Brigham Young University

BYU ScholarsArchive

Faculty Publications

1987-07-01

Can Programmers Reuse Software?

Scott N. Woodfield
woodfield@cs.byu.edu

David W. Embley

Del T. Scott

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

6‘ Part of the Computer Sciences Commons

Original Publication Citation
Woodfield, S. N., D. W. Embley, and D. T. Scott. "Can Programmers Reuse Software?" Software,
IEEE 4.4 (1987): 52-9.

BYU ScholarsArchive Citation

Woodfield, Scott N.; Embley, David W.; and Scott, Del T., "Can Programmers Reuse Software?" (1987).
Faculty Publications. 746.

https://scholarsarchive.byu.edu/facpub/746

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more
information, please contact ellen_amatangelo@byu.edu.


http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/746?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

0740-7459/87/0700/0052,/301.00 ©1987 IEEE

Can Programmers
Reuse Software?

An experiment asked
programmers
untrained in reuse to
evaluate component
reusability. They did
poorly. Are reusabil-
ity’s promises hollow?
Or are there some
answers?

Scott N. Woodfield, David W. Embley,
and Del T. Scott
Brigham Young University

oftware reusability has long held
S out the unrealized promise of

increased productivity. Researchers
have predicted the development of certi-
fied software components available for
easy incorporation in new systems, and
they have presupposed that by the 1990s
many software engineers would be more
like computer designers determining gross
system structure and connections and rely-
ing heavily on prefabricated software com-
ponents.' Indeed, where software reuse
has been encouraged and practiced,
managers report satisfaction and suc-
cess,” and as much as a 35- to 85-percent
improvement in productivity can be
realized.’

Despite the promise and flurry of
activity, software is rarely reused in prac-
tice. Tracz identifies and discusses several
technical, organizational, political, and
psychological barriers to software reuse.*
He observed that the barriers are not insur-
mountable, but to surmount them

¢ useful and certified components must
be made available,

¢ tools and methods to support both cre-
ation and use of component libraries must
be developed, and

* money, time, and personnel must be
expended to develop software reuse sys-
tems and train users to become proficient
with them.

IEEE SOFTWARE

Authorized licensed use limited to: Brigham Young University. Downloaded on January 28, 2009 at 10:17 from IEEE Xplore. Restrictions apply.



From the perspective of a software
production staff, profitability depends
largely on component availability and on
easily locating components, assessing their
applicability, and incorporating them into
the software system being developed.
Because we can do little initially about
component availability, and because we
consider component incorporation an
important issue — but one that is mute
unless relevant components can be found
and their applicability properly assessed*’
— we focus on these issues. Locating soft-
ware components and assessing their
applicability are both based on the same
issue: They both compare a specification
of what is required with a candidate com-
ponent in a software-reuse library.

To better understand the process of
comparing specified and required compo-
nents, we conducted an experiment to test
if programmers could accurately assess
component reusability. We gave 51 soft-
ware developers 21 treatments in which
they were asked whether they would reuse
an existing abstract data type to meet an
abstract-data-type specification.

The results show that there is consider-
able confusion. Software-development
personnel untrained in reuse cannot assess
the worth of reusing a candidate abstract
data type to satisfy the implementation
requirements of a specified abstract data
type. Their decisions were also influenced
by some unimportant features — and were
not influenced by other important ones.

Focus and hypotheses

We restricted our investigation to librar-
ies whose software components are
abstract data types and assumed an envi-
ronment where programmers do object-
oriented design and development. We
chose to investigate abstract-data-type
libraries rather than function libraries
because we believe that more resources can
be saved per unit resource invested when
searching for and reusing an abstract data
type than when searching for and reusing
a single function.>¢

Researchers exploring an unknown area
in computer science often rely exclusively
on introspection when trying to study
issues and answer important questions
about human-computer interaction.
Unfortunately, as Moran said, a

July 1987

‘‘designer, relying on an egocentric, ‘folk
psychology’ has no way to gauge his intu-
itions; and intuitions about complex psy-
chological behavior (even about one’s own
behavior) can be remarkably deceptive.’”’

To avoid these pitfalls, we should gather
at least some empirical evidence to help
guide the design. Although a single exper-
iment cannot provide all the information
needed, much can be gleaned from a well-
designed experiment, especially if the
experiment is conducted early in the design
stage when, because of folk psychology, it
is easy to start building a system modeled
on invalid assumptions.

