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A generalized Molien function for field theoretical Hamiltonians

Jeffrey W. Felix and Dorian M. Hatch
Brigham Young University, 296 ESC, Provo, Utah 84602

(Received 8 May 1984; accepted for publication 15 March 1985)

A generating function, or Molien function, the coefficients of which give the number of
independent polynomial invariants in G, has been useful in the Landau and renormalization
group theories of phase transitions. Here a generalized Molien function for a field theoretical
Hamiltonian (with short-range interactions) of the most general form invariant in a group G is
derived. This form is useful for more general renormalization group calculations. Its Taylor series
is calculated tolow order for the FI" ;- representation of the space group R 3¢ and also for the/ = 1

(faithful) representation of SO(3).

I. INTRODUCTION

The idea of a generating function, sometimes known as
a Molien function,’ the coefficients in the Taylor’s series ex-
pansion of which give meaningful information about a parti-
cular group, has proven®™ to be very useful in constructing
free energies for use in the Landau theory of structural and
magnetic phase transitions in solids. In Ref. 5, it was shown
that an effective Hamiltonian or field theoretical Hamilton-
ian could be constructed for structural phase transitions of
the form

Hic)= i _l_f...fdkl .o dk,, (27) "m0

m=0 m'
X8+ -+ ) S HE, Ky,
Lm

Xe, (ky) e (K, ) (1)

leading to a free energy of
F= ——l—an.Dce“H“’.
B

Here f§ Dc indicates a functional integration over the collec-
tion of c;(k) and k ranges continuously over a sphere with
k <A, the cutoff parameter. L,, is the compound index
Liye--1,.

Furthermore, the form of H (c) must be invariant when

¢;(k}—>¢;(S ~'k)D;(g), (2)

or equivalently, when k—Sk, H"—H™D™g), where
g = (S|t + t)is a space group element in G, the space group
of the higher symmetry phase. It would be desirable if a
generating function could be found for the more general field
theoretical or Landau-Ginzburg-Wilson Hamiltonian of
Eq. (1}, given Eq. (2). In Ref. 6 the authors pointed out that a
term not previously considered, but present in the most gen-
eral invariant free energy form, contributes significantly to
renormalization group behavior. A generalized Molien
function for the H of Eq. (1) would be of aid in other such
general considerations. Also, the D (g) of Eq. (2) could be
replaced by a general representation of any compact group,
particularly any unitary compact group, and the following
analysis would hold, if the group mean is suitably defined.
(This does not take into account the antiunitary & or complex
conjugation, but a generalization is easily accomplished to
include it.)
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Il. DERIVATION AND CALCULATION
Define a function F (st ), analytic in s,z, such that if

o0 o0

Fist)= 3

ComSt™,

n=0m=0
then c,,, will be the number of invariants of order # in the
components of k and order m in ¢ in H {c). To find F(s,t ) we
pursue a method which is motivated by procedures con-
tained in Refs. 1, 2, and 7. The invariance group of a term in
Eq. (1) includes the symmetry of Eq. (2) and in addition each
term must be invariant under any exchange of indices, either
on k or c. Such an invariance group is known formally as a
wreath product; however, here we need only recognize the
existence of both kinds of symmetries. The condition that a
term of given order be invariant will be taken to mean that it
transforms identically under an arbitrary product of a trans-
formation g in G, and one in S,,, call it 77, where §,, is the
symmetric group in m objects. Note that the essential sym-
metry is in k space. One can be misled in attempting to find
invariant forms in real space.>®

To find the number of invariants of given order » and m
we construct a general basis of the right order and find the
subduction frequency of the identity representation on the
representation induced by this basis.

For m = 0, there is only one basis functional, i.e., a con-
stant, independent of ¢ and k, hence

Cro =000 (3)
For m = 1, the basis functionals in Eq. (1) are’
WI. = C,l (0).

The permutational invariance subgroup is just S, so that

Cny =Agl zDii(gySnO =Agl/¥(g)5n0’ (4)
where
1
& (=
is the group mean, or its suitable generalization to an infinite
group.

