

)−1
Φ(t)T Φ(t)θ̂(t) =

(
ΦT (t)Φ(t)

)−1
ΦT (t)y(t), and

⇒ θ̂(t) =
(
ΦT (t)Φ(t)

)−1
ΦT (t)y(t), (2.41)

given that Φ(t)T Φ(t) is invertible. Obviously, every time there is new information,

this equation must be rerun to compute the parameters. This can be impractical as

datasets become large and computationally intensive. Also, memory will be needed

to store the entire dataset, which is impractical. These issue can be addressed using

a recursive form. To find the recursive form we define

P (t) =
(
ΦT (t)Φ(t)

)−1
and

P (t) =

(
t∑

i=1

(
ϑ(i)ϑT (i)

)
)−1

(2.42)

so that Equation (2.41) becomes

20

θ̂(t) = P (t)ΦT (t)y(t). (2.43)

It should be noted that the dimension of P (t) will always be n×n. Using Equa-

tion (2.42) we get

P−1(t) =

(
t∑

i=1

(
ϑ(i)ϑT (i)

)
)

,

P−1(t) =

(
t−1∑
i=1

(
ϑ(i)ϑT (i)

)
)

+ ϑ(t)ϑT (t), and

P−1(t) = P−1(t− 1) + ϑ(t)ϑT (t). (2.44)

The above equation gives us a recursive way to compute the matrix P−1(t). To

initialize, we simply use Equation (2.42) at t = 0 and Equation (2.44) at t > 0. If we

plug Equation (2.42) into Equation (2.41) we get

θ̂(t) = P (t)ΦT (t)y(t). (2.45)

Taking this equation at t = t − 1 and substituting Equation (2.44) gives us the

following formulation of a recursive least squares algorithm

θ̂(t− 1) = P (t− 1)ΦT (t− 1)y(t− 1),

⇒ P (t− 1)−1θ̂(t− 1) = ΦT (t− 1)y(t− 1), and

⇒ P (t)−1θ̂(t− 1)− ϑ(t)ϑT (t)θ̂(t− 1) = ΦT (t− 1)y(t− 1). (2.46)

Plugging (2.46) into (2.44) gives

θ̂(t) = P (t)
(
ΦT (t− 1)y(t− 1) + ϑ(t)y(t)

)
,

⇒ θ̂(t) = P (t)
(
P (t)−1θ̂(t− 1)− ϑ(t)ϑT (t)θ̂(t− 1) + ϑ(t)y(t)

)
, and

⇒ θ̂(t) = θ̂(t− 1) + P (t)ϑ(t)
(
y(t)− ϑT (t)θ̂(t− 1)

)
, (2.47)

21

which is the recursive update equation. To summarize,

P−1(t) = P−1(t− 1) + ϑ(t)ϑT (t) and

θ̂(t) = θ̂(t− 1) + P (t)ϑ(t)
(
y(t)− ϑT (t)θ̂(t− 1)

)
. (2.48)

A version that does not require any inverses can be found in [8]. Used in the

current form, least squares can estimate a parameter to be used by the controller.

Unfortunately, the covariance matrix P (t) can become singular. This can be rectified

by resetting the covariance matrix or introducing a forgetting factor [9]. Adaptive

control using least squares has the advantage of fast convergence to the parameters [9].

However, least squares estimation can be computationally intensive, particularly on

small autopilots.

Least squares estimation has been used in the following papers. In [10], the

authors use least squares estimation with a forgetting factor to estimate the states

of an RC airplane. This airplane is flown with a pilot in control commanding pitch

and roll rates. During the flight, half of the elevator is released. The least squares

computes the parameter estimates and aircraft stability is maintained.

Several different approaches to adaptive control are explored in [11]. Dynamic

inversion was performed using Modified Sequential Least Squares (MSLS) to identify

the parameters of the aircraft. This approach was found to do well.

Paper [12] deals with the problem of ARMA models that lose their co-prime-

ness. In this paper, least squares is used to estimate the parameters of an ARMA

model. These estimates are used in an adaptive digital PID controller. The effective-

ness of the controller is shown for an F-16.

2.4.2 Dynamic Inversion

Dynamic inversion is a technique where the error dynamics between the refer-

ence input and plant output are inverted to simplify regulator design. This technique

can be applied to both linear and nonlinear systems, but it finds its greatest use

22

in nonlinear systems. The derivation for dynamic inversion discussed below comes

from [13].

We take an autonomous system with affine inputs as described by the state

equation

ẋ = f (x) + g (x) u and (2.49)

y = h(x). (2.50)

Defining an error system

e = r (t)− y (t) (2.51)

and taking its derivative, we get

ė = ṙ (t)− ẏ (t) . (2.52)

Expanding ẏ gives

ẏ =
∂h

∂x
ẋ,

=
∂h

∂x
f (x) +

∂h

∂x
g (x) u, and

= F (x) + G (x) u,

where

F (x)
4
=

∂h

∂x
f (x) and G (x)

4
=

∂h

∂x
g (x) .

By picking

u = G−1 (x) [−F (x) + ṙ + v] (2.53)

the error system becomes

ė = −v.

The input v can be viewed as an outer loop, while G−1 (x) [−F (x) + ṙ] acts like an

inner loop. The outer loop can be replaced by a variety of control schemes.

23

Looking at the final controller, some things become apparent. First, G (x)

must be invertible. Also, the controller needs a model of the plant or a lookup table

for F (x) and G−1 (x). Having a model can be computationally expensive, while a

lookup table requires memory. Furthermore, neither method is robust to changes in

the plant. However, this last problem can be overcome using neural networks.

When used in dynamic inversion, neural networks eliminate the need for in-

ternal models or lookup tables, account for modeling error, and can adapt to changes

in the plant. In an adaptive controller, typically two neural networks are employed.

The first neural network is trained off-line from prior flight, wind tunnel, or simulated

data. The second neural network is trained continuously during flight to account for

modeling error and to adapt to changes in plant dynamics resulting from damages or

actuator failures.

The main advantage of this design technique is that it deals directly with the

nonlinearities of the plant. This translates into a wide operating range without using

gain scheduling. Also, the outer loop is simple to design since the inner loop accounts

for the plant dynamics [13]. However, this technique is not without its disadvantages.

One disadvantage is that dynamic inversion needs full-state feedback for the

inner loop. On some aircraft it may be impractical or impossible to estimate all

states, such as measuring angle-of-attack on RC-style aircraft. Another disadvantage

is that the processor on a MAV may not be able to compute all of the nodes of the

neural network fast enough to keep the aircraft stable.

Using dynamic inversion in conjunction with neural networks appears to be

an important development in adaptive control. The following papers implement this

combination. References [11, 14–16] use neural networks trained offline to invert the

aircraft dynamics. An online neural network is then used to compensate for model

error. In [17], the author performs a statistical analysis of the previous scheme, finding

the one presented in the paper to have a high level of confidence. However, in [18]

dynamic inversion is used to invert the dynamics of a tailless fighter aircraft without

using neural networks. Instead, a neural network in conjunction with a PD controlller

is used to adapt to failures on an aircraft.

24

Controller

Σ

+

-

Model

Plant

Control

 Law

Parameter

 Estimator

Θ

Θ

Θ

k
^

m

~

States

Θ
d

Figure 2.2: Block diagram of Lyapunov MRAC structure.

2.4.3 Model Reference Adaptive Control

In model reference control, the output of a plant is compared against the

output of a model that is being driven by a reference signal. The error between the

model output and plant output is then used to drive the plant to the desired reference

input. Model reference adaptive control (MRAC) is a similar approach except instead

of using the error between the model and the plant to drive the system to a reference

input, the error is used to update the parameter estimates of the plant. Through

updating the parameters, the tracking error is driven to zero. Essentially, the goal is

to force the plant into behaving like the model. Figure 2.2 shows a block diagram of

an MRAC.

In this subsection, three different types of MRAC are presented. The first

part explains the gradient based method also known as the MIT rule. The second

part describes a Lyapunov based MRAC, which uses stability concepts to develop its

adaptive law. Finally, the last part lays out an extension to the Lyapunov MRACs

called L1 controllers.

25

Gradient Based MRAC

The gradient based approach is one of the oldest forms of MRAC. It was developed

by researchers at MIT [7]. This method employs gradient descent to update the

parameters of the controller. Define the cost function J as

J =
1

2
e2,

where e is the error between the actual plant output and the model output. On MAVs

e might be the error in pitch or roll angles. Our goal is to minimize J , so we update

the parameter estimates in the opposite direction of the gradient. Letting θ be the

vector of parameters, the update law would be

dθ

dt
= −γ

∂J

∂θ
= −γe

∂e

∂θ
. (2.54)

The MIT rule is not guaranteed to find the true parameters of the system; to

find the true parameters, persistent excitation is needed [7]. Persistent excitation is

further elaborated on in [5]. Also, the MIT rule only works if changes in the parame-

ters are small. This means that the adaptive gains are limited by the magnitude of the

input signal and the process gain. The following modification is used to compensate

for the previous limitation.

dθ

dt
= −γsat

(
e∂e

dθ

α +
(

∂e
∂θ

)T (
∂e
∂θ

) , β

)
, (2.55)

where the saturation operator is defined as

sat (α, β) =





α −β ≤ α ≤ β

β α > β

−β α < −β

. (2.56)

Unfortunately, we may still have an unstable system, e.g. γ is too high making

the update equation “stiff”. Normalization and proofs for stability in the sense of

26

Lyapunov are found in [5]. Conditions for global stability with proofs can be found

in [19].

Lyapunov Stability

Lyapunov stability is based on an energy-like function constructed from the states

of the system. If the derivative of the energy equation is nonincreasing, we can say

the system is stable. Section 2.3 discusses the Lyapunov stability criteria in more

detail. Lyapunov stability can be used to create MRACs that have certain stability

guarantees. MRACs based on Lyapunov stability have similar update equations to

gradient based MRACs, but differ on the signals used in the update equations. To

see the difference we define the system

ẋ = θ1x + θ2u, (2.57)

where θ1 is an unknown constant, θ2 is a positive, unknown constant, x is the state

variable, and u is the input. Furthermore, let the model be

ẋm = −kxm + kxd, (2.58)

where xm is the model state variable and xd is the reference signal. Defining the error

system to be e = x− xm and taking its derivative we get

ė = ẋ− ẋm and

= θ1x + θ2u + k(xm − xd).

Defining the Lyapunov function candidate

V =
1

2
e2,

and taking its derivative gives

27

V̇ = eė = e
(
θ1x + θ2u + k(xm − xd)

)
.

If we could pick

u = ϑTk,

where

ϑ =


−γe− k(xm − xd)

−x


 and k =




1
θ2

θ1

θ2


 , (2.59)

then V̇ = −γe2 which means the system is stable. However, we do not know θ1 or θ2

and so we will use an estimate of k, k̂, to get

u = ϑT k̂ (2.60)

instead. Replacing u in the Lyapunov function derivative gives us

V̇ = e
(
θ1x + θ2ϑ

T k̂ + k(xm − xd)
)

.

Adding and subtracting ϑTk from ϑT k̂ gives

V̇ = e
(
θ1x + θ2ϑ

T (k̂− k + k) + k(xm − xd)
)

,

= e
(
θ1x + θ2ϑ

Tk + θ2ϑ
T k̃ + k(xm − xd)

)
, where k̃ = k̂− k, and

= −γe2 + θ2eϑ
T k̃,

which is indefinite. Therefore, we define a new Lyapunov function candidate

V1 = V +
θ2

2
k̃

T
Γ−1k̃,

whose derivative is

V̇1 = −γe2 + θ2eϑ
T k̃ + θ2

˙̂
kT Γ−1k̃ and

28

= −γe2 + θ2

(
eϑT +

˙̂
kT Γ−1

)
k̃.

To update our estimate of k we let

˙̂
k = −eΓϑ,

which will cancel out the rightmost term. Using theorems defined later in this thesis,

it can be shown that if k̂ is bounded, then the system is exponentially stable. This

update equation is similar to the gradient based update equation from the previous

section. The difference being that the gradient based equation uses a sensitivity

derivative, while the Lyapunov based equation uses the regressor vector, ϑ.

There are a few advantages to this adaptive control method. One is that

the Lyapunov algorithms are easy to implement. Another advantage is that the

implementation does not involve large matrices with inverses. Finally, we should have

a stable system since this adaptive mechanism was derived from stability theory.

This adaptive method has some disadvantages that should be considered. The

first disadvantage is that it requires a good mathematical representation of the plant

or the controller will be unstable. Also, noise causes this method to “unlearn” the

plant parameters, reducing performance. Another issue is that parameter convergence

is not guaranteed. Finally, this adaptive method causes high frequency chatter on the

output signal; high frequency oscillations on the output can result in destabilization as

unmodeled dynamics are excited. Moreover, there is a tradeoff between adaptive gains

and oscillations on the control signal. In some cases, oscillations can be eliminated

by reducing the adaptive gain, but performance and adaptability are reduced. The

converse is also true. By increasing the adaptive gain, oscillations increase and the

plant may become unstable.

The following are applications of Lyapunov MRACs. In [20] a morphing air-

craft is presented that warps its wings by using multiple actuators. To compensate for

failures of individual actuators, the authors use a Lyapunov MRAC. Reference [21]

uses a Lyapunov MRAC to compensate for failures of actuator in a MIMO system.

29

The system presented has multiple actuators for similar functions. The article ends

with an aircraft simulation controlling roll and yaw.

Like birds that fly in formation, aircraft that fly in a “V” expend less fuel in

flight. Because the effects of the vortex coming off the lead aircraft are unknown, [22]

derives an adaptive extremum seeking controller. The authors use an adaptive gain

for neural network to control throttle and aileron movements.

In this thesis, a backstepping Lyapunov MRAC is derived. Reference [23] also

uses backstepping to derive an aircraft controller. However, the authors are using a

different model. The authors of this article also consider saturation in their derivation,

whereas we do not.

L1 Controllers

In the previous section, we discussed MRACs based on Lyapunov stability criteria.

Although they are guaranteed to asymptotically converge to the reference signal, the

control signal may contain high frequency chatter. High frequency chatter can be

detrimental as it may lead to the excitation of unmodeled dynamics, thereby causing

instability. Moreover, chatter can also cause actuator failure. The hallmark of the

L1 controller is that it has the benefits of Lyapunov MRACs but has high adaptive

gains and reduced high frequency oscillations, while maintaining adequate stability

margins.

In a sense, L1 controllers are a modification of Lyapunov based MRACs. They

are called L1 controllers because the L1 gain of the system between input and out-

put is guaranteed to be bounded. L1 controllers have all the benefits of traditional

MRAC controllers except they can have high adaptive gains and reduced chatter on

the output. This is accomplished by low-pass filtering the parameter estimates and

replacing the model with a companion model [2, 3]. Notice in Figure 2.3 how the

MRAC from Figure 2.2 has been modified with the addition of a low-pass filter to

make it an L1 controller.

30

Controller

Σ

+

-Companion

 Model

Plant

Control

 Law
Low-pass

 Filter

Parameter

 Estimator

Θ

Θ

Θ

Θ

k
^

d

m

~

States

Figure 2.3: Block diagram of L1 controller structure. A low-pass filter is added to
the parameter estimates to reduce oscillations on the output signal.

To explain companion models, let us look to Equation (2.58) of the last section.

If we modify this equation we get the following companion model,

ẋcm = −kxcm + θ̂2

(
u +

kxcm + γe

θ̂2

+
θ̂1

θ̂2

x

)
.

Inserting (2.60) into this model yields the original model. Thus, using companion

models is equivalent to using standard models in MRAC [2]. However, this is not

the case if we filter the estimates. Instead, the companion model takes on the high

frequency content of the parameters. Meanwhile, the input variable u only gets the

low-pass content of the parameters. This is how the L1 controller reduces chatter to

the plant’s input but still preserves all the information of the system.

Thus, to design an L1 controller, we begin by designing a traditional MRAC.

After the MRAC is designed, the model is modified to become a companion model.

Then the adaptive gains are adjusted to give fast parameter convergence. Finally, a

low-pass filter is tuned for the parameter estimates until chatter is acceptable without

sacrificing performance.

There are several advantages to the L1 adaptive controller. First, all of the

benefits of Lyapunov controllers are realized. The shared benefits are a stability

31

guarantee, simple computation without matrices, and easy implementation. Beyond

this, L1 controllers also significantly reduce chatter that other MRAC methods pro-

duce. They also guarantee perfect tracking of the model as the adaptive gain goes to

infinity [3].

Like Lyapunov based MRACs, L1 controllers must have good mathematical

representations of the plant structure to be stable. Also, due to noise, they can

unlearn parameters when given a constant reference signal. Finally, they are not

guaranteed to converge to the true values of the parameters.

32

Chapter 3

Adaptive Control Derivation

This chapter develops two different types of algorithms for use in MAVs–

Lyapunov based MRACs and L1 adaptive controllers. This chapter is divided into

two sections. The first develops four Lyapunov based MRAC pitch and roll controllers,

while the second develops four L1 pitch controllers.

3.1 Lyapunov Based MRAC Controllers

In this section, four different MRAC schemes are derived. All four schemes

are based on Lyapunov stability arguments and use the same reference pitch and roll

models. The pitch model is

θ̇m = kθ

(
θd − θm

)
, (3.1)

and the roll model is

φ̇m = kφ

(
φd − φm

)
, (3.2)

where θd and φd are the desired pitch and roll, θm and φm are the model pitch and

roll, and kθ and kφ are the model gains for pitch and roll respectively. However, the

schemes differ on their approach to how much is lumped into the regressor’s bias

term. “Lumping” the parameters will give us computationally simpler algorithms

that free more processor time for other essential functions. The first scheme will

employ backstepping to handle derivatives on angular rates. The second does not use

backstepping, but instead solves for q and p, reducing the roll and pitch equations to

pseudo first order systems. The third and fourth schemes further simplify the system

by lumping more signals into the bias term.

33

All four schemes will use the following definition for tracking error. For pitch

we have

θ̃ = θ − θm and

˙̃θ = θ̇ − θ̇m, (3.3)

and for roll we have

φ̃ = φ− φm and (3.4)

˙̃φ = φ̇− φ̇m. (3.5)

3.1.1 MRAC Scheme A

Two backstepping controllers will be developed in this section. The first con-

troller regulates pitch, while the second controller regulates roll. The boundedness of

both controllers will be proven.

Pitch Attitude Hold

Our objective is to have the plant track the model (3.1). Because δe comes into the

system through the q channel, the tracking error, θ̃, is driven to zero by using back-

stepping. To derive the pitch controller, Equation (3.3) is applied to Equation (2.13)

giving

˙̃θ = q cos φ− r sin φ− kθ(θ
d − θm),

= −λθθ̃ + λθθ̃ − kθ(θ
d − θm)− r sin φ + q cos φ,

= −λθθ̃ + cos φ

{
λθθ̃ − kθ(θ

d − θm)− r sin φ

cos φ
+ q

}
, and

= −λθθ̃ + q̃ cos φ, (3.6)

where q̃ = q − qdes and the backstepping variable is defined as

34

qdes 4
=
−λθθ̃ + kθ(θ

d − θm) + r sin φ

cos φ
. (3.7)

The variable, qdes, is chosen such that if q = qdes Equation (3.6) reduces to

˙̃θ = −λθθ̃,

which is asymptotically stable.

Differentiating q̃ and use Assumption A4 from section 2.2 and Equation (2.16)

yields

˙̃q =
Jxz

Jy

(p2 − r2) +
Jz − Jx

Jy

pr +
1
2
ρV 2Sc̄

Jy

[
Cm0 + Cmα (θ − γ)

+ Cmq

c̄q

V
+ Cmδe

δe

]
− q̇des.

Taking the Lyapunov function candidate as

V1 =
1

2
θ̃2 +

1

2
q̃2

and differentiating, gives

V̇1 = −λθθ̃
2 + q̃

(
θ̃ cos φ + ˙̃q

)
,

= −λθθ̃
2 − λq q̃

2 + q̃

(
λq q̃ + θ̃ cos φ + ˙̃q

)
,

= −λθθ̃
2 − λq q̃

2 +

(1
2
ρSc̄Cmδe

Jy

)
V 2q̃

{ (
λq q̃ + θ̃ cos φ− q̇des

V 2

)(
Jy

1
2
ρSc̄Cmδe

)

+

(
r2 − p2

V 2

)(
Jxz

1
2
ρSc̄Cmδe

)
+

(pr

V 2

) (
Jz − Jx

1
2
ρSc̄Cmδe

)
+ (1)

(
Cm0 − Cmαγ

Cmδe

)

+ (θ)

(
Cmα

Cmδe

)
+

(q

V

) (
Cmq c̄

Cmδe

)
+ δe

}
, and

= −λθθ̃
2 − λq q̃

2 +

(1
2
ρSc̄Cmδe

Jy

)
V 2q̃

{
δe − ϑTk

}
,

35

where

ϑ
4
=




−λq q̃−θ̃ cos φ+q̇des

V 2

p2−r2

V 2

− pr
V 2

−1

−θ

− q
V




and k
4
=




k1 =
(

Jy
1
2
ρSc̄Cmδe

)

k2 =
(

Jxz
1
2
ρSc̄Cmδe

)

k3 =
(

Jz−Jx
1
2
ρSc̄Cmδe

)

k4 =
(

Cm0−Cmαγ

Cmδe

)

k5 =
(

Cmα

Cmδe

)

k6 =
(

Cmq c̄

Cmδe

)




. (3.8)

If we knew the vector k, setting δe = ϑTk yields

V̇ = −λθθ̃
2 − λq q̃

2.

According to Theorem 2.3.2, asymptotic convergence of both θ̃ and q̃ is guaranteed

as long as ϑ is bounded. However, we do not know k and so instead use

δe = ϑT k̂, (3.9)

where k̂ is the adaptive estimate of k and define k̃ = k̂− k to get

V̇1 = −λθθ̃
2 − λq q̃

2 +

(1
2
ρSc̄Cmδe

Jy

)
V 2q̃ϑT k̃.

Modifying the Lyapunov function candidate as

V =
1

2
θ̃2 +

1

2
q̃2 +

(1
2
ρSc̄Cmδe

Jy

)
1

2
k̃

T
Λ−1k̃,

differentiation gives

V̇ = −λθθ̃
2 − λq q̃

2 +

(1
2
ρSc̄Cmδe

Jy

)
k̃

T
[
Λ−1 ˙̃k + V 2q̃ϑ

]
and

= −λθθ̃
2 − λq q̃

2 +

(1
2
ρSc̄Cmδe

Jy

)
k̃

T
[
Λ−1 ˙̂

k− Λ−1k̇ + V 2q̃ϑ
]
. (3.10)

36

The update equation for k̂ is selected as

˙̂
k = ProjS1

(
−ΛV 2q̃ϑ, k̂

)
. (3.11)

Theorem 3.1.1 If

H1: θd, p, r ∈ L∞ and are continuous signals,

H2: V ∈ [Vmin, Vmax],

H3: φ ∈ [−φ̄, φ̄] where φ̄ < π/2 and φ is continuous,

H4: |k̇4| ≤ n,

H5: k ∈ S1,

where Vmin and Vmax are positive constants, then the MRAC described by (3.1), (3.7),

(3.8), (3.9), and (3.11) is bounded and θ̃ and q̃ are bounded such that

lim
t→∞

|θ̃2 + q̃2| ≤
(1

2
ρSc̄Cmδe

λminλ4Jy

)
mn,

whose bound is tightened by increasing the adaptive gain, λ4, or the smaller of the

two control gains, λθ and λq.

Proof: We need to show that all states are bounded. If Hypothesis H5 and Le-

mma 2.3.7 are applied to Equations (3.10) and (3.11), we get

V̇ ≤ −λθθ̃
2 − λq q̃

2 −
(1

2
ρSc̄Cmδe

Jy

)
k̃

T
Λ−1k̇.

However, since
Cm0−Cmαγ

Cmδe

is the only term in k that is time varying, the above equation

reduces to

V̇ ≤ −λθθ̃
2 − λq q̃

2 −
(1

2
ρSc̄Cmδe

Jy

)
k̃4λ

−1
4 k̇4.

Applying Hypotheses H4 and H5 gives

V̇ ≤ −λθθ̃
2 − λq q̃

2 +

(1
2
ρSc̄Cmδe

λ4Jy

)
mn,

37

where M is the upper bound for |k̃4|. Therefore, the Lyapunov function derivative

is negative definite as long as |λθθ̃
2 + λq q̃

2| ≥
(1

2
ρSc̄Cmδe

λ4Jy

)
mn. Defining λmin

4
=

min(λθ, λq) and applying Theorem 2.3.6, we have the upper bound for |θ̃2 + q̃2| as

follows:

λmin|θ̃2 + q̃2| ≤ |λθθ̃
2 + λq q̃

2| ≤
(1

2
ρSc̄Cmδe

λ4Jy

)
mn and

⇒ |θ̃2 + q̃2| ≤
(1

2
ρSc̄Cmδe

λminλ4Jy

)
mn. (3.12)

Therefore, either increasing the adaptive gain λ4 or the control gain λmin reduces

the tracking error. However, the control signal acquires high frequency oscillations as

these gains are increased. High frequency content in the control signal may negatively

impact the performance by exciting unmodeled dynamics or damaging actuators.

Equation (3.12) implies that

θ̃, q̃ ∈ L∞. (3.13)

Because H1 states that θd ∈ L∞,

θm ∈ L∞, (3.14)

since the model is BIBO stable. Hypotheses H1, H2, H3, H5, and Equation (3.14)

imply that

qdes, q̇des ∈ L∞. (3.15)

Equations (3.13) and (3.15) imply that q ∈ L∞. Equations (3.6), (3.14), (3.15), and

(3.13) imply that

˙̃θ, ˙̃q ∈ L∞. (3.16)

Furthermore, Equations (3.3), (3.13), and (3.14) imply that θ ∈ L∞. Finally, applying

this result, H1, H2, and H3 to (3.8) implies that ϑ ∈ L∞. The algorithm can be

summarized as follows.

38

Algorithm 1 Backstepping MRAC Scheme A for pitch attitude hold.

1: Obtain V φ, p, r, α, q, θ from sensors.
2: Update the reference model according to θ̇m = kθ

(
θd − θm

)
.

3: Compute: q̇des = −λθ θ̃+kθ(θd−θm)+r sin φ
cos φ

.

4: Compute: ϑ =




−λq q̃−θ̃ cos φ+q̇des

V 2

−p2−r2

V 2

− pr
V 2

−1
−θ
− q

V




.

5: Update the gain estimate according to:
˙̂
k = Proj

(
−ΛV 2q̃ϑ, k̂

)
.

6: Compute the elevator command: δe = ϑTk.

Roll Attitude Hold

The desire is for the MAV to track the roll model (3.2). However, the control input

comes in through the p channel and so backstepping is employed. The backstepping

roll controller is derived by differentiating (3.5) to get

˙̃φ = p + q sin φ tan θ + r cos φ tan θ − kθ(θ
d − θm),

= −λφφ̃ +
{

p + λφφ̃ + q sin φ tan θ

+r cos φ tan θ − kφ(φd − φm)
}

, and

= −λφφ̃ + p̃, (3.17)

where p̃ = p− pdes and the backstepping variable is

pdes 4
= −λφφ̃− q sin φ tan θ − r cos φ tan θ + kφ(φ

d − φm) (3.18)

Differentiating p̃ and substituting (2.15) in for ṗ results in

˙̃p = Ĵ1pq − Ĵ2qr +
1

2
ρV 2S

b

2

[
Cp0 + Cpβ

β + Cpp

bp

2V

+ Cpr

br

2V
+ Cpδa

δa + Cpδr
δr

]
− ṗdes. (3.19)

39

Notice that although δr is a control input, it is being treated like a measured

state–with the assumption being that the rudder to the MAV (if present) is used to

regulate sideslip. The experimental MAV platforms used in this thesis lack a rudder

and therefore δr = 0. As a matter of implementation, this value should be obtained

from a sensor. If a sensor is not present to determine the current rudder position,

previously commanded rudder values should be used. Although less optimal than

sensor values, using previous rudder commands is preferred to rudder commands not

yet sent to the rudder actuators. Non-delayed commanded values may incorrectly

weight the rudder during adaptation since the states that are directly effected by the

rudder, namely roll and yaw, will not correlate with the rudder value being used for

adaptation. This problem may or may not cause instability, but performance will

probably be effected.

In order to determine a control law for δa, the Lyapunov function candidate

V1 =
1

2
φ̃2 +

1

2
p̃2

is differentiated to obtain

V̇1 = −λφφ̃
2 + p̃

(
φ̃ + ˙̃p

)
and

= −λφφ̃
2 − λpp̃

2 + p̃
(
φ̃ + λpp̃ + ˙̃p

)
.

This derivative in its current form is indefinite and therefore we cannot say anything

about the stability of the system. However, by substituting Equation (3.19) in place

of ˙̃p yields the following derivative,

V̇1 = −λφθ̃
2 − λpq̃

2 +

(
1

2
ρS

b

2
Cpδa

)
V 2p̃

((
λpp̃ + φ̃− ṗdes

V 2

)(
1

1
2
ρS b

2
Cpδa

)

+
(pq

V 2

) (
Ĵ1

1
2
ρS b

2
Cpδa

)
+

(−qr

V 2

) (
Ĵ2

1
2
ρS b

2
Cpδa

)
+ (1)

(
Cp0 + Cpβ

ϑ

Cpδa

)

+ (−χ)

(
Cpβ

Cpδa

)
+

(p

V

) (
Cpp

b
2

Cpδa

)
+

(r

V

) (
Cpr

b
2

Cpδa

)
+ (δr)

(
Cpδr

Cpδa

)
+ δa

)
,

40

V̇1 = −λφφ̃
2 − λpp̃

2 +

(
1

2
ρS

b

2
Cpδa

)
V 2p̃

(
δa − ϑTk

)
,

where

ϑ
4
=




−λpp̃−φ̃+ṗdes

V 2

−pq
V 2

qr
V 2

−1

χ

−p
V

−r
V

−δr




and k
4
=




k1 =

(
1

1
2
ρS b

2
Cpδa

)

k2 =

(
Ĵ1

1
2
ρS b

2
Cpδa

)

k3 =

(
Ĵ2

1
2
ρS b

2
Cpδa

)

k4 =
(

Cp0+Cpβ
ϑ

Cpδa

)

k5 =
(

Cpβ

Cpδa

)

k6 =
(

Cpp
b
2

Cpδa

)

k7 =
(

Cpr
b
2

Cpδa

)

k8 =
(

Cpδr

Cpδa

)




. (3.20)

Since we do not know k, let k̂ be the estimate of k and set

δa = ϑT k̂. (3.21)

Substituting ϑT k̂ in for δa gives us

V̇1 = −λφφ̃
2 − λpp̃

2 +

(
1

2
ρS

b

2
Cpδa

)
V 2p̃ϑT k̃,

where we have used the relation, k̃ = k̂ − k. Modifying the Lyapunov function

candidate to be

V =
1

2
φ̃2 +

1

2
p̃2 +

(
1

2
ρS

b

2
Cpδa

)
1

2
k̃

T
Λ−1k̃,

differentiation gives

V̇ = −λφφ̃
2 − λpp̃

2 +

(
1

2
ρS

b

2
Cpδa

)
k̃

T
[
Λ−1 ˙̂

k− Λ−1k̇ + V 2p̃ϑ
]
. (3.22)

Define the update equation

˙̂
k = ProjS1

(
−ΛV 2p̃ϑ, k̂

)
. (3.23)

41

Theorem 3.1.2 If

H1: φd, q, r ∈ L∞ are continuous signals,

H2: V ∈ [Vmin, Vmax],

H3: θ ∈ [−θ̄, θ̄] where θ̄ < π/2 and θ is continuous,

H4: |k4| ≤ n,

H5: k ∈ S1,

where Vmin and Vmax are positive constants, then the MRAC described by (3.5),(3.18),

(3.20), (3.21), and (3.23) is stable with ultimate boundedness

lim
t→∞

|φ̃2 + p̃2| ≤
(

1

2
ρS

b

2λminλ4

Cpδa

)
mn.

Proof: We need to show all that states are bounded. Applying Hypothesis H5 and

Lemma 2.3.7 to Equations (3.22) and (3.23), we get

V̇ ≤ −λφφ̃
2 − λpp̃

2 −
(

1

2
ρS

b

2
Cpδa

)
k̃

T
Λ−1k̇. (3.24)

However, since k4 is the only term in k that is time varying, the above equation

reduces to

V̇ ≤ −λφφ̃
2 − λpp̃

2 −
(

1

2
ρS

b

2
Cpδa

)
k̃4λ

−1
4 k̇4.

Applying Hypotheses H4 and H5 gives

V̇ ≤ −λφφ̃
2 − λpp̃

2 −
(

1

2
ρS

bCpδa

2λ4

)
mn.

where m is the upper bound for |k̃4|. Therefore, the Lyapunov function derivative

is negative definite as long as |λφφ̃
2 + λpp̃

2| ≥ (
1
2
ρS b

2
Cpδa

)
mn. If we define λmin

4
=

min(λφ, λp), and apply Theorem 2.3.6, we have the upper bound for |φ̃2 + p̃2| as

42

follows:

λmin|φ̃2 + p̃2| ≤ |λφφ̃
2 + λpp̃

2| ≤
(

1

2
ρS

b

2λ4

Cpδa

)
mn and

⇒ |φ̃2 + p̃2| ≤
(

1

2
ρS

b

2λminλ4

Cpδa

)
mn. (3.25)

Therefore, either increasing the adaptive gain λ4 or the control gain λmin reduces the

tracking error. However, the control signal gains high frequency oscillations as these

gains are increased. High frequency content in the control signal may negatively

impact the performance by exciting unmodeled dynamics or damaging actuators.