We investigated
abstract-data-type
libraries rather than
function libraries
because abstract data
types can save more
resources per unit.

In our experiment we posed four
questions:

1. Given an abstract-data-type require-
ments specification, do subjects properly
assess the worth of reusing a candidate
abstract data type?

Because the people tested were
untrained in software reuse and were given
no guidelines or assistance in assessing the
worth of reusing a component, we
hypothesized that they would be unable to
appropriately compare a specification
with a candidate software component. We
also hypothesized that they would be
inconsistent among themselves in their
assessments. The responses to this ques-
tion should establish the degree of need for
education and software tools.

2. What features best explain how sub-
jects assess the worth of reusing a candi-
date abstract data type for a given
abstract-data-type requirements specifi-
cation?

Features we expected to be of interest
were missing domain specifications and
operations, extraneous domain specifica-
tions and operations, implied modifica-

tions, and size. If the subjects overlooked
important features, that would show that
users must be trained to consider these
overlooked features and tools must be
designed to bring these features to the
users’ attention. If the subjects based deci-
sions on questionable features, that would
show what features users should be
warned to ignore.

3. Based on performance and demo-
graphics, do distinguishable groups of
subjects exist?

Because the subjects all have about the
same expertise in software design and
development, we hypothesized that no dis-
tinguishable groups should exist. If distin-
guishable groups did exist, we must
determine whether different sets of
instructional material and software tools
should be developed to meet the differing
needs.

4. Can a threshold value be predicted
that discriminates between acceptance and
rejection of a candidate abstract data type
for a given abstract-data-type require-
ments specification?

We hypothesized that a threshold value
exists and that training, experience, and
the availability and use of software tools
may alter the threshold value. A threshold
and the knowledge of its value, along with
a proper understanding of the important
features, would give us a starting point for
developing a system that could automati-
cally assess the worth of reusing a candi-
date component for a specification.
Automatic assessment would give us a way
to measure algorithmically how closely a
candidate component matches a specifica-
tion, thus giving us an initial means of
automatically finding candidate compo-
nents in a library.

The experiment

To test these hypotheses, we conducted
an exploratory experiment that simulated
an environment where someone knowl-
edgeable about abstract data types worked
in a software design and development pro-
ject that required abstract data types. We
assumed that if time and effort could be
saved, the person would rather reuse an
abstract data type than create one from
scratch. Thus, the basic measurement in
the experiment was the person’s percep-
tion of time saved. By varying the circum-

53

Authorized licensed use limited to: Brigham Young University. Downloaded on January 28, 2009 at 10:17 from IEEE Xplore. Restrictions apply.



stances under which a person might decide
to reuse a candidate abstract data type and
by measuring how much time a person
thought might be saved, we hoped to
answer our questions.

The subjects. Fifty-one people partici-
pated in the experiment. Twenty-five were
from three local industries (Hercules,
Word Perfect, and Novell). The other 26
were senior and graduate students taking

various software engineering classes at
Brigham Young University. All the sub-
jects were familiar with abstract data types
and had created programs using the
concept.

Although the subjects were not picked
randomly from the general population of
knowledgeable abstract-data-type users,
they are representative of both industrial
and academic environments and have a
wide range of practical experience.

SPECIFICATION 9
room addition

Components of room addition:
height
length
width

Operations on room addition:

COMPUTE_VOLUME_OF(room) - > volume
calculate the total air space of the room
ESTIMATE_CARPET_COSTS(room,price_per_yard) - > dollars
estimate the cost of carpet for the room given the cost per yard

DATA ABTRACTION 9
room addition

Components of room addition:
height
length
width

Operations on room addition:
COMPUTE_VOLUME_OF(room) -> volume
calculate the total air space of the room
ESTIMATE_AIR_CONDITIONING_NEEDS(room,climate)
-> air_conditioning_capacity
estimate the number of tons of air conditioning needed to cool room in summer

Would you reuse this data abstraction to meet the given épecification? (circle one) YES NO

If YES, what percent of the estimated creation time do you think you will spend
modifying the code (circle one)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 1. Sample treatment.