For m > 2, define a vector ain N ™" ~ 1, the (m — 1)d th
Cartesian product of N, the set of non-negative integers, with
componentsa,, i = 1,2,...,m — 1, andj = 1,2,...,d, such that
3,a; = n. Here d is the spatial dimension. Then a basis of
functionals of order n,m in H, with m >2, will have inte-
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grands of the form
m—1 d
Y(,L,)= H H (kij)a”% (k,)

i=1j=1
Xey, (ko) « - -¢; (K )s

wherek,, = —k, —-.-—Kk,, _; and k; is the jth compo-
nent of k;. This particular ¥ has the advantage of already
being symmetric in the k;; for a fixed /. No sums are implied
here or in the aftermath.

Suppose the basis of the k; has been chosen so that
gk; = p;k;, where p; is an eigenvalue of ¥ (g), a matrix in the
vector representation of G. Then

g (oL,) =TT (p)"ks)" 3, D, . 8) -

XD, . 8, (Ky) -+, (k).

Further,
¥ (8.Ln) = [T (o) ke "D 1,8
I Irr(m)(g)c’m)(kﬂ”)
CI%(”” (ki(m))
=II(p sy WD’: T
i

8l (ky) - -

&)

D, ol St cl,‘..(k'") )
Here 7 =7~
Now suppose that 7{g) =

sion there occurs a factor
(kﬁ(q)j)aqj'__ (— klj - k2j — et km—lj)a'"

1) * 2 an (awl

X(klj) Uewe (ke —

where the sum is over all a_; >0 such that
m—1

a

i=1

Writing
mg(a,L,)= Y I'(aL,;a' L, )7g)a’ L)

a'lL,,

m. Then in the above expres-

q]m—l')_

lj)“qjm— l’

qji = Qg

we see that
F@LyaL ) =[] (— U, ] (p)"
><(aq,-,.!)_1 8(af — @ —ag)
XDy, (8 (5)

where all restrictions on the a; and a,; as noted before hold,
and we have defined a,,; = O for all . In this we have written

[] teata ) = 1,] (i)™
ij J

where appropriate and & () is the Kronecker delta §,,.
We can then form the trace of Eq. (5) to find the charac-
ter of I', giving
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tr I (mg) = ; |} (e 1)'a,; 'H(P; R
X (@)~ 8@y — apy; — aqji)Dl,Iﬁm(g)' (6)

Now the sum over the L,, gives a factor, if 7 (and hence 7)
has cycle structure (v;,v55..04V,, )y

@) @) - @™
which follows by writing
124,

= Dz,l,-,(,,(g) e DI,(V,— Nk g---,

if, for example, 1 lies in a cycle of length v, etc.
To carry out conveniently the sum over a we use the fact
that a Kronecker delta § (n) may be represented by

6(n)=2—1ﬂ-1¢§dzz"”+”, )

where the contour ¢ includes the origin. With this we can
extend the sum over a in Eq. (6) to all acN ™~ ™, by includ-
ing § (n — £ a;) in this form. Then

trl"(rrg)-—-—-§dzz“"+”zn(— 1)%a, !

) 2% Bla,

— 8y — Ggji)

Xl:[ r @)™ (8)

Now suppose m lies in cycle of length / in =, ie.,
{g - - - sm). The Kronecker delta in the sum over a in Eq. (8)
constrains a; > a,;;- Then

Aj 20 28igy; 2+ 285528, =0,
such that

Gp-1g; ~ Qg = Yo~
Note that s =7/~ 2(g). Also, for /; in another cycle in
m = (I}, - - - 1), the Kronecker delta restricts the sum to all
a;; such that

a'l! >alzl 2 >a'd >a'11’

which implies that they are all equal.
The portion of Eq. (8) involving a;, i in the cycle con-
taining m, is then

. ay (z 2 )"m)l
(= Ve lzp) 3 —L——
I;I "w}; v “m§= 0 (aqi - aﬂ(qli)!
» Saigy (zp)) *a

4 2 =° (afriq)i - an—’(qy)!
a;_ a;_s
o~y (z Pj) ¥~ gy

p e - %)
=8y, M@ -2yt

T2y =0 @,- a¥
Noting that

i x 12 (p)xl”" (1 +xpP
i=0 (p—l')!l'! P'i 0 p!

and performing the last / — 2 sums in Eq. (9), it becomes
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[[X (= V%p) 1 +zp{l +2p,(- - (1 +2zp))

=H(l +zpj( .o
—H(i (zp,)')
-2 (10

l—umr
Furthermore the contribution to Eq. (8) from the sum

(T+zp)™!