Also, this upper bound further implies that

φ̃, p̃ ∈ L∞. (3.26)

Because H1 states that φd ∈ L∞,

φm ∈ L∞, (3.27)

since the model is BIBO stable. All Hypotheses, (3.27), and (3.26) applied to (3.18)

imply that

pdes, ṗdes ∈ L∞. (3.28)

Equations (3.26) and (3.28) imply that p ∈ L∞. Using (3.17), (3.26), (3.27), and

(3.28) implies that

˙̃φ, ˙̃p ∈ L∞. (3.29)

Furthermore, Equations (3.5), (3.26), and (3.27) imply that φ ∈ L∞. The previous re-

sult used with the Hypotheses imply that ϑ ∈ L∞. The algorithm can be summarized

as follows.

3.1.2 MRAC Scheme B

Two MRAC controllers will be developed in this section. Unlike the previous

section, backstepping is not used to create the two controllers. Instead, both roll and

43

Algorithm 2 MRAC Scheme B for roll attitude hold.

1: Obtain V , φ, p, r, q, θ from sensors.
2: Update the reference model according to φ̇m = kφ

(
φd − φm

)
.

3: Compute: ṗdes = −λφφ̃− q sin φ tan θ − r cos φ tan θ + kφ(φ
d − φm).

4: Compute: ϑ =




−λpp̃−φ̃+ṗdes

V 2

− pq
V 2

− qr
V 2

−1
χ
− p

V

− r
V

−δr




.

5: Update the gain estimate according to:
˙̂
k = ProjS1

(
−Λp̃V ϑ, k̂

)
.

6: Compute the aileron command: δa = ϑT k̂.

pitch equations will be reduced to pseudo first-order systems where the roll and pitch

rate derivatives are treated as measured states. The first controller regulates pitch,

while the second controller regulates roll. The boundedness of both controllers will

be proven.

Pitch Attitude Hold

MRAC Scheme B uses the same definition of tracking error for pitch as MRAC A but

does not employ backstepping. Instead, solving for q in Equation (2.16) and apply

it to Equation (3.5) to reduces the plant from a second order system to a pseudo

first-order system. Again, the desire is to pick δe such that for λθ > 0 we have

˙̃θ = −λθθ̃ (3.30)

Solving for q yields

q =
V

Cmq c̄

(
2

ρV 2Sc̄
[Jyq̇ − Jxz

(
r2 − p2

)− (Iz − Ix) pr]

− Cm0 + Cmαγ − Cmαθ − Cδeδe

)
. (3.31)

44

q̇ is included in this equation as a measurable state, since q is known. If the equation

for q is plugged this into equation (3.30) the result is

˙̃θ =
V cos φ

Cmq c̄

(
2

ρV 2Sc̄
[Jy q̇ − Jxz

(
r2 − p2

)− (Jz − Jx) pr]

− Cm0 + Cmαγ − Cmαθ − Cmδe
δe

)
− r sin φ− θ̇m. (3.32)

If the parameters were known we could set δe to be

δdes
e = ϑTk,

where

ϑ =




λθ θ̃−kθ(θd−θm)−r sin φ
V cos φ

q̇

1

p2 − r2

−pr

−θ




k =




(
k1 =

c̄Cmp

Cmδe

)
(
k2 = Jy

1
2
Sc̄Cmδe

)
(
k3 = − Cmo

Cmδe

+ Cmα

Cmδe

γ
)

(
k4 = Jxz

1
2
V 2Sc̄Cmδe

)
(
k5 = Jz−Jx

1
2
V 2Sc̄Cmδe

)
(
k6 = Cmα

Cmδe

)




. (3.33)

Direct substitution of δdes
e for δe in Equation (3.32) would yield (3.30). However, since

k is not known an estimate, k̂, is used instead such that

δe = ϑT k̂. (3.34)

By adding and subtracting δdes
e in equation (3.32), we get

˙̃θ =
V cos φ

Cmq c̄

(
2

ρV 2Sc̄

[
Jyq̇ − Jxz

(
r2 − p2

)− (Jz − Jx) pr
]− Cm0

+ Cmαγ − Cmαθ − Cmδe

(
δdes
e + δe − δdes

e

))
− r sin φ− θ̇m and

=− λθθ̃ −
V cos φCmδe

Cmq c̄
ϑT k̃, (3.35)

45

where k̃ = k̂− k.

Defining the Lyapunov function candidate

V =
1

2
θ̃2 − Cmδe

2Cmq c̄
k̃

T
Λ−1k̃,

(Cmq is assumed to be negative) and taking its derivative we get

V̇ =θ̃ ˙̃θ − Cmδe

Cmq c̄
˙̃kT Λ−1k̃,

=− λθθ̃
2 − θ̃V cos φ

CmqCmδe
c̄
ϑT k̃− Cmδe

Cmq c̄
˙̂
kT Λ−1k̃ +

Cmδe

Cmq c̄
k̇

T
Λ−1k̃, and

=− λθθ̃
2 − Cmδe

Cmq c̄

(
θ̃V cos φϑT +

˙̂
kT Λ−1

)
k̃ +

Cmδe

Cmq c̄
k̇

T
Λ−1k̃. (3.36)

We define the update law as

˙̂
k = ProjS3

(
−Λθ̃V cos φϑ, k̂

)
. (3.37)

Theorem 3.1.3 If

H7: θd, p, r, q̇ ∈ L∞ are bounded signals,

H8: V ∈ [Vmin, Vmax],

H9: φ ∈ [−φ̄, φ̄] where φ̄ < π/2 and φ is continuous,

H10: |k3| ≤ n,

H11: k ∈ S3,

where Vmin and Vmax are positive constants, then the MRAC described by (3.1),(3.33),

(3.34), and (3.37) is stable and φ̃ is ultimately bounded by

lim
t→∞

|θ̃| ≤
√∣∣∣∣

Cmδe

λθλ3Cmq c̄

∣∣∣∣ mn. (3.38)

Proof: We need to show all that states are bounded. Applying Equations (3.36) and

46

(3.37), Hypothesis H10, and Lemma 2.3.7 we get

V̇ ≤ −λθθ̃
2 +

Cmδe

Cmq c̄
k̇

T
Λ−1k̃.

However, as k3 is the only parameter that is time-varying in k, the above equation

reduces to

V̇ ≤ −λθθ̃
2 +

Cmδe

Cmq c̄
k̇3

T
λ−1

3 k̃3. (3.39)

Invoking Hypotheses H10 and H11 gives

V̇ ≤ −λθθ̃
2 +

∣∣∣∣
Cmδe

Cmq c̄

∣∣∣∣λ−1
3 mn,

where m is the upper bound for |k3|. The Lyapunov function derivative is negative

definite as long as -λθθ̃
2 dominates the rightmost term. Thus, applying Theorem 2.3.6

we determine that the bound on θ̃ is

λθθ̃
2 ≤

∣∣∣∣
Cmδe

λ3Cmq c̄

∣∣∣∣ mn and

⇒|θ̃| ≤
√∣∣∣∣

Cmδe

λθλ3Cmq c̄

∣∣∣∣ mn (3.40)

Therefore, increasing either the adaptive gain, λ3 or the control gain, λθ reduces the

tracking error. Furthermore, Equation (3.40) implies that

θ̃ ∈ L∞. (3.41)

Hypothesis H7 states that θd ∈ L∞, therefore

θm ∈ L∞, (3.42)

since the model is BIBO stable. Equations (3.3), (3.41), (3.42) imply that θ ∈ L∞.

Finally, using (3.42), (3.41), (3.32), all the Hypothesis, (3.42), and (3.32) implies that

ϑ, ˙̃θ ∈ L∞. The algorithm can be summarized as follows.

47

Algorithm 3 MRAC Scheme B pitch attitude hold.

1: Obtain φ, p, r, q, θ from sensors.
2: Update the reference model according to θ̇m = kφ

(
θd − θm

)
.

3: Compute:

ϑ =
(

λθ θ̃−kφ(θd−θm)−r sin φ

V cos φ
q̇ 1 p2 − r2 −pr −θ

)T

.

4: Update the gain estimate according to:
˙̂
k = ProjS3

(
−Λθ̃V cos φϑ, k̂

)
.

5: Compute the elevator command: δe = ϑT k̂.

Roll Attitude Hold

An MRAC roll controller will be developed without using backstepping in this section.

The second order roll equations are reduced to a pseudo first-order system to avoid

backstepping. Therefore, solving for p in Equation (2.15) yields

p =
8

ρV Sb2Cpp

ṗ− 8Λ1

ρV Sb2Cpp

pq +
8Λ2

ρV Sb2Cpp

qr − 2V Cp0

bCpp

− 2V Cpβ

bCpp

β

− Cpr

Cpp

r − 2V Cpδa

bCpp

δa −
2V Cpδr

bCpp

δr. (3.43)

Substituting this equation in equation (3.5) give us

˙̃φ =
8

ρV Sb2Cpp

ṗ− 8Λ1

ρV Sb2Cpp

pq +
8Λ2

ρV Sb2Cpp

qr − 2V Cp0

bCpp

− 2V Cpβ

bCpp

β

− Cpr

Cpp

r − 2V Cpδa

bCpp

δa −
2V Cpδr

bCpp

δr + q sin φ tan φ + r cos φ tan φ− φ̇m. (3.44)

But since the hope is for ˙̃φ = −λφφ̃, the desired aileron response is set to be

δdes
a =

bCpp

2V Cpδa

(
λφ

˙̃φ + q sin φ tan φ + r cos φ tan φ− φ̇m

)
− Cp0

Cpδa

− Cpβ

Cpδa

β

− Cpδr

Cpδa

δr − Cpr

2V Cpδa

r +
4

ρV 2Sb
ṗ− 4Λ1

ρV 2Sb
pq +

4Λ2

ρV 2Sb
qr and (3.45)

=
bCpp

2V Cpδa

(
λφ

˙̃φ + q sin φ tan φ + r cos φ tan φ− φ̇m

)
− Cp0

Cpδa

− Cpβ

Cpδa

χ

+
Cpβ

Cpδa

ψ − Cpδr

Cpδa

δr − Cpr

2V Cpδa

r +
4

ρV 2Sb
ṗ− 4Λ1

ρV 2Sb
pq +

4Λ2

ρV 2Sb
qr, (3.46)

48

where the assumption that β ≈ χ−ψ has been employed. Grouping the knowns and

unknowns together reduces the above equation to δdes
a = ϑTk, where

ϑ =




λφφ̃+q sin θ tan θ+r cos θ tan θ−kφ(φd−φm)
V

ṗ
V 2

− pq
V 2

qr
V 2

−1

−χ

− r
V

−δr




and k =




(
k1 =

bCpp

2Cpδa

)
(
k2 = 4

ρSb

)
(
k3 = 4Λ1

ρSb

)
(
k4 = 4Λ2

ρSb

)
(
k5 = ψ

Cpβ

Cpδa

+
Cp0

Cpδa

)
(
k6 =

Cpβ

Cpδa

)
(
k7 = Cpr

2Cpδa

)
(
k8 =

Cpδr

Cpδa

)




.

(3.47)

However, k is unknown so the aileron command is defined as

δa = ϑT k̂, (3.48)

where k̂ is an estimate of the parameters. Using the above definition for δa and adding

and subtracting δdes
a from Equation (3.44) gives us

˙̃φ =
8

ρV Sb2Cpp

ṗ− 8Λ1

ρV Sb2Cpp

pq +
8Λ2

ρV Sb2Cpp

qr − 2V Cp0

bCpp

− 2V Cpβ

bCpp

β

− Cpr

Cpp

r − 2V Cpδa

bCpp

(
δa + δdes

a − δdes
a

)− 2V Cpδr

bCpp

δr + q sin φ tan φ

+ r cos φ tan φ− φ̇m,

=− λφφ̃−
2V Cpδa

bCpp

(
δa − δdes

a

)
,

=− λφφ̃−
2V Cpδa

bCpp

(
ϑT k̂− ϑTk

)
, and

=− λφφ̃−
2V Cpδa

bCpp

ϑT k̃, (3.49)

where k̃ is the parameter error defined as k̃ = k̂− k.

49

By using the Lyapunov function candidate,

V =
1

2
φ̃2 − Cpδa

bCpp

k̃
T
Λ−1k̃, (3.50)

(Cpp is assumed to be negative) and take its derivative gives

V̇ =φ̃ ˙̃φ− 2Cpδa

bCpp

˙̃kT Λ−1k̃,

=φ̃

(
−λφφ̃−

2V Cpδa

bCpp

ϑT k̃

)
− 2Cpδa

bCpp

˙̂
kT Λ−1k̃ +

2Cpδa

bCpp

k̇
T
Λ−1k̃,

=− λφφ̃
2 − 2V φ̃Cpδa

bCpp

ϑT k̃− 2Cpδa

bCpp

˙̂
kT Λ−1k̃ +

2Cpδa

bCpp

k̇
T
Λ−1k̃, and

=− λφφ̃
2 − 2Cpδa

bCpp

(
V φ̃ϑT +

˙̂
kT Λ−1

)
k̃ +

2Cpδa

bCpp

k̇
T
Λ−1k̃. (3.51)

Let the parameter update law be

˙̂
k = ProjS4

(
−ΛV φ̃ϑ, k̂

)
. (3.52)

Theorem 3.1.4 If

H10: φd, q, r, ṗ ∈ L∞ are continuous signals,

H11: V ∈ [Vmin, Vmax],

H12: θ ∈ [−θ̄, θ̄] where θ̄ < π/2 and θ is continuous,

H13: |k5| ≤ n,

H14: k ∈ S4,

where Vmin and Vmax are positive constants, then the MRAC described by (3.2),(3.47),

(3.48), and (3.52) is stable and φ̃ is bounded by

lim
t→∞

|φ̃| ≤
√∣∣∣∣

2Cpδa

λφλ5bCpp

∣∣∣∣ mn.

50

Proof: We need to show all that states are bounded. Equations (3.51) and (3.52),

Hypothesis H14, and Lemma 2.3.7 imply that

V̇ ≤ −λφφ̃
2 +

2Cpδa

bCpp

k̇
T
Λ−1k̃. (3.53)

However, since k5 is the only parameter with time-varying components, (3.53) reduces

to

V̇ ≤ −λφφ̃
2 +

2Cpδa

bCpp

k̇5
T
λ−1

5 k̃5.

Applying Hypotheses H11 and H12 give

V̇ ≤ −λφφ̃
2 +

∣∣∣∣
2Cpδa

λ5bCpp

∣∣∣∣mn,

where m is the upper bound for |k̃5|. Applying Theorem 2.3.6, the bound on φ̃ is

λφφ̃
2 ≤

∣∣∣∣
2Cpδa

λ5bCpp

∣∣∣∣ mn and (3.54)

⇒|φ̃| ≤
√∣∣∣∣

2Cpδa

λφλ5bCpp

∣∣∣∣ mn. (3.55)

Therefore, by increasing either the control gain, λφ, or the adaptive gain, λ5, tracking

error improves. Furthermore, Equation (3.54) implies that

φ̃ ∈ L∞. (3.56)

Because H10 states that φd ∈ L∞, we have

φm ∈ L∞ (3.57)

since the model is BIBO stable. Equations (3.56), all the Hypothesis, Assumption

A3, (3.44), and (3.57) implies that ϑ, ˙̃φ ∈ L∞. The algorithm can be summarized as

follows.

51

Algorithm 4 MRAC Scheme B for roll attitude hold.

1: Obtain φ, p, r, α, q, θ from sensors.
2: Update the reference model according to φ̇m = kφ

(
φd − φm

)
.

3: Compute:

ϑ =
(

λφφ̃+q sin θ tan θ+r cos θ tan θ−φ̇m

V
ṗ

V 2 − pq
V 2

qr
V 2 −1 ψ − χ − r

V
−δr

)T

.

4: Update the gain estimate according to:
˙̂
k = ProjS4

(
ΛV φ̃ϑ, k̂

)
.

5: Compute the aileron command: δa = ϑT k̂.

3.1.3 MRAC Scheme C

Two MRAC controllers will be developed in this section. Like the previous

section, backstepping is not used to create the two controllers. Instead, both roll and

pitch equations are reduced to pseudo first-order systems where the roll and pitch

rate derivatives are treated as measured states. The first controller regulates pitch,

while the second controller regulates roll. The boundedness of both controllers will

be proven.

Pitch Attitude Hold

In MRAC Scheme C, the aircraft model is further simplified by lumping system states

into with the aircraft parameters. Although this makes the parameters vary with time,

it will be shown that the system is ultimately bounded. Our desire is to pick δe such

that Equation (3.3) is

˙̃θ = −λθθ̃, (3.58)

where λθ > 0. The desired elevator command is δdes
e = ϑTk,where

ϑT =




λθ θ̃−kθ(θd−θm)−r sin φ
V

1

−θ


 ,

52

k =




c̄Cmp

Cmδe

Jy q̇ cos φ
1
2
Sc̄Cmδe

− Cmo cos φ
Cmδe

+ Cmα cos φ
Cmδe

γ + Jxz cos φ
1
2
V 2Sc̄Cmδe

(p2 − r2)− (Jz−Jx) cos φ
1
2
V 2Sc̄Cmδe

pr

Cmα cos φ
Cmδe




.

(3.59)

Unfortunately, the parameters, k, are unknown, thus the estimates, k̂, are used in

the elevator command such that

δa = ϑT k̂. (3.60)

Using the above definition for δa and adding and subtracting δdes
a to equation (3.32)

we get

˙̃θ =
V cos φ

Cmq c̄

(
2

ρV 2Sc̄

[
Jyq̇ − Jxz

(
r2 − p2

)− (Jz − Jx) pr
]− Cm0

+ Cmαγ − Cmαθ − Cmδe

(
δdes
e + δe − δdes

e

))
− r sin φ− θ̇m and

=− λθθ̃ −
V Cmδe

Cmq c̄
ϑT k̃, (3.61)

where k̃ = k̂− k. Defining the Lyapunov function candidate as

V
4
=

1

2
θ̃2 − Cmδe

2Cmq c̄
k̃

T
Λ−1k̃

(Cmq is assumed to be positive) and take its derivative we get

V̇ =θ̃ ˙̃θ − Cmδe

Cmq c̄
˙̃kT Λ−1k̃,

=− λθθ̃
2 − θ̃V

Cmq c̄
ϑT k̃− Cmδe

Cmq c̄
˙̂
kT Λ−1k̃ +

Cmδe

Cmq c̄
k̇

T
Λ−1k̃, and

=− λθθ̃
2 − Cmδe

Cmq c̄

(
θ̃V ϑT +

˙̂
kT Λ−1

)
k̃ +

Cmδe

Cmq c̄
k̇

T
Λ−1k̃. (3.62)

The update law is chosen to be

˙̂
k = ProjS5

(
−Λθ̃V ϑ, k̂

)
. (3.63)

53

Theorem 3.1.5 If

H13: θd, p, r, q̇ ∈ L∞ are continuous signals,

H14: V ∈ [Vmin, Vmax],

H15: φ ∈ [−φ̄, φ̄] where φ̄ < π/2 and φ is continuous,

H16: ||Λ|| ≤ o,

H17: k ∈ S5,

where Vmin and Vmax are positive constants, then the MRAC described by (3.1),(3.59),

(3.60), and (3.63) is stable θ̃ is ultimately bounded such that

lim
t→∞

|θ̃| ≤
√∣∣∣∣

Cmδe

λθoCmq c̄

∣∣∣∣ mn.

Proof: We need to show all that signals are bounded. Equations (3.62) and (3.63),

Hypothesis H17, and Lemma 2.3.7 imply that

V̇ ≤ −λθθ̃
2 +

Cmδe

Cmq c̄
k̇

T
Λ−1k̃. (3.64)

Applying Hypotheses H16 and H17 gives

V̇ ≤ −λθθ̃
2 +

∣∣∣∣
Cmδe

Cmq c̄

∣∣∣∣mno−1,

where m is the upper bound on the norm
∣∣∣
∣∣∣k̃

∣∣∣
∣∣∣. Using Theorem 2.3.6, the bound on

θ̃ is

λθθ̃
2 ≤

∣∣∣∣
Cmδe

Cmq c̄

∣∣∣∣ mno−1 and

⇒|θ̃| ≤
√∣∣∣∣

Cmδe

λθoCmq c̄

∣∣∣∣mn. (3.65)

54

Therefore, increasing the control gain, λθ, or the matrix norm of Λ reduces the track-

ing error. Furthermore, Equation 3.65 implies that

θ̃ ∈ L∞. (3.66)

Using Hypothesis H13 implies that

θm ∈ L∞, (3.67)

since the model is BIBO stable. Equations (3.3), (3.66), (3.67) imply that θ ∈ L∞.

This result coupled with all the Hypotheses and Equation (3.67) imply that ϑ, ˙̃θ ∈ L∞.

The algorithm can be summarized as follows.

Algorithm 5 MRAC Scheme C for pitch attitude hold.

1: Obtain φ, p, r, α, q, θ from sensors.
2: Update the reference model according to θ̇m = kθ (θd − θm).
3: Compute:

ϑ =
(

λθ θ̃−kθ(θd−θm)
V cos φ

1 −θ
)T

.

4: Update the gain estimate according to:
˙̂
k = ProjS5

(
−ΛV cos φθ̃ϑ, k̂

)
.

5: Compute the elevator command: δe = ϑT k̂.

Roll Attitude Hold

In this section, an MRAC roll controller is derived. The second order roll equations

are reduced to a pseudo first-order system in order to develop the MRAC. The as-

sumptions that system states can be lumped into the bias term for the system is used.

Let the derivative of the tracking error be

˙̃φ = p + q sin φ tan θ + r cos φ tan θ − φ̇m. (3.68)

55

Solving for p in equation (2.15) we find that

p =
8

ρV Sb2Cpp

ṗ− 8Λ1

ρV Sb2Cpp

pq +
8Λ2

ρV Sb2Cpp

qr − 2V Cp0

bCpp

− 2V Cpβ

bCpp

β

− Cpr

Cpp

r − 2V Cpδa

bCpp

δa −
2V Cpδr

bCpp

δr. (3.69)

Substituting this equation in equation (3.68) give us

˙̃φ =
8

ρV Sb2Cpp

ṗ− 8Λ1

ρV Sb2Cpp

pq +
8Λ2

ρV Sb2Cpp

qr − 2V Cp0

bCpp

− 2V Cpβ

bCpp

β

− Cpr

Cpp

r − 2V Cpδa

bCpp

δa −
2V Cpδr

bCpp

δr + q sin φ tan φ + r cos φ tan φ− φ̇m. (3.70)

But since we want the above equation to reduce to the stable system, ˙̃φ = −λφφ̃, we

define the desired aileron command to be

δdes
a =

bCpp

2V Cpδa

(
λφ

˙̃φ + q sin φ tan φ + r cos φ tan φ− φ̇m

)
− Cp0

Cpδa

− Cpβ

Cpδa

β

− Cpδr

Cpδa

δr − Cpr

2V Cpδa

r +
4

ρV 2Sb
ṗ− 4Λ1

ρV 2Sb
pq +

4Λ2

ρV 2Sb
qr. (3.71)

Using the assumption that β = χ− ψ we have

δdes
a =

bCpp

2V Cpδa

(
λφ

˙̃φ + q sin φ tan φ + r cos φ tan φ− φ̇m

)
− Cp0

Cpδa

− Cpβ

Cpδa

χ

+
Cpβ

Cpδa

ψ − Cpδr

Cpδa

δr − Cpr

2V Cpδa

r +
4

ρV 2Sb
ṗ− 4Λ1

ρV 2Sb
pq +

4Λ2

ρV 2Sb
qr. (3.72)

Grouping the knowns and unknowns together to get the form δdes
a = ϑTk gives

ϑ =




λφφ̃−kφ(φd−φm)
V

−1

−χ

−δr




and k =




(
k1 =

bCpp

2Cpδa

)

(k2 = Cpbias
)(

k3 =
Cpβ

Cpδa

)
(
k4 =

Cpδr

Cpδa

)




, (3.73)

56

where

Cpbias
=

4

V 2ρSb
ṗ +

Cp0

Cpδa

+
bCpp

2Cpδa

(q sin θ tan θ + r cos θ tan θ)

− 4Λ1

ρSb

pq

V 2
+

4Λ2

ρSb

qr

V 2
− Cpβ

Cpδa

ψ − Cpr

2Cpδa

r

V
.

Since k is unknown, the aileron command is defined as

δa = ϑT k̂. (3.74)

Using this definition for δa and adding and subtracting δdes
a from Equation (3.70)

gives us

˙̃φ =
8

ρV Sb2Cpp

ṗ− 8Λ1

ρV Sb2Cpp

pq +
8Λ2

ρV Sb2Cpp

qr − 2V Cp0

bCpp

− 2V Cpβ

bCpp

β

− Cpr

Cpp

r − 2V Cpδa

bCpp

(
δa + δdes

a − δdes
a

)− 2V Cpδr

bCpp

δr + q sin φ tan φ

+ r cos φ tan φ− φ̇m,

=− λφφ̃−
2V Cpδa

bCpp

(
δa − δdes

a

)
,

=− λφφ̃−
2V Cpδa

bCpp

(
ϑT k̂− ϑTk

)
, and

=− λφφ̃−
2V Cpδa

bCpp

ϑT k̃, (3.75)

where k̃ = k̂− k. Setting the Lyapunov candidate function as

V =
1

2
φ̃2 − Cpδa

bCpp

k̃
T
Λ−1k̃ (3.76)

(Cpp is assumed to be negative) and take its derivative to get

V̇ =φ̃ ˙̃φ− V Cpδa

bCpp

˙̃kT Λ−1k̃,

=φ̃

(
−λφφ̃−

2V Cpδa

bCpp

ϑT k̃

)
− 2Cpδa

bCpp

˙̂
kT Λ−1k̃ +

2Cpδa

bCpp

k̇
T
Λ−1k̃,

57

=− λφφ̃
2 − V Cpδa

bCpp

˙̂
kT Λ−1k̃ +

V Cpδa

bCpp

k̇
T
Λ−1k̃, and

=− λφφ̃
2 − 2Cpδa

bCpp

(
V φ̃ϑT +

˙̂
kT Λ−1

)
k̃ +

V Cpδa

bCpp

k̇
T
Λ−1k̃. (3.77)

Update law is selected as

˙̂
k = ProjS6

(
−ΛV φ̃ϑ, k̂

)
. (3.78)

Theorem 3.1.6 If

H16: φd, q, r, ṗ ∈ L∞ are continuous signals,

H17: V ∈ [Vmin, Vmax],

H18: θ ∈ [−θ̄, θ̄] where θ̄ < π/2 and θ is continuous,

H19: |k2| ≤ n,

H20: k ∈ S6,

where Vmin and Vmax are positive constants, then the MRAC described by (3.2),(3.73),

(3.74), and (3.78) is stable and φ̃ has the ultimate bound

lim
t→∞

|φ̃| ≤
√

Cpδa

λφλ2bCpp

mn.

Proof: We need to show all that states are bounded. Equations (3.77) and (3.78),

H18, and Lemma 2.3.7 imply that

V̇ ≤ −λφφ̃
2 +

Cpδa

bCpp

k̇
T
Λ−1k̃. (3.79)

However, since k2 is the only parameter in k that is time-varying the derivative reduces

to

V̇ ≤ −λφφ̃
2 +

Cpδa

bCpp

k̇2
T
λ−1

2 k̃2.

58

Applying Hypotheses H19 and H20

V̇ ≤ −λφφ̃
2 +

Cpδa

bCpp

λ−1
2 mn,

where m is the upper bound on | ˙̃k5|. Using Theorem 2.3.6, the bound on φ̃ is

λφφ̃
2 ≤ Cpδa

bCpp

λ−1
2 mn and

⇒|φ̃| ≤
√

Cpδa

λφλ2bCpp

mn. (3.80)

Therefore, roll tracking improves as the control gain, λφ, or adaptive gain, λ2, increase.

Examining Equation 3.80 reveals that

φ̃ ∈ L∞. (3.81)

Because H16 states that φd ∈ L∞ and the model is BIBO stable, we have

φm ∈ L∞ (3.82)

All the Hypotheses, (3.70), (3.82), and (3.81) imply that ϑ, ˙̃φ ∈ L∞. The algorithm

can be summarized as follows.

Algorithm 6 MRAC Scheme C for roll attitude hold.

1: Obtain φ, p, r, α, q, θ from sensors.
2: Update the reference model according to φ̇m = kφ

(
φd − φm

)
.

3: Compute:

ϑ =
(

λφφ̃−kφ(φd−φ)

2V
1 −δr − χ

)T

.

4: Update the gain estimate according to:
˙̂
k = ProjS6

(
−ΛV φ̃ϑ, k̂

)
.

5: Compute the aileron command: δa = ϑT k̂.

59

3.1.4 MRAC Scheme D

Two MRAC controllers will be developed in this section. The pitch and roll

equations are in the same forms as in Scheme C. The difference between Scheme C

and Scheme D is that Scheme D lumps more terms in to the “bias“ term of the system

parameters. The first controller regulates pitch, while the second controller regulates

roll. The boundedness of both controllers will be proven.

Pitch Attitude Hold

An MRAC pitch controller is derived in this section. Like Schemes B and C, Scheme

D reduces the pitch equations to a pseudo first-order system such that

q =
V

Cmq c̄

(
2

ρV 2Sc̄
[Jy q̇ − Jxz

(
r2 − p2

)− (Jz − Jx) pr]

− Cm0 − Cmαα− Cmδe
δe

)
,

where q̇ is treated like a measured state.

Substituting into Equation (2.13) gives

θ̇ =
V cos φ

Cmq c̄

(
2

ρV 2Sc̄
[Jyq̇ − Jxz

(
r2 − p2

)− (Jz − Jx) pr]− Cm0 − Cmαα

− Cmδe
δe

)
− r sin φ and

= −V C̄mδe
δe + V C̄mbias

. (3.83)

where

C̄mδe
=

cos φ

Cmq c̄
Cmδe

and

C̄mbias
=

cos φ

Cmq c̄

(
2

ρV 2Sc̄

[
Jy q̇ − Jxz

(
r2 − p2

) − (Jz − Jx) pr]− Cm0 − Cmαα

)

− r sin φ

V
.

60

The sign of C̄mδe
is significant when choosing a Lyapunov function candidate. In-

voking Assumption A2 allows the cos φ term to be positive, while the Cmδe
and c̄

terms are assumed positive, and the Cmq term is assumed negative, leading to C̄mδe

being negative. It is significant that C̄mδe
and C̄mbias

are time varying, and thus, only

boundedness can be shown.

Using Equation (3.3) we obtain

˙̃θ = θ̇ − θ̇m,

= −V C̄mδe
δe + V C̄mbias

− kθ(θ
d − θm),

= −γθ̃ + V C̄mδe

[
γθ̃ − kθ(θ

d − θm)

V C̄mδe

]
+ V C̄mδe

(
C̄mbias

C̄mδe

− δe

)
, and

= −γθ̃ + V C̄mδe

(
ϑTk− δe

)
, (3.84)

where γ is a positive control gain, and

ϑ =




γθ̃−kθ(θd−θm)
V

1


 and K =




1
C̄mδe

C̄mbias

C̄mδe


 . (3.85)

By selecting δe = ϑTk we have an exponentially stable system. However, since k is

not known, the estimate, k̂, is used such that

δe = ϑT k̂. (3.86)

Furthermore, defining k̃
4
= k̂− k results in

˙̃θ = −γθ̃ − V C̄mδe
ϑT k̃.

We define the Lyapunov function candidate

V =
1

2
θ̃2 − C̄mδe

k̃
T
Λ−1k̃,

61

noting that C̄mδe
being negative ensures that V is positive definite. Differentiating,

we obtain

V̇ = θ̃ ˙̃θ − C̄mδe
k̃

T
Λ−1 ˙̃k,

= −γθ̃2 − V C̄mδe
θ̃k̃

T
ϑ− C̄mδe

k̃
T
Λ−1 ˙̂

k + C̄mδe
k̃

T
Λ−1k̇, and

= −γθ̃2 − C̄mδe
k̃

T
(
V θ̃ϑ + Λ−1 ˙̂

k− Λ−1k̇
)

. (3.87)

The update law is therefore selected as

˙̂
k = ProjS7

(
−V θ̃Λϑ, k̂

)
. (3.88)

Theorem 3.1.7 If

H19: θd, p, r ∈ L∞ are continuous signals,

H20: V ∈ [Vmin, Vmax],

H21: φ ∈ [−φ̄, φ̄] where φ̄ < π/2 and φ is continuous,

H22: ||Λ|| ≤ o,

H23: k ∈ S7,

where Vmin and Vmax are positive constants, then the MRAC described by (3.1),(3.85),

(3.86), and (3.88) is stable and θ̃ is ultimately bounded such that

lim
t→∞

|θ̃| ≤
√∣∣∣∣

C̄mδe

λθo

∣∣∣∣ mn.

Proof: We need to show all that states are bounded. Equations (3.87) and (3.88),

Hypothesis H23, and Lemma 2.3.7 imply that

V̇ ≤ −λθθ̃
2 + C̄mδe

k̃
T
Λ−1k̇. (3.89)

62

Applying Hypotheses H22 and H23 gives

V̇ ≤ −λθθ̃
2 +

∣∣C̄mδe

∣∣ mno−1,

where m is the upper bound on the vector norm,
∣∣∣
∣∣∣k̃

∣∣∣
∣∣∣. Using Theorem 2.3.6, the

bound on θ̃ is

λθθ̃
2 ≤

∣∣C̄mδe

∣∣mno−1 and

⇒|θ̃| ≤
√∣∣∣∣

C̄mδe

λθo

∣∣∣∣mn. (3.90)

Therefore, increasing the adaptive gains or the control gain, λθ, improves pitch track-

ing. Equation 3.90 implies

θ̃ ∈ L2 ∩ L∞. (3.91)

Hypothesis H19 states that θd ∈ L∞, therefore

θm ∈ L∞, (3.92)

since the model is BIBO stable. Equations (3.3), (3.91), (3.92) imply that θ ∈ L∞.

Applying this result, all the Hypotheses, (3.84), and (3.92) to (3.84) implies that

ϑ, ˙̃θ ∈ L∞. The algorithm can be summarized as follows.

Algorithm 7 MRAC Scheme D for pitch attitude hold

1: Obtain θ and V from sensors.
2: Update the reference model according to

θ̇m = kθ

(
θd − θm

)
.

3: Compute ϑ =
(

γ(θ−θm)−kθ(θd−θm)
V

1

)T

.