54

Experimental design. We designed an
exploratory experiment to investigate the
influence of four factors on subjects’ per-
ceptions of time saved:

e the percent of the specified abstract
data type’s domain definition that must be
added to the candidate abstract data type,

e the percent of the candidate abstract
data type’s domain definition that could
be deleted,

e the percent of the specified abstract
data type’s operations that must be added,
and

¢ the percent of the candidate abstract
data type’s operations that could be
deleted.

In an exploratory experiment the num-
ber of levels should be minimized, and
their values should be chosen to create a
distribution of responses about each fac-
tor level. The results of a pilot study indi-
cated that there would be a good
distribution of results at about the
20-percent and 50-percent addition/dele-
tion levels.

We designed 16 treatments to cover the
four factors; each factor had two levels.
To make our experiment more representa-
tive of reality, we added four treatment
combinations. These treatments held the
addition/deletion levels for domains at
zero and provided combinations of the
addition/deletion levels for the two oper-
ation factors. To investigate nonlinear-
ity, we added a center point. Thus, the ex-
periment contained 21 treatments
Q'+4+1).

Our study shared a problem common to
experimental designs in social science and
clinical studies: the need to control sub-
jects’ differences. To minimize this prob-
lem, each person should take all the
treatments. Because subjects’ responses
may be affected by treatment order, each
subject received an instrument containing
a different randomized sequence of
treatments.

Instrument. Figure 1 shows part of
treatment 9. It consists of a specified
abstract data type (Specification 9 in the
figure) and a candidate abstract data type
(Data Abstraction 9), both given in the
same format. The first part of both the
specification and data abstraction was a

IEEE SOFTWARE

Authorized licensed use limited to: Brigham Young University. Downloaded on January 28, 2009 at 10:17 from IEEE Xplore. Restrictions apply.



brief domain definition containing a list of
components of the abstract data type’s
domain. The second part of both con-
tained a list of operations defined at a very
high level by giving only input and output
parameters and brief English descriptions.
In all but a few cases each instance fit on
one page.

As the figure shows, the subjects were
asked two questions for each treatment.
First, they were asked if they would reuse
the candidate abstract data type to create
an abstract data type for the specification.
Second, if they answered yes, they were
asked to estimate the amount of time it
would take to modify the candidate
abstract data type to meet the specified
abstract data type. This response was to be
a percent of the estimated time it would
take to create the specified abstract data
type from scratch.

Measures. The experiment yielded two
types of measures: the subject’s responses
and quantitative measures on the instru-
ment itself. With 51 subjects, 21 treat-
ments, and two questions, there were 2142
data values for responses.

To fill out the subject-response table
completely, a 100-percent value was auto-
matically recorded for all negative
responses. The 100-percent value for a
negative response means that if an abstract
data type is written from scratch, it
requires all (100 percent) of the creation
time to produce the abstract data type.

A 100-percent response for yes is also
possible and means that the person
believes it would take the same amount of
time either way and that the person chose
to reuse the candidate abstract data type.

The person may also believe that it
might actually take longer to create the
specified abstract data type by reusing the
candidate abstract data type, but in this
case the response should simply be no. We
did not request percents for negative
responses because we thought that this
might confuse many of the subjects and
because it is not clear how much above 100
percent people might estimate.

There are several quantitative measures
on the instrument itself. In addition to the
designed-in percentage of additions and
deletions, the amount of modification
necessary is also important — but it is eas-

July 1987

ily overlooked. In general, changes to the
domain constituents often imply changes
to operations. Although we did not design
specific amounts of modification into the
instrument, we could measure the amount
of modification induced.

We were also interested in the absolute
number of operators to be added. We
thought that people might consider dele-
tions and domain additions to be insignifi-
cant because these changes are relatively
simple compared to adding a new
operation.

We also thought that the treatment size
might influence people. The treatment size

Effort estimation has
long been a problem in
software engineering.
Most managers use
lines-of-code estimates.
We used software-
science estimates
because our projects
were small.

varied from one domain constituent to 10
and from four operations to 32.

Because one of our major objectives was
to determine whether people could
properly assess the worth of reusing a can-
didate abstract data type, we needed an
estimate of the creation time percentage
required to reuse each candidate abstract
data type to produce the specified abstract
data type. The cost of having each person
write the necessary code for all abstract
data types in the experiment was estimated
to be more than 100 hours per person
(much too expensive).

