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Discussion of the representation of intercrystalline misorientation in cubic materials. By BRENT L.
ADAMS and JUNWU ZHAO, Department of Mechanical Engineering, Yale University, New Haven, CT 06520-2157,
USA and HANS GRIMMER, Paul Scherrer Institute, Laboratory of Materials Science, CH-5232 Villigen PSI, Switzerland

Abstract

Salient features of various parameterizations of cubic-cubic
misorientation are discussed. It is proposed that the quater-
nion representation of rotations, as a pair of antipodal
points on the surface of a four-dimensional sphere, encom-
passes the most desirable properties of other proposed
representations, viz rectilinearity, a closed form for the
composition of successive rotations, and an equivalence
between the Euclidean measure on its parameter space and
the invariant measure in the space of rotations. The
classification of cubic-cubic misorientations according to
group multiplicity is described in Euler angle and quater-
nion representations. A correspondence between co-
incidence site lattice (CSL) boundaries (X =49), Euler
angles and axis-angle parameters is given.

The following pertains to the recent paper of Zhao & Adams
(1988), entitled Definition of an Asymmetric Domain for
Intercrystalline Misorientation in Cubic Materials in the
Space of Euler Angles, and subsequent comments of
Grimmer (1989). It is clear that the Euler angle representa-
tion of misorientation suffers from a number of disadvan-
tages as discussed by Altmann (1986), Frank (1983),
Grimmer (1989), and others. However, quantitative descrip-
tions of orientation and misorientation distribution func-
tions have usually been expressed in Fourier series using
generalized spherical harmonics (Bunge, 1982); and these
are defined in terms of Euler angles (Gelfand, Minlos &
Shapiro, 1963). In their calculation of the misorientation
distribution function (MDF) in copper, for example,
Pospiech, Sztwiertnia & Haessner (1986€) used the space of
Euler angles for computation, and later transformed to the
axis-angle parameters. Comparable orthogonal basis func-
tions for axis-angle, quaternion, Rodrigues or other par-
ameterizations have not yet been defined, even though they

would be valuable. The work of Zhao & Adams (1988) was
motivated by the pressing need to represent continuous
functions, in the smallest physically distinctive domain of
cubic-cubic misorientation, given the necessity of using
Euler angles. The definition of an asymmetric domain sig-
nificantly reduces computation time and increases the
clarity of representation.

The quaternion representation described in the comments
by Grimmer has some significant advantages. This rep-
resentation, due to Handscomb (1958), defines rotation by
a pair of antipodal points on the hypersurface of a unit
sphere in four-dimensional space. [ Note that this is not the
quaternion parameter Q of Frank (1988), which is obtained
from Handscomb’s quaternion by omitting its fourth com-
ponent.] Handscomb shows in his concise paper that his
representation has the following properties. It has the rec-
tilinearity property of Frank’s mapping (ii). In fact
Handscomb obtains the semi-regular truncated cube by
considering the quaternions corresponding to minimum
angle descriptions of misorientations between cubic crys-
tals. It also has the property that the result of two successive
rotations can be calculated as easily as in Frank’s mapping
(iii). Finally it has the property that the Euclidean measure
on its parameter space corresponds to an invariant measure
in the space of rotations as in Frank’s mapping (iv). In
summary, it combines the advantages of Frank’s mappings
(ii)-(iv) at the price of using four dimensions instead of
three. Conversely, the price of going to three dimensions
is that at most one of the three desired properties can be
maintained.

Table 2 of the previous paper by Zhao & Adams contains
some errors as noted by Grimmer. Table 1 of this comment
is a corrected table. It is correct that only boundaries with
rotation axis [1,1, 1] should be classified as m=6. This
statement is in good agreement with the analysis presented
in section 3 of the paper (Zhao & Adams, 1988). Boundaries



Table 1. CSL boundaries for X <49 (m is the multiplicity)