4: Update the parameter estimate according to
˙̂
k = ProjS7

(
−V (θ − θm)Λϑ, k̂

)
.

5: Compute the elevator command δe = ϑT k̂.

63

Roll Attitude Hold

In this section, an MRAC roll controller is derived. Following the precedence of

Schemes B and C, Scheme D solves for p from Equation (2.15) to get

p = V

(
−1

2
ρV 2S b

2
Cpδa

Ĵ1qV + 1
2
ρV 2S b

2
Cpp

b
2

)
δa +

V
(
ṗ + Ĵ2qr

)

Ĵ1qV + 1
2
ρV 2S b

2
Cpp

b
2

− 1

2
ρV 3S

b

2

(
Cp0 + Cpβ

β + Cpr

br
2V

+ Cpδr
δr

)

Ĵ1qV + 1
2
ρV 2S b

2
Cpp

b
2

.

Substituting into Equation (2.12) and defining

C̄pδa
=

−1
2
ρV 2S b

2
Cpδa

Ĵ1qV + 1
2
ρV 2S b

2
Cpp

b
2

and

C̄pbias
=

(
ṗ + Ĵ2qr

)

Ĵ1qV + 1
2
ρV 2S b

2
Cpp

b
2

− 1

2
ρV 2S

b

2

(
Cp0 + Cpβ

β + Cpr

br
2V

+ Cpδr
δr

)

Ĵ1qV + 1
2
ρV 2S b

2
Cpp

b
2

+
q sin φ tan θ + r cos φ tan θ

V

gives

φ̇ = V C̄pδa
δa + V C̄pbias

. (3.93)

Using Equation (3.5) we obtain

˙̃φ = φ̇− φ̇m,

= V C̄pδa
+ V C̄pbias

− kφ(φ
d − φm),

= −γφ̃ + V C̄pδa

[
γφ̃− kφ(φ

d − φm)

V C̄pδa

]
+ V C̄pδa

(
V C̄pbias

C̄pδa

− δa

)
, and

= −γφ̃ + V C̄pδa

(
ϑTk− δa

)
, (3.94)

where γ is a positive control gain, and

ϑ =




γφ̃−kφ(φd−φm)

V

1


 and K =




1
C̄pδa

C̄pbias

C̄pδa


 . (3.95)

64

By selecting δa = ϑTk we have an exponentially stable system. However, as k

is not known, the estimate, k̂, is used such that

δa = ϑT k̂. (3.96)

Furthermore, defining k̃
4
= k̂− k results in

˙̃φ = −γφ̃− V C̄pδa
ϑT k̃.

We define the Lyapunov function candidate

V =
1

2
φ̃2 − C̄mδe

k̃
T
Λ−1k̃,

noting that C̄mδa
being negative ensures that V is positive definite. Differentiating,

we obtain

V̇ = φ̃ ˙̃φ− C̄mδa
k̃

T
Λ−1 ˙̃k,

= −γφ̃2 − V C̄mδa
φ̃k̃

T
ϑ− C̄mδa

k̃
T
Λ−1 ˙̂

k + C̄mδa
k̃

T
Λ−1k̇, and

= −γφ̃2 − C̄mδa
k̃

T
(
V φ̃ϑ + Λ−1 ˙̂

k− Λ−1k̇
)

. (3.97)

The update law is selected as

˙̂
k = ProjS8

(
−V φ̃Λϑ, k̂

)
. (3.98)

Theorem 3.1.8 If

H22: φd, q, r ∈ L∞ are continuous signals,

H23: V ∈ [Vmin, Vmax],

H24: θ ∈ [−θ̄, θ̄] where θ̄ < π/2 and θ is continuous,

H25: ||Λ|| ≤ o,

65

H26: k ∈ S8,

where Vmin and Vmax are positive constants, then the MRAC described by (3.2),(3.95),

(3.96), and (3.98) is stable and φ̃ is ultimately bounded such that

lim
t→∞

|φ̃(t)| ≤
√∣∣∣∣

C̄mδa

λφo

∣∣∣∣mn.

Proof: We need to show all that states are bounded. Equations (3.97) and (3.98),

Hypothesis H26, and Lemma 2.3.7 imply that

V̇ ≤ −λφφ̃
2 + C̄mδa

k̃
T
Λ−1k̇. (3.99)

Applying Hypotheses H25 and H26 gives us

V̇ ≤ −λφφ̃
2 +

∣∣C̄mδa

∣∣ mno−1,

where m is the upper bound on the vector norm,
∣∣∣
∣∣∣ ˙̃k

∣∣∣
∣∣∣. Using Theorem 2.3.6, the

bound on φ̃ is

λφφ̃
2 ≤

∣∣C̄mδa

∣∣ mno−1 and

⇒|φ̃| ≤
√∣∣∣∣

C̄mδa

λφo

∣∣∣∣ mn. (3.100)

Therefore, increasing the adaptive gain or control gain, λφ, improves the error track-

ing. Furthermore, Equation (3.100) implies that

φ̃ ∈ L2 ∩ L∞. (3.101)

Because H22 states that φd ∈ L∞, we have

φm ∈ L∞ (3.102)

66

since the model is BIBO stable. Equations (3.101), (3.93), and (3.102) and all the

Hypotheses imply that ϑ, ˙̃φ ∈ L∞. The algorithm can be summarized as follows.

Algorithm 8 MRAC Scheme D for roll attitude hold

1: Obtain φ and V from sensors.
2: Update the reference model according to

φ̇m = kφ

(
φd − φm

)
.

3: Compute ϑ =
(

γ(φ−φm)−kφ(φd−φm)
V

1

)T

.

4: Update the gain estimate according to
˙̂
k = ProjS8

(
−V (φ− φm)Λϑ, k̂

)
.

5: Compute the aileron command δa = ϑT k̂.

3.2 L1 Controllers

The L1 controllers discussed in this thesis are extensions of the Lyapunov

MRAC controllers like the ones presented in the previous section. In this section,

four different aircraft model approximations are used to derive L1 controllers. The

first approximation will be a first-order model with one unknown parameter. The

second approximation is another first-order model but with two unknown parameters.

The third will be a second order approximation. The final L1 controller will use a

physically justified model to derive the L1 controller. Because L1 are the subject of

ongoing research, stability has only been shown for linear systems (see [2,3]). Work is

being done to generalize the stability proofs to non-linear systems. Therefore, proofs

are not provided for the L1 controllers in this section. Furthermore, the stability

proofs for intermediate Lyapunov MRAC are not provided. All four L1 controllers

use following tracking error definitions for pitch and roll respectively,

θ̃ = θ − θm and

q̃ = q − qm. (3.103)

67

3.2.1 1st Order Model with One Lumped, Unknown Parameter

The objective of this section is to develop a first-order L1 adaptive controller.

We will begin by deriving a first-order approximation. Next, we will derive an MRAC

controller. This MRAC will be converted to a CMAC and then finally to an L1

controller.

To derive a first-order approximation, solve for q in Equation (2.16),

q =
(q̇ − Λ4(r

2 − p2)− Λ5pr)
Cmq ρV c̄2S

2Jy

− V

(
Cm0 + Cmαα + Cmδe

δe

Cmq c̄

)
. (3.104)

If the result is substituted into (2.13), then

θ̇ =
(q̇ − Λ4(r

2 − p2)− Λ5pr)
Cmq ρV c̄2S

2Jy

cos φ

−V

(
Cm0 + Cmαα + Cmδe

δe

Cmq c̄

)
cos φ− r sin φ and

= V cos φk1 + V cos φk2δe, (3.105)

where

k1 =


(q̇ − Λ4(r

2 − p2)− Λ5pr)
Cmq ρV 2c̄2S

2Jy

− Cm0 + Cmαα

Cmq c̄


− r

V
tan φ and

k2 = −Cmδe

Cmq c̄
.

We make the assumption that k1 is an unknown constant and that k2 is known. In

reality, k1 is time-varying dependent heavily upon the states of the system. The

adaptive mechanism that is derived here should be able to handle the time-varying

nature of k1.

We develop an MRAC to track the first-order model

θ̇m = −aθm + aθc, a > 0. (3.106)

68

This MRAC will be modified to become a L1. Using the above model the derivative

for the tracking error θ̃ is

˙̃θ = V cos φk1 + V cos φk2δe + a (θm − θc) . (3.107)

We define

δdes
e = −k1

k2

− a (θm − θc) + λθ̃

V cos φk2

(3.108)

to be the desired input. If k1 was known then the tracking error becomes

˙̃θ = −λθ̃. (3.109)

However, since we do not know k1, we use an estimate of k1, k̂1 to get

δe = − k̂1

k2

− a (θm − θc) + λθ̃

V cos φk2

(3.110)

for the control signal. Using δe the tracking error becomes

˙̃θ = −λθ̃ + V cos φ
(
k1 − k̂1

)
. (3.111)

The derivative of the Lyapunov function,

V1 =
1

2
θ̃2 +

1

2γ

(
k1 − k̂1

)2

, (3.112)

is

V̇1 = θ̃ ˙̃θ +
1

γ

(
k1 − k̂1

)
˙̂
k1,

= θ̃
(
−λθ̃ + V cos φ

(
k1 − k̂1

))
+

1

γ

(
k1 − k̂1

)
˙̂
k1,

= −λθ̃2 + V cos φθ̃
(
k1 − k̂1

)
+

1

γ

(
k1 − k̂1

)
˙̂
k1, and

= −λθ̃2 +

(
θ̃V cos φ +

1

γ
˙̂
k1

) (
k1 − k̂1

)
. (3.113)

69

Thus the update equation for the parameter k̂1 is

˙̂
k1 = −γProjS9

(
θ̃V cos φ, k̂1

)
. (3.114)

Note that the derived MRAC is similar to the MRACs in Section 3.1. By

modifying the model slightly, we create the companion model

θ̇m = −aθm + V k2

(
δe +

k̂1

k2

+
aθm + λθ̃

V cos φk2

)
, a > 0. (3.115)

Using this model we have a CMAC instead of an MRAC. Substituting in δe, the

original model is recovered.

Modifying the CMAC above such that k̂1 is low-pass filtered in δe, yields L1

controller

θ̇m = −aθm + V k2

(
δe +

k̂1

k2

+
aθm + λθ̃

V cos φk2

)
, a > 0,

δe = −C(s){k̂1}
k2

− a (θm − θc) + λθ̃

V cos φk2

, and

˙̂
k1 = −γProjS9

(
θ̃V cos φ, k̂1

)
. (3.116)

This new controller differs from the MRAC model in the following way. When δe

is plugged into Equation (3.115) the model does not reduce to the MRAC model.

Instead, the model becomes

θ̇m = −aθm + aθd + (1− C(s)){k̂1}. (3.117)

Because we are filtering the estimate k̂1, the companion model takes on the high

frequency content of the k̂1 estimate.

3.2.2 1st Order Model with Two Lumped, Unknown Parameters

Like the previous section, in this section a first-order approximation is de-

rived. Using this new approximation we will design an MRAC that has two unknown

70

parameters. This MRAC will be converted into a CMAC and then made into a L1

controller.

Equation (3.104) with Assumption A4 gives the first-order approximation,

q =
(q̇ − Λ4(r

2 − p2)− Λ5pr)
Cmq ρV c̄2S

2Jy

− V

(
Cm0 + Cmα(θ − γ) + Cmδe

δe

Cmq c̄

)
. (3.118)

Substituting q into Equation (3.105) gives us the approximation,

θ̇ =
(q̇ − Λ4(r

2 − p2)− Λ5pr)
Cmq ρV c̄2S

2Jy

cos φ,

−V

(
Cm0 + Cmα(θ − γ) + Cmδe

δe

Cmq c̄

)
cos φ− r sin φ and

= V cos φk1 + V cos φk2θ + V cos φk3δe, (3.119)

where

k1 =


(q̇ − Λ4(r

2 − p2)− Λ5pr)
Cmq ρV 2c̄2S

2Jy

−
Cm0 + Cmα

−γ−β sin φ
cos φ

Cmq c̄


− r

V
tan φ,

k2 = − Cmα

Cmq c̄
, and

k3 = −Cmδe

Cmq c̄
.

We will design the MRAC to track the first-order model

θ̇m = −aθm + aθc, a > 0. (3.120)

The derivative for the tracking error θ̃ is

˙̃θ = V cos φk1 + V cos φk2θ + V cos φk3δe + a (θm − θc) . (3.121)

If we knew k1 and k2 then

δdes
e = −k1

k3

− k2

k3

− a(θm − θc) + λθ̃

V cos φk3

71

would make ˙̃θ = −λθ̃. But since we do not know k1 or k2 we define

δe = − k̂1

k3

− k̂2

k3

θ − a (θm − θc) + λθ̃

V cos φk3

, (3.122)

where k̂1 and k̂2 are the parameter estimates. Substituting δe into (3.121) yields

˙̃θ = −λθ̃ + V cos φ


k1 − k̂1

k2 − k̂2




T 
1

θ


 . (3.123)

We define k = (k1, k2)
T , k̂ = (k̂1, k̂2)

T , k̃ = k− k̂, and ϑ = (1, θ)T which yields

˙̃θ = −λθ̃ + V cos φk̃
T
ϑ and

δe = − 1

k3

k̂
T
ϑ− a (θm − θc) + λθ̃

V cos φk3

. (3.124)

Let

V1 =
1

2
θ̃2 +

1

2
k̃

T
Λ−1k̃ (3.125)

be the Lyapunov function candidate for the system. Taking its derivative gives us

V̇1 = θ̃ ˙̃θ + k̃
T
Λ−1 ˙̂

k,

= θ̃
(
−λθ̃ + V cos φk̃

T
ϑ
)

+ k̃
T
Λ−1 ˙̂

k,

= −λθ̃2 + V cos φk̃
T
ϑ + k̃

T
Λ−1 ˙̂

k, and

= −λθ̃2 + k̃
T

(
θ̃V cos φ +

˙̂
k
)

. (3.126)

Let the update equation be

˙̂
k = −ΛProjS10

(
θ̃V cos φ, k̂

)
, (3.127)

such that we have defined a stable MRAC. Like the previous section, modifying the

model as

θ̇m = −aθm + V k3

(
δe +

1

k3

k̂
T
ϑ +

aθm + λθ̃

V cos φk3

)
, a > 0, (3.128)

72

results in a companion model. Substituting δe into the companion model returns the

original MRAC model.

Filtering the parameter estimate for k in δe changes the CMAC to the L1

controller,

θ̇m = −aθm + V k3

(
δe +

k̂1

k2

+
k̂2

k3

θ +
aθm + λθ̃

V cos φk3

)
, a > 0,

δe = − 1

k3

C(s){k̂}T ϑ− a (θm − θc) + λθ̃

V cos φk3

, and

˙̂
k = −ΛProjS10

(
θ̃V cos φ, k̂

)
. (3.129)

Taking δe from (3.129) and plugging it into the companion model gives

θ̇m = −a(θm − θc) + ϑT (1− C(s)){k̂}.

Again, the high frequency content of the parameter estimates is preserved in the

companion model.

3.2.3 2nd Order Model

Unlike the previous two section, a second order approximation is used to derive

the L1 controller. This approximation will be used to develop a second order MRAC.

The MRAC will be modified to become a CMAC. Furthermore, the CMAC will be

converted to an L1 controller by filtering the parameter estimates that appear in the

control signal.

Assuming that θ̇ ≈ q, (2.16) becomes our second-order approximation

θ̈ =
Jxz

Jy

(r2 − p2) +
Jz − Jx

Jy

pr +
1

2Jy

ρV 2c̄S

[
Cm0+Cmαα+ Cmθ̇

c̄q

V
+ Cmδe

δe

]
.

The above equation can be rewritten as

θ̈ = k1V θ̇ + k2V
2 + k3V

2δe, (3.130)

73

where

k1 =
1

2Jy

ρc̄SCmq

c̄

V
,

k2 =
Jxz

V 2Jy

(r2 − p2) +
Jz − Jx

V 2Jy

pr +
1

2Jy

ρc̄S [Cm0 + Cmαα] , and

k3 =
1

2Jy

ρc̄SCmδe
.

The pitch angle of the model, θm, is described by the second order model

θ̈m = −2ζωnθ̇m − ω2
n (θm − θc) . (3.131)

Differentiating the tracking error, θ̃ = θ − θm, twice gives us

¨̃θ = k1V θ̇ + k2V
2 + k3V

2δe + 2ζωnθ̇m + ω2
n (θm − θc) . (3.132)

Let r = ˙̃θ + λθ̃ and use the following Lyapunov function candidate,

V1 =
1

2
r2 + kλθ̃2.

The derivative of the Lyapunov candidate function is

V̇1 = ṙr + 2kλ ˙̃θθ̃ and

=
(
k1V θ̇ + k2V

2 + k3V
2δe + 2ζωnθ̇m + ω2

n (θm − θc)
)

r + 2kλ ˙̃θθ̃. (3.133)

Let

δe =
1

k3V 2

[
−k̂1V θ̇ − k̂2V

2 − 2ζωnθ̇m − ω2
n (θm − θc)− kr

]

be the elevator command, and substitute the command signal into Equation (3.133)

to get

V̇1 = −kr2 + rV k̃
T
ϑ + 2kλ ˙̃θθ̃, (3.134)

74

where

ϑ =


 θ̇

V


 and k̃ =


k1 − k̂1

k2 − k̂2


 .

Defining a new Lyapunov function V = V1 + 1
2
k̃

T
Λ−1k̃, its derivative is

V̇ = −kr2 + rV k̃
T
ϑ + 2kλ ˙̃θθ̃ + k̃

T
Λ−1 ˙̂

k and

= −kr2 + 2kλ ˙̃θθ̃ + k̃
T

(
rV ϑ + Λ−1 ˙̂

k
)

. (3.135)

If we use the update equation

˙̂
k = −ΛProjS11

(
rV ϑ, k̂

)
, (3.136)

and modifying the model to become

θ̈m = −2ζωnθ̇m − ω2
nθm + V 2k3

(
δe − 1

V k3

k̂
T
ϑ− 2ζωnθ̇m − ω2

nθm − kr

)
, (3.137)

gives us a CMAC. As previously stated, CMACs are equivalent to MRACs. By low-

pass filtering the parameter estimates on the control output such that

δe =
1

k3V 2

[
−V C(s){k̂}T ϑ− 2ζωnθ̇m − ω2

n (θm − θc)− kr
]
,

we get have defined the following L1 controller

θ̈m = −2ζωnθ̇m − ω2
nθm + V 2k3

(
δe − 1

V k3

k̂
T
ϑ− 2ζωnθ̇m − ω2

nθm − kr

)
,

˙̂
k = −ΛProjS11

(
rV ϑ, k̂

)
, and

δe =
1

k3V 2

[
−V C(s){k̂}T ϑ− 2ζωnθ̇m − ω2

n (θm − θc)− kr
]
. (3.138)

Replacing δe in the companion model gives us

θ̈m = −2ζωnθ̇m − ω2
nθm + (1− C(s)){k̂}T ϑ. (3.139)

75

Thus, the high frequency content of the estimates remains in the companion model.

3.2.4 Physically Motivated Model

In this section, a reference model for an MRAC controller physically motivated

by airplane dynamics is introduced. This model is shown to be stable. An MRAC is

developed using the model, and then the model is modified to be a companion model

for use in developing the L1 controller.

The physically motived, stable model is defined as

qd = −kθ (θm − θc) , (3.140)

θ̇m = qm cos φ + θ̇c, and

q̇m = −kq (qm − qd) + q̇d +
1

kθ

qd cos φ. (3.141)

Stability is shown using the following Lyapunov equation and take its derivative

V =
1

2
(θm − θc) +

1

2
(qm − qd) and

V̇ = (θm − θc)
(
qm cos φ + θ̇c − θ̇c

)
+

(qm − qd)

(
−kq (qm − qd) + q̇d +

1

kθ

qd cos φ− q̇d

)
.

Noting that (θm − θc) = − 1
kθ

qd from Equation (3.140), the derivative becomes

V̇ = − 1

kθ

qdqm cos φ− kq (qm − qd)
2 +

1

kθ

qdqm cos φ− 1

kθ

q2
d cos φ,

= −kq (qm − qd)
2 − 1

kθ

q2
d cos φ,

= −kq (qm − qd)
2 − 1

kθ

(−kθ (θm − θc))
2 cos φ, and

= −kq (qm − qd)
2 − kθ (θm − θc)

2 cos φ. (3.142)

Note that φ must be restricted such that −π
2

< φ < π
2

forcing cos φ to be positive.

Thus, qm → qd and θm → θc asymptotically. Furthermore, because qd = −kθ (θm − θc)

as θm → θc, qd → 0 which implies qm → 0; therefore, the model is stable.

76

Recalling airplane dynamics we have

θ̇ = q cos φ− r sin φ and

q̇ = Γ4pr − Γ5 (p2 − r2) + (3.143)

1

2Jy

ρV 2c̄S
[
Cm0 + Cmαα + Cmq

c̄q

V
+ Cδeδe

]
. (3.144)

Defining θ̃ = θ − θm and q̃ = q − qm yields

˙̃θ = q̃ cos φ− r sin φ− θ̇c and (3.145)

˙̃q = Γ4pr − Γ5 (p2 − r2) + (3.146)

1

2Jy

ρV 2c̄S
[
Cm0 + Cmαα + Cmq

c̄q

V
+ Cδeδe

]
− qm. (3.147)

Because the input to the error system comes in on the q̃ channel, it is unclear

how θ̃ will be affected by the input. We will use backstepping to overcome this

problem. Treating q̃ like the input to Equation (3.145) gives us the backstepping

variable as

q̃des =
1

cos φ

(
r sin φ + θ̇c − λ1θ̃

)
. (3.148)

By inspection, upon substituting q̃des in for q̃ makes θ̃ stable. Using

e = q̃ − q̃des

as the error between the pitch rate and the backstepping variable, and through a

change of variables the error system becomes

˙̃θ = e cos φ− λ1θ̃ and (3.149)

ė = Γ4pr − Γ5 (p2 − r2) + (3.150)

1

2Jy

ρV 2c̄S
[
Cm0 + Cmαα + Cmq

c̄q

V
+ Cδeδe

]
− qm − ˙̃qdes. (3.151)

To further simplify, let

77

ė = k1pr − k2 (p2 − r2) + k3V
2 + k4V

2α +

k5V q + k6V
2δe − qm − ˙̃qdes and

ė = V 2ϑTk + k6V
2δe − qm − ˙̃qdes, (3.152)

where

ϑ =




pr
V 2

−(p2−r2)
V 2

1

α

q
V




and k =




(k1 = Γ4)

(k2 = Γ5)(
k3 = 1

2Jy
ρc̄SCm0

)
(
k4 = 1

2Jy
ρc̄SCmα

)
(
k5 = 1

2Jy
ρc̄2SCmq

)
(
k6 = 1

2Jy
ρc̄SCmδe

)




.

In order to design the MRAC controller, define the positive definite Lyapunov function

candidate

V1 =
1

2
θ̃2 +

1

2
e2,

whose derivative is

V̇1 = θ̃
(
e cos φ− λ1θ̃

)
+ e

(
V 2ϑTk + k6V

2δe − qm − ˙̃qdes

)
and

= −λ1θ̃
2 + e

(
θ̃ cos φ + V 2ϑTk + k6V

2δe − qm − ˙̃qdes

)
.

(3.153)

Selecting δe to be

δdes
e = − 1

k6

ϑTk− 1

k6V 2

(
θ̃ cos φ− qm − ˙̃qdes + λ2e

)

would stabilize the system. However, since the parameters are being estimating, we

really have

δe = − 1

k6

ϑT k̂− 1

k6V 2

(
θ̃ cos φ− qm − ˙̃qdes + λ2e

)
. (3.154)

78

Adding and subtracting δdes
e in Equation (3.153) gives

V̇1 = −λ1θ̃
2 + e

(
θ̃ cos φ + V 2ϑTk + k6V

2(δe − δdes
e + δdes

e)− qm − ˙̃qdes

)
,

= −λ1θ̃
2 + e

(
θ̃ cos φ + V 2ϑTk + k6V

2(− 1

k6

ϑT k̃ + δdes
e)− qm − ˙̃qdes

)
, and

= −λ1θ̃
2 − λ2e

2 +
(
eV 2ϑT k̃

)
, (3.155)

where k̃ = k̂− k. Noting that ˙̃k =
˙̂
k− k̇ =

˙̂
k, the new Lyapunov function candidate

is

V = V1 +
1

2
k̃

T
Λ−1k̃,

V̇ = −λ1θ̃
2 − λ2e +

(−eV 2ϑT
)
k̃ +

˙̂
kT Λ−1k̃, and

V̇ = −λ1θ̃
2 − λ2e

2 +
(
−eV 2ϑT + k̂

T
Λ−1

)
k̃.

By setting −eV 2ϑT + k̂
T
Λ−1 = 0 we get the update equation

˙̂
k = (q̃ − q̃des) V 2Λϑ (3.156)

where e = q̃ − q̃des. Using the projection operator the update equation becomes

˙̂
k = ProjS12

(
(q̃ − q̃des) V 2Λϑ, k̂

)
. (3.157)

Slightly modifying the previous model gives the companion model

qd = −kθ (θm − θc) ,

θ̇m = qm cos φ + θ̇c, and

q̇m = −kqqm + V 2k6

(
δe +

1

k6

ϑT k̂− −kqqm − θ̃ cos φ + ˙̃qdes − λ2e

V 2k6

)
.

(3.158)

It can be noted that the companion model is equivalent to the previous model when

δe is substituted to give us the companion model. However, if we low-pass filter the

79

control signal the companion model now takes on the high frequency content of the

parameter estimates.

The L1 controller is defined as

qd = −kθ (θm − θc)

q̃des =
1

cos φ

(
r sin φ + θ̇c − λ1θ̃

)
,

θ̇m = qm cos φ + θ̇c,

q̇m = −kqqm + V 2k6

(
δe +

1

k6

ϑT k̂− −kqqm − θ̃ cos φ + ˙̃qdes − λ2e

V 2k6

)
,

δe = − 1

k6

ϑT C(s)
{
k̂
}
− 1

k6V 2

(
θ̃ cos φ− qm − ˙̃qdes + λ2e

)
, and

˙̂
k = ProjS12

(
(q̃ − q̃des) V 2Λϑ, k̂

)
. (3.159)

80

Chapter 4

Experimental Platform

Having developed the MRAC and L1 algorithms in the previous chapter,

their effectiveness needs to be tested. This is accomplished by running simulations,

hardware-in-the-loop tests, and flight tests. This chapter describes the platforms

upon which these tests are run.

4.1 Simulation

After deriving the adaptive control schemes in Chapter 3, these schemes are

simulated in Simulink/Matlab 7. Matlab 7 is executed on a Pentium M 1.6 GHz

processor with 1 GB memory running Windows XP. Figure 4.1 shows the Simulink

setup. Both the MRAC and L1 simulations have the same block overview. Desired

pitch and roll angles (called “th c” and “phi c”, respectively in the figure) are sent to

the controller. The controller issues elevator, aileron, rudder, and throttle commands

(labeled “delta”) to the UAV equations of motion (EOM) block. The UAV EOM

s-function calculates the attitude and position of the UAV using the 6-DOF model

from Section 2.2 with the parameter values in Table 4.1. These parameters are similar

to the parameters on the test MAVs. The UAV states are fed back to the controller

from the UAV EOM.

Figure 4.2 is the inside of the control block used for MRAC testing. All four

Lyapunov MRAC controllers have this block outline. However they differ by the

code used inside the pitch and roll s-function blocks. The commanded pitch and roll

angles are fed into their respective MRAC controllers. The controllers are s-function

blocks that accept commanded angles and aircraft states (labeled “x”–the algorithms

81

Table 4.1: Aerodynamic coefficients used in the simulations.
Longitudinal Coefficients Lateral Coefficients
CL0 = 0.28 CY 70 = 0
CD0 = 0.03 C`0 = 0
Cm0 = 0 Cn0 = 0
CLα = 3.45 CYβ

= -0.98
CDα = 0.30 C`β

= -0.12
Cmα = -0.38 Cnβ

= 0.25
CLq = 0 CYp = 0
CDq = 0 Clp = -0.26
Cmq = -3.6 Cnp = 0.022
CLδe

= -0.36 CYr = 0
CDδe

= 0 C`r = 0.14
Cmδe

= 0.5 Cnr = -0.35
CYδa

= 0
C`δa

= 0.08
Cnδa

= 0.06
CYδr

= -0.17
C`δr

= 0.105
Cnδr

= -0.032

Table 4.2: Physical parameters used in the simulations.
Physical Parameters

m = 1.56 kg
S = 0.2589 m2

b = 1.4224 m2

c̄ = 0.3302 m2

Sprop = .0314 m2

P = 101.3× 103 N/m2

T = 278 K
g = 9.80665 m/s2

λ = -0.0065 K/m
Ra = 8314.32 J/K/kmol

p0 = 101325 N/m
R = 287.05 J/K/kg

M0 = 28.9644 kg/kmole
Rearth = 6371020 m
ρ = 1.2682 kg/m3

J =




0.1147 0 −0.0015
0 0.0576 0

−0.0015 0 0.1712


 kg m2

82

are allowed full state feedback except for α and β) to calculate elevator or aileron

deflections. Notice that the throttle and rudder commands are constants.

Figure 4.3 shows the inside of the control block for the L1 controller. It

is similar to the MRAC environment except the parameter estimates are low pass

filtered and added to the command signal. Also, the command signals are sent to the

UAV EOM and fed back to the controller.

In this environment, gains can be tuned over a variety of test conditions. The

testing involves commanding step changes in commanded roll and pitch angles by

±15 degrees at 0.05 Hz, and plotting the results. By running the pitch and roll

controllers simultaneously, coupling effects between roll and pitch affect are observed.

The throttle is held at the constant value, 13.2494 m/s (a value to keep the aircraft

in wings-level trim), while the rudder is held at zero. While testing, the controller

parameters, aircraft and model attitude (pitch and roll), and control surface deflection

are monitored. The results are presented in Chapter 5.

Figure 4.1: All algorithms were run in this basic Simulink block diagram.

Once tested in Matlab, the adaptive algorithms are coded in Dynamic C, a

C based programming language for Rabbit microcontrollers. Next, this code is emu-

lated on the freeware flight simulator, Aviones (see Figure 4.4). Aviones is a three di-

mensional flight simulator developed for creating/testing autopilots, state estimators,

83

Figure 4.2: MRAC block diagram.

Figure 4.3: L1 controller block diagram.

and communication techniques [24]. Aviones is implemented on the Windows operat-

ing system and can be downloaded from SourceForge at http://sourceforge.net/pro-

jects/aviones. Aviones simulates every aspect of flight by emulating the autopilot,

implementing the physics of the MAVs, and connecting to the ground station soft-

ware Virtual Cockpit (VC) via the network loopback. The VC is the software that

communicates with the autopilot to give waypoint information and online parame-

84

Figure 4.4: A screenshot from Aviones. Aviones is a software package that can run
autopilot code and interface with the Virtual Cockpit directly, or it can feed sensor
information and receive elevator/aileron/rudder commands from a Kestrel Autopilot.

ter changes (i.e. PID gains, adaptive gains, etc.), and receives telemetry, video, and

aircraft position and attitude. A screenshot of VC is found in Figure 4.5.

By running the autopilot code in Aviones testing for coding errors, observe

the effect of code changes and gain adjustments, and observe trends without risking

damage to our test MAVs is accomplished. Aviones was run on a Pentium 4 3GHz

machine running Windows XP with 512 MB memory. Aviones uses the same 6-DOF

model that used in Simulink. While testing with a simulated aircraft in Aviones,

the aircraft was commanded to fly an hourglass pattern with 200 meter edges and

300 meter diagonals (see Figure 4.6). The hourglass pattern ensures that right and

left turns have equal representation. Flying this pattern also provides consistency

between simulations and real flight tests, since same hourglass path is used.

85

Figure 4.5: A screenshot of the Virtual Cockpit ground station. Virtual Cockpit sends
waypoint data and receives telemetry either for Aviones or the Kestrel Autopilot.

2
0

0
 M

3
0
0
 M

Figure 4.6: Diagram of the hourglass pattern used in simulation and flight testing of
the algorithms.

86

Figure 4.7: The Kestrel Autopilot.

4.2 Hardware

After simulations are complete, hardware-in-the-loop and flight tests are done.

The Kestrel Autopilot [25] is used for the hardware-in-the-loop (HIL) and flight tests.

The two versions of autopilot used in testing are v1.45 and v2.0. The Kestrel Autopi-

lot, seen in Figure 4.7, has a 29 MHz Rabbit microcontroller (512K Flash and 512K

RAM) and the following on board sensors: rate gyros, accelerometers, an absolute

pressure sensor for measuring altitude, a differential pressure sensor for measuring

airspeed, and a GPS receiver. The autopilot is programmed using Dynamic C and

cycles through all subsystems at about 80-90 Hz.

The Kestrel Autopilot is connected through two Programming Cable with

two Pigtails (Part# R101-0513+ADAP [25]) attached to two serial ports on a PC

running both Aviones and the Virtual Cockpit (VC) during HIL testing. Figure 4.8

shows this relationship. Aviones simulates the world sending sensor information to

the autopilot and accepts elevator, aileron, rudder, and throttle commands. The

VC provides waypoint information and parameter changes to the autopilot while

receiving telemetry. HIL tests help determine if the limited processing speed of the

Kestrel Autopilot will cause problems and allow for the adaptive algorithms to be

tuned to the Kestrel.

If HIL tests are successful, flight tests can be run using the following planes:

a flying wing named Deliverance, a larger flying wing named Ray, and a fixed-wing

87

Aviones
Virtual

Cockpit

Computer

Kestrel

Autopilot

COM1 COM2

GPS COMM

Figure 4.8: Diagram of the HIL communications.

high-efficiency aircraft named Phidipides. Figure 4.9 shows the three test aircraft.