Effort estimation has long been a prob-
lem in software engineering. When
required, software-production managers
have relied most often on lines-of-code
estimates.® Software science is another
technique that can be used.’ Although
software-science estimations appear to be
unreliable when applied to large projects,
empirical evidence shows that for rela-
tively small functions — like those opera-
tors in the treatments of our experiment —
this technique is acceptable.

The lines-of-code technique is based on

an estimation formula of the form time =
a(LOC)’. Basili cites references showing
that for several different studies b is close
to one and that for small functions it can
be taken to be one.! We counted lines of
code for each operation to be added or
modified after having written it in pseu-
docode.

The software-science technique assumes
that the time it would take to implement
the function can be estimated from a func-
tion specification and knowledge of the
implementation language. The formula is
time = ((V*?/A%)/S, where 1 is a
language-level constant, S is the Stroud
constant, and V* = (2+n,%logy(2 + %)
is the potential volume and depends only
on n,*, which is the number of input/out-
put operands for the operation. Once the
specification for an operation is given, the
number of input/output operands is eas-
ily obtained.

Both the software-science estimations
and the lines-of-code estimations are sen-
sitive to their multiplicative constants, A,
S, and a. For our analysis, these constants
do not affect the results because the con-
stants cancel out when the ratio of esti-
mated efforts is computed.

We obtained the lines-of-code and
software-science metrics for our treat-
ments by computing an abstract-data-type
modification effort with one of the metrics
and dividing by the estimated creation
effort derived with the same metric. There
were two types of abstract-data-type mod-
ification efforts calculated. One was based
on the effort needed to create the new
operations to be added to an abstract data
type, and the other (and more sophisti-
cated) effort estimator also included the
effort needed to modify operations. For
our purposes the effort needed to modify
an operation was assumed to be equal to
the creation effort raised to the % power.'

We used both lines-of-code and
software-science metrics because one or
both may be imperfect. To determine if the
two measures were consistent, we com-
puted the means, standard deviations,
correlation coefficient, and coefficient of
determination for all treatments. The
software-science mean and standard devi-
ation are 46.27 and 29.06. The lines-of-
code mean and standard deviation are
46.59 and 23.89. The correlation coeffi-

55

Authorized licensed use limited to: Brigham Young University. Downloaded on January 28, 2009 at 10:17 from IEEE Xplore. Restrictions apply.



cient is 0.91 and the correlation of deter-
mination is 0.83. We also considered the
differences between pairs of lines-of-code
and software-science estimators and found
that the mean difference is —0.32 percent
and that the standard deviation of the
differences is 12.41.

Statistically, we cannot show that the
means or variances are different. From
this evidence and from personal evalua-
tion, we are confident that the estimators,
when used together, reasonably predict
how much effort is required to modify an
abstract data type for reuse.

Results

After testing our subjects and determin-
ing our metrics, we found the following
results.

Worth assessment. Our first working
hypothesis was that effort estimations for
modifying a candidate abstract data type
to satisfy the requirements of a specified
abstract data type would be close to the
actual effort needed to modify the candi-
date abstract data type. Because determin-
ing the actual amount of effort was
beyond our capability to measyre
accurately, we decided to estimate the
actual modification effort associated with
each treatment by the average of the
software-science and lines-of-code
measures.

Our hypothesis thus became that effort
estimations for modifying a candidate
abstract data type to satisfy the require-
ments of a specified abstract data type
would be close to the software-
science/lines-of-code estimate.

One method of measuring closeness is to
compare the mean of an effort estimation
with the expected value derived from soft-
ware science/lines of code. Although this
let us determine if a person is close to the
average, it indicated nothing about
whether we could expect a person to be
close for a given situation. For example,
a person might give wild estimates, but the
person’s average might still be quite close
to the expected value derived from
software-science/lines-of-code measures.
We were interested not only in whether the
average was good but whether every esti-
mate was fairly accurate. Therefore, we
wanted not only the mean of the effort

56

estimations to be close to the expected
value for each treatment, but we also
wanted the variances of the estimates to be
small.

Initial observations indicated that the
people underestimated the amount of
effort needed to modify a candidate
abstract data type for reuse and that their
estimates varied highly. On average, the
people were 15.35 percent low and had a
standard deviation of 28.15.