Euler angles Axis-angle
) m @ ¢ ¢z (h k) ©
3 12 45-00 70-53 45-00 1, 1,1 60-00
5 8 0-00 90-00 36-86 1,0,0 36-86
7 6 26-56 73-40 63-44 L, 1,1 38:21
9 4 26:56 83-62 26-56 1,1,0 38-94
11 4 33-68 79-53 33-68 1,1,0 50-47
13a 8 0-00 90-00 22:62 1,0,0 22:62
13b 6 18-43 76-66 71-57 L 1,1 27-79
15 2 19-65 82:33 4227 2,1,0 4819
17a 8 0-00 90-00 28-07 1,0,0 28-07
17b 4 45-00 86-63 45-00 2,2,1 61-92
19a 4 18-44 86-98 18-44 L,1,0 26-53
19b 6 33-69 71-59 5631 1, 1,1 46-83
2la 6 14-03 79-02 75-97 1,1,1 21-78
21b 2 22:83 79-02 50-91 2, 1,1 44-41
23 2 1525 82-51 52:13 3, 1,1 40-45
25a 8 0-00 90-00 16:26 1,0,0 16-26
25b 2 36-87 90-00 36-87 3,31 51-68
27a 4 21-80 85-75 21-80 1, 1,0 31-59
27b 2 15-07 85-75 31-33 2,1,0 35-43
29a 8 0-00 90-00 43-60 1,0,0 43-60
29b 2 33-69 84-06 56-31 2,2,1 46-40
3la 6 11-31 80-72 78-69 1, 1,1 17-90
31b 2 27-41 78-84 43-66 2,1, 1 52-20
33a 4 14-04 88:26 14-04 1,1,0 20-05

Euler angles Axis-angle
> m ¢ ¢ 3 (hy K, 1) w
33b 2 12-34 83-04 5873 3,11 33-56
33¢ 4 38-66 7597 38-66 1,1,0 58-99
35a 2 16-86 80-13 60-46 2,1,1 34-05
35b 2 30-96 88-36 59-04 3,31 43-23
37a 8 0-00 90-00 18-92 1,0,0 18-92
37b 2 1253 85-35 40-60 3,1,0 43-14
37¢ 6 36-87 71-08 53-13 1,1,1 50-57
39a 6 21-80 75-14 6820 1, 1,1 32-20
39b 1 29-20 87-06 48-12 3,2,1 50-13
41a 8 0-00 90-00 12-68 1,0,0 12-68
41b 2 17-10 84-40 36-03 2,1,0 40-88
4lc 4 36-87 77-32 36-87 1,1,0 55-88
43a 6 9-46 81-98 80-54 1, 1,1 15-18
43b 2 1210 87-33 24-78 2,1,0 2791
43c 4 45-00 80-63 45-00 3,32 60-77
45a 2 10-30 83:62 63-44 3,11 2862
45b 2 26-57 83-62 63:43 2,2,1 36-87
45¢ 2 38-66 84-90 51-34 2,2,1 53-13
47a 2 2656 87-56 63-44 3,3,1 37-07
47b 2 22:71 82:67 35-39 3,2,0 4366
49a 6 30-96 72-17 59-04 1,1,1 43-57
49b 2 10-62 85:32 47-49 51,1 43-57
49¢ 2 30-35 75-82 49-27 3,2,2 49-23

Table 2. Classification of multiplicity m for all cubic-cubic misorientations using quaternion representation

m a b ¢
48 1 0 0
16 1 Vv2-1 0
12 1 1/3 1/3
8 1 VZ-1 V2-1

1 b 0
6 1 b b
4 1 b b

1 b (1-b)/2

1 b b
2 1 b c

1 b c

1 b b

1 b c

1 VZ-1 c

1 All others

329b, 35b, 45b, 45¢, 47a should be classified as m=2
because they lie upon the ABD plane (but not upon the
edges) of Fig. 4 in the paper. Boundaries 323, 27b, 35a,
37b, 47b, 49b were erroneously classified as m =1 because
the authors had difficulties in analyzing points on the curved
surface ABD. It is confirmed now that every misorientation
point on the surface ACD should be classified as m =2;
the inverse g~' for all points on this curved surface can be
shown to be equivalent to g under relation (44) of the
paper. For the convenience of future usage, we have pro-
duced two tables in the following which classify the multi-
plicities m of all cubic-cubic misorientations in Euler angle
and quaternion representations. A cubic-cubic misorienta-
tion corresponds to an interior point of an asymmetric
domain or one or two points on its surface. The multiplicity
m of a misorientation satisfies m =1 if the misorienta-
tion is represented by an interior point and m=1
otherwise.

