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A RELAXATION ALGORITHM FOR SEGMENTATION 
OF THE ENDOCARDIAL SURFACE FROM CINE CT 

William A. Barrett and Bryan S. Morse 

Department of Computer Science, Brigham Young University, 
Provo, Utah 84602 

Summarv 

A relaxation algorithm has been developed for 
automated segmentation of the endocardial surface 
from contrast Cine CT images. The image is contoured 
at an initial density threshold and a one-dimensional 
edge operator is applied orthogonally to each point of 
the contour. Output from the operator is used to 
generate a histogram, the mode of which identifies a 
new threshold. The image is contoured again at the 
new threshold and the process is repeated. Iteration 
continues with successive threshold estimates 
converging to a stable value in the region of the 
endocardial surface. Computer-determined thresholds 
compare favorably with manual segmentation while 
reducing processing time and increasing reproducibili- 
ty as well. 

Introduction 

Techniques have been previously developed for 
automated tracking and dynamic interactive display of 
three- and four-dimensional (3D and 4D) endocardial 
surface anatomy from Cine CT images.1 However, 
identification of the surface to be tracked still requires 
manual interaction for 

1. selecting a segmentation threshold 
2. defining the volume surrounding the surface 
3. specifying a start point for surface tracking 

As a result, extensive user interaction is required to 
extract multiple (4D) surfaces representing discrete 
time instances over the cardiac cycle, thereby limiting 
patient throughput and minimizing clinical utility. In 
addition, intra/interobserver variability in the 
specification of these three parameters frequently 
requires the process to be repeated. However, these 
parameters can be determined automatically using a 
new improved2 relaxation algorithm for segmentation 
of the blood-contrast mixture which defines the 
endocardial surface. 

The Relaxation Algorithm 

The relaxation algorithm consists of four modules 
shown in the control diagram in Figure 1. 

Input Image 
I 
f 

Contour Image 

I I t  
Apply l -D Operator 

1 . I Form Edge Histogram] 

Detect Threshold(s) 

+ 
Output Threshold(s) 

Figure 1. Control structure for algorithm modules 

The relaxation algorithm begins by applying a 
contour-following algorithm to the image at an initial 
(arbitrary) density threshold, t o .  The contour 
information is then passed to the next module which 
samples one-dimensional density profiles orthogonal 
to the contour in order to produce a new threshold 
estimate. The new threshold estimate, tl, is identified 
in the third module as the mode of a histogram 
formed from mid-range densities extracted from each 
of the profiles. The image is contoured again at t l  and 
the process is repeated until a stable threshold is 
obtained, where "stability" is determined by one or 
more convergence criteria. Stable threshold(s) are then 
ranked according to their prominence (determined 
from the edge histogram) and output. Each of the four 
modules are described below. 

Contour-Following Algorithm 

Input:  
Outpu t :  4-connected contours surrounding connected 

Threshold estimate, t; contour value, m 

pixel regions with value 2 t 
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begin 
Scan pixels, p ,  in image in row major order 
if (P 1 t )  and (pi< t ) then  if ( p ? # m )  then 
a. back up one pixel; 
b. start-pos <- p- pos; 
c. done <- false; 

d. whi le  (not done)do 
1. whi le  pixel in front 2 t do 

turn left; 
end-while; 

2. p <- m; 
3. step; 
4. done <- (start-pos = p-pos); 
5. if (not done) then  

turn right; 
end-if; 

end-w hi1 e; 
end-if; 

end 
The contour-following algorithm scans the image in 
row major order until a region/pixel with value 2 the 
current threshold estimate is encountered. The pixel 
just outside of the region is marked as the start 
position (b). Then, as long as the pixel in front is 
greater than or equal to t, the stepping direction is 
updated by turning left 900 (d.1). Contour pixels are 
marked, while stepping and turning right 900 (d.2-5), 
until the start position is again encountered. 

The One-dimensional Edge Operator 

After the image is contoured, a one-dimensional 
(1D) edge operator is applied in an orthogonal 
direction to each point of the contour. The 1D operator 
is faster than conventional 2D edge kernels and can be 
increased in size with no additional increase in 
computation. Application of the operator in a direction 
orthogonal to the contour insures that the gradient is 
maximized. The end points, (XI, yl) and (x2,y2), of a line 
orthogonal to a given contour coordinate, (x,y), are 
determined by calculating the x and y displacements, 
dx and dy, between contour coordinates sampled t m 
from (x,y), as diagrammed in Figure 2 below. 

be on the order of 1 to 1.414m. This allows the length 
of the orthogonal line to decrease for areas of the 
contour with high curvature. The 1D edge operator 
itself makes use of orthogonal line end points to obtain 
successive threshold approximations as described 
below. 