Believing that people were generally low
and highly variant, we chose to test two
stronger hypotheses: (1) that at least one
person’s effort estimations over the 21
treatments is consistently close to the
software-science/lines-of-code estimates
and (2) that there exists at least one ques-
tion for which the 51 people consistently
give an effort estimation close to the
software-science/lines-of-code estimate.

Although size should not
have been a significant
factor, we found that it

influenced people
unnecessarily.

To test the two hypothesis, we used a
goodness-of-fit test based on the chi-
squared distribution,® y%. We let the a
level be 0.001, which means we will accept
a factor as being significant only if there
is a one-in-a-thousand chance we could be
wrong. We chose this a level, instead of the
usual 0.05, because of the study’s explor-
atory nature — we wanted to identify only
the large factors of practical importance.

We can reject the first hypothesis at a =
0.001 (X*=127 > xfo.999, 20=45.3) and
conclude that the best person’s estimates
are not consistently close to the software-
science/lines-of-code estimate. These
results imply that the best person (and
therefore all people) could not accurately
estimate the effort needed to modify a can-
didate abstract data type for reuse.

We can reject the second hypothesis a =
0.001 (X>=454 > x99, 50=86.7) and
conclude that the estimates were not con-
sistently close to the software-
science/lines-of-code estimate for the best
question. These results imply that for the

best question (and therefore for all ques-
tions) the people could not make accurate
estimates.

Significant factors. We applied analysis
of variance, covariance analysis, and
regression techniques to determine which
factors best explain the results. The factors
of interest were the effects of person varia-
bility, answering yes or no, question varia-
bility, treatment size as measured in
characters and entities, and different types
of effort estimation. We analyzed these
factors by constructing different models
and determining if the factors of the model
are statistically and practically significant.

The basic model includes factors for
person variability, for decisions about
whether to reuse the candidate abstract
data type, and for question variability.
The first two factors, person variability
and yes/no decisions, are nuisance factors,
factors of little interest that account for a
lot of the overall variability. If ignored,
they give a false representation of the
unexplained variability. Because each fac-
tor explains a certain percent of remaining
variance, their order is important, and
because we must account for any correla-
tion that the nuisance factors have with the
primary factors, the nuisance factors
should be put in the model first.

For the basic model, the question varia-
bility is the most important factor. We did
not consider percent of operation addition
and deletion, percent of subdomain addi-
tion and deletion, and other correlated
values individually because the question-
variability factor contains all this informa-
tion. Thus, we have an overall test to deter-
mine whether any of these individual
factors or combinations of these factors is
important.

The statistics here are based on an anal-
ysis of variance of the data. While not per-
fect, probability plots of the residuals
make us confident of the results produced
by the analysis of variance. Table 1 shows
the results for the basic model. This model
accounts for 74.4 percent of the variance.
Because the Fvalue for the questions fac-
tor (18.86) is greater than the F statistic
(2.27), we rejected the hypothesis that all
the questions are identical. Hence, some of
the individual factors — percent of oper-
ation addition and deletion, percent of

IEEE SOFTWARE

Authorized licensed use limited to: Brigham Young University. Downloaded on January 28, 2009 at 10:17 from IEEE Xplore. Restrictions apply.



subdomain addition and deletion, and
other correlated values — are significant.

We thought the size of a particular treat-
ment might cause people to change their
estimates of the abstract-data-type modi-
fication effort. But although the experi-
ment was designed so size should not have
been significant, we found that people
responded differently to treatments that
differed only in size.

We analyzed two types of size metrics:
entity size and character size. Entity size is
the number of subdomains and operations
in the specification and candidate abstract
data types. Character size is the number of
characters in the domain and operation
descriptions of the specification and can-
didate abstract data types.

We analyzed these two size metrics by
including them in the model as nuisance
factors; they were introduced as the third
and fourth factors in the model. Because
order is important, we ran two analyses.
The first analysis used character size as the
third factor and entity size as the fourth
factor. In the second run, the positions
were reversed. Tables 2 and 3 show the
results.

