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remain virtually unaltered as ¢ — 0, although the quiescent intervals (e,
= () become larger. This is in agreement with the bound of the ‘*mean
value™ of |e;| given in [9], which is small if ¢ is small.

Hence, we note that, contrary to what can be predicted from the
residual set established in [3], [4], in general, |le] is not ultimately of
order ¢'? as in the simple example of Section III (the two nontrivial
equilibria were stable). A possible missing condition in the analysis of [3],
[4] seems to be the “‘persistent excitation’’ requirement.

Indeed, bursts disappear when a rich input is introduced in the
simulated examples. This is in agreement with the points raised in [5]
about the effects of persistent (or rich) excitation. However, more is
needed besides richness. The signal must also have a sufficient ‘‘level””
[8] in terms of amplitude; otherwise bursts remain. We have observed that
with a sufficiently rich and strong excitation the error does not tend to
zero as in the case of ¢ = 0, but is ultimately bounded by a value that
decreases to zero as ¢ — 0. This indicates that, in order to guarantee a
small residual error when a ¢-modification is used, one should consider
the input signal richness and ‘‘level.”

If a persistent excitation is not available for a particular system (e.g, in
regulation problems), it can be shown that a ‘‘switching”’ o-factor [10] (¢
= go if |8 > M > ||6%|; ¢ = O otherwise, where 6* is the exact
matching gain vector) leads to zero residual error in the ideal case. Yet,
this property is not known to be robust in the sense that small
perturbations would lead to an asymptotically small output error, except
in the mean value sense [9]. Thus, although all signals in the system may
remain uniformly bounded, bursting phenomena cannot be excluded in the
presence of perturbations, however small.

VI. CONCLUSION

In this paper we have shown that a continuous-time adaptive system can
exhibit bursting phenomena when a ¢-modification is introduced in the
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adaptation law and the system operates in regulation mode. As a
consequence, some results presented in recent papers should be revised.

Through the analysis of the system equilibria, bursting phenomena
were inferred and confirmed by simulation. Persistent excitation with a
sufficient level is pointed out as a means for eliminating bursts and for
obtaining small residual errors.

APPENDIX
STABILITY OF NONTRIVIAL EQUILIBRIA

Let ¢y, d;, and dy denote the nonnull elements of (4.7) in proper
sequence. The system Aé¢ = [A — bcﬂg W] Ae with 6, given by (4.7)
corresponds to the following input-output equations: L(pyu; = —cu;
L(puy = —dys us = ~doys u = uy + uy + u3; N(p)u = D(p)y,
where p = d/dr; L{s) is the monic characteristic polynomial of A, and
G{p) = N(p)/D(p) is the plant transfer operator. From these equations
one has NL(d, + dpl)u; = —ci(dy + dol)Dy and D(c, + L)Lu, =
c(d; + doL)Dy. The characteristic polynomial of 4 — b§TW is thus
given by

P(s)=L(sH{N(s)di + doL(5)] + D(s)lc, + L(s)]}- (A.D)

Stability then follows from P(s).
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Simultaneous System Identification and Decision-
Directed Detection and Estimation of Jump
Inputs to Linear Systems

WYNN C. STIRLING

Abstract—A decision-directed approach is presented for analyzing
linear systems with unknown jump inputs. The system model parameters
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are estimated using a Kalman filter, and an empirical Bayes detection
procedure is introduced to set the detector parameters, resulting in a
decision-directed generalized likelihood ratio test coupled with recursive
system parameter estimation. Monte Carlo results are presented to
validate the performance of the algorithm.

1. INTRODUCTION

This correspondence concerns the problem of estimating the model
parameters of a linear system subjected to jump inputs. Standard system
identification procedures are adequate when the input consists of zero-
mean independent variates, but may yield biased estimates when these
assumptions do not hold. Also, it is desirable to estimate the jump
component of the input as well as to identify the system parameters. We
address the problem of simultaneously estimating the system model
parameters and detecting the jump inputs when the rate and amplitude of
the jump process is unknown and possibly time-varying.

This study will be limited 1o discrete-time systems, and attention will be
restricted to signal models of the form

0,-1=0,
}7r=¢,7.01+jr+ur ()}

where fort = 0,1, ---. 8, = 0 = [a,, -, a,] T is a vector of unknown
signal model parameters, ¢, is vector function of past observations (we
shall take ¢, = [~¥,_1, ***, —¥-,]17, resulting in an autoregressive
model for the process { »}), {v} is a white noise process of variance
r(f), and the jump process j, = cn, is a marked point process where cis a
random variable and {#,} is a discrete-time point process (DTPP). The
estimation/detection problem associated with the above signal model is to
estimate the model coefficient vector 8, detect the jumps (i.e., when n, =
1), and estimate the jump amplitude, c.

