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Identifiability in Wind Estimation From Scatterometer
Measurements

David G. Long, Member, IEEE, and Jerry M. Mendel, Fellow, IEEE

Abstract—In this paper we consider the problem of identifiability of
a wind vector that is estimated from wind scatterometer measurements
of the radar backscatter of the ocean’s surface. The traditional wind
estimation approach produces multiple estimates of the wind direction.
A second processing step, known as ‘‘dealiasing’’ or ‘‘ambiguity re-
moval’’ is used to select a single wind estimate from these multiple
solutions. Dealiasing is typically based on various ad hoc considera-
tions. The traditional wind estimation approach results in multiple so-
lutions associated with local minima in an objective function formed
from the noisy backscatter measurements. We address the question of
the uniqueness of the wind vector estimates resulting from this intui-
tive approach. We show that wind vector estimation using scatter-
ometer measurements is set-wise or system identifiable; i.e., we pro-
vide mathematical proof that there is a unique set of wind vectors that
could have given rise to the observed backscatter values, and that the
set of wind vector estimates is consistent. The fact that the wind vector
estimate is a set arises from the nature of the relationship between the
backscatter and wind vector. Within this set there is no way to select
a unique wind vector estimate from the measurements at a single sam-
ple point; hence, we establish a theoretical reason for dealiasing.

I. INTRODUCTION

WIND scatterometer is an active radar remote sensing in-

strument which provides measurements of the normalized
backscatter (¢°) of the ocean’s surface [19]. From these noisy
measurements of ¢°, the speed and direction of the wind over
the ocean’s surface may be inferred using an empirically de-
rived relationship between the wind vector and ¢° known as the
‘‘geophysical model function’’ [13]-[15], [20].

In the traditional wind estimation approach, an objective
function (typically based on maximum likelihood or least
squares) is formulated using the ¢° measurements and is mini-
mized to obtain estimates of the wind vector. Due to the nature
of the geophysical model function the objective function has
several local minima. The wind vectors associated with each of
these local minima are termed *‘aliases’” or ‘‘ambiguities’” [21].
Traditionally, all the aliases are retained in a set which we call
the *‘noisy ambiguity set’’ from which later processing, known
as ‘‘de-aliasing’’ or ‘‘ambiguity removal’’ (see [16], [17], [21]),
is used to select a single wind-vector estimate.

While this process works reasonably well in practice (see, for
example, [19] and [6]), there are significant difficulties with the
method [15], [21]. As yet, a theoretical basis for this approach
is lacking; no one has shown that a consistent estimate of the
surface wind is uniquely determined using this two-step pro-
cedure. We provide such a basis by showing that for the first
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step the surface wind vector (or, equivalently, the wind speed
and direction) is identifiable from the wind scatterometer mea-
surements.

‘‘Identifiability’’ is an important concept central to estima-
tion theory. Loosely speaking, identifiability indicates whether
or not an estimation procedure will yield a unique and consist-
ent estimate of the desired parameters from the available mea-
surements [4], [8], [12], [18]. A more formal definition of
identifiability will be given in Section IV. Excellent discussions
of identifiability as applied to linear systems are given by Ljung
[8] and Soderstrom and Stoica [18].

In this paper we consider the problem of identifiability of the
surface wind vector from wind scatterometer measurements at
a given observation point. We will show that, whereas the wind
vector estimate is not unique, it is set-wise or system identifi-
able; i.e., there is a unique set of wind vectors corresponding
to the observed ¢° values which cannot be distinguished from
one another using just the ¢° measurements. These results pro-
vide theoretical credence to the historical practice of using the
noisy ambiguity sets from point-wise wind estimation and de-
aliasing. Identifiability for the second dealiasing step is not ad-
dressed, since dealiasing relies on information not present in
the ¢° measurements.

In this paper we first discuss the conditions (which are due to
the nature of the geophysical model function) under which more
than one wind vector can give rise to the same true noise-free
measurements of ¢°. We call the set of wind vectors which give
rise to the same noise-free values of ¢° the ‘‘true ambiguity
set,”” since it is not possible to uniquely select a wind vector
from this set. Selection of a single wind estimate must be done
using other considerations; hence the need for dealiasing. We
then discuss the wind scatterometer measurement model, pro-
vide a formal definition and discussion of the significance of
identifiability, and provide an outline of the proof of identifi-
ability of wind vectors from scatterometer measurements.