Consider the characteristic sigmoidal density profile 
(1D edge) diagrammed in Figure 3 below, with the 
optimal edge threshold, T, occurring at the mid-range 
density (ie. maximum gradient). Assume the image 
has been contoured at an initial threshold approxi- 
mation, to. The function of the operator is to bring the 
initial approximation closer to the ideal value, T. This 
is accomplished by sampling k densities Dj at opposite 
ends of the orthogonal line. In Figure 3, k=3, with the 
middle sampled value corresponding exactly to one of 
the two end points (x1,yl) or (x2,yz). The new threshold 
approximation, ti, is simply the average of the 2k (n) 
sampled values. The number of iterations required to 
converge on T is a function of the sampling interval 
and the distance between T and the initial 
approximation to.  

o = sampled values, I j  

Optimal For n sampled values, 
Threshold, T - New threshold 

approximation, t i =$f 1. 
J=1 ’ 

Approximation, to 

Figure 3. The one-dimensional edge operator. 

The purpose of the 1D operator is to determine the 
most frequent (local) density at which the steepest 
gradient occurs in order to obtain a global threshold. 
Hence, points on the orthogonal line are only sampled 
if the density at (x1,yl) is less than the current 
approximation ti and the density at (x2,yz) is greater 
than t i  (or vice versa). This is efficiently determined by 
(frame-time) thresholding of the image at level ti and 
then simply checking for a difference in the sampled 
end points in the thresholded image. 

Formation of the Edge Histogram 
XI = x - dy/2, y1 = y + dx/2 

The edge histogram is simply a histogram of the 
new approximation, ti, derived from the orthogonal 
sampling for each contour point in the image. The 
characteristics of the (3-point smoothed) edge histo- 

X 2  = X + dY/2* Y2 = Y - dx/2 

gram are used to determine whether or not a stable 
threshold has been reached. 

Figure 2. Calculation of end points for line orthogonal 
to contour. Threshold Detection 

Using this method, the distance from a contour 
point (x,y) to one of the end points ((xl,yl) or (x2,yl) will 

Two convergence criteria are used to detect stable 
threshold(s). These include: 
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1. An edge histogram with a single significant peak 
(unimodal) is detected. The edge histogram is 
classified as unimodal if the area under any 
secondary peaks is less than 2% of the area under 
the peak associated with the mode. 

2.  The mode of the edge histogram has not changed 
from iteration ti to ti+l. This occurs near the middle 
of the edge profile because the edge operator is 
"pulling" equally from both directions. 

If more than one stable threshold is detected, the 
thresholds are ranked according to their prominence 
in the image. Ranking criteria are highest mode 
frequency and total histogram area to secondary peak 
ratio. 

Secondary thresholds are also considered if 
1. c I ti - ti+l I < 6. This means that there was a small 

cumulative difference between successive 
threshold approximations over some interval. 

2. ti = t i+k ,  k > 1. This indicates a repetition or 
oscillation over the same sequence. In both of 
these cases the value of the secondary threshold is 
the average over the sequence. 

After convergence to a stable threshold is achieved, the 
edge histogram is smoothed and searched for 
secondary peaks (local maxima which represent > 2% 
of the total area under the histogram). Secondary peaks 
arise due to the spatial connectivity of regions 
identified by the 1D edge operator and neighboring 
regions which fall within a different density range. 
Hence, secondary peaks are strong indicators of 
potentially stable thresholds which define these 
neighboring regions. To make use of this information, 
density values associated with secondary peaks are 
placed on a stack and investigated for convergence to a 
separate stable threshold. 

The use of secondary peak densities allows the 
spectrum to be searched in an intelligent manner and 
greatly reduces the computation which would 
otherwise result from a methodical investigation of 
each density in the image. Computation is further 
reduced by checking successive threshold estimates 
stemming from secondary peak densities against 
previously detected stable thresholds or tested values. 
If the check reveals a difference within 56 (6 = 5) ,  it is 
assumed that the sequence will lead to no new stable 
thresholds, and the process is terminated. The same 
rationale applies if a value in a sequence is repeated, 
however, in this case the "cycle" is used to output a 
secondary threshold, as described above. 

When the stack is empty a list of stable threshold(s) 
is ranked and output. The algorithm is given below. 

The Threshold Detection Algorithm: 

Input: 
Output: List of stable threshold(s), T 

Initial non-zero threshold approximation, to. 