II. PROBLEM FORMULATION

We take a Bayesian approach to the parameter estimation problem, and
assume that @ is a random variable with @ priori mean and covariance 8,
and Py, respectively. In the absence of jump inputs the Kalman filter
provides an estimate for  of the form

91 = 91— 1+ Pr¢ler (2)
where €, = y, — ¢!, is the innovations of y, with

PP,

P=P_ -
T r O+ TP,

&)}

and initial conditions f and Py. It is well known that this estimator is
consistent if the driving process is white [1], in which case, d, is the
conditional expectation of @ given the data yy, * -, ¥,-, and P, is the
conditional variance of the estimation error, §;, — 6.

For the present problem, however, the driving process contains a jump
component which may be neither zero-mean nor independent, and the
Kalman filter results will not, in general, yield consistent estimates of the
state. In [2], a general nonlinear minimum-mean-square-error estimator is
derived based on the Girsanov transformation, and a solution is presented
for Gauss-Bernoulli jumps. This approach, however, requires a growing
number of estimators to account for all possible hypotheses.

We propose an alternative solution incorporating an empirical Bayes
decision rule to detect the occurrence of jumps. We assume that the point
process 1, is governed by a random rate, N,. The empirical Bayes
procedure [3] uses the observations to obtain an estimate the prior
distribution which, in this case, corresponds to estimating A,. To
formalize this problem, define

)\,=P{n,=1|0{0, js’ Uss SS[}}’

where of -} denotes the o-field generated by the arguments. We shall

assume explicitly that A, may be time-varying. If A, and ¢ were known, the
Bayes decision rule would result in a likelihood ratio test at each time ¢ of
the form

_ 1 1f (1—)\,)fb(€,)<)\,f1(€,|C)
d(en Ny €)= {0 otherwise ’

where f; and f) are the probability density functions of e, under the
hypotheses H,, (no jump occurred at time #) and H, (a jump occurred at
time 7). The density /) must be parameterized by the amplitude ¢ of the
jump. It should be noted, when jumps are possible. that ¢, may no longer
be treated as an innovations process since, even if A, and ¢ are known
exactly, there is a nonzero probability of detection error. Thus,
consistency of the estimates cannot be guaranteed with a detection
approach.

Unfortunately, neither A, nor ¢ is known a priori. Consequently, we
adopt a decision-directed empirical Bayes approach to estimate them,
resulting in a generalized likelihood ratio test of the form (e, 7\,| -1
é_,) where A, ,_, and & _, are estimates of A, and ¢ given observations of
Y, s =t — 1. Let

N.=d(e;, Mj—1s E-4)

denote the detected discrete-time point-process, and modify (2) to
become

91201~1 +P,de,

where ¢, = e, — &_ | IN,.

Amplitude Estimation

The decision-directed rule for estimating the jump amplitude is very
simple: compute the conditional mean of ¢ given the detected jump history
{MN,, +++, N,}. Hence,

&4

I
3 en

—s=1

- 13

3N

s=1

C)]

When no detections are made (i.e., TN, = 0)& must be set to some
appropriate & priori value. It is evident that the estimate for ¢ is unbiased
if there are no false alarms. Analysis of this bias error is difficult,
however, since the problem is embedded in the larger problem of system
mode] parameter estimation and jump detection.

Rate Estimation

The detected DTPP, N,, represents the detector output; it is the rate of
this process that is to be estimated and used to approximate the rate of j;.
The relationship between m,, the rate of N,, and A,, the rate of #,, is
discussed in [4] for constant A, where it is shown that the relative
frequency estimate of , either undergoes a runaway (i.e., converges to 0
or 1) or converges to a steady-state value that is close to A. Bounds are
obtained for the probability of runaway as a function of the signal-to-noise
ratio, and it is shown that, even for moderate-to-low signal-to-noise
ratios, the probability of runaway is extremely low. In [5]. a bias-
removing transformation is introduced to ensure convergence of =, to the
true value of the prior.