These results show that, regardless of
order, the number of entities in a treatment
is significant. Character size, when intro-
duced after entity size, is not significant,
even at the 0.1 a level (F=1.96). This
implies that entity size can explain charac-
ter size, but character size cannot account
for all the variance due to entity size. We
therefore concluded that size is a signifi-
cant factor and can be represented by the
number of entities in a treatment.

We then investigated how people meas-
ured effort to determine what factors are
best correlated with people’s effort estima-
tions. We had three hypotheses:

1. People used the absolute number of
subdomains and operations that must be
added, deleted, or modified to estimate
effort. We call this the absolute-entities
measure.

2. People measured the percent of sub-
domains and operations that needed to be
added, deleted, or modified. We call this
the relative-entities measure.

3. People estimated the true modifica-
tion effort in hours and divided by the esti-
mated creation effort. We call this the
true-effort-estimation measure. This last

Jul)(ut 987

Table 1.
Basic model results, «=0.001.

Factor % variance explained F statistic df F value
Subjects 12.1 9.44 50,988 1.75
Yes/no 52.6 2050.00 1,998 10.83
Questions 9.7 18.86 20,998 2.27
Table 2.
Effect of size, analysis 1, a =0.001.
Factor % variance explained F statistic df F value
Subjects 12.1 9.44 50,988 1.75
Yes/no 52.6 2049.95 1,998 10.83
Character size 3.6 35.62 4,998 4.62
Entity size 0.8 8.16 4,998 4.62
Question 5.2 16.89 12,998 2.74
Table 3.
Effect of size, analysis 2, « =0.001.
Factor % variance explained F statistic df Fvalue
Subjects 12.1 9.44 50,988 1.75
Yes/no 52.6 2049.95 1,998 10.83
Entity size 4.3 42.35 4,998 4.62
Character size 0.1 1.29 4,998 4.62
Question 5.2 16.89 12,998 2.74

measure is our lines-of-code/software-
science estimate.

To evaluate these three measures, we
made three analyses. Each analysis added
one of the measures as the fourth factor to
the model (after subjects, yes/no, and
entity size); the other two effort measures
were not included. The questions factor
was retained and became the fifth factor,
letting us determine if the new factor
explained some of the question variability.

Table 4 shows the results. Unlike the
previous tables, Table 4 summarizes the
three analyses. Each row in the table shows
only the results for the fourth factor in
each of the five-factor models. These
results show that all three measures are sig-
nificant but that the relative-entities mea-
sure is best. Further analysis showed that
the relative-entities measure accounts for
most of the variability of the absolute-
entities and true-effort-estimation
measures.

We believe that people evaluated the
effort to modify an abstract data type
primarily as the ratio of affected entities
to total specified entities. Unfortunately,
the true-effort-estimation — which we

believe they should have used — seemed to
be the least important.

Having concluded that the relative-
entities measure is important, we then
decomposed it into its five components:
subdomain addition, subdomain deletion,
operation addition, operation deletion,
and operation modification. These are the
factors we originally wanted to investigate.

We examined different orderings of the
factors in the model and observed that they
all lead to the same conclusions. Table §
presents the results for one of the order-
ings. These results show that the most
influential factor was the percent of oper-
ations that must be added to a candidate
abstract data type to make it meet a speci-
fication. All other factors are unim-
portant.

Although we expected the addition and
deletion of subdomains to be overlooked,
we had hoped that the percent of opera-
tions to be modified would have been sig-
nificant.

Distinguishable groups. To determine if
subject groupings affected performance,
we analyzed the demographics using clus-

57

orized licensed use limited to: Brigham Young University. Downloaded on January 28, 2009 at 10:17 from IEEE Xplore. Restrictions apply.




Table 4.

Comparison of three effort estimators, o =0.001.

% total variance

% question variance

Factor explained explained F statistic fd Fvalue
Absolute entities 6.3 65.0 61.32 4,998 4.62
Relative entities 7.3 75.5 71.22 4,998 4.62
True effort estimation 4.9 50.6 95.36 2,998 6.91
Table 5.
Analysis of relative-entities measure, o =0.001.
% total variance % question variance
Factor explained explained F statistic fd Fvalue
Subject 12.10 — 9.44 50,998 1.75
Yes/no 52.60 — 2049.95 1,998 10.83
Entity size 4.30 — 42.35 4,998 4.62
Subdomains added 0.02 0.40 0.90 1,998 10.83
Subdomains deleted 0.00 confounded
Operations added 4.00 75.50 156.88 1,998 10.83
Operations deleted 0.05 0.99 2.05 1,998 10.83
Operations modified 0.001 0.02 0.06 1,998 10.83
Questions 1.20 23.10 3.99 12,998 2.74

ter analysis. Statistically, there were two
(perhaps three) groups.® One group con-
tained four people who had significantly
more work experience, but these four did
not behave measurably differently than
the other 47 people. Except for this group,
we were unable to give a rational explana-
tion for any other cluster.