Data Structures: 
a stack S, of potential thresholds 
a list L,  of previously tested thresholds 
a histogram array H. 

begin 
1. place to on S;  
2. t-last <- 0; 

3. while S is not empty d o  
unimode , repeat <- false; 

a. remove an entry t from S; 
b. for  all Ti and Lj 

i f ( I t -T i I  <G)or( l t -LjI  <G)then 
repeat <- true; 

end-if; 
e n d f  or; 

c. i f  not repeat and ((t = t-last) or unimode) then  
output t to T; 
output any secondary peak densities to S; 
output all ti from this sequence to L; 
output any secondary thresholds to T; 
unimode , repeat <- false; 

contour image at t; 
form edge histogram H; 
t-last <- t; 
t <- mode (H); 

if H is unimodal t hen  
unimode <- true; 

else unimode <- false; 

d. else 

output t to s; 

end-w h ile; 
end  

The objective of the algorithm is to output a list, T, 
of stable threshold(s) starting from an initial threshold 
estimate, to. The algorithm works off of a stack S of 
potential thresholds which is fed by the initial 
estimate, to, and secondary peaks in the edge 
histogram, H. A list, L, of all previously tested 
thresholds is maintained to expedite processing. 

After initialization (1 and 2) a value, t, is removed 
from S and investigated for convergence to a stable 
threshold (3a). If any ti fall within range of a previously 
tested or stable value, the sequence is abandoned (3b). if 
this does not happen, subsequent threshold estimates 
are examined recursively until a stable threshold value 
is reached which is determined when t = t-last or H is 
unimodal (3c). At this point t is output to T and 
threshold candidates stemming from secondary peaks 
are output to S. Any secondary thresholds as defined by 
the criteria above are also output to T. 

The heart of the algorithm is given in 3d where 
initially the image is contoured at t and the edge 
histogram H is formed. The mode of H is then 
determined and output to S. If H is unimodal or 
t=t-last, t will be output to T the next time through the 
loop. The search continues until S is empty and the 
spectrum is exhausted. 
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The convergence of the algorithm is illustrated in 
Figure 4. The top image indicates the points which 
were sampled based on the initial threshold 
approximation to form the edge histogram on the 
right. The marked bimodality of the histogram is an 
indication that the threshold has not yet stabilized to 
the middle of the edge profile, whereas the unimodal 
distribution (bottom) indicates convergence to a stable 
value. The segmentation based on the detected stable 
threshold is shown in Figure 5. 

Figure 4. Sampled points with corresponding edge 
histograms. 

Figure 5. Segmentation based on stable threshold with 
minimum rectangle superimposed. 

Determination of Start Point and Enclosing Volume 

After a segmentation threshold has been computed, 
the volume enclosing the anatomy of interest and a 
start point for surface tracking must be defined for 
extraction of the endocardial surface. The enclosing 
volume can be defined from a minimum rectangle 
surrounding the segmented anatomy at each level 
(Figure 5). A "signature parsing" techniques was 
developed to compute the bounding rectangles. 
Maximizing over rectangles at all levels produces a 
maximum rectangular region of interest which can be 
projected through all levels to define the enclosing 
image volume used for surface tracking. The start 
point for surface tracking can be any point at which the 
thresholded (white) region is tangent to the bounding 
rectangle. 

Results 

The relaxation algorithm was tested on 28 images 
taken from 7 patients at end-diastole. (Four images 
from different levels were used from each patient.) 
The patient population included three normals, an 
atrial tumor, apical akinesis, an aneurysm, and IHSS. 

The blood-contrast mixture was detected in all cases 
using the threshold detection algorithm. If more than 
one stable threshold was detected the maximum was 
always chosen for segmentation. Before applying the 
algorithm segmentation thresholds were determined 
manually for each of the 28 images. A comparison of 
computer and manually-determined thresholds 
showed good agreement in 20 of the images, while the 
algorithm underestimated the threshold in 7 of the 8 
remaining cases. However, it should be pointed out 
that 3 of the lower computer-determined values were 
still sufficient to clearly segment the blood-contrast 
mixture and in 2 cases the computer-determined 
values were judged (retrospectively) to be preferable to 
the original manually-determined values. 

Conclusions 

An algorithm has been described for segmentation 
of blood-contrast regions from Cine CT images. 
Computer-determined thresholds compare well with 
manually-defined values while providing a 
mechanism for fully automated extraction of the 
endocardial surface. Key features of the algorithm 
include the use of local edge profiles to determine a 
globally optimum threshold and convergence starting 
from any initial input density. The automated 
methodology makes 3D surface detection reproducible, 
minimizes reprocessing, avoids manual parameter 
selection, and therefore greatly increases throughput 
and clinical utility. 

Future work includes investigation of adaptive 
techniques for measurement and normalization of 
edge profiles and determination of an optimal 
sampling interval. The algorithm will also be 
enhanced to detect of subobjects within minimum 
bounding rectangles. Finally, thresholds from all levels 
will be compared for consistency. 
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