A significant generalization from a constant (or even slowly varying)
prior is to model the prior as a finite-state Markov chain [7], [6] with state
vector p = [p1, ~* -, oml ', wWhere p; < < pm, with transition
probabilities

gs(1)=Pr {m=p;|7,_1=p;}

with initial distribution @ = [ay, -, an,] T, where o; = Pr{my = p;}.
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With such a model, runaway can be eliminated by choice of p, and the
dynamical behavior of the prior can be modeled by the transition matrix Q
= {g;}. Following Segall [7], define the vector x, = [x,(?), - - -, X (D17
by

_ 1, if m,=p;
xi()= { 0, otherwise

Thus, m, = pTx,. The vector x, can be viewed as the state vector of a
system obeying dynamics and observation equations of the form

=1,2, -, m

-x1+l=Q,Tx1+u1 (5)
Ni=pTx+ W )

The processes {#,} and {w,} are Martingale difference (MD) sequences
with respect to the family of o-fields { ®,} where ®, = o{Ny, -+, N,,
Xg, ***, X¢+1}. Equation (6) represents the Doob decomposition of {¥,}
with respect to {®,}, which family of o-fields is unobservable. The
estimation problem, consequently, consists of obtaining the Doob
decomposition with respect to a family of o-fields that is observable,
namely {%,} where §, = o{N,, -, N,}.

For the case where the events x;( + 1) = lfori =1, ---, mand N,
= 1 are conditionally independent given x,, the one-step prediction of
X, given the o-field &, = o{N,, - -+, N,} is

. a 2 2T
dlag (xI!r—l)_xl’l'lxlU—l
P R = (pTRy o )?

re] — T T
xl+l|1—Q,xllr—l+Q, Urli-1

where v, ,_y = (¥, — p7#&;,_1) is the innovations process of N, and diag
(x) denotes a diagonal matrix composed of the elements of the vector x.
Thus, N, = pT&),_1 + v,y is the Doob decomposition of {N,} with
respect to {F,}. The conditional estimation error covariance for %,.,, =
X,y — %, given by

— % &
Zop=E 'x1+l|1xT

r+|,1=dlag (Erer:) =R 2L

11!

. ) T . ..
which follows from the fact that x,x, = diag (x,). The conditional
expectation of the rate is thus 7.y, = p7%,.,, and the conditional
variance of the estimation error #,, 11, = T — 41018

Var (7F1+1|:|gz)=E§’PTf:-1|:f;r+,nP=PT diag (P)fHI'I_("‘"HHr)z-

The philosophy of the decision-directed empirical Bayes approach is to
use 1, as an approximation for X\, i.e., the rate estimate used for the
generalized likelihood ratio test is X,|,_1 = @, -, which corresponds to
the one-step prediction of the rate at time 7, given data up to time 7 — 1.
Bias in the estimate may be removed by appropriate transformations [5],
but is not considered a critical factor in the current analysis and is ignored.

III. MONTE CARLO SIMULATIONS

The interaction between detection and estimation makes performance
analysis of the above algorithm extremely complex. The difficulty is due
not only to the dependencies present in the adaptive detector, but also to
the non-Gaussian dependencies introduced by the two-way coupling
between the detector and estimator which are virtually impossible to treat
since the multivariate distributions are not available in analytic form. As
an alternative to theoretical performance analysis, therefore, selected
Monte Carlo simulation results are provided to indicate performance of
the algorithm.

For the simulations described below, a Gauss-Bernoulli mixed process
consisting of the sum of a unit-variance white Gaussian noise and a
constant-rate constant-amplitade DTPP drives a fourth-order autoregres-
sive model, with @ = [—1.3636, —1.4401, —1.0919, 0.8353] 7. A nine-
state Markov chain model was applied to this estimation problem, with

Authorized licensed use limited to: Brigham Young University. Downloaded on January 28, 2009 at 10:26 from IEEE Xplore. Restrictions apply.

states and transition matrix given as

p=[0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5]7

1-v Y 0 0 0
Yoo, Y
2 T3
¥
0 A _
2 v
¥
= 0 i
Q 2
¥
5 0
¥
0 1- J
T2
¥
0 0 z -
[ 0 A

with y = 0.002. Four different Monte Carlo series were performed with
different jump parameters as indicated in Table 1.

Results are provided in Tables II and III. Table II displays the sample
mean, &, and sample standard deviation, &, of the model parameter
estimation errors. This table also provides an approximation to the
*‘ideal’’ standard deviation, denoted 6,4, consisting of the conditional
standard deviation derived from (3) for a representative trial adjusted for
detection errors by invoking the assumption that the detection errors are
zero-mean and independent. The resulting conditional covariance matrix
is

P =Pl +*APup+ (1 -N)Pras] Q]

where Pup and Pry denote the theoretical probabilities of missed
detection and false alarm, respectively, assuming no model parameter
estimation errors and known values of ¢ and A. It is evident from Table IT
that there is no appreciable bias on the parameter estimates; compared
with the sample standard deviations, all sample mean errors lie within one
standard deviation of zero. The sample standard deviations, however, are
somewhat larger than the *‘ideal’’ standard deviations computed via (7),
indicating that the ideal values may be optimistic, and the assumptions
used to generate this covariance represent a significant oversimplification.