These aircraft use Kestrel Autopilots that communicate through an RF modem to a

ground station running Virtual Cockpit. The ground station is a PC running the VC

attached via a RS232 serial cable to an RF Comm Box that communicates with the

autopilot. The RF Comm box also attaches to a Futaba T9CAP RC controller via

a training cable to allow an RC pilot to take command of the aircraft. They receive

waypoint commands and parameter changes from the VC while sending telemetry

to the VC. Using Virtual Cockpit, adaptive control parameters are set and adaptive

algorithms are turned on or off mid-flight. For a illustration of the ground station

setup see Figure 4.10.

Below is a parts list for the ground station available from [25]:

• RS232 serial cable (Part# RS232)

• RF Comm Box (Part# PRTGS1.1)

• Futaba T9CAP RC Controller

• training cable (Part# RCTRAIN3)

• Virtual Cockpit (MAGICC Lab version)

Below is the list of components for Deliverance and Ray:

88

Deliverance
Weight: 0.734 kg

Wingspan: 1.207 m
Mean geometric chord: 0.254 m

Ray
Weight: 1.321 kg

Wingspan: 1.511 m
Mean geometric chord: 0.305 m

Phidipides
Weight: 0.969 kg

Wingspan: 1.524 m
Mean geometric chord: 0.168 m

Nose to tail: 0.914 m

Figure 4.9: RC-style Test Aircraft. The ruler is added to give scale.

• Furuno GH80 GPS Receiver

• Aerocomm 4490-1000M 900 MHz RF Modem

• Mega 16/15/5 or 16/15/6 Electric Motor

• Castle Creations Phoenix-35 Motor Controller

• Kokam 11.1 V 1500 mAh Lithium Polymer Batteries

• Hitec HS 81 MG Servos

89

Computer

VC

RF Comm

Box

RC Controller

RF Modem

Kestrel

Autopilot

Ground Station

MAV

Figure 4.10: Diagram of the communication components. The ground station consists
of the VC running on a computer attached to an RF Comm Box which transmits to
the aircraft. The RF Comm Box is also attached to an RC Controller to allow for a
pilot to take control of the aircraft. The aircraft receives and sends data to the ground
station via an RF modem attached to the Kestrel Autopilot.

• Procerus Kestrel Autopilot v1.45 and v2.0

• Dipole Antenna (900MHz)

Phidipides uses the same components with the exception of Hitec HS 55 servos and

an Axi brushless motor.

To test robustness and speed of adaption, a flap is attached to Deliverance.

The flap is shown in Figure 4.11. Sending commands using the VC, the flap can be

deployed and retracted. Deployment significantly changes the aerodynamic and lift

coefficients for deliverance.

While flying, the aircraft and internal model attitude (pitch and roll), con-

troller parameters, and control deflections are monitored. The results are presented

in the next chapter.

90

Figure 4.11: Flap deployed on Deliverance.

91

92

Chapter 5

Results

This chapter discusses the results from both simulation and flight testing of

the Lyapunov MRACs and L1 controllers derived in Chapter 3. It is divided into

two sections. The first section contains the simulations results. The second section

contains the hardware results. In both sections, plots are analyzed and compared.

5.1 Simulation Results

The purpose of this section is to present the results from simulations performed

using Matlab described in Section 4.1. This section is split into four parts. The first

part describes the Lyapunov based MRAC results. The second part discusses the

results of the different L1 controllers. The third section analyzes and compares the

L1 controllers and Lyapunov MRACs. Finally, the last section is the summary.

5.1.1 Lyapunov Based MRAC

Below are the results of the four Lyapunov MRAC Schemes derived in Sec-

tion 3.1. All Matlab code is located in Appendix A.1.

MRAC Scheme A

Figure 5.1 and 5.2 show pitch and roll results, respectively. Both the pitch and roll

controllers performances improved over time. Both had an initial period before the

first step change where the aircraft oscillated about the model. Also, neither the pitch

nor the roll controller’s estimates converged, which is probably due to a number of

factors such as the adaptive gain size, the nature of the reference signal (persistent

excitation), and duration of the simulation (see Figures 5.1 and 5.3).

93

0 10 20 30 40 50
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
MRAC A Pitch Tracking

Time (sec.)

P
itc

h
A

ng
le

 (
ra

d.
)

Desired Pitch
Model
Measured

(a) Pitch. There is a convergence period after
which the airplane tracks the model. Notice the
slight oscillation of the actual pitch after the
convergence period.

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
MRAC A Elevator command

Time (sec.)

E
le

va
to

r
A

ng
le

 (
ra

d.
)

(b) Elevator. High frequency oscillations are
typical of this type of MRAC.

0 10 20 30 40 50
3

3.5

4

4.5
MRAC A Parameters Pitch

k1

0 10 20 30 40 50
0.02

0.025

0.03

k2

0 10 20 30 40 50
2.424

2.426

2.428

k3

Time (sec.)

(c) Parameters k1-k3. Without enough excita-
tion the parameters have not settled on their
true values.

0 10 20 30 40 50
−2

−1

0

1
MRAC A Parameters Pitch

k4

0 10 20 30 40 50
−2

0

2

4

k5

0 10 20 30 40 50
−10

−5

0

k6

Time (sec.)

(d) Parameters k4-k6. Notice the correlation be-
tween k4 and the oscillations in pitch.

Figure 5.1: MRAC Scheme A Pitch Matlab Results.

MRAC Scheme B

Simulation results for MRAC Scheme B are found in Figures 5.4 and 5.5. Notice the

oscillation in the roll angle before the reference command changes–a further example

of the need for persistent excitation. Unlike the pitch and roll in the last section, the

elevator and aileron commands have a discernible, consistent pattern, compare Fig-

ures 5.1(b) and 5.2(b) with 5.4(b) and 5.5(b). Like the parameter estimates in MRAC

Scheme A, the parameters have not converged in either pitch or roll as evidenced in

5.4(c), 5.4(d), 5.5(c), and 5.5(d).

94

0 10 20 30 40 50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
MRAC A Roll Tracking

Time (sec.)

R
ol

l A
ng

le
 (

de
g.

)

Desired Roll
Model
Measured

(a) Roll. Tracking gets better with each step
input.

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
MRAC A Aileron command

Time (sec.)

E
le

va
to

r
A

ng
le

 (
de

g.
)

(b) Aileron deflections. Notice the high fre-
quency content on the output.

Figure 5.2: MRAC Scheme A Roll Matlab Results.

MRAC Scheme C

Figures 5.6 and 5.7 show the pitch and roll simulation results for the MRAC Scheme

C. The literature seems to indicate that the input signal is important to guarantee

parameter convergence. As such the input signal appears to be “persistently exciting”

enough as the roll parameters appear to be converging. It would appear that the

fewer parameters to be estimated, the less often a signal change is needed, i.e. the

less persistent excitation is needed.

MRAC Scheme D

Figures 5.8-5.10 show the simulation results of the MRAC Scheme D. Roll again

shows the importance of persistent excitation. Before the reference signal changes at

30 seconds in Figure 5.9(a), there is rapid oscillation that dampens after the step.

The role that the reference signal plays is shown by comparing Figure 5.9(a) with

Figure 5.10, where the reference signal has been sped up to 0.105 Hz. Parameters

appear to be converging in both pitch and roll. Also, notice the oscillations on the

elevator and aileron (Figures 5.8(b) and 5.9(b)) that are typical of this type of MRAC.

Furthermore, the aileron command saturates at each step change in Figure 5.9(b).

95

0 10 20 30 40 50
0

0.2
0.4

MRAC A Parameters Roll

k1

0 10 20 30 40 50
−4
−2

0
x 10

−4

k2

0 10 20 30 40 50
−5

0
5

x 10
−4

k3

0 10 20 30 40 50
0
2
4

x 10
−3

k4

0 10 20 30 40 50
0
1
2

x 10
−4

k5

0 10 20 30 40 50
−5

0
5

x 10
−5

k6

Time (sec.)

(a) Parameters k1-k6.

0 10 20 30 40 50
−0.02
−0.01

0
MRAC A Parameters Roll

k7

0 10 20 30 40 50
−0.02
−0.01

0

k8

0 10 20 30 40 50
0

0.5
1

x 10
−4

k9

0 10 20 30 40 50
−0.05

0
0.05

k1
0

0 10 20 30 40 50
−2

0
2

x 10
−3

k1
1

0 10 20 30 40 50
−1

−0.5
0

x 10
−3

k1
2

Time (sec.)

(b) Parameters k7-k12.

Figure 5.3: MRAC Scheme A Roll Parameter Matlab Results.

96

0 10 20 30 40 50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
MRAC B Pitch Tracking

Time (sec.)

P
itc

h
A

ng
le

 (
ra

d.
)

Desired Pitch
Measured
Model

(a) Pitch. There is a convergence period after
which the airplane tracks the model. Notice the
slight oscillation of the actual pitch.

0 10 20 30 40 50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
MRAC B Elevator command

Time (sec.)

E
le

va
to

r
A

ng
le

 (
ra

d.
)

(b) Elevator. Notice the high frequency content
typical of this type of MRAC.

0 10 20 30 40 50
2.824

2.826

2.828

2.83
MRAC B Parameters Pitch

k1

0 10 20 30 40 50
−0.529

−0.5285

−0.528

k2

0 10 20 30 40 50
4.283

4.2832

4.2834

k3

Time (sec.)

(c) Parameters k1-k3.

0 10 20 30 40 50
−1

−0.5

0

0.5
MRAC B Parameters Pitch

k4

0 10 20 30 40 50
−3

−2.5

−2

k5

0 10 20 30 40 50
−6

−5.5

−5

k6

Time (sec.)

(d) Parameters k4-k6.

Figure 5.4: MRAC Scheme B Pitch Matlab Results.

5.1.2 L1 Controllers

Presented below are the simulation results for the four L1 controllers derived in

Chapter 3. The literature discusses the effect of increasing gain on improved reference

signal tracking. Moreover, the L1 controller does not have oscillations on the control

signal like Lyapunov based MRACs as the adaptive gain is increased. To show this

effect, each algorithm was run twice with two different adaptive gains of 100 and .1

(adaptive gains higher than 100 slowed some simulations). This section describes the

results of these simulations. Appendix B.1 has the complete Matlab code for the

simulations.

97

0 10 20 30 40 50
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
MRAC B Roll Tracking

Time (sec.)

R
ol

l A
ng

le
 (

de
g.

)

Desired Roll
Measured
Model

(a) Roll. There is a convergence period after
which the airplane tracks the model. Notice the
slight oscillation of the actual pitch.

0 10 20 30 40 50
−0.15

−0.1

−0.05

0

0.05

0.1
MRAC B Aileron command

Time (sec.)

E
le

va
to

r
A

ng
le

 (
de

g.
)

(b) Aileron. Notice the high frequency content
typical of this type of MRAC.

0 10 20 30 40 50
−5

0

5
x 10

−4 MRAC B Parameters Roll

k1

0 10 20 30 40 50
−5

0

5
x 10

−5

k2

0 10 20 30 40 50
−5

0

5
x 10

−4

k3

0 10 20 30 40 50
−0.1

0

0.1

k4

Time (sec.)

(c) Parameters k1-k4

0 10 20 30 40 50
0

0.01

0.02
MRAC B Parameters Roll

k5

0 10 20 30 40 50
−2

0

2
x 10

−3

k6

0 10 20 30 40 50
−2

0

2
x 10

−3

k7

0 10 20 30 40 50
−0.4

−0.2

0

k8

Time (sec.)

(d) Parameters k4-k8

Figure 5.5: MRAC Scheme B Roll Matlab Results.

First-Order Model with One Unknown, Lumped Parameter

Figure 5.11 shows the Simulink results for the first order model with one unknown

parameter. As can be seen in Figures 5.11(a) and 5.11(b), the angle tracking and set-

tling time for pitch is much better with high adaptive gain. The elevator commands

between the high gain and low gain simulations are similar. However, the eleva-

tor command with high gain in Figure 5.11(c) has more oscillations at edge events

than Figure 5.11(d), yet it is smoother for the rest of the commanded signal. The

parameters also exhibit the same behavior, though much more pronounced, as the

98

0 10 20 30 40 50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
MRAC C Pitch Tracking

Time (sec.)

P
itc

h
A

ng
le

 (
ra

d.
)

Measured
Model
Desired Pitch

(a) Pitch. There is a convergence period after
which the airplane tracks the model. Notice the
slight oscillation of the actual pitch.

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
MRAC C Elevator command

Time (sec.)

E
le

va
to

r
A

ng
le

 (
ra

d.
)

(b) Elevator. Notice the high frequency content
typical of this type of MRAC.

0 10 20 30 40 50
−0.4

−0.2

0
MRAC C Parameters Pitch

k1

0 10 20 30 40 50
−0.1

0

0.1

k2

0 10 20 30 40 50
−1

0

1
x 10

−3

k3

Time (sec.)

(c)

Figure 5.6: MRAC Scheme C Pitch Matlab Results.

high adaptive gain parameters are a whole order of magnitude greater at their peaks

(Figure 5.11(e)) than the low adaptive gain parameters (Figure 5.11(f)).

First-Order Model with Two Lumped, Unknown Parameters

We again see in Figure 5.12 that high adaptive gain has better pitch tracking than low

adaptive gain. However, comparing 5.11(a) with 5.12(a) we see that the first-order

system with two lumped parameters better approximates a first-order system than

the first-order model with only one parameter. The settling time is similar between

the two schemes. Examining Figures 5.12(c) and 5.12(d), we see that there is more

99

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
MRAC C Roll Tracking

Time (sec.)

R
ol

l A
ng

le
 (

de
g.

)
Measured
Model
Desired Roll

(a) Roll. There is a convergence period after
which the airplane tracks the model. Notice the
slight oscillation of the actual pitch.

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
MRAC C Aileron command

Time (sec.)

E
le

va
to

r
A

ng
le

 (
de

g.
)

(b) Aileron. Notice the high frequency content
typical of this type of MRAC.

0 10 20 30 40 50
−10

−5

0

5
MRAC C Parameters Roll

k1

0 10 20 30 40 50
−0.02

0

0.02

0.04

k2

0 10 20 30 40 50
0

1

2
x 10

−4

k3

Time (sec.)

(c) Parameters. The parameters have not yet
converged.

Figure 5.7: MRAC Scheme C Roll Matlab Results.

oscillation in the elevator command and parameters when there is high adaptive gain,

but this is still reasonable. Figures 5.12(e) and 5.12(f) show that the high adaptive

gain simulation seems to settle on parameters better than the low adaptive gain

simulation.

Second-Order Model

Figure 5.13 shows the simulation results for the second-order model. Comparing

Figure 5.13 with Figures 5.11 and 5.12, the second order model performs similarly

to the first-order models. However, there are more oscillations with the elevator

100

0 10 20 30 40 50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
MRAC D Pitch Tracking

Time (sec.)

P
itc

h
A

ng
le

 (
ra

d.
)

Desired Pitch
Model
Measured

(a) Pitch. There is a convergence period after
which the airplane tracks the model. Notice the
slight oscillation of the actual pitch.

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
MRAC D Elevator command

Time (sec.)

E
le

va
to

r
A

ng
le

 (
ra

d.
)

(b) Elevator. Notice the high frequency content
typical of this type of MRAC.

0 10 20 30 40 50
−4

−3

−2

−1

0
MRAC D Parameters Pitch

k1

0 10 20 30 40 50
−0.1

0

0.1

0.2

0.3

k2

Time (sec.)

(c) Parameters. The pitch parameters appear
to have converged.

Figure 5.8: MRAC Scheme D Pitch Matlab Results.

command than in the first order models. Comparing the high adaptive gain plot with

the low adaptive gain plot in Figure 5.13 shows an unexpected consistency. It appears

that the gains chosen do not effect the performance of the L1 controller.

Physically Motivated Model

The physically motivated second-order model results are shown in Figure 5.14. This

controller has similar elevator command patterns as the previous second-order model

(see Figure 5.13). However, the pitch oscillates slightly like the first-order model

with one unknown parameter (see Figure 5.11). The parameters oscillate more with

101

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
MRAC D Roll Tracking

Time (sec.)

R
ol

l A
ng

le
 (

de
g.

)

Desired Roll
Model
Measured

(a) There is a convergence period after which
the aircraft tracks the model roll angle. Notice
the slight oscillation of the actual roll.

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
MRAC D Aileron command

Time (sec.)

E
le

va
to

r
A

ng
le

 (
de

g.
)

(b) Notice the high frequency content of the
aileron command which typical of this type of
MRAC.

0 10 20 30 40 50
−4

−3

−2

−1

0

1
MRAC D Parameters Roll

k1

0 10 20 30 40 50
−0.01

0

0.01

0.02

0.03

k2

Time (sec.)

(c) The parameters appear to be converging be-
ing sufficiently excited.

Figure 5.9: MRAC Scheme D Roll Matlab Results.

increased adaptive gain (compare Figures 5.15-5.16). However, tracking improves

(compare Figure 5.14(a) to 5.14(b)). Oscillations of the elevator command are also

reduced by increasing the adaptive gain present, shown in Figure 5.14(c) and 5.14(d).

5.1.3 Analysis

Tables 5.1-5.6 show the metrics used to evaluate the adaptive schemes. The

two types of metrics were the average error between actual and model angles and the

L2 norm of that error. Average error between the model and actual angle is defined

as:

102

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
MRAC D Roll Tracking

Time (sec.)

R
ol

l A
ng

le
 (

de
g.

)

Desired Roll
Model
Measured

(a) Notice the roll angle oscillations start and
end sooner than Figure 5.9(a).

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
MRAC D Aileron command

Time (sec.)

E
le

va
to

r
A

ng
le

 (
de

g.
)

(b) The aileron has a similar pattern to Fig-
ure5.9(b).

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2
MRAC D Parameters Roll

k1

0 10 20 30 40 50
−5

0

5

10

15
x 10

−3

k2

Time (sec.)

(c) The parameters have mostly converged, the
slight oscillation remaining might be caused by
saturation on the aileron.

Figure 5.10: MRAC Scheme D Roll Matlab Results with 0.105 Hz Reference signal.

eavg =
1

n

n∑
i=1

|αd(i)− α(i)|,

and the L2 norm of the error is defined as

eL2 =

√√√√ 1

n

n∑
i=1

(αd(i)− α(i))2,

where αd is the desired pitch or roll angle and α is the actual pitch or roll angle.

103

0 10 20 30 40 50
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Pitch Tracking L1 1st Order One Unknown

Time (sec.)

P
itc

h
A

ng
le

 (
de

g.
)

Desired Pitch
Model
Measured

(a) Pitch with high adaptive gains that are 100.

0 10 20 30 40 50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Pitch Tracking L1 1st Order One Unknown

Time (sec.)

P
itc

h
A

ng
le

 (
de

g.
)

Desired Pitch
Model
Measured

(b) Pitch with low adaptive gains that are 0.1.

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Elevator command L1 1st Order One Unknown

Time (sec.)

E
le

va
to

r
A

ng
le

 (
de

g.
)

(c) Elevator command with high adaptive gains.

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Elevator command L1 1st Order One Unknown

Time (sec.)

E
le

va
to

r
A

ng
le

 (
de

g.
)

(d) Elevator command with low adaptive gains.

0 10 20 30 40 50
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
Parameter L1 1stOrder One Unknown

Time (sec.)

(e) Parameter estimate with high adaptive
gains.

0 10 20 30 40 50
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1
Parameter L1 1stOrder One Unknown

Time (sec.)

(f) Parameter estimate with low adaptive gains.

Figure 5.11: Simulink results for first-order model with one unknown pitch controller.

104

0 10 20 30 40 50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Pitch Tracking L1 1st Order Two Unknown

Time (sec.)

P
itc

h
A

ng
le

 (
de

g.
)

Desired Pitch
Model
Measured

(a) Pitch angle with high adaptive gains.

0 10 20 30 40 50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Pitch Tracking L1 1st Order Two Unknown

Time (sec.)

P
itc

h
A

ng
le

 (
de

g.
)

Desired Pitch
Model
Measured

(b) Pitch angle with low adaptive gains.

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Elevator command L1 1st Order Two Unknown

Time (sec.)

E
le

va
to

r
A

ng
le

 (
de

g.
)

(c) Elevator command with high adaptive gains.

0 10 20 30 40 50
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Elevator command L1 1st Order Two Unknown

Time (sec.)

E
le

va
to

r
A

ng
le

 (
de

g.
)

(d) Elevator command with low adaptive gains.

0 10 20 30 40 50
−1

−0.5

0

0.5

1

1.5
Parameter L1 1stOrder Two Unknown

k1

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

k1

Time (sec.)

(e) Parameters with high adaptive gains.

0 10 20 30 40 50
−0.1

−0.05

0

0.05

0.1
Parameter L1 1stOrder Two Unknown

k1

0 10 20 30 40 50
−0.04

−0.02

0

0.02

0.04

k1

Time (sec.)

(f) Parameters with low adaptive gains.

Figure 5.12: Simulink results for the first-order mode with two unknowns pitch con-
troller.

105

0 10 20 30 40 50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Pitch Tracking L1 2ndOrder

Time (sec.)

P
itc

h
A

ng
le

 (
ra

d.
)

Desired Pitch
Model
Measured

(a) Pitch with high adaptive gains that are 100.

0 10 20 30 40 50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Pitch Tracking L1 2ndOrder

Time (sec.)

P
itc

h
A

ng
le

 (
ra

d.
)

Desired Pitch
Model
Measured

(b) Pitch with low adaptive gains that are 0.1.

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Elevator command L1 2ndOrder

Time (sec.)

E
le

va
to

r
A

ng
le

 (
ra

d.
)

(c) Elevator command with high adaptive gains.

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Elevator command L1 2ndOrder

Time (sec.)

E
le

va
to

r
A

ng
le

 (
ra

d.
)

(d) Elevator command with low adaptive gains.

0 10 20 30 40 50
−1.5

−1

−0.5

0
Parameters L1 2ndOrder

k1

0 10 20 30 40 50
−2

−1

0

1

2

k2

Time (sec.)

(e) Parameters with high adaptive gains.

0 10 20 30 40 50
−1.5

−1

−0.5

0
Parameters L1 2ndOrder

k1

0 10 20 30 40 50
−2

−1

0

1

2

k2

Time (sec.)

(f) Parameters with low adaptive gains.

Figure 5.13: Simulink results for the second-order model pitch controller.

106

0 10 20 30 40 50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Pitch Tracking L1 2ndOrder (Physical)

Time (sec.)

P
itc

h
A

ng
le

 (
ra

d.
)

Desired Pitch
Model
Measured

(a) Pitch with high adaptive gains that are 100.

0 10 20 30 40 50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Pitch Tracking L1 2ndOrder (Physical)

Time (sec.)

P
itc

h
A

ng
le

 (
ra

d.
)

Desired Pitch
Model
Measured

(b) Pitch with low adaptive gains that are 0.1.

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Elevator command L1 2ndOrder

Time (sec.)

E
le

va
to

r
A

ng
le

 (
ra

d.
)

(c) Elevator command with high adaptive gains.

0 10 20 30 40 50
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Elevator command L1 2ndOrder (Physical)

Time (sec.)

E
le

va
to

r
A

ng
le

 (
ra

d.
)

(d) Elevator command with low adaptive gains.

Figure 5.14: Simulink results for the Physically Motivated model pitch controller.

Table 5.1 shows the average error between the actual pitch and the desired

pitch. This metric is helpful when comparing the MRAC controllers with L1 con-

trollers. The reason this is a good metric is that the behavior of the L1 controller

models change as the estimates change, whereas the Lyapunov MRAC models have

fixed behavior. Using this metric the order of best performance to worst is Scheme

D, first-order (1 Unknown), physically motivated, first-order (2 Unknowns), Scheme

B, second-order, Scheme C, and Scheme A.

The difference in model tracking of the adaptive schemes is seen in Table 5.2.

This metric shows that the Lyapunov MRACs, except Scheme D, do not track their

models as well as L1 controllers. This is due to the ability of L1 models’ behavior to

107

0 10 20 30 40 50
−2

0

2
x 10

−4 Parameters L1 2ndOrder (Physical)

k1

Time (sec.)

0 10 20 30 40 50
−1

0

1
x 10

−3

k2

Time (sec.)

0 10 20 30 40 50
−2

0

2

k3

Time (sec.)

(a) Parameters k1 − k3 with high adaptive gains.

0 10 20 30 40 50
−0.4

−0.2

0

0.2

0.4
Parameters L1 2ndOrder (Physical)

k4

0 10 20 30 40 50
−0.1

0

0.1

0.2

0.3
Parameters L1 2ndOrder (Physical)

k5

Time (sec.)

(b) Parameters k4 − k5 with high adaptive gains.

Figure 5.15: Simulink parameter results for the Physically Motivated model pitch
controller with high adaptive gains.

108

0 10 20 30 40 50
−5

0

5
x 10

−4 Parameters L1 2ndOrder (Physical)

k1
Time (sec.)

0 10 20 30 40 50
−5

0

5
x 10

−4
k2

Time (sec.)

0 10 20 30 40 50
−1

−0.5

0

0.5

k3

Time (sec.)

(a) Parameters k1 − k3 with low adaptive gains.

0 10 20 30 40 50
−0.3

−0.2

−0.1

0

0.1
Parameters L1 2ndOrder (Physical)

k4

0 10 20 30 40 50
−0.1

0

0.1

0.2

0.3
Parameters L1 2ndOrder (Physical)

k5

Time (sec.)

(b) Parameters k4 − k5 with low adaptive gains.

Figure 5.16: Simulink parameter results for the Physically Motivated model pitch
controller with low adaptive gain.

109

Table 5.1: The average error (degrees) between actual and desired pitch for simula-
tions.

Flight Leg
Scheme Total 1 2 3

MRAC A 0.2562 0.3136 0.2378 0.2061
MRAC B 0.2303 0.2335 0.2598 0.1927
MRAC C 0.2409 0.2437 0.2824 0.1871
MRAC D 0.0780 0.0887 0.0862 0.0547

L1 first-order (1 Unknown) 0.1196 0.1358 0.1101 0.1110
L1 first-order (2 Unknown) 0.2242 0.2585 0.2051 0.2049

L1 second-order 0.2400 0.2870 0.2261 0.1983
L1 Physical 0.2180 0.2394 0.2090 0.2041

Table 5.2: The average error (degrees) between actual and model pitch angle for the
L1 simulations.

Flight Leg
Scheme Total 1 2 3

MRAC A 0.1593 0.2343 0.1015 0.1047
MRAC B 0.1229 0.1927 0.0687 0.0591
MRAC C 0.2362 0.2344 0.2811 0.1829
MRAC D 0.0318 0.0416 0.0274 0.0234

L1 first-order (1 Unknown) 0.0351 0.0493 0.0252 0.0253
L1 first-order (2 Unknown) 0.0351 0.0576 0.0138 0.0137

L1 second-order 0.0617 0.0982 0.0311 0.0282
L1 Physical 0.0548 0.0949 0.0013 0.0013

change as parameter estimates change. As parameters change, the model is attracted

to the aircraft’s actual pitch angle.

Using the L2 norm, Table 5.3 shows the energy in the error between actual

and desired pitch. Unfortunately it appears that the L1 controllers have a slower rise

time than the Lyapunov MRAC controllers. This is probably because of the low-pass

filtering that occurs inside L1 controllers. The Lyapunov MRACs have less energy in

their tracking errors as a result. However, comparing only Lyapunov MRACs, they

can order them from best to worst performers as Schemes D, B, A, C. This ordering is

supported by Table 5.1. The ordering for L1 controllers is first-order (2 Unknowns),

second-order, first-order (1 Unknown), and physically motivated. This is different

from the order established in Table 5.1 where the first-order (1 Unknown) controller

110

Table 5.3: The L2 norm of the error between the actual and desired pitch angles for
the simulations.

Flight Leg
Scheme Total 1 2 3

MRAC A 4.9993 3.5613 2.8133 2.1051
MRAC B 3.8796 2.1314 2.6120 1.9199
MRAC C 5.2478 3.0765 3.6006 2.2608
MRAC D 3.0049 1.8564 1.9415 1.3466

L1 first-order (1 Unknown) 7.7771 5.1056 4.1224 4.1740
L1 first-order (2 Unknown) 6.2048 4.2068 3.1898 3.2600

L1 second-order 6.6718 4.7827 3.4820 3.0847
L1 Physical 24.5625 15.3547 13.7540 13.3559

Table 5.4: The L2 norm on error between actual and model pitch angle for the L1

simulations.
Flight Leg

Scheme Total 1 2 3
MRAC A 2.1933 2.1500 0.2851 0.3273
MRAC B 1.1933 1.1651 0.2057 0.1562
MRAC C 5.1160 2.8643 3.5888 2.2561
MRAC D 0.7327 0.6685 0.2351 0.1862

L1 first-order (1 Unknown) 1.1521 1.0790 0.2854 0.2859
L1 first-order (2 Unknown) 0.6465 0.6460 0.0173 0.0160

L1 second-order 1.0759 1.0747 0.0389 0.0312
L1 Physical 3.8138 3.8138 4.0619e-004 3.9775e-004

has moved into 3rd place from 1st place. The reason for the order change is probably

due to the oscillations of the actual pitch angle, which implies a slower settling time.

Table 5.4 displays the L2 norm of the error between the actual and model

pitches. The amount of divergence from the model by either oscillations, leading, or

lagging can be surmised from this table. The item of note in the table is that the

first-order (2 Unknowns) controller has the least divergence from its model. Using

this result with the result of Table 5.2, it appears that the first-order (2 Unknowns)

controller is the best performer in terms of settling time and divergence form its

model.

Tables 5.2 and 5.4 establish that the order of pitch controllers as Schemes D,

B, A, and C. However, Tables 5.7 and 5.8 establish the order for best roll controller

111

Table 5.5: The average error between actual and desired roll angle for the MRAC
simulations.

Flight Leg
MRAC Scheme Total 1 2 3

MRAC A 0.2185 0.2447 0.2215 0.1863
MRAC B 0.2694 0.2716 0.3010 0.2314
MRAC C 0.3109 0.4209 0.2815 0.1836
MRAC D 0.2036 0.2098 0.2317 0.1633

Table 5.6: The L2 norm on error between actual and desired roll angle for the MRAC
simulations.

Flight Leg
MRAC Scheme Total 1 2 3

MRAC A 4.3204 2.6861 2.7341 2.0040
MRAC B 4.4756 2.4517 3.0207 2.2132
MRAC C 7.1859 5.7861 3.5986 2.2822
MRAC D 7.6598 4.5929 5.1286 3.3579

as Schemes A, B, C, then D. With the exception of Scheme A, all Lyapunov based

MRAC schemes performed better at pitch control than roll control. Tables 5.7 and

5.8 show the average error and L2 for the Lyapunov MRACs between the actual and

model pitches, respectively.

Finally, if the figures are compared, there is less elevator oscillation for L1

controllers than Lyapunov MRAC controllers. This is due to the filtering of the

parameter estimates that the L1 controller uses.

Table 5.7: The average error (degrees) between actual and model roll angle for the
MRAC simulations.

Flight Leg
MRAC Scheme Total 1 2 3

MRAC A 0.0667 0.0960 0.0513 0.0389
MRAC B 0.1457 0.2085 0.1089 0.0915
MRAC C 0.2362 0.2344 0.2811 0.1829
MRAC D 0.3137 0.2388 0.4581 0.1684

112

Table 5.8: The L2 norm on error between actual and model roll angle for the MRAC
simulations.

Flight Leg
MRAC Scheme Total 1 2 3

MRAC A 0.3567 0.3270 0.1174 0.0810
MRAC B 1.3348 1.2234 0.4260 0.3218
MRAC C 5.1160 2.8643 3.5888 2.2561
MRAC D 14.0801 5.4174 12.5477 3.3844

5.1.4 Summary

All MRAC Schemes performed well in simulation. Scheme C and Scheme

D appear to have parameters converging in both roll and pitch. Both Scheme C

and Scheme D had periods of oscillation that illustrate the importance of persistent

excitation. Scheme D was the best at tracking pitch, but the worst at roll tracking.

On the contrary, Scheme A had the best roll tracking, but nearly the worst pitch

tracking. Although control signal saturation was present in many of the algorithms,

it did not destabilize any of the algorithms. All four MRAC schemes produced high

frequency control signals. Also, all four algorithms generally showed better tracking

as time progressed.

As observed in all four L1 controllers, high adaptive gain translates to better

pitch tracking. Because the parameters are low-pass filtered when passed to the

elevator command, there is significantly less commanded chatter than is typical of

MRAC controllers. Both first-order models had about the same settling time, though

the first-order (1 Unknown) model tracked desired pitch angle the best. Furthermore,

the first-order models generally performed better than the second-order models. This

seems counterintuitive as one would expect the higher order models to perform better

since they should more accurately approximate the true dynamics of the system. A

possible explanation is that since the second order systems have more parameters,

there is a larger solution space for the parameters. In other words, more parameters

mean more permutations of those parameters that can solve for the correct output.

Thus the models with fewer parameters would have a smaller solution space and thus

113

adapt faster. Allowing the adaptive gain to go to infinity might mitigate this issue–

unfortunately real world computing is insufficient. It should also be noted that in all

cases, persistently exciting signal are needed to have the parameters converge to their

true values.

5.2 Flight Testing Results

Flight tests were performed on Deliverance, Ray, and Phidipidies described in

Chapter 4. All flight testing followed a hourglass pattern to allow both right and left

turns equal weight. Below are the results of the flight testing for Lyapunov based

MRAC and L1 controllers.

5.2.1 Lyapunov Based MRAC

Initially, Deliverance was used, see Figure 4.9, to tune the adaptive control

gains when flying each algorithm. This allowed the four algorithms to be compared

with each other and against the usual PD controller. To obtain this comparison,

hourglass-shaped pattern with legs between 200 and 300 meters long were flown on the

same airframe, Deliverance, for the four algorithms and the hand-tuned PD controller.

This allowed for consistent measurements for comparison.

Along with the pitch and plots, values of the k̂ parameters for each adaptive

scheme are displayed. Note that the parameter estimates, though representing certain

combinations of aerodynamic coefficients and other estimated quantities, are not ex-

pected to actually converge to their true values. The Lyapunov stability proofs from

Chapter 3, used to derive the algorithms, do not guarantee that these parameters

will converge to the true values. Rather, the proofs show that the parameters assume

values that cause the tracking error to go to zero.