Threshold value. Finally, we inves-
tigated the relationship between the esti-
mated effort to modify a candidate
abstract data type for reuse and the deci-
sion to reuse thé abstract data type. We
were interested in a threshold effort-
estimation value that could be used to
determine if a person would reuse a can-
didate abstract data type.

Logic indicates that the modification
effort should be less than or equal to the
effort needed to create the specified
abstract data type. Because the
modification-estimation effort was meas-
ured as a percent of the creation effort, the
threshold value should be 100 percent or
less.

Because of the experimental design, we
could not determine an exact threshold
value from unadjusted responses. If we
used unadjusted values, about half the
responses should be no and half the
responses should be yes. Our experiment

58

Authorized licensed use limited to: Brigham Young University. Downloaded on January 28, 2009 at 10:17 from IEEE Xplore. Restrictions apply.

concentrated on abstract data types likely
to be reused. Also, there was no real rela-
tion between. negative answers and esti-
mated modification effort because all
negative responses were explicitly assigned
amodification effort of 100 percent. These
problems could be overcome if we ana-
lyzed the adjusted responses.

Of the 805 yes responses, none had an
adjusted-modification-effort estimation
greater than 63.5 percent. Also, none of
the 265 no responses had an adjusted-
modification-effort estimation less than
73.5 percent. From this evidence, we think
that the threshold value is about 70 percent
for software-developer populations simi-
lar to ours.

If the worth of reusing an abstract data
type could accurately be assessed, we
would expect a person to reuse an abstract
data type even if only a few percent of the
creation effort could be saved. The
70-percent threshold value suggests that
the people made decisions based not only
on possible effort saved, but also on an
assessment of risk. The large variance in
responses suggests that the people were not
sure of their effort estimations. To protect
themselves from undue risk, it appears
that most people will only reuse an abstract
data type if they can save more than 30 per-
cent of the effort.

ur experiment supports these
O conclusions:

e Software-development per-
sonnel untrained in software reuse cannot
assess the worth of reusing a candidate
abstract data type to satisfy the implemen-
tation requirements of a specified abstract
data type. Assuming that the expected
effort determined by our software-
science/lines-of-code measure is a
reasonable estimate of expected effort, no
person accurately estimated the expected
effort for all candidate/specified abstract-
data-type pairs, and there was no pair for
which all people gave an accurate estimate.
The data shows that subject responses
were highly variable and generally low
when compared to software-science/lines-
of-code measures.

e Software-development personnel
untrained in software reuse are influenced
by some unimportant features and are not
influenced by some important ones. Peo-
ple were influenced by the size of the can-
didate abstract data type and by the
percent of additional operations required.
People were not influenced by the percent
of operators to be modified nor by esti-
mates of effort based on software science
and lines of code. Size, per se, is unimpor-
tant, and percentage of operator addition
is less important than percentage of oper-

IEEE SOFTWARE



ator modification and reasonably accurate
estimates of actual effort.

e For people similar to our subjects,
demographics are not likely to affect per-
formance. In our experiment, no identifi-
able groups of people performed
differently than the other people.

® For people similar to our subjects, the
data suggests that if the effort to reuse a
candidate abstract data type is perceived
to be less than 70 percent of the effort to
create an abstract data type from scratch,
the candidate abstract data type would be
chosen for reuse. The threshold is less than
100 percent, and after adjustment for peo-
ple who were consistently higher or lower
than the average, the data indicates that
the threshold is close to 70 percent.