Table III displays the sample means and standard deviations of the
amplitude and rate estimation errors, denoted by ¢ and X, and 4, and ay.
respectively. This table also provides the empirical probabilities of missed
detection (Pyp) and false alarm (Pr,), along with the corresponding
theoretical values. It is evident that the estimation errors all lie within one
sample standard deviation of zero, indicating consistent performance. Not
surprisingly, the higher the rate, the more precise the estimates, since, for
the low-rate cases, the missed detection rate is extremely high, resulting
in few correct decisions and, hence, few values to process in the decision-
directed estimator. For the high-rate cases, however, considerable
improvement in performance is evident.

The joint estimation-detection procedure described above appears to
work well, with increased precision obtained as the rate-amplitude
product is increased. In no case do the estimates diverge. nor is there a
significant bias in the estimates. In fact, a self-stabilizing effect is
observed: when the rate-amplitude product is low, the detection errors are
large, but the effect is small on the model parameter estimates, since the
mean value of the process is very nearly zero, and when the rate-
amplitude product is large, the detection errors are small. and the decision
directed detector/estimator works well. resulting in unbiased estimates of
the model parameters.
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TABLE 1
MONTE CARLO INPUTS

Case 1 2 3 4

Amplitude 2.0 4.0 4.0 6.0

Rate 0.02 0.02 0.2 0.2
TABLE I

MONTE CARLO STATISTICS FOR MODEL PARAMETER ESTIMATES

Case 1 2 3 4

a —0.008 —-0.01 -0.027 -0.019
a 0.012 0.013 0.040 0.027
a3 0.005 —0.007 —0.024 -0.016
dy 0.002 —0.002 0.004 0.001
Gqy 0.019 0.020 0.031 0.021
Gy 0.036 0.032 0.046 0.031
Gay 0.025 0.024 0.029 0.020
Gay 0.014 0.014 0.029 0.007
Gz 0.018 0.017 0.011 0.007
Gay 0.030 0.028 0.018 0.012
G 0.030 0.029 0.018 0.008
Gay 0.018 0.017 0.011 0.007

TABLE III

MONTE CARLO STATISTICS FOR JUMP PARAMETER ESTIMATES

Case 1 2 3 4

é —0.140 —0.328 —0.057 0.052
Py 0.016 0.003 0.006 0.006
&, 0.936 0.390 0.163 0.087
é 0.016 0.010 0.019 0.014
Pra 0.0015 0.001 0.008 0.0005
Pup 0.929 0.214 0.076 0.007
Pr. 0.0016 0.001 0.009 0.0006
Pup 0.828 0.152 0.049 0.003

IV. CONCLUSIONS

A joint system model parameter estimation-jump input detection and
estimation procedure has been presented. In order to apply this joint
estimator-detector, the structure of the jump process must be known, but
the parameters of the jump (i.e., the amplitude and rate) may be
estimated. Analysis of performance of this algorithm is difficult, since
there is two-way coupling between the decision-directed jump input
detector/estimator and the system model parameter estimator. Conse-
quently, Monte Carlo studies have been performed to assess empirically
the performance. These simulation studies indicate that the algorithm
performs well, yielding parameter estimates with negligible bias and
satisfactory detection performance. Furthermore, a self-stabilizing effect
is observed, indicating that the problem of simultaneously identifying
system model parameters and detecting and estimating jump inputs is
robust.
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Some Asymptotic Properties of Multivariable Models
Identified by Equation Error Techniques

PAUL VAN DEN HOF AnND PETER JANSSEN

Abstract—Some interesting properties are derived for simple equation
error identification techniques—least squares and basic instrumental
variable methods—applied to a class of linear, time-invariant, time-
discrete multivariable models. The system at hand is not supposed to be
contained in the chosen model set. Assuming that the input is umnit
variance white noise, it is shown that the Markov parameters of the
system are estimated asymptotically unbiased over a certain interval
around ¢ = 0.

1. INTRODUCTION

In system identification literature, there is a growing interest in
considering situations where the process at hand is not necessarily
contained in the chosen model set. This interest is motivated by the fact
that in many practical situations of system identification, a model will be
required that is of restricted complexity, approximating the essential
characteristics of the (possibly very complex) process, rather than a very
sophisticated model that exactly models the process behavior. The way in
which the original process is approximated by the model now is dictated
by the applied identification method, and the chosen model set. Equation
error techniques are rather popular, mainly due to their computational
simplicity. Since, in many situations, the performance of an identified
model is judged upon its ability to simulate the process under study, it is
important to analyze the simulation behavior of an approximate model
obtained by equation error techniques. By considering the Markov
parameters of the identified model, we will focus on properties in the time
domain. For an analysis in the frequency domain, see [1].
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