Before each algorithm could be flown, several adaptive control gains (namely

km (model gain), γ1 (gain on the error), and Γ (adaptive gain)) had to be tuned.

Algorithm D was easiest to tune as it had the fewest number of gains. Algorithm

D also is the simplest algorithm to implement and takes up the smallest amount of

114

autopilot code space. In contrast, algorithms B and C were not robust when tuned

for performance, while Scheme A is more complicated.

As will be discussed, MRAC Scheme D has the best MRAC in terms of robust-

ness and simplicity. Therefore, it was chosen to fly on the other two test airframes

shown in Figure 4.9 to test its scalability. Robustness of MRAC Scheme D was further

tested by attaching a flap near the center of Deliverance’s right wing and deploying

it mid-flight (see Figure 4.11). The flap’s purpose is to change the aerodynamic co-

efficients of the MAV quickly. The rate of adaptation and the autopilots ability to

adapt can then be observed. Results for these flight tests are detailed below.

PD Control

In order to set a baseline to compare the different MRAC schemes, a conventional

hand-tuned PD controller for both roll and pitch was flown along the hourglass path.

Figure 5.17 shows the results of this flight.

Pitch tracking has a distinct sharpness to it. Also, the desired pitch does

not appear to saturate. In contrast, desired roll is limited to 30 degrees and does

saturate. However, like pitch tracking, roll tracking is also sharp. Comparing the

pitch and roll tracking of MRACs with the PD controller will provide further insight

into the performance of these algorithms.

MRAC Scheme A

The pitch results for MRAC Scheme A are found in Figure 5.18. By matching peaks

in pitch angle found in Figure 5.17(a) with peaks in Figure 5.18(a) it can be seen that

the MRAC’s peaks are 2-5 degrees less than PD control. This implies that altitude

was held better with MRAC than PD control. The data for the elevator command

is unavailable, however, it can be inferred from the oscillations in actual pitch that

the elevator has high frequency oscillations–a typical result of MRACs. Furthermore,

the parameters in Figure 5.18(c) may have converged to constants. Thus, further

improvement is not expected.

115

0 50 100 150 200 250 300
−10

0

10

20

30

40

50

Seconds

D
eg

re
es

Pitch Angle

Desired Pitch
Actual

(a) Typical PD pitch tracking on Deliverance. The average error remains
around two degrees.

0 50 100 150 200 250 300
−50

0

50

Seconds

D
eg

re
es

Roll Angle

Desired Roll
Actual

(b) Typical PD Roll tracking on Deliverance. The average error stays at
about 3.5 degrees.

Figure 5.17: PD pitch and roll on Deliverance.

116

Figure 5.18 shows the flight results for MRAC A roll. Oscillations of the

aircraft roll angle indicate high frequency oscillations of the aileron. The parameters

in Figure 5.18(d) have not converged. This implies that roll tracking might continue

to improve.

MRAC Scheme B

The results for MRAC Scheme B pitch are found in Figure 5.19. Furthermore, there is

a lot of oscillation in the aircraft’s actual pitch. This implies increased high frequency

content on the elevator. The parameters have not converged yet in Figure 5.19(c), so

there might be improvement, but it is doubtful.

Figure 5.19 shows the results for MRAC Scheme B roll. There appears to

be high frequency oscillations on the aileron since actual roll oscillates for MRAC

B. The parameters seem to have converged in Figure 5.19(d); therefore, improved

performance is not expected.

Flight testing MRAC Scheme B found that it is not a robust control scheme.

Scheme B was sensitive to tuning and could easily destabilize the plane when tuned

for performance. Therefore, it was not considered for continued testing.

MRAC Scheme C

The left side of Figure 5.20 shows the pitch results for MRAC Scheme C. The actual

pitch of the aircraft oscillates more than PD control. This implies that the elevators

are oscillating. Looking at Figure 5.20 the parameters appear to have converged.

Notice that when the parameters converge, oscillations of the actual pitch angle in-

creases.

The results from MRAC Scheme C roll are shown on the right side of Fig-

ure 5.20. If we compare Figures 5.17(b) and 5.20(b), PD control has less overshoot

than MRAC C. Also, counter to expectations, the actual roll appears to oscillate less

for MRAC C then PD control. However, there are times of punctuated oscillations–

between 120-145 seconds and 30-45 seconds (see Figure 5.20(d)). This appears related

to the changes in parameter estimates.

117

0 50 100 150 200 250
−10

0

10

20

30

40

50

Seconds

D
eg

re
es

Pitch Angle

Desired − Pitch
Model
Actual

(a) Pitch. Actual pitch oscillates which implies
the elevator is oscillating.

0 50 100 150 200 250
−50

0

50

Seconds

D
eg

re
es

Roll Angle

Desired Roll
Model
Actual

(b) Roll. Actual roll oscillates.

0 50 100 150 200 250
0

0.1

0.2

k1

0 50 100 150 200 250
−1

−0.5
0

x 10
−4

k2

0 50 100 150 200 250
0

0.5
1

x 10
−4

k3

Seconds

(c) Pitch parameters appear to be converging.

0 50 100 150 200 250
0

0.2

0.4
k1

0 50 100 150 200 250
−2
−1

0
x 10

−3

k2

0 50 100 150 200 250
0
1
2

x 10
−5

k3

Seconds

(d) Roll parameters have not converged.

0 50 100 150 200 250
−0.02

−0.01

0

k4

0 50 100 150 200 250
−5

0
5

x 10
−3

k5

0 50 100 150 200 250
−0.01

−0.005

0

k6

Seconds

(e) Pitch parameters appear to be converging.

0 50 100 150 200 250
0

0.02

0.04

k4

0 50 100 150 200 250
−0.1

0

0.1

k5

0 50 100 150 200 250
−0.01

0

0.01

k6

Seconds

(f) Roll parameters have not converged.

Figure 5.18: MRAC Scheme A pitch and roll on Deliverance flying the hourglass
pattern.

118

0 50 100 150 200 250
−10

0

10

20

30

40

50

Seconds

D
eg

re
es

Pitch Angle

Desired − Pitch
Model
Actual

(a) MRAC Scheme B pitch shows improvement
over time.

0 50 100 150 200 250
−50

0

50

Seconds

D
eg

re
es

Roll Angle

Desired Roll
Model
Actual

(b) MRAC Scheme B roll shows improvement
over time.

0 50 100 150 200 250
0

0.2

0.4

k1

0 50 100 150 200 250
−0.05

0

0.05

k2

0 50 100 150 200 250
−0.05

0

0.05

k3

Seconds

(c) MRAC Scheme B pitch parameters have not
converged.

0 50 100 150 200 250
0

0.2
0.4

k1

0 50 100 150 200 250
0
2
4

x 10
−3

k2
0 50 100 150 200 250

−0.01
−0.005

0
k3

0 50 100 150 200 250
−5

0
5

x 10
−4

k4

(d) MRAC Scheme B roll parameters may have
converged.

Figure 5.19: MRAC Scheme B pitch and roll on Deliverance.

Like Scheme B, MRAC Scheme C was not found to be a robust control scheme

during flight testing. Scheme C was also sensitive to tuning and could easily desta-

bilize the plane when tuned for performance. Therefore, it was not considered for

continued testing.

MRAC Scheme D

The right side of Figure 5.21 shows MRAC Scheme D flight results for pitch. Fig-

ure 5.21(a) shows that as time increases, MRAC D pitch altitude hold appears to

improve. Comparing Figures 5.17(a) and 5.21(a), MRAC is seems better at small

changes in pitch than PD control, though the opposite is true for large changes. The

119

0 50 100 150 200 250 300
−10

0

10

20

30

40

50

Seconds

D
eg

re
es

Pitch Angle

Desired − Pitch
Model
Actual

(a) MRAC Scheme C pitch does not improve
overtime.

0 50 100 150 200 250 300
−50

0

50

Seconds

D
eg

re
es

Roll Angle

Desired Roll
Model
Actual

(b) MRAC Scheme C roll performance does not
improve. Instead it hovers around five degrees
of error.

0 100 200 300
−0.4

−0.2

0

k1

0 100 200 300
−0.05

0

0.05

k2

0 100 200 300
−1

0
1

x 10
−3

k3

Seconds

(c) MRAC Scheme C pitch parameters on De-
liverance flying an hourglass pattern. k1 and k3

appear to have converged to a value while k2 has
not.

0 100 200 300
−1

0

1

k1

0 100 200 300
−0.2

−0.1

0

k2

0 100 200 300
−0.05

0

0.05

k3

Seconds

(d) MRAC Scheme C roll parameters have not
converged.

Figure 5.20: MRAC Scheme C pitch roll flight results on Deliverance.

actual pitch angle has oscillations implying that the elevator is oscillating. Figure 5.21

shows that the parameters have not converged yet, so performance may improve.

MRAC Scheme D roll results are found on the left side of Figure 5.21. MRAC D

appears to be better at small roll changes than PD control, but worse at large changes

in roll (see Figures 5.17(b) and 5.21(b)). However, MRAC D has less overshoot and

little oscillation. From the figures, Scheme D appears to oscillate more than Scheme

C, but overshoots less. Figure 5.21(d) shows that the parameters have not converged

for MRAC D, so performance may yet improve.

120

0 50 100 150 200 250 300
−10

0

10

20

30

40

50

Seconds

D
eg

re
es

Pitch Angle

Desired − Pitch
Model
Actual

(a) MRAC Scheme D pitch improves over time.

0 50 100 150 200 250 300
−50

−40

−30

−20

−10

0

10

20

30

40

50

Seconds

D
eg

re
es

Roll Angle

Desired Roll
Model
Actual

(b) MRAC Scheme D roll improves over time.

0 50 100 150 200 250 300
−0.4

−0.3

−0.2

−0.1

0

k1

0 50 100 150 200 250 300
−0.02

0

0.02

0.04

0.06

k2

Seconds

(c) MRAC Scheme D pitch parameters have not
yet converged.

0 50 100 150 200 250 300
−0.2

−0.15

−0.1

−0.05

0

k1

0 50 100 150 200 250 300
−0.06

−0.04

−0.02

0

0.02

k2

Seconds

(d) MRAC Scheme D roll parameters have not
converged.

Figure 5.21: MRAC Scheme D pitch and roll flight results on Deliverance.

Table 5.9: Adaptive control gains used in Scheme D on all three test platforms.
Pitch km 3.0
Pitch γ1 45.0
Pitch Γ1 0.06
Pitch Γ1 0.01

Pitch Leakage gain 1 0.001
Pitch Leakage gain 2 0.0005

Roll km 4.0
Roll γ1 140.0
Roll Γ1 0.005
Roll Γ1 0.001

Roll Leakage gain 1 0.001
Roll Leakage gain 2 0.0001

121

Since MRAC Scheme D is simpler than Scheme A and more robust than

Schemes B and C, testing was continued for Scheme D. Figures 5.22 through 5.23

show the results of flight tests of MRAC Scheme D on Ray and Phidipides. Both Ray

and Phidipides flew well with these same gains. Notice that MRAC D is converging to

different values for Ray and Phidipidies than for Deliverance. Ray’s desired pitch and

roll oscillates more than Deliverance which is probably due to Ray’s slower dynamics.

Phidipides has faster dynamics which explains the higher peaks in pitch, but notice

that average tracking error for both pitch and roll are comparable. Also, although

PD gains for Phidipides were hard to tune, MRAC Scheme D flew without problems.

This shows the main strength of adaptive control: the ability to fly the same code on

different airframes without having to hand-tune gains.

In order to test MRAC Scheme D’s ability to adapt to changes to an airframe

in flight (i.e. damage to the airframe), a flap is attached to Deliverance. Figure 4.11

shows the flap deployed on Deliverance. When commanded from the ground station,

the autopilot will deploy the flap. Deploying the flap will cause significant changes

to the aerodynamic coefficients, which MRAC D should adapt to.

Figures 5.25 and 4.11 show the effect of deploying the flap on the PD controller

and MRAC D. With the flap deployed, PD control can still fly the MAV, but with

substantial steady-state error on roll. However, MRAC scheme D adapts to the

change in aerodynamics within a few seconds. When the flap goes back down, the

parameters once again adapt back to their previous values.

5.2.2 L1 Controllers

Because the first order models perform better in simulation than the second

order models, the second order models were not tested. Furthermore, although the

first order model, with two unknown parameters, performed slightly better than the

model with only one parameter, both models have about the same settling time. The

simpler version has been coded for flight testing. The following figures are from flight

tests conducted on Ray (see Figure 4.9). Ray flew the typical hourglass pattern and

the data for pitch controlled by the L1 controller and PD controller were recorded at

122

0 50 100 150
−10

0

10

20

30

40

50

Seconds

D
eg

re
es

Pitch Angle

Desired − Pitch
Model
Actual

(a) Pitch tracking on Ray while flying the hour-
glass pattern

0 50 100 150
−50

0

50

Seconds

D
eg

re
es

Roll Angle

Desired Roll
Model
Actual

(b) Roll tracking on Ray while flying the hour-
glass pattern.

0 50 100 150
−0.2

−0.1

0

k1

0 50 100 150
−0.03

−0.02

−0.01

k2

Seconds

(c) Pitch parameters on Ray while flying the
hourglass pattern. Parameter k1 appears to
have converged to a value while k2 has not. It
appears that the aircraft is being driven by the
bias term or “trim”.

0 50 100 150
−0.5

0

0.5

k1

0 50 100 150
−0.1

−0.05

0
k2

Seconds

(d) Roll parameters on Ray while flying the
hourglass pattern. k1 and k2 appear to have
converged on values.

Figure 5.22: MRAC Scheme D pitch and roll on Ray flying the hourglass pattern.

separate times. The data for the PD controller and the data for the L1 controller were

recorded starting and finishing at the same place in the hourglass pattern. Finally, the

L1 controller was allowed to auto-land Ray. Roll was controlled with a PD controller

during testing.

Before in-flight data recording, the L1 controller needed to be tuned. Although

the L1 controller was tuned in simulation before flight testing, the gains were too

high when flown in the field. One of the advantages of L1 controllers is that we

can have high adaptive gains without causing oscillations. However, as this code

123

0 100 200 300
−10

0

10

20

30

40

50

Seconds

D
eg

re
es

Pitch Angle

Desired − Pitch
Model
Actual

(a) Pitch tracking on Phidipides flying an hour-
glass pattern. As time goes on, the tracking be-
comes better.

0 100 200 300
−50

0

50

Seconds

D
eg

re
es

Roll Angle

Desired Roll
Model
Actual

(b) Roll tracking on Phidipides flying an hour-
glass pattern. As the flight continued roll track-
ing improved.

0 100 200 300
−0.4

−0.2

0

k1

0 100 200 300
−0.05

0

0.05

k2

Seconds

(c) Pitch Parameters on Phidipides flying an
hourglass pattern. The parameters appear to
have converged to values.

0 100 200 300
−0.15

−0.1

−0.05

k1

0 100 200 300
−0.05

0

0.05

k2

Seconds

(d) Roll Parameters on Phidipides flying an
hourglass pattern. k2 seems to have converged,
while k1 may yet converged.

Figure 5.23: MRAC Scheme D pitch and roll on Phidipides flying an hourglass.

is running on a Rabbit microprocessor that loops through the entire autopilot at

about 80 Hz, there is an upper limit on the adaptive gains. To counter this problem,

subsampling was attempted to allow for higher adaptive gains. Initial flight testing

revealed that subsampling actually slowed the autopilot code to about 10 Hz. This

caused problems with the roll angle estimation. Without subsampling, the pre-filtered

parameter estimates were saturating on their boundaries since the adaptive gain was

now too high. None of these issues prevented Ray from flying, but Ray’s performance

was poor. Therefore, the L1 controller was tuned mid-flight.

124

0 50 100 150 200
−20

0

20

40

P
it

ch
 A

n
g

le
 (

d
e

g
re

e
s)

0 50 100 150 200
−1

−0.5

0

0.5

1

R
o

ll
 A

n
g

le
 (

d
e

g
re

e
s)

0 50 100 150 200
0

0.5

1

F
la

p
 (

0
=

O
ff

,1
=

O
n

)

Time (seconds)

Desired − Pitch
Model
Actual

Desired Roll
Model
Actual

(a) MRAC Scheme D pitch and roll as the flap is deployed. Pitch
seems unaffected while roll re-adapts to the change after about 60
seconds. Roll again adapts to the flap being down, which appears to
take half the time.

0 50 100 150 200
−0.3

−0.2

−0.1

P
it

ch
 k

1

0 50 100 150 200
−0.05

0

0.05

P
it

ch
 k

2

0 50 100 150 200
−0.2

−0.1

0

R
o

ll
 k

1

0 50 100 150 200
−0.1

−0.05

0

R
o

ll
 k

2

0 50 100 150 200
0

0.5

1

F
la

p
 (

0
=

O
ff

,1
=

O
n

)

Time (seconds)

(b) MRAC Scheme D Pitch and Roll parameters. Notice k2 for roll
adapting to a new value when the flap is deployed and adapting back
to the previous value when the flap is stowed. Roll was more sensitive
to the flap than pitch. This is expected because of placement of the
flap. Notice that the parameters re-adapt to the flap being put down
again.

Figure 5.24: MRAC Scheme D behavior with flap deployed on Deliverance flying an
hourglass path.

125

0 20 40 60 80 100 120 140 160 180 200
−20

0

20

40

P
it

ch
 A

n
g

le
 (

d
e

g
re

e
s)

0 20 40 60 80 100 120 140 160 180 200
−50

0

50

100

R
o

ll
 A

n
g

le
 (

d
e

g
re

e
s)

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

F
la

p
 (

0
=

O
ff

,1
=

O
n

)

Time (seconds)

Desired Pitch
Actual

Desired Roll
Actual

Figure 5.25: PD Control on Deliverance flying an hourglass path.

To tune the L1 controller on Ray, Ray was flown with the L1 controller running.

The RC pilot would watch the plane to make sure that adjustments would not cause

instability; if the the aircraft destabilized, the RC pilot would have taken control of

the aircraft. As adjustments were made, the telemetry was downloaded and examined

while Ray continued flying the hourglass pattern. Corrections were then uploaded to

the autopilot, Ray’s behavior was monitored, and the telemetry was again download

and examined. This process was repeated until the L1 controller was tuned. The

changes made on the autopilot were as follows. The first change on the autopilot

was to eliminate subsampling. Next, the adaptive gains were reduced until the pre-

filtered parameter estimates stopped constantly saturating. Finally, the model gain

and low-pass filter were adjusted until performance was acceptable and oscillations

were eliminated.

The flight data from the L1 and PD flights are found in Figures 5.26 and 5.28.

The L1 controller typically had less error than the PD controller, which suffered from

steady state error. The steady state error was introduced when the aircraft pitched

126

0 20 40 60 80 100 120
−20

−10

0

10

20

30

40

time (seconds)

P
itc

h
A

ng
le

 (
de

gr
ee

s)

Actual
Companion Model
Desired

(a) Pitch

0 50 100
−0.2

−0.1

0

0.1

0.2

time (seconds)

E
le

va
to

r
(d

eg
re

es
)

(b) Elevator

0 20 40 60 80 100 120
−2

0

2

4

6

time (seconds)

E
st

im
at

ed
 P

ar
am

et
er

 (
−

) K̂1

Filtered K̂1

(c) Parameter

Figure 5.26: L1 pitch controller flying an hourglass pattern on Ray. Notice that
around 50 seconds the companion model diverges for about 10 seconds. A 30 degree
roll causes anomalies at 67 seconds and 92 seconds.

127

0 20 40 60 80 100 120
−40

−20

0

20

40

time (seconds)

R
ol

l A
ng

le
 (

de
gr

ee
s)

Figure 5.27: PD roll when L1 controller is in use. Notice how steep rolls of about 30
degrees effects pitch in Figure 5.26.

0 20 40 60 80 100 120
−20

−10

0

10

20

30

time (seconds)

P
itc

h
A

ng
le

 (
de

gr
ee

s)

Actual
Desired

Figure 5.28: PD pitch control on Ray flying an hourglass pattern. Notice that the PD
controller tracks positive pitch values well, but it does not track negative pitch values
very well. This is due to the aircraft picking up speed when negatively pitched. This
generates more lift and introduces steady state error.

128

down. Pitching down caused the aircraft to increase speed which in turn increased

lift. Being tuned at less lift, the PD controller settled at a steady state angle above

the desired angle. Notice that when climbing, the PD controller did not have this

problem as lift was decreased.

Looking at the data from the L1 controller, there are a couple of notable events.

The first one is that at 50 seconds, when the companion model begins oscillating. This

continued for about 10 seconds. To shed light on this issue, notice the update equation

in Dynamic C:

K1 hat = K1 hat + dt*(-gamma*(theta - theta cm)*V*cos(phi));,

Noise on the airspeed, V , should not affect the parameter update much because

airspeed only changes by one or two m/s. The problem is probably not θcm, because

θcm began to oscillate after the parameter started to oscillate. And φ seems normal for

level flight at 52 seconds (see Figure 5.27). Therefore, the problem most likely lies in

the time term “dt”. Sometimes real-time telemetry slows in the attitude window on

the VC. Such a slow-down in telemetry would imply that the loops have temporarily

slowed. If the loops were to slow to half their normal frequency, this would double

the value normally associated with “dt”. Since stability can be affected by how high

the adaptive gain, γ, is relative to “dt”, this may be the culprit. This probably would

not even be seen by the datalogger function since it samples at specific times. For

the Dynamic C code for the L1 controllers, see Section B.2.

The second issue with the L1 controller is that when the aircraft rolled quickly,

the pitch angle of the aircraft and companion model would fall away from the desired

pitch, see Figures 5.26 and 5.27. Also, Figure 5.26(b) shows some oscillation in the

control signal, but this is fairly well constrained well below saturation. High frequency

signals have definitely been filtered on the control signal. Figure 5.29 shows the L1

pitch controller while landing. The plot seems fairly consistent with the plot taken

while flying the hourglass pattern shown in Figure 5.26.

129

0 5 10 15 20 25 30
−20

−15

−10

−5

0

5

time (seconds)

P
itc

h
A

ng
le

 (
de

gr
ee

s)

Actual
Companion Model
Desired

(a) Pitch

0 10 20 30
−0.05

0

0.05

0.1

0.15

time (seconds)

E
le

va
to

r
(d

eg
re

es
)

(b) Elevator

0 10 20 30
−0.2

−0.1

0

0.1

0.2

time (seconds)

E
st

im
at

ed
 P

ar
am

et
er

 (
−

) K̂1

Filtered K̂1

(c) Parameter

Figure 5.29: L1 pitch controller landing.

130

5.2.3 Analysis

Tables 5.10-5.11 show the average error and the L2 norm of the error for the

L1 and PD controllers. Average error was calculated by

1

n

n∑
i=1

|θc(i)− θ(i)|,

and the L1 norm was calculated by

eL2 =

√√√√ 1

n

n∑
i=1

(θd(i)− θ(i))2,

where θc is the desired pitch and θ is the actual pitch angle.

Tables 5.10-5.13 display the average error and L2 norm of error for pitch and

roll. Using these tables, the L1 controller is the best for pitch, while PD control

preformed that best at roll.

Average error is displayed in Table 5.10. This is a better metric than L2

because when comparing the results of the PD controller from the the MRAC tests

with the PD controller from the L1 test, there is a significant difference that suggests

the norms are not comparable (see Table 5.11). However, Table 5.10 shows the L1

controller to be the best pitch controller followed by (ignoring the PD controllers)

Schemes B, A, C, D. This result is echoed in Table 5.11, even though the metric is

suspect.

Table 5.12 is the average error between the actual and desired roll angles. None

of the Lyapunov MRACs outperformed the PD controller, though they appear to be

comparable. The order of the MRAC controllers is Schemes D, A, C, B. Table 5.13,

which is the L2 norm of the error between actual and desired roll angle, shows the

order to be different. It shows the order to be Schemes A, B, C, D. This implies that

Scheme D oscillated or lagged more than the other algorithms.

131

Table 5.10: The average pitch angle error (degrees) between the desired and actual
pitch angles during flight testing.

Flight Leg
Control Scheme Total 1 2 3

MRAC A 1.8408 2.2742 1.6916 1.4685
MRAC B 1.6422 1.7610 1.6125 1.5483
MRAC C 1.8333 2.4822 1.3327 1.4699

MRAC D (Deliverance) 1.9902 2.6843 1.5250 1.5368
PD (Deliverance) 1.6743 2.2274 1.3709 1.2546
MRAC D (Ray) 1.9358 1.9772 1.9754 1.8582

MRAC D (Phidipidies) 1.4926 1.6556 1.4580 1.3491
L1 1.2985 1.5783 1.1600 1.1204

PD (Ray) 2.0231 1.9177 2.0745 2.0841

Table 5.11: The L2 norm of the error between desired and actual pitch for the L1 and
PD controllers.

Flight Leg
Control Scheme Total 1 2 3

MRAC A 205.7361 180.9149 79.7084 57.4211
MRAC B 163.9397 116.9947 77.6737 84.6263
MRAC C 310.5198 295.5876 57.3809 76.0708
MRAC D 362.9292 333.0175 71.9569 125.1219

PD (Deliverance) 246.2636 234.2647 57.6486 49.4401
MRAC D (Ray) 143.6649 101.2380 74.4026 69.7945

MRAC D (Phidipidies) 166.5062 107.6006 95.8230 83.4651
L1 26.7440 21.0481 12.6149 10.7083

PD (Ray) 111.2848 59.7378 66.2767 66.8197

Table 5.12: The average error between actual and desired roll angle (degrees) during
flight tests.

Flight Leg
Scheme Total 1 2 3

MRAC A 2.0533 2.1187 2.0205 2.0263
MRAC B 2.3734 2.4823 2.3294 2.3081
MRAC C 2.2482 2.3301 2.1410 2.2729
MRAC D 2.0751 2.2532 1.9773 1.9845

MRAC D (Ray) 2.4159 2.7606 2.3444 2.1032
MRAC D (Phidipidies) 2.0430 2.2307 2.1318 1.7339

PD (Deliverance) 1.9063 2.0621 1.8112 1.8391

132

Table 5.13: The L2 norm on the error between actual and desired roll angle for the
four MRAC schemes flown on Deliverance.

Flight Leg
Scheme Total 1 2 3

MRAC A 233.6026 137.6504 147.8079 117.9087
MRAC B 354.5922 196.7593 171.1976 240.2888
MRAC C 331.8202 202.1109 180.6441 191.4892
MRAC D 405.9792 195.1959 154.1913 320.8594

MRAC D (Ray) 276.7027 205.5110 148.3329 111.2601
MRAC D (Phidipidies) 315.2272 211.7758 207.1773 107.7029

PD (Deliverance) 207.9683 149.0031 107.0236 98.0799

5.2.4 Summary

MRAC D and PD control have been shown to be comparable in flight testing.

MRAC D oscillates less and is more robust than MRAC A and MRAC B. Also,

MRAC D performs better overall than MRAC C. Because MRAC D appears to be

the best overall MRAC, its robustness will be tested on the other two aircraft shown

in Figure 4.9. As the goal is to have the algorithm adapt to other aircraft, MRAC

D’s gains are not adjusted. Table 5.9 shows the gains used when testing MRAC D

on all three aircraft. For all of the adaptive algorithms, transients die out within

about 3 seconds for pitch and about 10 seconds for roll. The parameters appear

be converging to steady values after adaptation has been running for awhile. This

is probably because there is sufficient excitation of the adaptive controllers. The

results show that each adaptive control algorithm’s performance is comparable to PD

control. MRAC Scheme D was shown to be the overall best performer based on its

ability to hold altitude, oscillation, and robustness. It was shown to adapt to different

platforms and airframe changes effectively.

Although there was an anomaly in Figure 5.26(a) at about 50 seconds, the

performance of the L1 pitch controller was better than the PD controller for this

aircraft. There appears to be high frequency content in the control signal, shown

in Figure 5.26(b), but significantly less than Lyapunov MRAC controllers (see Fig-

133

ures 5.18-5.21). The L1 controller should adapt quickly to changes in the plant, such

as actuator failure or mechanical damage, because of its high adaptive gain.

Based on performance of the simulation and hardware testing, it appears that

L1 controllers perform better, and have less oscillations on the control effort and out-

put. The L1 controller is the preferred solution to controlling a MAV with unknown

parameters.

134

Chapter 6

Conclusion

Lyapunov stability is based on the idea that solutions around an equilibrium

point stay around that point if it is stable. Lyapunov stability based MRACs look

similar to other types of MRAC controllers except they use this idea of stability to

define a parameter update law. Parameter estimates of the plant are updated in

a manner that guarantees asymptotic convergence of the error between the model

and plant. This type of MRAC suffers from high frequency oscillations on the control

effort. This can cause unmodeled dynamics to be excited, leading to instability. Also,

like gradient based MRACs, the performance of Lyapunov MRACs is dependent upon

the magnitude of the reference signal. In contrast, L1 controllers do not suffer from

these maladies.

L1 controllers are a modification of Lyapunov based MRAC controllers. But,

there are two key differences between Lyapunov based MRACs and L1 controllers.

First, Lyapunov MRACs use a traditional model, while L1 controllers use companion

models. Second, L1 controllers low-pass filter the parameter estimates used in the

control effort. The lost frequency content from low-pass filtering the estimates is

regained in the companion model. This means that no information is lost. The

byproduct of low-pass filtering the parameter estimates is that the adaptive gain can

be made large and not cause instability. Furthermore, the magnitude of the reference

signal does not effect the response of the system.

The accomplishment of this thesis has been development and application of

Lyapunov based MRACs and L1 controllers on MAVs. Four Lyapunov based MRAC

pitch controllers, four Lyapunov based MRAC roll controllers, and four L1 pitch

controllers were developed in Chapter 3. The algorithms were first tested in Matlab.

135

Next, the algorithms were tested using the Aviones flight simulator to test the code

robustness. Next, they were tested using HIL tests to see the performance of the

algorithms on the Kestrel Autopilot. Finally, they were flight tested on MAVs. The

algorithm testing results are found in Chapter 5, with simulation results found in

Section 5.1 and flight testing results found in Section 5.2 on platforms described in

Chapter 4. Below are the findings of this thesis.

6.1 Finding

The best performing Lyapunov based MRAC was MRAC Scheme D. Its angle

tracking is not as good as MRAC Scheme A, but had less oscillation and is simpler

to implement–this makes it a good candidate for a universal autopilot. Flight testing

MRAC D was found to effectively adapt to three different airframes without tuning.

It was also able to adapt quickly to changes to an airframe caused by deploying a

flap.

The first order L1 adaptive controller with one unknown parameter is the sim-

plest to implement and had better results than the second order model L1 controllers.

In simulation and in flight testing, it was found to have reduced high frequency os-

cillations on control signal. It appears to have the benefits of traditional MRAC

controllers, but is more robust and has faster adaptation.

6.2 Future Work

The work in this thesis can be furthered by continued investigation of the

L1 controller. In particular, study could be done on applicability to roll, scalability,

integration with the MAGICC autopilot, expandability to aircraft with nonlinear

coefficients, and saturation effect on L1 controllers.

This thesis only explores L1 pitch controllers. Work should be done to develop

L1 roll controllers. A possible starting point might be converting the MRAC Scheme

D roll controller.

Scalability should be investigated because the L1 controller should be able to

scale to a variety of different aircraft better than Lyapunov MRACs. This is due to

136

its ability to have high adaptive gain, while maintaining acceptable frequency content

in the control effort. Also, L1 controllers’ performance does not appear to depend on

the magnitude of the reference signal.

Integration with the MAGICC autopilot is another possible branch from this

work. L1 controllers have fast adaptability, and should be able to replace the tradi-

tional PID controllers in the MAGICC autopilot code. Work would need to be done

to assure acceptable performance during auto-takeoff and to make sure that the L1

controller stops adapting after landing.

Because L1 controllers are derived for linear systems, research could also be

done to see how L1 controllers handle aircraft where the coefficients are nonlinear. Of

course, L1 controllers tracking ability increases as adaptive gains increase, but this

has only been proven on linear systems.

All proofs in this thesis did not take into account the affect of saturating actu-

ators. In fact, saturation can cause the Lyapunov function derivative to be indefinite,

or increasing. To counter this effect, Lyapunov MRAC schemes such as µ-mod or e-

mod have been introduced. Since L1 controllers share a common root, these solutions

to saturation should be explored for use on L1 controllers.

137

138

Bibliography

[1] Unmanned Aircraft Systems Roadmap 2005-2030, Office of the Secretary of De-
fense, Aug. 2005.

[2] C. Cao and N. Hovakimyan, “Design and analysis of a novel L1 adaptive control
control architecture with guaranteed transient performance, part i: Control sig-
nal and asymptotic stability,” in Proceedings of American Control Conference,
2006.

[3] ——, “Design and analysis of a novel L1 adaptive control control architecture
with guaranteed transient performance, ii: Guaranteed transient response,” in
Proceedings of American Control Conference, 2006.

[4] R. W. Beard, C. Cao, and N. Hovakimyan, “An L1 adaptive pitch controller
for miniature air vehicles,” in AIAA Conference on Guidance, Navigation, and
Control. Keystone, CO, 2006, (To appear).

[5] Ioannou and Sun, Robust Adaptive Control. Prentice Hall, 1996, pp. 149–
150,162–165,788–794.

[6] H. Khalil, Nonlinear Systems. Prentice Hall, 2002, pp. 111,144–146,151–
153,169,172,323–327.

[7] K.
◦
Aström and B. Wittenmark, Adaptive Control. Addison-Wesley Publishing

Company, 1989, pp. 59–66,110,118,264–267.

[8] M. H. Hayes, Statistical Digital Signal Processing and Modeling. John Wiley
and Sons, Inc., 1996, pp. 514–552.

[9] S. Shatkar and M. Bodson, Adaptive Control: Stability, Convergence, and Ro-
bustness. Prentice Hall, 1989.

[10] D. Shore and M. Bodson, “Flight testing of a reconfigurable control system on an
unmanned aircraft,” in Proceedings of the 2004 American Control Conference,
June-July 2004, pp. 3747–3752.