For quaternions [a, b, ¢, d], the following is chosen as
the definition of an asymmetric domain:

b=c=d=0, a=(2+1)b, a=b+c+d

d Conditions
0
0
1/3
3-2V2
0 VZ-1>b>0.
b 1/3>b>0.
0 V2-1=2b>0.
(1-b)/2 Vv2-1=b>1/3.
1-2b VZ-1>b>1/3.
0 V2-1zb>c>0.
c V2-12b>c¢>0,1>b+2c
d V2-1=b>d>0,1>2b+d.
1-b—c VZ-1zb>c>1-b-c
(V2-1)c V2-1>¢>0.

Using normalization a =1, instead of the usual a’+b*+
c¢2+d?*=1, we have classified all points of multiplicity in
Table 2.

In Fig. 1, multiplicities associated with points are indi-
cated at the locations of the points and those associated
with lines and planes are indicated by an oval and by a
cross, respectively. For example, point A is represented by
quaternion [1, 0, 0, 0] and has multiplicity 48; line BE is
represented by quaternions of the form [1, V2-1,¢ (V2-
1)c] and associated with multiplicity 2. Plane EBF is
described by quaternions of the form [1, b, b, d] and
associated with multiplicity 2. Points on the surface BCEF
related as [1, v2—1, ¢, d] and [1, v2—1, (c+d)/V2,
(c—d)/V2] represent physically equivalent misorienta-
tions; all other points on the surface of the asymmetric
domain represent distinct misorientations. Notice that
m=1if c>d>0and d#(vV2-1)cin[1,vV2-1, ¢ d].

For Euler angle representation, an asymmetric domain
is defined by the following relations: 0=cos ¢ =
sin @, sin @,/ (1+cos ¢, cos ¢,) and 0, =@, =7/2— ¢,
arccos (1/3)= ¢ =< /2. Table 3 gives all multiplicities in
this space.



Table 3. Classification of multiplicity m for all cubic-cubic misorientations using Euler angles

m ¢1 ¢ P2
48 0 w/2 0
0 /2 /2
16 0 w/2 w/4
12 /4 arccos (1/3) /4
8 /4 /2 w/4
0 /2 ©2
6 ¢ ¢ m/2—¢
4 ¢ @ ¢
/4 ¢ /4
2 @1 ¢ P2
Pr /2 w/4
[ 4 [
@ ¢ m/2-¢

1 all others

[1be.1-b<)

[l,ﬁg,ﬁ-m-ﬂfl

[1,b,b,1-2b]
8 (LYZ-142-1,d]

Y NVZ-1¥2-1,01

[1.bb.dl

A
48°(1,00,0

Fig. 1. Graphical representation of Table 2.
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Fig. 2. Graphical representation of Table 3.

Conditions and comments

(0, 7/2, 0) and (0, w/2, 7/2) are equivalent

0<@,<m/2, g% 7/4
cos ¢ =sin2¢/(2+sin 2¢), 0< @< 7/4
cos ¢ =sin’ ¢/(1+cos® p), 0< @ < /4,
arccos (1/3)< o <m/2
cos ¢ =sin @, sin ¢,/(1+cos ¢, cos ¢,),
0<@<@,<7/2-¢,
0<e,<m/4
0<o<m/4,0=cos ¢ <sin® p/(1+cos® @)
0<g@<m/4, 0=cos ¢ <sin 2¢/(2+sin 2¢p)

The content of Table 3 is illustrated in Fig. 2 which shows
the surface of the asymmetric domain.

Again multiplicities associated with lines (curves) are
indicated by ovals, and surfaces by crosses. For example,
point E has coordinates (0, 7/2, 7/4) in the Euler space
and possesses multiplicity 16. Curve AD has multiplicity
6 and the curved surface ACD is associated with multi-
plicity 2. Points on the surface BCD related as (¢, m/2,
¢,) and (¢, w/2, m/2— ¢,) represent physically equivalent
misorientations;* all other points on the surface of the
asymmetric domain represent distinct misorientations.
Notice that m=1if 0< ¢, < ¢,<7/2—¢, and @, # w/4 in
(e1, m/2, @3).

BLA and JZ acknowledge the support of the Office of
Basic Energy Science of the US Department of Energy
under grant No. DE-FG02-88ER45355. Help from Stuart
Wright with the figures is gratefully acknowledged.

* An example is 325b which is represented by the point (36-87°,
90°, 36:87°) on BC and by (36-87°, 90°, 53-13°) on BD of Fig. 2.
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