over a for the cycles of length r [if the length of (g - - - sm) is
not 7] is [wherep =v,r—(r—1)=(v, — I)r+ 1]
I3 ep)™ 3 ep)™
J ay=0 ay = 0
=[[1-z(pN "
J
=det(I—2V"g) ™ (11)
Combining the results of Eqgs. (6)—(11) we have
tr I (mg) = -—!—;§dzz*‘"+ U det(I — zV(g))
i
X H det( — 2V (g)) "y (&)™ (12)

i=1
The contribution c,,,, (g) of the element g to c,,,,, is given
by the number of times I” (7g) contains the identity represen-
tation of S, . From Eq. (12) it is clear that tr I" (wg) is a class
function on S, in that it depends only on the cycle structure
of 7r. The number of elements in a class (v) is m!IL,(i"v;!) =" so
that

Com(8) =

=2_1_§dzz“‘("+”
) 2mi Je

Xdet(l—zV(g)H(

M tr I (mg)

x(&) )”f 1
idetl —Z'Vig)/ v!
where the sum over (v) is restricted to all (v) such that
3,iv; = m asiranges from 1 to m. Using Eq. (7) to constrain
the v; and then summing over all (v) leaves Eq. (13)

Cnm(8) = ( )§§dzduz (n+ 1)y, —(m+1)

xdetl/ —zV @) [[ > — ” (Eﬁ%)

i v

= (21rt')”2§§dzdu z— Ny —tm+1)

wx(g) )
xdet(I — zV (g))ex ( —_—ae 14
( (gllexp .;1 idet(I — Z'Vg)) (14)
Equation (14) was derived for m > 2 but can be extended
to m = 1. This may be seen by noting that

1 dfw)

15
o dum (15)

—1—_§du u= " Ufy) =
27i

u=0
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When Eq. (15) is applied to Eq. (14) for m = 1, one obtains
Eq. (4). Note, however, that Eq. (14), when m = 0, gives

Crolg) = = 2 detll =V (g, o, (16)
rather than Eq. (3).

From Eq. (15) one can quickly see that the summation
in Eq. (14) on / can be extended to infinity. This fact also then
allows us to recognize Eq. (14) as just the coefficient of s"t ™
in the power series

F'(S,t, g) = Z cnm (g)snt m’

if we identify

F'(s,t, g) = det(I — SV(g))CXP( Zl E}%)Vr—m)_)

Taking into account the discrepancy between Egs. (3) and
(16), and since

Com =M c,,,(g),
g

it then follows that

Fisgt)=M F(szt,g),
8

where

F(s,t,g) = F'(s,t, g) — det{I — sV (g)) + 1

or

F(s,t) =1+ M det(I — sV (g))

o ey I

It does not appear at present that Eq. (17) can be simpli-
fied further. As a check set s = 0 in Eq. (17), leaving

F(0t)= Ag{ exp(g:1 tr(LD—(g-)—l))

i

=M exp(— trIn(I — D (g)))

=M det(I —tD(g))~},
4

which one recognizes as the expression for the simple Molien
function.?

Equation (17) still is not entirely satisfactory for general
calculations. However, it is useful in finding particular terms
of arbitrary order m and n. This is so particularly if one uses
computer algebra to perform the expansion. Indeed, for
most representations of a space group G of interest, there are
afinitenumber of D (g)and V' (g)and one canreadily find F s,z )
to any desired order in s,z.

As an example, for the FI" ;- representation of R 3¢ (no-
tation is that of Ref. 8)
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Fist)=14+t31+45% +95* + 1655+ .. )
+t3s+ 105 4+ 425° + .- )
+ 142 + 145 4+ 103s* + . . )
+133s+ 505 +- . )

+t6(3+3132+...)+...,
where the computer algebra MACSYMA® has been em-
ployed.

As an example of the application of Eq. (17) to an infi-
nite group, apply it to the faithful, or / = 1, representation of
SO(3). The calculation is greatly simplified by noting that
F(s,t, g) is a class function, since it involves only similarity
invariant traces and determinants. Then the sum over g re-
duces to an integral over the rotation angle, with an appro-
priate weighting factor. The result is

Flst)=14(145+22 42425 4. )2

1445 J. Math. Phys., Vol. 26, No. 7, July 1985

+E+C+5 P (s + 657t
+(s+...)15+(1+...)t6+..._

Thus, for example, this representation has a Lifshitz invar-
iant, i.e., c;, = 1.
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