[11] M. Steinberg and A. Page, “High-fidelity simulation testing of intelligent and
adaptive aircraft control laws,” in Proceedings of the American Control Confer-
ence, 8-10 May 2002, pp. 3264–3268.

139

[12] B. Porter and C. Boddy, “Design of adaptive digital controllers incorporating
dynamic pole-assignment compensators for high-performance aircraft,” in Pro-
ceedings of the IEEE 1989 Aerospace and Electronics Conference, 22-26 May
1989, pp. 372–379.

[13] B. Stevens and F. Lewis, Aircraft Control and Simulation. John Wiley and
Sons, Inc., 2003, pp. 484–500,495.

[14] B. Kim and A. Calise, “Nonlinear flight control using neural networks,” Journal
of Guidance, Control, and Dynamics, vol. 20, no. 1, pp. 26–33, Jan.-Feb. 1997.

[15] C. Schumacher and R. Kumar, “Adaptive control of uavs in close-coupled for-
mation flight,” in Proceedings of the Ameerican Control Conference, Jun. 2000,
pp. 849–853.

[16] D. Shin and Y. Kim, “Reconfigurable flight control system design using adaptive
neural networks,” IEEE Transactions on Control Systems Technology, vol. 12,
no. 1, pp. 408–422, Jan. 2004.

[17] R. L. Broderick, “Statistical and adaptive approach for verification of a neural-
based flight control system,” in Digital Avionics Systems Conference, vol. 2,
24-28 Oct. 2004, pp. 6.E.1–1 – 6.E.1–10.

[18] C. Schumacher and J. D. Johnson, “PI control of a tailless fighter with dynamic
inversion and neural networks,” vol. 6, Jun. 1999, pp. 4173–4177.

[19] I. Mareels and B. Ydstie, “Global stability for an MIT rule based adaptive con-
trol,” in Decision and Control, 1989., Proceedings of the 28th IEEE Conference
on, Dec. 1989, pp. 1585–1590.

[20] G. Tao, S. Chen, J. Fei, and S. Joshi, “An adaptive actuator failure compensation
scheme for controlling a morphing aircraft model,” in Proceedings of the 42nd
IEEE Conference on Decision and Control, Dec. 2003, pp. 4926–4931.

[21] S. Chen, G. Tao, and S. Joshi, “An adaptive actuator failure compensation
controller for mimo systems,” in Proceedings of the 41st IEEE Conference on
Decision and Control, December 2002, pp. 4778–4783.

[22] E. Lavretsky, N. Hovakimyan, A. Calise, and V. Stepanyan, “Adaptive vortex
seeking formation flight neurocontrol,” in AIAA Guidance, Navigation, and Con-
trol Conference and Exhibit, Aug. 11-14 2003.

[23] J. Farrell, M. Polycarpou, and M. Sharma, “Adaptive backstepping with magni-
tude, rate, and bandwidth constraints: Aircraft longitude control,” in Proceed-
ings of the American Control Conference, June 2003, pp. 3898–3904.

[24] http://sourceforge.net/projects/aviones.

[25] http://procerusuav.com/.

140

http://sourceforge.net/projects/aviones
http://procerusuav.com/

Appendix A

MRAC Code

A.1 Matlab Code

A.1.1 MRAC A Pitch

function [sys,x0,str,ts] = pitchMRAC(t,x,u,flag)

km = 1;
gam = 10;
gam2 = 1;
gam3 = 50;
tau = 1;

switch flag,

% Initialization
case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

% Derivatives
case 1,

sys=mdlDerivatives(t,x,u,km,gam,gam2,gam3,tau);

% Update
case 2,

sys=mdlUpdate(t,x,u);

% Outputs
case 3,

sys=mdlOutputs(t,x,u,km,gam,gam2,gam3,tau);

% GetTimeOfNextVarHit
case 4,

sys=mdlGetTimeOfNextVarHit(t,x,u);

% Terminate
case 9,

141

sys=mdlTerminate(t,x,u);

% Unexpected flags
otherwise

error([’Unhandled flag = ’,num2str(flag)]);

end

% end sfuntmpl

function [sys,x0,str,ts]=mdlInitializeSizes(C)

sizes = simsizes;

sizes.NumContStates = 9;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 1+1+1+6;
sizes.NumInputs = 13;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

%
% initialize the initial conditions
%
% approximate coefficients
x0 = [0; 0;0; 2.1; 0.06; 2.1; 0; −0.76; −7.2] + [0; 0; 0;randn(3,1); . . .

0; randn(2,1)];

%
% str is always an empty matrix
%
str = [];

%
% initialize the array of sample times
%
ts = [0 0];

% end mdlInitializeSizes

function sys=mdlDerivatives(t,x,uu,km,gam,gam2,gam3,tau)

x qdot = x(1);

142

th m = x(2);
x qdesdot = x(3);
ghat = x(4:9);

th c = uu(1);
z = [uu(2); uu(3)];
h = uu(4);
u = uu(5);
v = uu(6);
w = uu(7);
phi = uu(8);
theta = uu(9);
psi = uu(10);
p = uu(11);
q = uu(12);
r = uu(13);

% reference model
th m dot = km*(th c−th m);

% compute aerodynamic variables
V = sqrt(u^2+v^2+w^2);
alpha = atan2(w,u);
beta = atan2(v,sqrt(u^2+w^2));
q des = (th m dot − gam*(theta−th m)+r*sin(phi))/cos(phi);

% differentiate q
x qdot dot = 1/tau*(q − x qdot);
qdot = 1/tau*(q − x qdot);

q desdot = 1/tau*(q des−x qdesdot);

% regressor
mu = [. . .

(−gam2*(q−q des)−(theta−th m)*cos(phi))/V^2+q desdot/V^2;. . .
−(p^2−r^2)/V^2;. . .
−p*r/V^2;. . .
−1;. . .
−alpha;. . .
−q/V;. . .

];

% parameter adaptation
ghat dot = −1/(gam3)*(q−q des)*V^2*mu;

143

Kup = [5,5,5,5,5,5];
Klow = [−5,−5,−5,−5,−5,−5];

for i=1:length(ghat),
if ghat(i) > Kup(i),

if ghat dot(i) > 0,
ghat dot(i) = 0;

end
elseif ghat(i) < Klow(i),

if ghat dot(i) < 0,
ghat dot(i) = 0;

end
end

end

sys = [x qdot dot; th m dot; q desdot; ghat dot];

% end mdlDerivatives

function sys=mdlUpdate(t,x,u)

sys = [];

% end mdlUpdate

function sys=mdlOutputs(t,x,uu,km,gam,gam2,gam3,tau)

x qdot = x(1);
th m = x(2);
x qdesdot = x(3);
ghat = x(4:9);

th d = uu(1);
z = [uu(2); uu(3)];
h = uu(4);
u = uu(5);
v = uu(6);
w = uu(7);
phi = uu(8);
theta = uu(9);
psi = uu(10);
p = uu(11);
q = uu(12);

144

r = uu(13);

% compute aerodynamic variables
V = sqrt(u^2+v^2+w^2);
alpha = atan2(w,u);
beta = atan2(v,sqrt(u^2+w^2));

% reference model pitch
th m dot = km*(th d−th m);

% derivative of q
qdot = 1/tau*(q−x qdot);

q des = (th m dot − gam*(theta−th m)+r*sin(phi))/cos(phi);
q desdot = 1/tau*(q des−x qdesdot);

% regressor
mu = [. . .

(−gam2*(q−q des)−(theta−th m)*cos(phi))/V^2+q desdot/V^2;. . .
−(p^2−r^2)/V^2;. . .
−p*r/V^2;. . .
−1;. . .
−alpha;. . .
−q/V;. . .

];

% elevator command
sys = [sat(mu’*ghat,30*pi/180); th m; theta;ghat];

% end mdlOutputs

function sys=mdlGetTimeOfNextVarHit(t,x,u)

sampleTime = 1; % Example, set the next hit to be one second later.
sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

function sys=mdlTerminate(t,x,u)

sys = [];

% end mdlTerminate

function y=sat(u,lim)

145

if u <=−lim, y = −lim;
elseif u >= lim, y = lim;
else y = u;
end

% end sat

A.1.2 MRAC A Roll

function [sys,x0,str,ts] = rollMRAC(t,x,u,flag)

km = 1;
gam = 100;
gam2 = 100;
gam3 = 10;
tau = 1;

switch flag,

% Initialization
case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

% Derivatives
case 1,

sys=mdlDerivatives(t,x,u,km,gam,gam2,gam3,tau);

% Update
case 2,

sys=mdlUpdate(t,x,u);

% Outputs
case 3,

sys=mdlOutputs(t,x,u,km,gam,gam2,gam3,tau);

% GetTimeOfNextVarHit
case 4,

sys=mdlGetTimeOfNextVarHit(t,x,u);

% Terminate
case 9,

sys=mdlTerminate(t,x,u);

% Unexpected flags
otherwise

error([’Unhandled flag = ’,num2str(flag)]);

146

end

% end sfuntmpl

function [sys,x0,str,ts]=mdlInitializeSizes(C)

sizes = simsizes;

sizes.NumContStates = 16;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 1+1+1+12;
sizes.NumInputs = 13;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

%
% initialize the initial conditions
%
% approximate coefficients
x0 = [0; 0;0; 0; 0; 0; 0; 0; 0;0;0;0;0;0;0;0] + . . .

[0; 0; 0;0; 0; 0;0;0;0;0;0;0;0;0;0;0];

%
% str is always an empty matrix
%
str = [];

%
% initialize the array of sample times
%
ts = [0 0];

% end mdlInitializeSizes

function sys=mdlDerivatives(t,x,uu,km,gam,gam2,gam3,tau)

x pdot = x(1);
phi m = x(2);
x rdot = x(3);
x p des = x(4);
ghat = x(5:16);

147

phi c = uu(1);
z = [uu(2); uu(3)];
h = uu(4);
u = uu(5);
v = uu(6);
w = uu(7);
phi = uu(8);
theta = uu(9);
psi = uu(10);
p = uu(11);
q = uu(12);
r = uu(13);

% reference model
phi m dot = km*(phi c−phi m);

% compute aerodynamic variables
V = sqrt(u^2+v^2+w^2);
alpha = atan2(w,u);
beta = atan2(v,sqrt(u^2+w^2));

% differentiate q
x pdot dot = 1/tau*(p − x pdot);
pdot = 1/tau*(p − x pdot);
rdot = 1/tau*(r − x rdot);

p des = −gam*(phi−phi m)+phi m dot−q*sin(phi)*tan(theta). . .
−r*cos(phi)*tan(theta);

p des dot = 1/tau*(p des − x p des);

% regressor
mu = [. . .

(−gam2*(p−p des)−(phi−phi m)+p des dot)/V^2;. . .
1/V^2;. . .
q/V^2;. . .
−1/V;. . .
rdot/V^2;. . .
−q*r/V^2;. . .
−rdot;. . .
−r;. . .
r/V^2;. . .
−1;. . .
−beta;. . .
−r/V;. . .

148

];

% parameter adaptation
ghat dot = −1/gam3*(phi−phi m)*V*mu;

sys = [x pdot dot; phi m dot; rdot; p des dot; ghat dot];

% end mdlDerivatives

function sys=mdlUpdate(t,x,u)

sys = [];

% end mdlUpdate

function sys=mdlOutputs(t,x,uu,km,gam,gam2,gam3,tau)

x pdot = x(1);
phi m = x(2);
x rdot = x(3);
x p des = x(4);
ghat = x(5:16);

phi c = uu(1);
z = [uu(2); uu(3)];
h = uu(4);
u = uu(5);
v = uu(6);
w = uu(7);
phi = uu(8);
theta = uu(9);
psi = uu(10);
p = uu(11);
q = uu(12);
r = uu(13);

% compute aerodynamic variables
V = sqrt(u^2+v^2+w^2);
alpha = atan2(w,u);
beta = atan2(v,sqrt(u^2+w^2));

% reference model pitch
phi m dot = km*(phi c−phi m);

% derivative of q

149

pdot = 1/tau*(p−x pdot);
rdot = 1/tau*(r−x rdot);

p des = −gam*(phi−phi m)+phi m dot−q*sin(phi)*tan(theta)−. . .
r*cos(phi)*tan(theta);

p des dot = 1/tau*(p des − x p des);

% regressor
mu = [. . .

(−gam2*(p−p des)−(phi−phi m)+p des dot)/V^2;. . .
1/V^2;. . .
q/V^2;. . .
−1/V;. . .
rdot/V^2;. . .
−q*r/V^2;. . .
−rdot;. . .
−r;. . .
r/V^2;. . .
−1;. . .
−beta;. . .
−r/V;. . .

];

% aileron command

sys = [sat(mu’*ghat,30*pi/180);phi m;phi;ghat];

% end mdlOutputs

function sys=mdlGetTimeOfNextVarHit(t,x,u)

sampleTime = 1; % Example, set the next hit to be one second later.
sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

function sys=mdlTerminate(t,x,u)

sys = [];

% end mdlTerminate

function y=sat(u,lim)
if u <=−lim, y = −lim;

150

elseif u >= lim, y = lim;
else y = u;
end

% end sat

A.1.3 MRAC B Pitch

function [sys,x0,str,ts] = pitchMRAC(t,x,u,flag)

km = 1;
lambda = 1;
gam = 10;
tau = 1;

switch flag,

% Initialization
case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

% Derivatives
case 1,

sys=mdlDerivatives(t,x,u,km,lambda,gam,tau);

% Update
case 2,

sys=mdlUpdate(t,x,u);

% Outputs
case 3,

sys=mdlOutputs(t,x,u,km,lambda,gam,tau);

% GetTimeOfNextVarHit
case 4,

sys=mdlGetTimeOfNextVarHit(t,x,u);

% Terminate
case 9,

sys=mdlTerminate(t,x,u);

% Unexpected flags

151

otherwise
error([’Unhandled flag = ’,num2str(flag)]);

end

% end sfuntmpl

function [sys,x0,str,ts]=mdlInitializeSizes(C)

sizes = simsizes;

sizes.NumContStates = 8;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 6+1+1+1;
sizes.NumInputs = 13;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

%
% initialize the initial conditions
%
% approximate coefficients
x0 = [0; 0; 2.1; 0.06; 2.1; −1; −2.76; −5.2] + [0; 0; randn(3,1); . . .

0; randn(2,1)];

%
% str is always an empty matrix
%
str = [];

%
% initialize the array of sample times
%
ts = [0 0];

% end mdlInitializeSizes

function sys=mdlDerivatives(t,x,uu,km,lambda,gam,tau)

x qdot = x(1);
th m = x(2);
ghat = x(3:8);

152

th c = uu(1);
z = [uu(2); uu(3)];
h = uu(4);
u = uu(5);
v = uu(6);
w = uu(7);
phi = uu(8);
theta = uu(9);
psi = uu(10);
p = uu(11);
q = uu(12);
r = uu(13);

% compute aerodynamic variables
V = sqrt(u^2+v^2+w^2);
alpha = atan2(w,u);
beta = atan2(v,sqrt(u^2+w^2));

% differentiate q
x qdot dot = 1/tau*(q − x qdot);
qdot = 1/tau*(q − x qdot);

% reference model
th m dot = km*(th c−th m);

% regressor
mu = [. . .

qdot/V^2;. . .
−(p^2−r^2)/V^2;. . .
−p*r/V^2;. . .
−1;. . .
−alpha;. . .
−1/V*(th m dot−gam*(theta−th m)+r*sin(phi))/cos(phi);. . .

];

% parameter adaptation
ghat dot = −lambda*(theta−th m)*V*cos(phi)*mu;

sys = [x qdot dot; th m dot; ghat dot];

% end mdlDerivatives

function sys=mdlUpdate(t,x,u)

sys = [];

153

% end mdlUpdate

function sys=mdlOutputs(t,x,uu,km,lambda,gam,tau)

x qdot = x(1);
th m = x(2);
ghat = x(3:8);

th c = uu(1);
z = [uu(2); uu(3)];
h = uu(4);
u = uu(5);
v = uu(6);
w = uu(7);
phi = uu(8);
theta = uu(9);
psi = uu(10);
p = uu(11);
q = uu(12);
r = uu(13);

% compute aerodynamic variables
V = sqrt(u^2+v^2+w^2);
alpha = atan2(w,u);
beta = atan2(v,sqrt(u^2+w^2));

% reference model
th m dot = km*(th c−th m);

% derivative of q
qdot = 1/tau*(q−x qdot);

% regressor
mu = [. . .

qdot/V^2;. . .
−(p^2−r^2)/V^2;. . .
−p*r/V^2;. . .
−1;. . .
−alpha;. . .
−1/V*(th m dot−gam*(theta−th m)+r*sin(phi))/cos(phi);. . .

];

% elevator command

154

sys = [ghat;theta;th m;sat(mu’*ghat,30*pi/180)];

% end mdlOutputs

function sys=mdlGetTimeOfNextVarHit(t,x,u)

sampleTime = 1; % Example, set the next hit to be one second later.
sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

function sys=mdlTerminate(t,x,u)

sys = [];

% end mdlTerminate

function y=sat(u,lim)
if u <=−lim, y = −lim;
elseif u >= lim, y = lim;
else y = u;
end

% end sat

A.1.4 MRAC B Roll

function [sys,x0,str,ts] = rollMRAC(t,x,u,flag)

km = .7;
gam = 100;
gam2 = .06;
tau = 1;

switch flag,

% Initialization
case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

% Derivatives
case 1,

sys=mdlDerivatives(t,x,u,km,gam,gam2,tau);

155

% Update
case 2,

sys=mdlUpdate(t,x,u);

% Outputs
case 3,

sys=mdlOutputs(t,x,u,km,gam,gam2,tau);

% GetTimeOfNextVarHit
case 4,

sys=mdlGetTimeOfNextVarHit(t,x,u);

% Terminate
case 9,

sys=mdlTerminate(t,x,u);

% Unexpected flags
otherwise

error([’Unhandled flag = ’,num2str(flag)]);

end

% end sfuntmpl

function [sys,x0,str,ts]=mdlInitializeSizes(C)

sizes = simsizes;

sizes.NumContStates = 12;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 9+1+1+1;
sizes.NumInputs = 13;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

%
% initialize the initial conditions
%
% approximate coefficients
x0 = [0; 0;0; 0; 0; 0.0000001; .0000003; −0.00015641; 0.0000033;. . .

−0.0000016;0;−0.0000006] + [0; 0; 0;0; 0; 0;0;0;0;0;0;0];

156

%
% str is always an empty matrix
%
str = [];

%
% initialize the array of sample times
%
ts = [0 0];

% end mdlInitializeSizes

function sys=mdlDerivatives(t,x,uu,km,gam,gam2,tau)

x pdot = x(1);
phi m = x(2);
x rdot = x(3);
ghat = x(4:12);

phi c = uu(1);
z = [uu(2); uu(3)];
h = uu(4);
u = uu(5);
v = uu(6);
w = uu(7);
phi = uu(8);
theta = uu(9);
psi = uu(10);
p = uu(11);
q = uu(12);
r = uu(13);

% reference model
phi m dot = km*(phi c−phi m);

% compute aerodynamic variables
V = sqrt(u^2+v^2+w^2);
alpha = atan2(w,u);
beta = atan2(v,sqrt(u^2+w^2));

% differentiate p r and p dot
x pdot dot = 1/tau*(p − x pdot);
pdot = 1/tau*(p − x pdot);
rdot = 1/tau*(r − x rdot);

157

M = −gam*(phi−phi m)+phi m dot−q*sin(phi)*tan(theta)−. . .
r*cos(phi)*tan(theta);

% regressor
mu = [. . .

pdot/V^2;. . .
0*rdot/V^2;. . .
−q*r/V^2;. . .
r/V^2;. . .
−1;. . .
−beta;. . .
r/(2*V);. . .
q*M/V^2;. . .
−M/(2*V);. . .

];

% parameter adaptation
ghat dot = −gam2*(phi−phi m)*V*mu;

sys = [x pdot dot; phi m dot; rdot; ghat dot];

% end mdlDerivatives

function sys=mdlUpdate(t,x,u)

sys = [];

% end mdlUpdate

function sys=mdlOutputs(t,x,uu,km,gam,gam2,tau)

x pdot = x(1);
phi m = x(2);
x rdot = x(3);
ghat = x(4:12);

phi c = uu(1);
z = [uu(2); uu(3)];
h = uu(4);
u = uu(5);
v = uu(6);
w = uu(7);
phi = uu(8);
theta = uu(9);
psi = uu(10);
p = uu(11);

158

q = uu(12);
r = uu(13);

% compute aerodynamic variables
V = sqrt(u^2+v^2+w^2);
alpha = atan2(w,u);
beta = atan2(v,sqrt(u^2+w^2));

% reference model pitch
phi m dot = km*(phi c−phi m);

% derivative of p and r
pdot = 1/tau*(p−x pdot);
rdot = 1/tau*(r−x rdot);

M = −gam*(phi−phi m)+phi m dot−q*sin(phi)*tan(theta). . .
−r*cos(phi)*tan(theta);

% regressor
mu = [. . .

pdot/V^2;. . .
0*rdot/V^2;. . .
−q*r/V^2;. . .
r/V^2;. . .
−1;. . .
−beta;. . .
r/(2*V);. . .
q*M/V^2;. . .
−M/(2*V);. . .

];

% aileron command

sys = [ghat;phi;phi m;sat(mu’*ghat,30*pi/180)];

% end mdlOutputs

function sys=mdlGetTimeOfNextVarHit(t,x,u)

sampleTime = 1; % Example, set the next hit to be one second later.
sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

function sys=mdlTerminate(t,x,u)

159

sys = [];

% end mdlTerminate

function y=sat(u,lim)
if u <=−lim, y = −lim;
elseif u >= lim, y = lim;
else y = u;
end

% end sat

A.1.5 MRAC C Pitch

function [sys,x0,str,ts] = pitchMRAC(t,x,u,flag)

km = 1;
gam = 100;
gam2 = .1;
tau = 1;

switch flag,

% Initialization
case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

% Derivatives
case 1,

sys=mdlDerivatives(t,x,u,km,gam,gam2,tau);

% Update
case 2,

sys=mdlUpdate(t,x,u);

% Outputs
case 3,

sys=mdlOutputs(t,x,u,km,gam,gam2,tau);

% GetTimeOfNextVarHit
case 4,

sys=mdlGetTimeOfNextVarHit(t,x,u);

% Terminate
case 9,

160

sys=mdlTerminate(t,x,u);

% Unexpected flags
otherwise

error([’Unhandled flag = ’,num2str(flag)]);

end

% end sfuntmpl

function [sys,x0,str,ts]=mdlInitializeSizes(C)

sizes = simsizes;

sizes.NumContStates = 4;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 3+1+1+1;
sizes.NumInputs = 13;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

%
% initialize the initial conditions
%
% approximate coefficients
x0 = [0; 0;0; 0] + [0; 0; 0;0];

%
% str is always an empty matrix
%
str = [];

%
% initialize the array of sample times
%
ts = [0 0];

% end mdlInitializeSizes

function sys=mdlDerivatives(t,x,uu,km,gam,gam2,tau)

theta m = x(1);
ghat = x(2:4);

161

theta c = uu(1);
z = [uu(2); uu(3)];
h = uu(4);
u = uu(5);
v = uu(6);
w = uu(7);
phi = uu(8);
theta = uu(9);
psi = uu(10);
p = uu(11);
q = uu(12);
r = uu(13);

% reference model
theta m dot = km*(theta c−theta m);

% compute aerodynamic variables
V = sqrt(u^2+v^2+w^2);
alpha = atan2(w,u);
beta = atan2(v,sqrt(u^2+w^2));

% regressor
mu = [. . .

(theta m dot)/V + −gam*(theta m−theta);. . .
−1;. . .
−1/V^2;. . .

];

% parameter adaptation
ghat dot = −gam2*(theta−theta m)*V*mu;

sys = [theta m dot; ghat dot];

% end mdlDerivatives

function sys=mdlUpdate(t,x,u)

sys = [];

% end mdlUpdate

function sys=mdlOutputs(t,x,uu,km,gam,gam2,tau)

162

theta m = x(1);
ghat = x(2:4);

theta c = uu(1);
z = [uu(2); uu(3)];
h = uu(4);
u = uu(5);
v = uu(6);
w = uu(7);
phi = uu(8);
theta = uu(9);
psi = uu(10);
p = uu(11);
q = uu(12);
r = uu(13);

% compute aerodynamic variables
V = sqrt(u^2+v^2+w^2);
alpha = atan2(w,u);
beta = atan2(v,sqrt(u^2+w^2));

% reference model pitch
theta m dot = km*(theta c−theta m);

% regressor
mu = [. . .

−(theta m dot)/V + −gam*(theta m−theta);. . .
−1;. . .
−1/V^2;. . .

];

% elevator command

sys = [ghat;theta;theta m;sat(mu’*ghat,30*pi/180)];

% end mdlOutputs

function sys=mdlGetTimeOfNextVarHit(t,x,u)

sampleTime = 1; % Example, set the next hit to be one second later.
sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

function sys=mdlTerminate(t,x,u)

163

sys = [];

% end mdlTerminate

function y=sat(u,lim)
if u <=−lim, y = −lim;
elseif u >= lim, y = lim;
else y = u;
end

% end sat

A.1.6 MRAC C Roll

function [sys,x0,str,ts] = rollMRAC(t,x,u,flag)

km = 1;
gam = 50;
gam2 = .01;
tau = 1;

switch flag,

% Initialization
case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

% Derivatives
case 1,

sys=mdlDerivatives(t,x,u,km,gam,gam2,tau);

% Update
case 2,

sys=mdlUpdate(t,x,u);

% Outputs
case 3,

sys=mdlOutputs(t,x,u,km,gam,gam2,tau);

% GetTimeOfNextVarHit
case 4,

sys=mdlGetTimeOfNextVarHit(t,x,u);

% Terminate
case 9,

164

sys=mdlTerminate(t,x,u);

% Unexpected flags
otherwise

error([’Unhandled flag = ’,num2str(flag)]);

end

% end sfuntmpl

function [sys,x0,str,ts]=mdlInitializeSizes(C)

sizes = simsizes;

sizes.NumContStates = 4;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 3+1+1+1;
sizes.NumInputs = 13;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

%
% initialize the initial conditions
%
% approximate coefficients
x0 = [0; 0;0; 0] + [0; 0; 0;0];

%
% str is always an empty matrix
%
str = [];

%
% initialize the array of sample times
%
ts = [0 0];

% end mdlInitializeSizes

function sys=mdlDerivatives(t,x,uu,km,gam,gam2,tau)

phi m = x(1);
ghat = x(2:4);

165

phi c = uu(1);
z = [uu(2); uu(3)];
h = uu(4);
u = uu(5);
v = uu(6);
w = uu(7);
phi = uu(8);
theta = uu(9);
psi = uu(10);
p = uu(11);
q = uu(12);
r = uu(13);

% reference model
phi m dot = km*(phi c−phi m);

% compute aerodynamic variables
V = sqrt(u^2+v^2+w^2);
alpha = atan2(w,u);
beta = atan2(v,sqrt(u^2+w^2));

% regressor
mu = [. . .

(phi m dot)/V + −gam*(phi m−phi);. . .
−1;. . .
−1/V^2;. . .

];

% parameter adaptation
ghat dot = −gam2*(phi−phi m)*V*mu;

sys = [phi m dot; ghat dot];

% end mdlDerivatives

function sys=mdlUpdate(t,x,u)

sys = [];

% end mdlUpdate

function sys=mdlOutputs(t,x,uu,km,gam,gam2,tau)

166

phi m = x(1);
ghat = x(2:4);

phi c = uu(1);
z = [uu(2); uu(3)];
h = uu(4);
u = uu(5);
v = uu(6);
w = uu(7);
phi = uu(8);
theta = uu(9);
psi = uu(10);
p = uu(11);
q = uu(12);
r = uu(13);

% compute aerodynamic variables
V = sqrt(u^2+v^2+w^2);
alpha = atan2(w,u);
beta = atan2(v,sqrt(u^2+w^2));

% reference model pitch
phi m dot = km*(phi c−phi m);

% regressor
mu = [. . .

−(phi m dot)/V + −gam*(phi m−phi);. . .
−1;. . .
−1/V^2;. . .

];

% aileron command

sys = [ghat;phi;phi m;sat(mu’*ghat,30*pi/180)];

% end mdlOutputs

function sys=mdlGetTimeOfNextVarHit(t,x,u)

sampleTime = 1; % Example, set the next hit to be one second later.
sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

function sys=mdlTerminate(t,x,u)

167

sys = [];

% end mdlTerminate

function y=sat(u,lim)
if u <=−lim, y = −lim;
elseif u >= lim, y = lim;
else y = u;
end

% end sat

A.1.7 MRAC D Pitch

function [sys,x0,str,ts] = pitchMRAC(t,x,u,flag)

km = 5;
gam = 100;
gam2 = 1;
tau = 1;

switch flag,

% Initialization
case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

% Derivatives
case 1,

sys=mdlDerivatives(t,x,u,km,gam,gam2,tau);

% Update
case 2,

sys=mdlUpdate(t,x,u);

% Outputs
case 3,

sys=mdlOutputs(t,x,u,km,gam,gam2,tau);

% GetTimeOfNextVarHit
case 4,

sys=mdlGetTimeOfNextVarHit(t,x,u);

% Terminate
case 9,

168

sys=mdlTerminate(t,x,u);

% Unexpected flags
otherwise

error([’Unhandled flag = ’,num2str(flag)]);

end

% end sfuntmpl

function [sys,x0,str,ts]=mdlInitializeSizes(C)

sizes = simsizes;

sizes.NumContStates = 4;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 3+1+1+1;
sizes.NumInputs = 13;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

%
% initialize the initial conditions
%
% approximate coefficients
x0 = [0; 0;0; 0] + [0; 0; 0;0];

%
% str is always an empty matrix
%
str = [];

%
% initialize the array of sample times
%
ts = [0 0];

% end mdlInitializeSizes

function sys=mdlDerivatives(t,x,uu,km,gam,gam2,tau)

theta m = x(1);
ghat = x(2:4);

169

theta c = uu(1);
z = [uu(2); uu(3)];
h = uu(4);
u = uu(5);
v = uu(6);
w = uu(7);
phi = uu(8);
theta = uu(9);
psi = uu(10);
p = uu(11);
q = uu(12);
r = uu(13);

% reference model
theta m dot = km*(theta c−theta m);

% compute aerodynamic variables
V = sqrt(u^2+v^2+w^2);
alpha = atan2(w,u);
beta = atan2(v,sqrt(u^2+w^2));

% regressor
mu = [. . .

(theta m dot)/V + −gam*(theta m−theta);. . .
−1;. . .
0*−1/V^2;. . .

];

% parameter adaptation
ghat dot = −gam2*(theta−theta m)*V*mu;

sys = [theta m dot; ghat dot];

% end mdlDerivatives

function sys=mdlUpdate(t,x,u)

sys = [];

% end mdlUpdate

function sys=mdlOutputs(t,x,uu,km,gam,gam2,tau)

170

theta m = x(1);
ghat = x(2:4);

theta c = uu(1);
z = [uu(2); uu(3)];
h = uu(4);
u = uu(5);
v = uu(6);
w = uu(7);
phi = uu(8);
theta = uu(9);
psi = uu(10);
p = uu(11);
q = uu(12);
r = uu(13);

% compute aerodynamic variables
V = sqrt(u^2+v^2+w^2);
alpha = atan2(w,u);
beta = atan2(v,sqrt(u^2+w^2));

% reference model pitch
theta m dot = km*(theta c−theta m);

% regressor
mu = [. . .

−(theta m dot)/V + −gam*(theta m−theta);. . .
−1;. . .
0*−1/V^2;. . .

];

% elevator command

sys = [ghat;theta;theta m;sat(mu’*ghat,30*pi/180)];

% end mdlOutputs

function sys=mdlGetTimeOfNextVarHit(t,x,u)

sampleTime = 1; % Example, set the next hit to be one second later.
sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

function sys=mdlTerminate(t,x,u)

171

sys = [];

% end mdlTerminate

function y=sat(u,lim)
if u <=−lim, y = −lim;
elseif u >= lim, y = lim;
else y = u;
end

% end sat

A.1.8 MRAC D Roll

function [sys,x0,str,ts] = rollMRAC(t,x,u,flag)

km = 1;
gam = 30;
gam2 = .01;
tau = 1;

switch flag,

% Initialization
case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

% Derivatives
case 1,

sys=mdlDerivatives(t,x,u,km,gam,gam2,tau);

% Update
case 2,

sys=mdlUpdate(t,x,u);

% Outputs
case 3,

sys=mdlOutputs(t,x,u,km,gam,gam2,tau);

% GetTimeOfNextVarHit
case 4,

sys=mdlGetTimeOfNextVarHit(t,x,u);

% Terminate
case 9,

172

sys=mdlTerminate(t,x,u);

% Unexpected flags
otherwise

error([’Unhandled flag = ’,num2str(flag)]);

end

% end sfuntmpl

function [sys,x0,str,ts]=mdlInitializeSizes(C)

sizes = simsizes;

sizes.NumContStates = 4;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 3+1+1+1;
sizes.NumInputs = 13;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

%
% initialize the initial conditions
%
% approximate coefficients
x0 = [0; 0;0; 0] + [0; 0; 0;0];

%
% str is always an empty matrix
%
str = [];

%
% initialize the array of sample times
%
ts = [0 0];

% end mdlInitializeSizes

function sys=mdlDerivatives(t,x,uu,km,gam,gam2,tau)

phi m = x(1);
ghat = x(2:4);

173

phi c = uu(1);
z = [uu(2); uu(3)];
h = uu(4);
u = uu(5);
v = uu(6);
w = uu(7);
phi = uu(8);
theta = uu(9);
psi = uu(10);
p = uu(11);
q = uu(12);
r = uu(13);

% reference model
phi m dot = km*(phi c−phi m);

% compute aerodynamic variables
V = sqrt(u^2+v^2+w^2);
alpha = atan2(w,u);
beta = atan2(v,sqrt(u^2+w^2));

% regressor
mu = [. . .