Some directions for future research are
clear. Because users cannot properly assess
the worth of reusing a candidate abstract
data type to satisfy the requirements of a
specified abstract data type, we must pro-
vide enough help to avert the bad
experiences users are certain to have if left
solely to their own resources. User
assistance can be provided through educa-

References

1. A.l. Wasserman and S. Gutz, *‘The Future
of Programming,’’ Comm. ACM, March
1982, pp. 196-206.

2. R.G. Lanergan and C.A. Grasso, “‘Soft-
ware Engineering with Reusable Design and
Code,” Trans. Software Engineering, Sept.
1984, pp. 498-501.

3. T.C. Jones, ‘‘Reusability in Programming:
A Survey of the State of the Art,”’ Trans.
Software Engineering, Sept. 1984, pp.
499-493,

4, W.J. Tracz, “Why Reusable Software
Isn’t,” tech. report, Electrical Engineering
Dept., Stanford Univ., Stanford, Calif.,
1986.

5. D.W. Embley and S.N. Woodfield, “‘A
Knowledge Structure for Reusing Abstract
Data Types,”’ Proc. Ninth Int’l Software
Engineering Conf., CS Press, Los
Alamitos, Calif., 1987, pp. 360-368.

July 1987

tion and software tools that summarize
appropriate information.

The data shows that untrained users
tend to consider size an important feature
on which to base decisions about reusabil-
ity. They shouldn’t. On the other hand,
users fail to estimate modification effort
in any form — and, instead of estimating
the amount of time to add operations, they
only considered the percent of operations
to be added. While the latter factor is a
crude estimate of effort, we should be able
to do better. Users should be taught to
ignore unimportant features and to
properly evaluate important ones.

Furthermore, an initial set of tools
should concentrate on providing accurate
information for informed decision-
making. As an initial information set, we
suggest the number and percent of opera-
tions that must be added and modified.
Eventually, the tool should be enhanced to
help estimate abstract-data-type creation
and modification effort. Before building
tools for abstract-data-type reusability,
however, we will carry out further con-
trolled experiments to get the data neces-
sary to help us proceed with confidence. ]

6. D.W. Embley, D.T. Scott, and S.N. Wood-
field, ‘‘An Exploratory Experiment
Directed Toward Unraveling the Problems
of Software Reusability,”’ Tech. Report
BYU-CS-87-4, Computer Science Dept.,
Brigham Young Univ., Provo, Utah, 1987.

7. T.P. Moran, *‘An Applied Psychology of
the User,”” ACM Computing Surveys,
March 1981, pp. 1-11.

8. V.R. Basili, ‘*Resource Models,”’ in
Tutorial on Models and Metrics for Soft-
ware Management and Engineering, V.R.
Basili, ed., CS Press, Los Alamitos, Calif.,
1980, pp. 4-9.

9. M.H. Halstead, Elements of Software
Science, North Holland, New York, 1977.

10. S.M. Thebaut, ‘“The Saturation Effect in
Large-Scale Software Development: Its
Impact and Control,”” PhD dissertation,
Computer Science Dept., Purdue Univ.,
West Lafayette, Ind., 1983.

Scott N. Woodfield is an associate professor of
computer science at Brigham Young University.
Before joining Brigham Young, he was faculty
member at Arizona State University. His
research interests include software reusability
and metrics.

Woodfield received a PhD in computer
science from Purdue University. He is a mem-
ber of IEEE and ACM.

David W. Embley is a professor of computer
science at Brigham Young University. Before
joining Brigham Young, he was a faculty mem-
ber at the University of Nebraska. His research
interests include database query languages,
object-oriented systems, and software reusa-
bility.

Embley received a PhD in computer science
from the University of Illinois. He is a member
of ACM.

Del T. Scott is an associate professor of statis-
tics at Brigham Young University. Heisalsoa
consultant on the development of the Statistics
Dept.’s computer facilities. He has developed
statistical programs for linear models.

Scott received a BS and MS from Brigham
Young University and a PhD from Pennsylva-
nia State University, all in statistics. He is a
member of ASA, the Royal Statistical Society,
and the Biometric Society.

Embley and Woodfield can be reached at
Computer Science Dept., Brigham Young Uni-
versity, Provo, UT 84602. Scott can be con-
tacted at 244 TMCB, Brigham Young
University, Provo, UT 84602.

59



	Can Programmers Reuse Software?
	Original Publication Citation
	BYU ScholarsArchive Citation

	C:\Documents and Settings\1gi...0ao.default\Cache\A7D0880Bd01