(phi m dot)/V + −gam*(phi m−phi);. . .
−1;. . .
0*−1/V^2;. . .

];

% parameter adaptation
ghat dot = −gam2*(phi−phi m)*V*mu;

sys = [phi m dot; ghat dot];

% end mdlDerivatives

function sys=mdlUpdate(t,x,u)

sys = [];

% end mdlUpdate

function sys=mdlOutputs(t,x,uu,km,gam,gam2,tau)

174

phi m = x(1);
ghat = x(2:4);

phi c = uu(1);
z = [uu(2); uu(3)];
h = uu(4);
u = uu(5);
v = uu(6);
w = uu(7);
phi = uu(8);
theta = uu(9);
psi = uu(10);
p = uu(11);
q = uu(12);
r = uu(13);

% compute aerodynamic variables
V = sqrt(u^2+v^2+w^2);
alpha = atan2(w,u);
beta = atan2(v,sqrt(u^2+w^2));

% reference model pitch
phi m dot = km*(phi c−phi m);

% regressor
mu = [. . .

−(phi m dot)/V + −gam*(phi m−phi);. . .
−1;. . .
0*−1/V^2;. . .

];

% aileron command

sys = [ghat;phi m;phi;sat(mu’*ghat,30*pi/180)];

% end mdlOutputs

function sys=mdlGetTimeOfNextVarHit(t,x,u)

sampleTime = 1; % Example, set the next hit to be one second later.
sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

function sys=mdlTerminate(t,x,u)

175

sys = [];

% end mdlTerminate

function y=sat(u,lim)
if u <=−lim, y = −lim;
elseif u >= lim, y = lim;
else y = u;
end

% end sat

A.2 Dynamic C Code

A.2.1 MRAC A Pitch

/*** BeginHeader AdaptiveControl PitchA */
void AdaptiveControl PitchA(AdaptivePitch* a, float theta d, char deadzone,

char leakage, char normalize, unsigned char invert result,
unsigned char sum result);

/*** EndHeader */

void AdaptiveControl PitchA(AdaptivePitch* a, float theta d, char deadzone,
char leakage, char normalize, unsigned char invert result,
unsigned char sum result)

{
#ifdef ADAPTIVE PITCH A

float theta tilde, psi1, psi2, psi3, psi4, psi5, psi6;
//for redefinitions so code is easier to read
float V, theta, phi, p, q, r, dt;
//used in algorithm A
float q d, q tilde, tau, q d dot;
float alpha, lambda1, lambda2, gamma1, gamma2, gamma3, gamma4;
float gamma5, gamma6;
float leakage gain1, leakage gain2, leakage gain3, leakage gain4;
float leakage gain5, leakage gain6, dz threshold;

char outside threshold;
float psi norm div;

float32 effort;

//gains
alpha = m floats[MF ADAPTIVE PITCH ALPHA];
lambda1 = m floats[MF ADAPTIVE PITCH LAMBDA1];
lambda2 = m floats[MF ADAPTIVE PITCH LAMBDA2];

176

gamma1 = m floats[MF ADAPTIVE PITCH GAMMA1];
gamma2 = m floats[MF ADAPTIVE PITCH GAMMA2];
gamma3 = m floats[MF ADAPTIVE PITCH GAMMA3];
gamma4 = m floats[MF ADAPTIVE PITCH GAMMA4];
gamma5 = m floats[MF ADAPTIVE PITCH GAMMA5];
gamma6 = m floats[MF ADAPTIVE PITCH GAMMA6];
leakage gain1 = m floats[MF ADAPTIVE PITCH LEAKAGE1];
leakage gain2 = m floats[MF ADAPTIVE PITCH LEAKAGE2];
leakage gain3 = m floats[MF ADAPTIVE PITCH LEAKAGE3];
leakage gain4 = m floats[MF ADAPTIVE PITCH LEAKAGE4];
leakage gain5 = m floats[MF ADAPTIVE PITCH LEAKAGE5];
leakage gain6 = m floats[MF ADAPTIVE PITCH LEAKAGE6];
//deadzone threshold; radians
dz threshold = m floats[MF ADAPTIVE PITCH DZ THRESHOLD];

//states
V = *(a−>airspeed);
theta = *(a−>theta);
phi = *(a−>phi);
p = *(a−>p);
q = *(a−>q);
r = *(a−>r);
dt = m floats[MF DT];

//reference model
theta tilde = theta − a−>theta m;
a−>theta m += dt * alpha* (theta d − a−>theta m);

//q desired
if (cos(phi)==0){

q d = 0;}
else{

q d = (−lambda1*theta tilde + alpha*(theta d − a−>theta m) +
r*sin(phi)) / cos(phi);}

q tilde = q − q d;

//dirty derivative for q d dot.
tau = 0.1;
q d dot = (q d − a−>q d dot int) / tau;
a−>q d dot int += q d dot * dt;

//Psi
if (V*V == 0){

psi1 = 0;
psi2 = 0;

177

psi3 = 0;
psi4 = −1;
psi5 = −theta;
psi6 = 0;

}
else{

psi1 = (−lambda2*q tilde − theta tilde*cos(phi) +
q d dot)/(V*V);
psi2 = (p*p − r*r) / (V*V);
psi3 = (−p*r) / (V*V);
psi4 = −1;
psi5 = −theta;
psi6 = −q / V;

}

//Normalize
if (normalize){

psi norm div = sqrt(psi1*psi1 + psi2*psi2 + psi3*psi3 +
psi4*psi4 + psi5*psi5 + psi6*psi6);

if (psi norm div != 0){
psi1 = psi1/psi norm div;
psi2 = psi2/psi norm div;
psi3 = psi3/psi norm div;
psi4 = psi4/psi norm div;
psi5 = psi5/psi norm div;
psi6 = psi6/psi norm div;

}
}

//Deadzone
outside threshold = fabs(theta tilde) > dz threshold;
if ((deadzone&&outside threshold) | | !deadzone){

a−>k hat1 += −gamma1 * q tilde * psi1 * dt * V ;
a−>k hat2 += −gamma2 * q tilde * psi2 * dt * V ;
a−>k hat3 += −gamma3 * q tilde * psi3 * dt * V ;
a−>k hat4 += −gamma4 * q tilde * psi4 * dt * V ;
a−>k hat5 += −gamma5 * q tilde * psi5 * dt * V ;
a−>k hat6 += −gamma6 * q tilde * psi6 * dt * V ;

//Leakage
if (leakage){

a−>k hat1 −= leakage gain1*a−>k hat1;
a−>k hat2 −= leakage gain2*a−>k hat2;
a−>k hat3 −= leakage gain3*a−>k hat3;
a−>k hat4 −= leakage gain4*a−>k hat4;

178

a−>k hat5 −= leakage gain5*a−>k hat5;
a−>k hat6 −= leakage gain5*a−>k hat6;

}
}

//delta e desired
effort = psi1*a−>k hat1 + psi2*a−>k hat2 + psi3*a−>k hat3 +

psi4*a−>k hat4 + psi5*a−>k hat5 + psi6*a−>k hat6;

if(invert result)
effort *= −1;

if(sum result)
*(a−>elevator) += effort;

else
*(a−>elevator) = effort;

m floats[MF ADAPTIVE PITCH K1] = a−>k hat1;
m floats[MF ADAPTIVE PITCH K2] = a−>k hat2;
m floats[MF ADAPTIVE PITCH K3] = a−>k hat3;
m floats[MF ADAPTIVE PITCH K4] = a−>k hat4;
m floats[MF ADAPTIVE PITCH K5] = a−>k hat5;
m floats[MF ADAPTIVE PITCH K6] = a−>k hat6;
m floats[MF ADAPTIVE THETA REFERENCE MODEL] = a−>theta m;

#endif
}

A.2.2 MRAC A Roll

/*** BeginHeader AdaptiveControl RollA */
void AdaptiveControl RollA(AdaptiveRoll* a, float phi d, char deadzone,

char leakage, char normalize, unsigned char invert result,
unsigned char sum result);

/*** EndHeader */

void AdaptiveControl RollA(AdaptiveRoll* a, float phi d, char deadzone,
char leakage, char normalize, unsigned char invert result,
unsigned char sum result)

{
#ifdef ADAPTIVE ROLL A

float phi tilde, psi1, psi2, psi3, psi4, psi5, psi6, psi7;

179

//for redefinitions so code is easier to read
float V, theta, phi, p, q, r, groundtrack, dt;
float p d, p tilde, tau, p d dot, r dot;//used in algorithm A
float alpha, lambda1, lambda2, gamma1, gamma2, gamma3, gamma4;
float gamma5, gamma6, gamma7;
float leakage gain1, leakage gain2, leakage gain3, leakage gain4;
float leakage gain5, leakage gain6, leakage gain7, dz threshold;

char outside threshold;
float psi norm div;

float32 effort;

//gains
alpha = m floats[MF ADAPTIVE ROLL ALPHA];
lambda1 = m floats[MF ADAPTIVE ROLL LAMBDA1];
lambda2 = m floats[MF ADAPTIVE ROLL LAMBDA2];
gamma1 = m floats[MF ADAPTIVE ROLL GAMMA1];
gamma2 = m floats[MF ADAPTIVE ROLL GAMMA2];
gamma3 = m floats[MF ADAPTIVE ROLL GAMMA3];
gamma4 = m floats[MF ADAPTIVE ROLL GAMMA4];
gamma5 = m floats[MF ADAPTIVE ROLL GAMMA5];
gamma6 = m floats[MF ADAPTIVE ROLL GAMMA6];

gamma7 = m floats[MF ADAPTIVE ROLL GAMMA7];
leakage gain1 = m floats[MF ADAPTIVE ROLL LEAKAGE1];
leakage gain2 = m floats[MF ADAPTIVE ROLL LEAKAGE2];
leakage gain3 = m floats[MF ADAPTIVE ROLL LEAKAGE3];
leakage gain4 = m floats[MF ADAPTIVE ROLL LEAKAGE4];
leakage gain5 = m floats[MF ADAPTIVE ROLL LEAKAGE5];
leakage gain6 = m floats[MF ADAPTIVE ROLL LEAKAGE6];

leakage gain7 = m floats[MF ADAPTIVE ROLL LEAKAGE7];
//deadzone threshold; radians

dz threshold = m floats[MF ADAPTIVE ROLL DZ THRESHOLD];

//states
V = *(a−>airspeed);
theta = *(a−>theta);
phi = *(a−>phi);
groundtrack = *(a−>groundtrack);
p = *(a−>p);
q = *(a−>q);
r = *(a−>r);
dt = m floats[MF DT];

//reference model
phi tilde = phi − a−>phi m;

180

a−>phi m += dt * alpha * (phi d − a−>phi m);

p d = −lambda1*phi tilde + alpha*(phi d − a−>phi m) −
q*sin(phi)*tan(theta) − r*cos(phi)*tan(theta);

p tilde = p − p d;

//dirty derivative of p d
tau = 0.1;
p d dot = (p d − a−>p d dot int) / tau;
a−>p d dot int += p d dot * dt;

//r dot
r dot = (r − a−>r dot int) / tau;
a−>r dot int += r dot * dt;

if (V*V == 0){
psi1 = 0;
psi2 = 0;
psi3 = 0;
psi4 = −1.0;
psi5 = groundtrack;
psi6 = 0;
psi7 = 0;

}
else{

psi1 = (−lambda2*p tilde + p d dot − phi tilde)/(V*V);
psi2 = −(p*q + r dot)/(V*V);
psi3 = −q*r/(V*V);
psi4 = −1.0;
psi5 = groundtrack;
psi6 = −p/V;
psi7 = −r/V;

}

//Normalize
if (normalize){

psi norm div = sqrt(psi1*psi1 + psi2*psi2 + psi3*psi3 +
psi4*psi4 + psi5*psi5 + psi6*psi6 + psi7*psi7);

if (psi norm div != 0){
psi1 = psi1/psi norm div;
psi2 = psi2/psi norm div;
psi3 = psi3/psi norm div;
psi4 = psi4/psi norm div;
psi5 = psi5/psi norm div;

181

psi6 = psi6/psi norm div;
psi7 = psi7/psi norm div;

}
}

//Deadzone
outside threshold = fabs(phi tilde) > dz threshold;
if ((deadzone&&outside threshold) | | !deadzone){

a−>k hat1 += dt * −gamma1 * p tilde * psi1 * V;
a−>k hat2 += dt * −gamma2 * p tilde * psi2 * V;
a−>k hat3 += dt * −gamma3 * p tilde * psi3 * V;
a−>k hat4 += dt * −gamma4 * p tilde * psi4 * V;
a−>k hat5 += dt * −gamma5 * p tilde * psi5 * V;
a−>k hat6 += dt * −gamma6 * p tilde * psi6 * V;

a−>k hat7 += dt * −gamma7 * p tilde * psi7 * V;
//Leakage
if (leakage){

a−>k hat1 −= leakage gain1*a−>k hat1;
a−>k hat2 −= leakage gain2*a−>k hat2;
a−>k hat3 −= leakage gain3*a−>k hat3;
a−>k hat4 −= leakage gain4*a−>k hat4;
a−>k hat5 −= leakage gain5*a−>k hat5;
a−>k hat6 −= leakage gain6*a−>k hat6;
a−>k hat7 −= leakage gain7*a−>k hat7;

}
}

effort = psi1*a−>k hat1 + psi2*a−>k hat2 + psi3*a−>k hat3 +
psi4*a−>k hat4 + psi5*a−>k hat5 + psi6*a−>k hat6 +
psi7*a−>k hat7;

if(invert result)
effort *= −1;

if(sum result)
*(a−>aileron) += effort;

else
*(a−>aileron) = effort;

m floats[MF ADAPTIVE ROLL K1] = a−>k hat1;
m floats[MF ADAPTIVE ROLL K2] = a−>k hat2;
m floats[MF ADAPTIVE ROLL K3] = a−>k hat3;
m floats[MF ADAPTIVE ROLL K4] = a−>k hat4;
m floats[MF ADAPTIVE ROLL K5] = a−>k hat5;
m floats[MF ADAPTIVE ROLL K6] = a−>k hat6;

182

m floats[MF ADAPTIVE ROLL K7] = a−>k hat7;
m floats[MF ADAPTIVE PHI REFERENCE MODEL] = a−>phi m;

#endif
}

A.2.3 MRAC B Pitch

/*** BeginHeader AdaptiveControl PitchB */
void AdaptiveControl PitchB(AdaptivePitch* a, float theta d, char deadzone,

char leakage, char normalize, unsigned char invert result,
unsigned char sum result);

/*** EndHeader */

void AdaptiveControl PitchB(AdaptivePitch* a, float theta d, char deadzone,
char leakage, char normalize, unsigned char invert result,
unsigned char sum result)

{
#ifdef ADAPTIVE PITCH B

float theta tilde, psi1, psi2, psi3, psi4, psi5;
//for redefinitions so code is easier to read
float V, theta, phi, p, q, r, dt;
float alpha, lambda1, lambda2, gamma1, gamma2, gamma3, gamma4;
float gamma5, leakage gain1, leakage gain2, leakage gain3, leakage gain4,
float leakage gain5, dz threshold;

char outside threshold;
float psi norm div;

float32 effort;

//gains
alpha = m floats[MF ADAPTIVE PITCH ALPHA];
lambda1 = m floats[MF ADAPTIVE PITCH LAMBDA1];
gamma1 = m floats[MF ADAPTIVE PITCH GAMMA1];
gamma2 = m floats[MF ADAPTIVE PITCH GAMMA2];
gamma3 = m floats[MF ADAPTIVE PITCH GAMMA3];
gamma4 = m floats[MF ADAPTIVE PITCH GAMMA4];
gamma5 = m floats[MF ADAPTIVE PITCH GAMMA5];
leakage gain1 = m floats[MF ADAPTIVE PITCH LEAKAGE1];
leakage gain2 = m floats[MF ADAPTIVE PITCH LEAKAGE2];
leakage gain3 = m floats[MF ADAPTIVE PITCH LEAKAGE3];
leakage gain4 = m floats[MF ADAPTIVE PITCH LEAKAGE4];
leakage gain5 = m floats[MF ADAPTIVE PITCH LEAKAGE5];
//deadzone threshold; radians

183

dz threshold = m floats[MF ADAPTIVE PITCH DZ THRESHOLD];

//states
V = *(a−>airspeed);
theta = *(a−>theta);
phi = *(a−>phi);
p = *(a−>p);
q = *(a−>q);
r = *(a−>r);
dt = m floats[MF DT];

//reference model
theta tilde = theta − a−>theta m;
a−>theta m += dt * alpha* (theta d − a−>theta m);

if (V * cos(phi) == 0){
psi1 = 0;}

else{
psi1 = (−lambda1 * theta tilde + alpha * (theta d − a−>theta m)

+ r * sin(phi)) / (V * cos(phi));}
psi2 = 1;
psi3 = p*p − r*r;
psi4 = −p * r;
psi5 = −theta;

//Normalize
if (normalize){

psi norm div = sqrt(psi1*psi1 + psi2*psi2 + psi3*psi3 +
psi4*psi4 + psi5*psi5);

if (psi norm div != 0){
psi1 = psi1/psi norm div;
psi2 = psi2/psi norm div;
psi3 = psi3/psi norm div;
psi4 = psi4/psi norm div;
psi5 = psi5/psi norm div;

}
}

//Deadzone
outside threshold = fabs(theta tilde) > dz threshold;
if ((deadzone&&outside threshold) | | !deadzone){

a−>k hat1 += −dt * gamma1 * theta tilde * V * psi1;
a−>k hat2 += −dt * gamma2 * theta tilde * V * psi2;
a−>k hat3 += −dt * gamma3 * theta tilde * V * psi3;
a−>k hat4 += −dt * gamma4 * theta tilde * V * psi4;

184

a−>k hat5 += −dt * gamma5 * theta tilde * V * psi5;

//Leakage
if (leakage){

a−>k hat1 −= leakage gain1*a−>k hat1;
a−>k hat2 −= leakage gain2*a−>k hat2;
a−>k hat3 −= leakage gain3*a−>k hat3;
a−>k hat4 −= leakage gain4*a−>k hat4;
a−>k hat5 −= leakage gain5*a−>k hat5;

}
}

effort = psi1*a−>k hat1 + psi2*a−>k hat2 + psi3*a−>k hat3 +
psi4*a−>k hat4 + psi5*a−>k hat5;

if(invert result)
effort *= −1;

if(sum result)
*(a−>elevator) += effort;

else
*(a−>elevator) = effort;

m floats[MF ADAPTIVE PITCH K1] = a−>k hat1;
m floats[MF ADAPTIVE PITCH K2] = a−>k hat2;
m floats[MF ADAPTIVE PITCH K3] = a−>k hat3;
m floats[MF ADAPTIVE PITCH K4] = a−>k hat4;
m floats[MF ADAPTIVE PITCH K5] = a−>k hat5;
m floats[MF ADAPTIVE PITCH K6] = a−>k hat6;
m floats[MF ADAPTIVE THETA REFERENCE MODEL] = a−>theta m;

#endif
}

A.2.4 MRAC B Roll

/*** BeginHeader AdaptiveControl RollB */
void AdaptiveControl RollB(AdaptiveRoll* a, float phi d, char deadzone,

char leakage, char normalize, unsigned char invert result,
unsigned char sum result);

/*** EndHeader */

void AdaptiveControl RollB(AdaptiveRoll* a, float phi d, char deadzone,
char leakage, char normalize, unsigned char invert result,
unsigned char sum result)

185

{
#ifdef ADAPTIVE ROLL B

float phi tilde, psi1, psi2, psi3, psi4, psi5, psi6, psi7;
float V, theta, phi, groundtrack, p, q, r, dt;
float r dot, tau;
float alpha, lambda1, lambda2, gamma1, gamma2, gamma3, gamma4;
float gamma5, gamma6, gamma7;
float leakage gain1, leakage gain2, leakage gain3, leakage gain4
float leakage gain5, leakage gain6, leakage gain7, dz threshold;

char outside threshold;
float psi norm div;
float32 effort;

//gains
alpha = m floats[MF ADAPTIVE ROLL ALPHA];
lambda1 = m floats[MF ADAPTIVE ROLL LAMBDA1];
gamma1 = m floats[MF ADAPTIVE ROLL GAMMA1];
gamma2 = m floats[MF ADAPTIVE ROLL GAMMA2];
gamma3 = m floats[MF ADAPTIVE ROLL GAMMA3];
gamma4 = m floats[MF ADAPTIVE ROLL GAMMA4];
gamma5 = m floats[MF ADAPTIVE ROLL GAMMA5];
gamma6 = m floats[MF ADAPTIVE ROLL GAMMA6];
gamma7 = m floats[MF ADAPTIVE ROLL GAMMA7];
leakage gain1 = m floats[MF ADAPTIVE ROLL LEAKAGE1];
leakage gain2 = m floats[MF ADAPTIVE ROLL LEAKAGE2];
leakage gain3 = m floats[MF ADAPTIVE ROLL LEAKAGE3];
leakage gain4 = m floats[MF ADAPTIVE ROLL LEAKAGE4];
leakage gain5 = m floats[MF ADAPTIVE ROLL LEAKAGE5];
leakage gain6 = m floats[MF ADAPTIVE ROLL LEAKAGE6];
leakage gain7 = m floats[MF ADAPTIVE ROLL LEAKAGE7];
//deadzone threshold; radians
dz threshold = m floats[MF ADAPTIVE ROLL DZ THRESHOLD];

//states
V = *(a−>airspeed);
theta = *(a−>theta);
phi = *(a−>phi);
groundtrack = *(a−>groundtrack);
p = *(a−>p);
q = *(a−>q);
r = *(a−>r);
dt = m floats[MF DT];

//reference model

186

phi tilde = phi − a−>phi m;
a−>phi m += dt * alpha * (phi d − a−>phi m);

//r dot dirty derivative
tau = 0.1;
r dot = (r − a−>r dot int) / tau;
a−>r dot int += r dot * dt;

if (V == 0){
psi1 = 0;
psi2 = 0;
psi3 = 0;
psi4 = 0;
psi5 = −1.0;
psi6 = groundtrack;
psi7 = 0;

}
else{

psi1 = (−lambda1*phi tilde − q*sin(phi)*tan(theta) −
r*cos(phi)*tan(theta) + alpha*(phi d−a−>phi m))/(2.0*V);

psi2 = −4.0/(V*V);
psi3 = −4.0*(p*q + r dot)/(V*V);
psi4 = −4.0*q*r/(V*V);
psi5 = −1.0;
psi6 = groundtrack;
psi7 = −r/(2.0*V);

}

//Normalize
if (normalize){

psi norm div = sqrt(psi1*psi1 + psi2*psi2 + psi3*psi3 +
psi4*psi4 + psi5*psi5 + psi6*psi6 + psi7*psi7);

if (psi norm div != 0){
psi1 = psi1/psi norm div;
psi2 = psi2/psi norm div;
psi3 = psi3/psi norm div;
psi4 = psi4/psi norm div;
psi5 = psi5/psi norm div;
psi6 = psi6/psi norm div;
psi7 = psi7/psi norm div;

}
}

//Deadzone
outside threshold = fabs(phi tilde) > dz threshold;

187

if ((deadzone&&outside threshold) | | !deadzone){
a−>k hat1 += dt * −2.0 * gamma1 * V * phi tilde * psi1;
a−>k hat2 += dt * −2.0 * gamma2 * V * phi tilde * psi2;
a−>k hat3 += dt * −2.0 * gamma3 * V * phi tilde * psi3;
a−>k hat4 += dt * −2.0 * gamma4 * V * phi tilde * psi4;
a−>k hat5 += dt * −2.0 * gamma5 * V * phi tilde * psi5;
a−>k hat6 += dt * −2.0 * gamma6 * V * phi tilde * psi6;
a−>k hat7 += dt * −2.0 * gamma7 * V * phi tilde * psi7;
//Leakage
if (leakage){

a−>k hat1 −= leakage gain1*a−>k hat1;
a−>k hat2 −= leakage gain2*a−>k hat2;
a−>k hat3 −= leakage gain3*a−>k hat3;
a−>k hat4 −= leakage gain4*a−>k hat4;
a−>k hat5 −= leakage gain5*a−>k hat5;
a−>k hat6 −= leakage gain6*a−>k hat6;
a−>k hat7 −= leakage gain7*a−>k hat7;

}
}

effort = psi1*a−>k hat1 + psi2*a−>k hat2 + psi3*a−>k hat3 +
psi4*a−>k hat4 + psi5*a−>k hat5 + psi6*a−>k hat6 +
psi7*a−>k hat7;

if(invert result)
effort *= −1;

if(sum result)
*(a−>aileron) += effort;

else
*(a−>aileron) = effort;

m floats[MF ADAPTIVE ROLL K1] = a−>k hat1;
m floats[MF ADAPTIVE ROLL K2] = a−>k hat2;
m floats[MF ADAPTIVE ROLL K3] = a−>k hat3;
m floats[MF ADAPTIVE ROLL K4] = a−>k hat4;
m floats[MF ADAPTIVE ROLL K5] = a−>k hat5;
m floats[MF ADAPTIVE ROLL K6] = a−>k hat6;
m floats[MF ADAPTIVE ROLL K7] = a−>k hat7;
m floats[MF ADAPTIVE PHI REFERENCE MODEL] = a−>phi m;

#endif//ADAPTIVE ROLL B
}

188

A.2.5 MRAC C Pitch

/*** BeginHeader AdaptiveControl PitchC */
void AdaptiveControl PitchC(AdaptivePitch* a, float theta d, char deadzone,

char leakage, char normalize, unsigned char invert result,
unsigned char sum result);

/*** EndHeader */

void AdaptiveControl PitchC(AdaptivePitch* a, float theta d, char deadzone,
char leakage, char normalize, unsigned char invert result,
unsigned char sum result)

{
#ifdef ADAPTIVE PITCH C

float theta tilde, psi1, psi2, psi3;
//for redefinitions so code is easier to read
float V, theta, phi, p, q, r, dt;
float alpha, lambda1, gamma1, gamma2, gamma3;
float leakage gain1, leakage gain2, leakage gain3, dz threshold;

char outside threshold;
float psi norm div;

float32 effort;

//gains
alpha = m floats[MF ADAPTIVE PITCH ALPHA];
lambda1 = m floats[MF ADAPTIVE PITCH LAMBDA1];
gamma1 = m floats[MF ADAPTIVE PITCH GAMMA1];
gamma2 = m floats[MF ADAPTIVE PITCH GAMMA2];
gamma3 = m floats[MF ADAPTIVE PITCH GAMMA3];
leakage gain1 = m floats[MF ADAPTIVE PITCH LEAKAGE1];
leakage gain2 = m floats[MF ADAPTIVE PITCH LEAKAGE2];
leakage gain3 = m floats[MF ADAPTIVE PITCH LEAKAGE3];
//deadzone threshold; radians
dz threshold = m floats[MF ADAPTIVE PITCH DZ THRESHOLD];

//states
V = *(a−>airspeed);
theta = *(a−>theta);
phi = *(a−>phi);
p = *(a−>p);
q = *(a−>q);
r = *(a−>r);
dt = m floats[MF DT];

//reference model

189

theta tilde = theta − a−>theta m;
a−>theta m += dt * alpha* (theta d − a−>theta m);

if (V == 0){
psi1 = 0;}

else{
psi1 = (lambda1*theta tilde − alpha*(theta d − a−>theta m))/V;}

psi2 = 1;
psi3 = −theta;

//Normalize
if (normalize){

psi norm div = sqrt(psi1*psi1 + psi2*psi2 + psi3*psi3);
if (psi norm div != 0){

psi1 = psi1/psi norm div;
psi2 = psi2/psi norm div;
psi3 = psi3/psi norm div;

}
}

//Deadzone
outside threshold = fabs(theta tilde) > dz threshold;
if ((deadzone&&outside threshold) | | !deadzone){

a−>k hat1 += −dt * gamma1 * theta tilde * V * psi1;
a−>k hat2 += −dt * gamma2 * theta tilde * V * psi2;
a−>k hat3 += −dt * gamma3 * theta tilde * V * psi3;

//Leakage
if (leakage){

a−>k hat1 −= leakage gain1*a−>k hat1;
a−>k hat2 −= leakage gain2*a−>k hat2;
a−>k hat3 −= leakage gain3*a−>k hat3;

}
}

effort = psi1*a−>k hat1 + psi2*a−>k hat2 + psi3*a−>k hat3;

if(invert result)
effort *= −1;

if(sum result)
*(a−>elevator) += effort;

else
*(a−>elevator) = effort;

190

m floats[MF ADAPTIVE PITCH K1] = a−>k hat1;
m floats[MF ADAPTIVE PITCH K2] = a−>k hat2;
m floats[MF ADAPTIVE PITCH K3] = a−>k hat3;
m floats[MF ADAPTIVE PITCH K4] = a−>k hat4;
m floats[MF ADAPTIVE PITCH K5] = a−>k hat5;
m floats[MF ADAPTIVE PITCH K6] = a−>k hat6;
m floats[MF ADAPTIVE THETA REFERENCE MODEL] = a−>theta m;

#endif//ADAPTIVE PITCH C
}

A.2.6 MRAC C Roll

/*** BeginHeader AdaptiveControl RollC */
void AdaptiveControl RollC(AdaptiveRoll* a, float phi d, char deadzone,

char leakage, char normalize, unsigned char invert result,
unsigned char sum result);

/*** EndHeader */

void AdaptiveControl RollC(AdaptiveRoll* a, float phi d, char deadzone,
char leakage, char normalize, unsigned char invert result,
unsigned char sum result)

{
#ifdef ADAPTIVE ROLL C

float phi tilde, psi1, psi2, psi3;
float V, theta, phi, groundtrack, p, q, r, dt;
float alpha, lambda1, gamma1, gamma2, gamma3;
float leakage gain1, leakage gain2, leakage gain3, dz threshold;

char outside threshold;
float psi norm div;

float32 effort;

//gains
alpha = m floats[MF ADAPTIVE ROLL ALPHA];
lambda1 = m floats[MF ADAPTIVE ROLL LAMBDA1];
gamma1 = m floats[MF ADAPTIVE ROLL GAMMA1];
gamma2 = m floats[MF ADAPTIVE ROLL GAMMA2];
gamma3 = m floats[MF ADAPTIVE ROLL GAMMA3];
leakage gain1 = m floats[MF ADAPTIVE ROLL LEAKAGE1];
leakage gain2 = m floats[MF ADAPTIVE ROLL LEAKAGE2];
leakage gain3 = m floats[MF ADAPTIVE ROLL LEAKAGE3];
//deadzone threshold; radians

191

dz threshold = m floats[MF ADAPTIVE ROLL DZ THRESHOLD];

//states
V = *(a−>airspeed);
theta = *(a−>theta);
phi = *(a−>phi);
groundtrack = *(a−>groundtrack);
p = *(a−>p);
q = *(a−>q);
r = *(a−>r);
dt = m floats[MF DT];

//reference model
phi tilde = phi − a−>phi m;
a−>phi m += dt * alpha * (phi d − a−>phi m);

if (V != 0){
psi1 = (lambda1*phi tilde − alpha*(phi d − a−>phi m))/(2.0*V);}

else{
psi1 = 0;}
psi2 = 1.0;
psi3 = groundtrack;

//Normalize
if (normalize){

psi norm div = sqrt(psi1*psi1 + psi2*psi2 + psi3*psi3);
if (psi norm div != 0){

psi1 = psi1/psi norm div;
psi2 = psi2/psi norm div;
psi3 = psi3/psi norm div;

}
}

//Deadzone
outside threshold = fabs(phi tilde) > dz threshold;
if ((deadzone&&outside threshold) | | !deadzone){

a−>k hat1 += dt * −2.0 * gamma1 * V * phi tilde * psi1;
a−>k hat2 += dt * −2.0 * gamma2 * V * phi tilde * psi2;
a−>k hat3 += dt * −2.0 * gamma3 * V * phi tilde * psi3;
//Leakage
if (leakage){

a−>k hat1 −= leakage gain1*a−>k hat1;
a−>k hat2 −= leakage gain2*a−>k hat2;
a−>k hat3 −= leakage gain3*a−>k hat3;

}

192

}

effort = psi1*a−>k hat1 + psi2*a−>k hat2 + psi3*a−>k hat3;

if(invert result)
effort *= −1;

if(sum result)
*(a−>aileron) += effort;

else
*(a−>aileron) = effort;

m floats[MF ADAPTIVE ROLL K1] = a−>k hat1;
m floats[MF ADAPTIVE ROLL K2] = a−>k hat2;
m floats[MF ADAPTIVE ROLL K3] = a−>k hat3;
m floats[MF ADAPTIVE ROLL K4] = a−>k hat4;
m floats[MF ADAPTIVE ROLL K5] = a−>k hat5;
m floats[MF ADAPTIVE ROLL K6] = a−>k hat6;
m floats[MF ADAPTIVE ROLL K7] = a−>k hat7;
m floats[MF ADAPTIVE PHI REFERENCE MODEL] = a−>phi m;

#endif//ADAPTIVE ROLL C
}

A.2.7 MRAC D Pitch

/*** BeginHeader AdaptivePitch init */
void AdaptivePitch init(AdaptivePitch* a, float32* command elevator,
float32* actual airspeed,float32* actual theta, float32* actual phi,
float32* actual p, float32* actual q,float32* actual r);
/*** EndHeader */

void AdaptivePitch init(AdaptivePitch* a, float32* command elevator,
float32* actual airspeed,float32* actual theta, float32* actual phi,
float32* actual p, float32* actual q,float32* actual r)
{
#ifdef USE ADAPTIVE CONTROL

a−>theta m = 0;
a−>k hat1 = 0;
a−>k hat2 = 0;

a−>airspeed = actual airspeed;
a−>phi = actual phi;
a−>theta = actual theta;

193

a−>p = actual p;
a−>q = actual q;
a−>r = actual r;

a−>elevator = command elevator;
#endif
}

/*** BeginHeader AdaptiveControl PitchD */
void AdaptiveControl PitchD(AdaptivePitch* a, float32 theta d,
uint8 deadzone, uint8 leakage, uint8 normalize, uint8 invert result,
uint8 sum result);
/*** EndHeader */

void AdaptiveControl PitchD(AdaptivePitch* a, float32 theta d,
uint8 deadzone, uint8 leakage, uint8 normalize, uint8 invert result,
uint8 sum result);
{
#ifdef USE ADAPTIVE CONTROL

//for redefinitions so code is easier to read
float32 theta tilde, psi1, psi2;
float32 V, theta, phi, p, q, r, dt;
float32 alpha, lambda1, gamma1, gamma2;
float32 leakage gain1, leakage gain2, dz threshold;

uint8 outside threshold;
float32 psi norm div;

float32 effort;

//gains
alpha = m floats[MF ADAPTIVE PITCH ALPHA];
lambda1 = m floats[MF ADAPTIVE PITCH LAMBDA1];
gamma1 = m floats[MF ADAPTIVE PITCH GAMMA1];
gamma2 = m floats[MF ADAPTIVE PITCH GAMMA2];
leakage gain1 = m floats[MF ADAPTIVE PITCH LEAKAGE1];
leakage gain2 = m floats[MF ADAPTIVE PITCH LEAKAGE2];
//deadzone threshold; radians
dz threshold = m floats[MF ADAPTIVE PITCH DZ THRESHOLD];

//states
V = *(a−>airspeed);
theta = *(a−>theta);
phi = *(a−>phi);
p = *(a−>p);

194

q = *(a−>q);
r = *(a−>r);
dt = m floats[MF DT];

//reference model
theta tilde = theta − a−>theta m;
a−>theta m += dt * alpha* (theta d − a−>theta m);

if (V == 0)
psi1 = 0;

else
psi1 = (lambda1*theta tilde − alpha*(theta d − a−>theta m))/V;

psi2 = 1;

//Normalize
if (normalize){

psi norm div = sqrt(psi1*psi1 + psi2*psi2);
if (psi norm div != 0){

psi1 = psi1/psi norm div;
psi2 = psi2/psi norm div;

}
}

//Deadzone
outside threshold = fabs(theta tilde) > dz threshold;
if ((deadzone&&outside threshold) | | !deadzone){

a−>k hat1 += −dt * gamma1 * theta tilde * V * psi1;
a−>k hat2 += −dt * gamma2 * theta tilde * V * psi2;

//Leakage
if (leakage){

a−>k hat1 −= leakage gain1*a−>k hat1;
a−>k hat2 −= leakage gain2*a−>k hat2;

}
}

effort = psi1*a−>k hat1 + psi2*a−>k hat2;

if(invert result)
effort *= −1;

if(sum result)
*(a−>elevator) += effort;

else

195

*(a−>elevator) = effort;

#endif
}

A.2.8 MRAC D Roll

/*** BeginHeader AdaptiveRoll init */
void AdaptiveRoll init(AdaptiveRoll* a, float32* command aileron,
float32* actual airspeed, float32* actual theta, float32* actual phi,
float32* actual groundtrack, float32* actual p, float32* actual q,
float32* actual r);
/*** EndHeader */

void AdaptiveRoll init(AdaptiveRoll* a, float32* command aileron,
float32* actual airspeed, float32* actual theta, float32* actual phi,
float32* actual groundtrack, float32* actual p, float32* actual q,
float32* actual r)
{
#ifdef USE ADAPTIVE CONTROL

a−>phi m = 0;
a−>k hat1 = 0;
a−>k hat2 = 0;

a−>airspeed = actual airspeed;
a−>phi = actual phi;
a−>theta = actual theta;
a−>groundtrack = actual groundtrack;
a−>p = actual p;
a−>q = actual q;
a−>r = actual r;

a−>aileron = command aileron;
#endif
}

/*** BeginHeader AdaptiveControl RollD */
void AdaptiveControl RollD(AdaptiveRoll* a, float32 phi d,
uint8 deadzone, uint8 leakage, uint8 normalize, uint8 invert result,
uint8 sum result);
/*** EndHeader */

void AdaptiveControl RollD(AdaptiveRoll* a, float32 phi d,
uint8 deadzone, uint8 leakage, uint8 normalize, uint8 invert result,
uint8 sum result);

196

{
#ifdef USE ADAPTIVE CONTROL

float32 phi tilde, psi1, psi2;
float32 V, theta, phi, groundtrack, p, q, r, dt;
float32 alpha, lambda1, gamma1, gamma2;
float32 leakage gain1, leakage gain2, dz threshold;

uint8 outside threshold;
float32 psi norm div;

float32 effort;

//gains
alpha = m floats[MF ADAPTIVE ROLL ALPHA];
lambda1 = m floats[MF ADAPTIVE ROLL LAMBDA1];
gamma1 = m floats[MF ADAPTIVE ROLL GAMMA1];
gamma2 = m floats[MF ADAPTIVE ROLL GAMMA2];
leakage gain1 = m floats[MF ADAPTIVE ROLL LEAKAGE1];
leakage gain2 = m floats[MF ADAPTIVE ROLL LEAKAGE2];
//deadzone threshold; radians
dz threshold = m floats[MF ADAPTIVE ROLL DZ THRESHOLD];

//states
V = *(a−>airspeed);
theta = *(a−>theta);
phi = *(a−>phi);
groundtrack = *(a−>groundtrack);
p = *(a−>p);
q = *(a−>q);
r = *(a−>r);
dt = m floats[MF DT];

//reference model
phi tilde = phi − a−>phi m;
a−>phi m += dt * alpha * (phi d − a−>phi m);

if (V != 0)
psi1 = (lambda1*phi tilde − alpha*(phi d − a−>phi m))/(2*V);

else
psi1 = 0;

psi2 = 1;

//Normalize
if (normalize){

psi norm div = sqrt(psi1*psi1 + psi2*psi2);

197

if (psi norm div != 0){
psi1 = psi1/psi norm div;
psi2 = psi2/psi norm div;

}
}

//Deadzone
outside threshold = fabs(phi tilde) > dz threshold;
if ((deadzone&&outside threshold) | | !deadzone){

a−>k hat1 += dt * −2.0 * gamma1 * V * phi tilde * psi1;
a−>k hat2 += dt * −2.0 * gamma2 * V * phi tilde * psi2;
//Leakage
if (leakage){

a−>k hat1 −= leakage gain1*a−>k hat1;
a−>k hat2 −= leakage gain2*a−>k hat2;

}
}

effort = psi1*a−>k hat1 + psi2*a−>k hat2;

if(invert result)
effort *= −1;

if(sum result)
*(a−>aileron) += effort;

else
*(a−>aileron) = effort;

#endif//ADAPTIVE ROLL D
}

198

Appendix B

L1 Code

B.1 Matlab Code

B.1.1 1st Order Model with One Unknown Parameter

function [sys,x0,str,ts] = L1 adapt ctrl1(t,x,uu,flag)

% control constants
a = 4;
Gam = 100;
Kup = 15;
Klow = −15;
w0 = 1000;

switch flag,

% Initialization
case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

% Derivatives
case 1,

sys=mdlDerivatives(t,x,uu,a,Gam,Kup,Klow,w0);

% Update
case 2,

sys=mdlUpdate(t,x,uu);

% Outputs
case 3,

sys=mdlOutputs(t,x,uu,a,Gam,Kup,Klow);

% GetTimeOfNextVarHit
case 4,

sys=mdlGetTimeOfNextVarHit(t,x,uu);

% Terminate

199

case 9,
sys=mdlTerminate(t,x,uu);

% Unexpected flags
otherwise

error([’Unhandled flag = ’,num2str(flag)]);

end

% end sfuntmpl
function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 3;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 4;
sizes.NumInputs = 1+1+12;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

%
% initialize the initial conditions
%
x0 = [0; −.0001; 0];

%
% str is always an empty matrix
%
str = [];

%
% initialize the array of sample times
%
ts = [0 0];

% end mdlInitializeSizes

function sys=mdlDerivatives(t,x,uu,a,Gam,Kup,Klow,w0)

% interpret states and input
theta m = x(1);
K1hat = x(2);

200

x lpf = x(3);

new control = uu(1);
theta c = uu(2);
z = [uu(3); uu(4)];
h = uu(5);
u = uu(6);
v = uu(7);
w = uu(8);
phi = uu(9);
theta = uu(10);
psi = uu(11);
p = uu(12);
q = uu(13);
r = uu(14);
gam = 0;

V = sqrt(u^2+v^2+w^2);

% define constants
K2 = 0.4206*1.1;

% companion model
theta m dot = a*(theta c − theta m) + a*(theta−theta m) − . . .

(V*cos(phi)*K1hat − V*cos(phi)*new control*K2) ;

% parameter update
K1hatdot = −Gam*(theta−theta m)*V*cos(phi);

% projection
delta = 1.5;
f = 2/delta*(((K1hat−(Kup+Klow)/2)/((Kup−Klow)/2))^2 + 1 − delta);
f dot = 4/delta*(K1hat−(Kup+Klow)/2)/((Kup−Klow)/2);

if f >= 0,
if f dot*K1hatdot >= 0,

K1hatdot = K1hatdot − f*K1hatdot;
end

end

% update low pass filter
%x lpf dot = w0*(V*cos(phi)*K1hat - x lpf);

x lpf dot = w0*(K1hat − x lpf);

201

sys = [theta m dot; K1hatdot; x lpf dot];

% end mdlDerivatives

function sys=mdlUpdate(t,x,uu)

sys = [];

% end mdlUpdate

function sys=mdlOutputs(t,x,uu,a,Gam,Kup,Klow)

% interpret states and input
theta m = x(1);
K1hat = x(2);
x lpf = x(3);
new control = uu(1);
theta c = uu(2);
z = [uu(3); uu(4)];
h = uu(5);
u = uu(6);
v = uu(7);
w = uu(8);
phi = uu(9);
theta = uu(10);
psi = uu(11);
p = uu(12);
q = uu(13);
r = uu(14);
gam = 0;

V = sqrt(u^2+v^2+w^2);

% define constants
K2 = 0.4206*1.1;

% control output

delta e = a*(theta c−theta)/V/cos(phi)/K2. . .
+ a*(theta c−theta m)/V/cos(phi)/K2;

sys = [K1hat; theta m; delta e; K1hat/K2];

202

% end mdlOutputs

function sys=mdlGetTimeOfNextVarHit(t,x,uu)

sampleTime = 1; % Example, set the next hit to be one second later.
sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

function sys=mdlTerminate(t,x,uu)

sys = [];

% end mdlTerminate

B.1.2 1st Order Model with Two Unknown Parameter

function [sys,x0,str,ts] = L1 adapt ctrl1(t,x,uu,flag)

% control constants
a = 4; %.8
Gam = .100;%.031; %100 %.51
Kup = [1 1];
Klow = [−1 −1];

switch flag,

% Initialization
case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

% Derivatives
case 1,

sys=mdlDerivatives(t,x,uu,a,Gam,Kup,Klow);

% Update
case 2,

sys=mdlUpdate(t,x,uu);

% Outputs
case 3,

sys=mdlOutputs(t,x,uu,a,Gam,Kup,Klow);

% GetTimeOfNextVarHit
case 4,

203

sys=mdlGetTimeOfNextVarHit(t,x,uu);

% Terminate
case 9,

sys=mdlTerminate(t,x,uu);

% Unexpected flags
otherwise

error([’Unhandled flag = ’,num2str(flag)]);

end

% end sfuntmpl

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 3;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 5;
sizes.NumInputs = 1+1+12;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

%
% initialize the initial conditions
%
x0 = [0; −.0001; 0];

%
% str is always an empty matrix
%
str = [];

%
% initialize the array of sample times
%
ts = [0 0];

% end mdlInitializeSizes

function sys=mdlDerivatives(t,x,uu,a,Gam,Kup,Klow)

204

% interpret states and input
theta m = x(1);
Khat = [x(2); x(3)];

new control = uu(1);
theta c = uu(2);
z = [uu(3); uu(4)];
h = uu(5);
u = uu(6);
v = uu(7);
w = uu(8);
phi = uu(9);
theta = uu(10);
psi = uu(11);
p = uu(12);
q = uu(13);
r = uu(14);
gam = 0;

V = sqrt(u^2+v^2+w^2);

% define constants
K3 = 0.4206;

% Regressor
Psi = [1; theta];

% companion model
theta m dot = −a*theta m + V*cos(phi)*K3*(new control + Khat’*Psi/K3. . .

− (−a*theta m − a*(theta−theta m))/V/cos(phi)/K3) ;

% parameter update
Khatdot = Gam*(theta−theta m)*V*cos(phi)*Psi;

delta = 1.5;
f(1) = 2/delta*(Khat(1)^2 + 1 − delta);
f(2) = 2/delta*(Khat(2)^2 + 1 − delta);
f dot = 4/delta*Khat;

if f(1) >= 0,
if f dot(1)*Khatdot(1) >= 0,

Khatdot(1) = Khatdot(1) − f(1)*Khatdot(1);
end

205

end
if f(2) >= 0,

if f dot(2)*Khatdot(2) >= 0,
Khatdot(2) = Khatdot(2) − f(2)*Khatdot(2);

end
end

% update low pass filter
%x lpf dot = w0*(V*cos(phi)*K1hat - x lpf);
% x lpf dot = w0*(K1hat - x lpf);

sys = [theta m dot; Khatdot];

% end mdlDerivatives

function sys=mdlUpdate(t,x,uu)

sys = [];

% end mdlUpdate

function sys=mdlOutputs(t,x,uu,a,Gam,Kup,Klow)

% interpret states and input
theta m = x(1);
Khat = [x(2); x(3)];

new control = uu(1);
theta c = uu(2);
z = [uu(3); uu(4)];
h = uu(5);
u = uu(6);
v = uu(7);
w = uu(8);
phi = uu(9);
theta = uu(10);
psi = uu(11);
p = uu(12);
q = uu(13);
r = uu(14);
gam = 0;

V = sqrt(u^2+v^2+w^2);

206

% define constants
K3 = 0.4206;

% Regressor
Psi = [1; theta];

% control output
delta e = (−a*(theta m−theta c) − a*(theta−theta m))/V/cos(phi);

sys = [Khat; theta m; delta e; −Khat’*Psi/K3];

% end mdlOutputs

function sys=mdlGetTimeOfNextVarHit(t,x,uu)

sampleTime = 1; % Example, set the next hit to be one second later.
sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

function sys=mdlTerminate(t,x,uu)

sys = [];

% end mdlTerminate

B.1.3 2nd Order Model

function [sys,x0,str,ts] = L1 adapt ctrl(t,x,uu,flag)

% control constants
zeta = 1.707;
wn = 6;
tau = .01;
lambda = [100; 50];
Gam = .100;%1000*[.1; .1];
Kup = [15; 15];
Klow = [−15; −15];

switch flag,

% Initialization
case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

207

% Derivatives
case 1,

sys=mdlDerivatives(t,x,uu,zeta,wn,tau,lambda,Gam,Kup,Klow);

% Update
case 2,

sys=mdlUpdate(t,x,uu);

% Outputs
case 3,

sys=mdlOutputs(t,x,uu,zeta,wn,tau,lambda,Gam,Kup,Klow);

% GetTimeOfNextVarHit
case 4,

sys=mdlGetTimeOfNextVarHit(t,x,uu);

% Terminate
case 9,

sys=mdlTerminate(t,x,uu);

% Unexpected flags
otherwise

error([’Unhandled flag = ’,num2str(flag)]);

end

% end sfuntmpl

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 2+2;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 2+1+1+1;
sizes.NumInputs = 14;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

%
% initialize the initial conditions
%

208

x0 = [0; 0; −.0001; 0];

%
% str is always an empty matrix
%
str = [];

%
% initialize the array of sample times
%
ts = [0 0];

% end mdlInitializeSizes

function sys=mdlDerivatives(t,x,uu,zeta,wn,tau,lambda,Gam,Kup,Klow)

% interpret states and input
theta m = x(1);
theta m dot = x(2);
Khat = [x(3); x(4)];

delta e lpf = uu(1);
theta c = uu(2);
z = [uu(3); uu(4)];
h = uu(5);
u = uu(6);
v = uu(7);
w = uu(8);
phi = uu(9);
theta = uu(10);
psi = uu(11);
p = uu(12);
q = uu(13);
r = uu(14);
gam = 0;

% define constants
K2 = 0.4206;

% compute aerodynamic variables
V = sqrt(u^2+v^2+w^2);
alpha = atan2(w,u);
beta = atan2(v,sqrt(u^2+w^2));

theta dot = q*cos(phi)−r*sin(phi);

209

% Error model
theta tilde = theta − theta m;
theta tilde dot = theta dot − theta m dot;

%Regressor
Psi = [theta dot/V; 1];

R = theta tilde dot + lambda(1)*theta tilde;

% companion model
theta m ddot = −2*zeta*wn*theta m dot − wn^2*theta m. . .

+ V^2*K2*(. . .
delta e lpf. . .
+ 1/K2/V^2*Khat’*Psi. . .
− 1/V^2/K2*(. . .
− lambda(1)*(theta tilde dot). . .
− 2*zeta*wn*theta m dot − wn^2*theta m. . .
− lambda(2)*R. . .
). . .

);

% parameter update
Khatdot = R*V^2*Psi;

delta = 1.5;
f(1) = 2/delta*(Khat(1)^2 + 1 − delta);
f(2) = 2/delta*(Khat(2)^2 + 1 − delta);
f dot = 4/delta*Khat;

if f(1) >= 0,
if f dot(1)*Khatdot(1) >= 0,

Khatdot(1) = Khatdot(1) − f(1)*Khatdot(1);
end

end
if f(2) >= 0,

if f dot(2)*Khatdot(2) >= 0,
Khatdot(2) = Khatdot(2) − f(2)*Khatdot(2);

end
end

sys = [theta m dot; theta m ddot; Khatdot];

% end mdlDerivatives

210

function sys=mdlUpdate(t,x,u)

sys = [];

% end mdlUpdate

function sys=mdlOutputs(t,x,uu,zeta,wn,tau,lambda,Gam,Kup,Klow)

% interpret states and input
theta m = x(1);
theta m dot = x(2);
Khat = [x(3); x(4)];

delta e lpf = uu(1);
theta c = uu(2);
z = [uu(3); uu(4)];
h = uu(5);
u = uu(6);
v = uu(7);
w = uu(8);
phi = uu(9);
theta = uu(10);
psi = uu(11);
p = uu(12);
q = uu(13);
r = uu(14);
gam = 0;

% Define constants
K2 = 0.4206;

% Compute aerodynamic variables
V = sqrt(u^2+v^2+w^2);
alpha = atan2(w,u);
beta = atan2(v,sqrt(u^2+w^2));

% Aircraft theta dot
theta dot = q*cos(phi)−r*sin(phi);

% Error model
theta tilde = theta − theta m;
theta tilde dot = theta dot − theta m dot;

% Regressor
Psi = [theta dot/V; 1];

211

R = theta tilde dot + lambda(1)*theta tilde;

% Control input
delta e = (. . .

− lambda(1)*(theta tilde dot). . .
− 2*zeta*wn*theta m dot − wn^2*(theta m−theta c). . .
− lambda(2)*R. . .

)/V^2/K2;

sys = [Khat; theta m; delta e;−1/K2/V^2*Khat’*Psi];

% end mdlOutputs

function sys=mdlGetTimeOfNextVarHit(t,x,u)

sampleTime = 1; % Example, set the next hit to be one second later.
sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

function sys=mdlTerminate(t,x,u)

sys = [];

% end mdlTerminate

B.1.4 Physically Motivated Model

function [sys,x0,str,ts] = L1 adapt ctrl1(t,x,uu,flag)

% control constants
Gam = 1*[.10, 0, 0, 0, 0;

0, .10, 0, 0, 0;
0, 0, .10, 0, 0;
0, 0, 0, .10, 0;
0, 0, 0, 0, .10];

Kup = [15, 15, 15, 15, 15];
Klow = [−15,−15,−15,−15,−15];
epsilon1 = 10000;
epsilon2 = epsilon1;
k theta = 5;
k q = 20;
gamma1 = 1;
gamma2 = 1;

212

switch flag,

% Initialization
case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

% Derivatives
case 1,

sys=mdlDerivatives(t,x,uu,epsilon1,epsilon2,k theta,k q,gamma1,. . .
gamma2,Gam,Kup,Klow);

% Update
case 2,

sys=mdlUpdate(t,x,uu);

% Outputs
case 3,

sys=mdlOutputs(t,x,uu,epsilon1,epsilon2,k theta,k q,gamma1,. . .
gamma2,Gam,Kup,Klow);

% GetTimeOfNextVarHit
case 4,

sys=mdlGetTimeOfNextVarHit(t,x,uu);

% Terminate
case 9,

sys=mdlTerminate(t,x,uu);

% Unexpected flags
otherwise

error([’Unhandled flag = ’,num2str(flag)]);

end

% end sfuntmpl

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 10;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 5+1+1+1;
sizes.NumInputs = 1+1+12;

213

sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

%
% initialize the initial conditions
%
x0 = [0; 0; 0; 0; 0; 0; 0; 0; 0; 0];

%
% str is always an empty matrix
%
str = [];

%
% initialize the array of sample times
%
ts = [0 0];

% end mdlInitializeSizes

function sys=mdlDerivatives(t,x,uu,epsilon1,epsilon2,k theta,k q,gamma1,. . .
gamma2,Gam,Kup,Klow)

% interpret states and input
theta m = x(1);
q m = x(2);
Khat = [x(3); x(4); x(5); x(6); x(7)];
q des dot = x(8);
q m d dot = x(9);
theta c dot = x(10);

new control = uu(1);
theta c = uu(2);
z = [uu(3); uu(4)];
h = uu(5);
u = uu(6);
v = uu(7);
w = uu(8);
phi = uu(9);
theta = uu(10);
psi = uu(11);
p = uu(12);
q = uu(13);

214

r = uu(14);
gam = 0;

V = sqrt(u^2+v^2+w^2);
alpha = atan2(w,u);
beta = atan2(v,sqrt(u^2+w^2));

% projection

for i = 1:length(Khat);
if Khat(i) > Kup(i),

Khat(i) = Kup(i);
elseif Khat(i) < Klow(i),

Khat(i) = Klow(i);
end

end

% define constants
K6 = 0.4206;

% Dirty derivative of theta c
theta c dot = 1/epsilon1*(−theta c dot + theta c);

% Define regressor vector
Psi = [p*r/V^2;−(p^2−r^2)/V^2;1;alpha;q/V];
% Psi = [0/V^2;1/V^2;1;0;1/V];

% Calculate q desired for model
q m d = −k theta*(theta m−theta c);
q m d dot = 1/epsilon1*(−q m d dot + q m d);

% Error from model
theta e = theta − theta m;
q e = q − q m;

% Backstepping variable
q des = (r*sin(phi) + theta c dot − gamma1*theta e)/cos(phi);
q des dot = 1/epsilon1*(−q des dot + q des);

% Error from backstepping variable
e = q e − q des;

% companion model
theta m dot = q m*cos(phi) + theta c dot;

215

q m dot = −k q*q m . . .
+ V^2*K6*(. . .

new control. . .
+ 1/K6*Psi’*Khat. . .
− 1/(V^2*K6)*(. . .

+ k q*q m. . .
− theta e*cos(phi). . .
− q des dot. . .
+ gamma2*e. . .

). . .
);

% parameter update
Khatdot = (q e−q des)*V^2*Gam*Psi;

% projection
for i = 1:length(Khat);

if Khat(i) >= Kup(i),
if Khatdot(i) > 0,

Khatdot(i) = 0;
Khat(i) = Kup(i);

end
elseif Khat(i) <= Klow(i),

if Khatdot(i) < 0,
Khatdot(i) = 0;
Khat(i) = Klow(i);

end
end

end

sys = [theta m dot; q m dot; Khatdot; q des dot; q m d dot; theta c dot];

% end mdlDerivatives

function sys=mdlUpdate(t,x,uu)

sys = [];

% end mdlUpdate

function sys=mdlOutputs(t,x,uu,epsilon1,epsilon2,k theta,k q,gamma1,. . .
gamma2,Gam,Kup,Klow)

% interpret states and input
theta m = x(1);

216

q m = x(2);
Khat = [x(3); x(4); x(5); x(6); x(7)];
q des dot = x(8);
q m d dot = x(9);
theta c dot = x(10);

new control = uu(1);
theta c = uu(2);
z = [uu(3); uu(4)];
h = uu(5);
u = uu(6);
v = uu(7);
w = uu(8);
phi = uu(9);
theta = uu(10);
psi = uu(11);
p = uu(12);
q = uu(13);
r = uu(14);

V = sqrt(u^2+v^2+w^2);
alpha = atan2(w,u);
beta = atan2(v,sqrt(u^2+w^2));

% define constants
K6 = 0.4206;

% Dirty derivative of theta c
theta c dot = 1/epsilon1*(−theta c dot + theta c);

% Define regressor vector
Psi = [q*r/V^2;−(p^2−r^2)/V^2;1;alpha;q/V];
%Psi = [p*r/V^2;-(p^2-r^2)/V^2;1;alpha;q/V];

% Calculate q desired for model
q m d = −k theta*(theta m−theta c);
q m d dot = 1/epsilon1*(−q m d dot + q m d);

% Error from model
theta e = theta − theta m;
q e = q − q m;

% Backstepping variable
q des = (r*sin(phi) + theta c dot − gamma1*theta e)/cos(phi);
q des dot = 1/epsilon1*(−q des dot + q des);

217

% Error from backstepping variable
e = q e − q des;

% control output
delta e = −1/K6*Psi’*Khat*0 . . .

−1/(K6*V^2)*(. . .
theta e*cos(phi). . .
+ k q*(q m−q m d). . .
− q m d dot. . .
− 1/k theta*q m d*cos(phi). . .
− q des dot. . .
+ gamma2*e. . .

);

sys = [Khat; theta m; delta e; −1/K6*Psi’*Khat];

% end mdlOutputs

function sys=mdlGetTimeOfNextVarHit(t,x,uu)

sampleTime = 1; % Example, set the next hit to be one second later.
sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

function sys=mdlTerminate(t,x,uu)

sys = [];

% end mdlTerminate

B.2 Dynamic C Code

/*** BeginHeader L1 Pitch */
void L1 Pitch(float32 theta d, float32 V, float32* effort e,
uint8 invert result);
/*** EndHeader */

void L1 Pitch(float32 theta d, float32 V, float32* effort e,
uint8 invert result);
{
#ifdef USE L1 ADAPTIVE CONTROL

218

uint8 i;
float32 alpha, alpha filt, gamma, Wo, K1 u, K1 l, N, dt,

theta, phi, K2, K1 hat, K1 hat lowpass, theta cm;
static float32 delta e;

#GLOBAL INIT
{

delta e = 0;
}

// Gains
alpha = m floats[MF L1 ALPHA];
gamma = m floats[MF L1 GAMMA];
Wo = m floats[MF L1 CUTOFF];
K1 u = m floats[MF L1 K1 UPPER LIMIT];
K1 l = m floats[MF L1 K1 LOWER LIMIT];
N = m floats[MF L1 NUM OF ITERATIONS];

// Variables
dt = m floats[MF DT];
theta = m floats[MF THETA];
phi = m floats[MF PHI];
K2 = m floats[MF L1 K2];
K1 hat = m floats[MF L1 K1 HAT];
K1 hat lowpass = m floats[MF L1 K1 HAT LOWPASS];
theta cm = m floats[MF L1 THETA CM];

// Flag
if(m ints[MI L1 INIT] == 1)
{

theta cm = theta;
m ints[MI L1 INIT] = 0;

}

// Companion Model
theta cm = theta cm + dt*(−alpha*theta cm + alpha*theta −

V*cos(phi)*K1 hat + V*cos(phi)*K2*delta e);

// Parameter Update
K1 hat = K1 hat + dt*(−gamma*(theta − theta cm)*V*cos(phi));

// Projection of K1
if(K1 hat >= K1 u) { K1 hat = K1 u; }
if(K1 hat <= K1 l) { K1 hat = K1 l; }

219

// Filter
alpha filt = dt*Wo/(1 + dt*Wo);
K1 hat lowpass = (1 − alpha filt)*K1 hat lowpass +

alpha filt*(K1 hat − K1 hat lowpass);

// Control
if(V*cos(phi)*K2 > 0.0001 | | V*cos(phi)*K2 < −0.0001)

delta e = K1 hat lowpass/(V*cos(phi)*K2) +
alpha*(theta d − theta)/(V*cos(phi)*K2);

*effort e = delta e;

//invert if needed
if(invert result)

*effort e *= −1;

// Update Misc floats
m floats[MF L1 THETA CM] = theta cm;
m floats[MF L1 K1 HAT] = K1 hat;
m floats[MF L1 K1 HAT LOWPASS] = K1 hat lowpass;

m floats[MF L1 DELTA E] = delta e;

#endif
}

220

Glossary

C∗ The aircraft’s aerodynamic coefficients. 6
Jij The inertial moments of the aircraft about i and j

(e.g. x and y) axes.
6

S Surface area of the aircraft’s wings 6
V Commanded airspeed in m/s. 6

Ĵ∗ Constants that depend on J . 6
α Known as the angle of attack, it is angle between

the wing cord and the direction of motion in the air
mass.

6

c̄ Length of a wing’s cord length. 6
β Known as the sideslip angle, it is the angle between

the direction of motion in the air mass and heading.
6

χ The direction the aircraft travels in reference to the
ground.

6

δa Commanded aileron position in radians. 6
δe Commanded elevator position in radians. 6
δr Commanded rudder position in radians. 6
γ Angle from level the aircraft is climbing or descend-

ing.
6

L1 Controller A modified Lyapunov based MRAC controller
where the parameter estimates are low-pass filtered.

30

φ Roll angle. 6
φd Desired roll angle. 6
ψ Heading. 6
θ Pitch angle. 6
θd Desired pitch angle. 6
b Length between wing tips. 6
h The aircraft’s georeferenced altitude. 7
p Rotation about the body frames x axis. 6
pe The aircraft’s georeferenced east position. 7
pn The aircraft’s georeferenced north position. 7
q Rotation about the body frames y axis. 6
r Rotation about the body frames z axis. 6
u The aircraft’s velocity out the nose. 7
v The aircraft’s velocity out the right wing. 7
w The aircraft’s velocity out the belly. 8

221

Adaptive control A type of control theory where the controller adapts
to unknown or changing system parameters.

2

Aviones An aircraft simulator. 83

body frame A coordinate system fixed to the aircraft such that
the x axis is out the nose, the y axis is out the right
wing, and the z axis is out the belly of the aircraft.

6

Dynamic C A C based language used to program Rabbit mi-
crocontrollers.

83

Dynamic inversion A technique that inverts the dynamics of the plant
to allow for the design of a simple controller. DI
can be used to make an adaptive controller when
used in conjunction with neural networks or least
squares estimation.

22

Ground station The equipment and software bundle needed to com-
municate with a MAV in flight.

84

Least squares Uses to perform an online plant identification. In
adaptive control, the system identification is used
to adjust the controller.

19

Lyapunov MRACs MRACs that use Lyapunov stability theory to up-
date the parameter estimates.

27

Micro air vehicles Light-weight UAs with small wing spans. 1
MIT Rule The adaptive portion of the controller changes the

parameter estimates based on the gradient of a cost
function.

26

MRAC Model reference adaptive control (MRAC) is a type
of adaptive controller that uses a model of the plant
to aid in adaption.

25

PID A control scheme where the control effort is calcu-
lated summing the weighted error, integral of the
error, and derivative of the error.

2

Projection operator A function whose inputs are projected into the sub-
space S.

5

Unmanned aircraft Autonomous aircraft that are unmanned. 1

Virtual Cockpit Ground station software used to control MAVs. 84

222

	Adaptive Control of Micro Air Vehicles
	BYU ScholarsArchive Citation

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Problem
	1.2 Adaptive Control
	1.3 Contributions
	1.4 Thesis Outline

	2 Preliminaries
	2.1 Notation
	2.2 Mathematical Model
	2.3 Lyapunov's Second Method
	2.4 Forms of Adaptive Control
	2.4.1 Least Squares Adaptive Control
	2.4.2 Dynamic Inversion
	2.4.3 Model Reference Adaptive Control

	3 Adaptive Control Derivation
	3.1 Lyapunov Based MRAC Controllers
	3.1.1 MRAC Scheme A
	3.1.2 MRAC Scheme B
	3.1.3 MRAC Scheme C
	3.1.4 MRAC Scheme D

	3.2 L1 Controllers
	3.2.1 1st Order Model with One Lumped, Unknown Parameter
	3.2.2 1st Order Model with Two Lumped, Unknown Parameters
	3.2.3 2nd Order Model
	3.2.4 Physically Motivated Model

	4 Experimental Platform
	4.1 Simulation
	4.2 Hardware

	5 Results
	5.1 Simulation Results
	5.1.1 Lyapunov Based MRAC
	5.1.2 L1 Controllers
	5.1.3 Analysis
	5.1.4 Summary

	5.2 Flight Testing Results
	5.2.1 Lyapunov Based MRAC
	5.2.2 L1 Controllers
	5.2.3 Analysis
	5.2.4 Summary

	6 Conclusion
	6.1 Finding
	6.2 Future Work

	Bibliography
	A MRAC Code
	A.1 Matlab Code
	A.1.1 MRAC A Pitch
	A.1.2 MRAC A Roll
	A.1.3 MRAC B Pitch
	A.1.4 MRAC B Roll
	A.1.5 MRAC C Pitch
	A.1.6 MRAC C Roll
	A.1.7 MRAC D Pitch
	A.1.8 MRAC D Roll

	A.2 Dynamic C Code
	A.2.1 MRAC A Pitch
	A.2.2 MRAC A Roll
	A.2.3 MRAC B Pitch
	A.2.4 MRAC B Roll
	A.2.5 MRAC C Pitch
	A.2.6 MRAC C Roll
	A.2.7 MRAC D Pitch
	A.2.8 MRAC D Roll

	B L1 Code
	B.1 Matlab Code
	B.1.1 1st Order Model with One Unknown Parameter
	B.1.2 1st Order Model with Two Unknown Parameter
	B.1.3 2nd Order Model
	B.1.4 Physically Motivated Model

	B.2 Dynamic C Code

	Glossary