II. THE RELATIONSHIP BETWEEN ¢° AND THE VECTOR
WIND

A wind scatterometer does not directly measure ¢°, but infers
¢° from noisy measurements of the backscattered power of an
RF pulse directed at the ocean’s surface. We defer further dis-
cussion of the power measurement process until the next sec-
tion. ¢° is related to the wind vector over the ocean’s surface
at the observation point by a nonlinear geophysical model func-
tion which we denote by . ¢° is a function of the relative
azimuth angle between the radar illumination and wind direc-
tion (x), the wind speed (U ), the incidence angle of the radar
illumination (), and the radar polarization ( p) [19]. The re-
lationship between the wind and ¢° has been extensively stud-
ied in the literature (e.g., [13]-[15], [20]). For this paper we
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Fig. 1. o° versus x for several wind speeds for an incidence angle of 30°;
vertical polarization using the SASS' model function was used.

will assume that the geophysical model function is known and
ignore any geophysical modeling error. Fig. 1 illustrates the
relationship between ¢°, x, and U for the well-known SASS'
model function at 14.6 GHz [15]. Note the cos 2x dependence
of ¢° on the wind direction. While other model functions (e.g.,
[13], [20}) differ in detail, they share a similar cos 2x depen-
dence on wind direction. This characteristic of the model func-
tion is primarily responsible for the difficulties in obtaining
unique estimates of the wind vector from ¢° measurements.

Since M has a multivalued inverse, several measurements of
¢° from different azimuth angles must be used to estimate the
wind vector. The Seasat scatterometer (SASS) provided mea-
surements of ¢° at two different azimuth angles separated by
approximately 90° [6]. The planned NSCAT scatterometer will
provide measurements of ¢° at three different azimuth angles
separated by 65° and 90°, respectively, from the first azimuth
observation angle [7]. For a given observation point, let ¢° (k)
be the true value of ¢° corresponding to the kth observation.
For notational simplicity, we write,

(1)

where 1 and v are the components of the wind vector at the
observation point, and where the dependence of ¢° on the ob-
servation azimuth angle, the incidence angle, and radar polar-
ization are subsumed in the index k of 9.

Due to the nature of T and the fact that ¢° is observed from
only a small set of azimuth angles, there may be several wind
vectors which give rise to the same set of ¢° values (one value
for each observation azimuth angle). Define D¢ to be the set of
all possible true wind velocity vectors, denoted by (4, v,),
which give rise to the same set of 6° (k)’s; i.e.,

0° (k) = M{(u, v), k}

D& {(u, o) [ {(u, v). k} = M{(u, ), k} vkl (2)

Note that by definition, («,, v,) € D°.

Because members of the set D¢ produce exactly the same set
of ¢°(k) values, they cannot be distinguished from one an-
other, even if the measurements of ¢° are noise free. We refer
to D¢ as the ‘‘true ambiguity set.”” The membership in the set
D° depends on the model function, the set of relative azimuth
angles (and the corresponding incidence angles and polariza-
tions of the antenna beams), and the true wind vector. Depend-
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ing on these factors, D¢ will contain one or more members. The
fact that D° may contain multiple members is a property inher-
ent to the geophysical model function and the measurement ge-
ometry.

In effect, the geophysical model function creates a many-to-
one mapping of wind velocity vectors to the set of measurement
0° (k)’s corresponding to the observation azimuth angles. The
best we can ever expect to do is identify all members of D°.
Selection of a unique wind vector from D requires additional
information not contained in the ¢° measurements for a single
sample point of the ocean’s surface; hence the need for dealias-
ing in which data from other sample points (or from other
sources) are used in conjunction with dynamical constraints,
continuity considerations, etc., to select a wind vector field
which (hopefully) is ‘‘close’’ to the true field [16], [17], [21].

To illustrate the membership of D° for various true wind vec-
tors, let us consider the well-known SASS' model function [15},
for which 9 is expressed as

M{(u, v), k} = G(6(k), x(k), p(k)) UL x®pE)(3)

where U = |(u, v)| is the wind speed, x(k) = ¢ (k) — ¢,
where ¢ = tan~' (v/u) is the wind direction, ¥ (k) is the azi-
muth angle of the kth antenna beam, and p (k) is the radar po-
larization. x is known as the relative azimuth angle. G and H
are tabular functions. For given values of 8 and p, G(0, x, p)
~ cos 2x and H(0, x, p) ~ 2 [15]. For given values of ¢° (k),
x(k), 6(k), and p(k), U can be computed as

1 a° (k)
| .
P {H(é)(k), x(k), p(k)) ! [G(B(k), ><(k),17(’<))B
(4)

U =ex

Consider the SASS antenna configuration with two azimuth
angles (both vertically polarized in this example) separated by
90°. For a single true wind vector (u,, v,), the set of true ¢°
values are denoted 0° (k = 1) = M {(u, v,), k =1} and ¢° (k
=2) = M{(u, v,), k = 2}. Now consider the two curves in
wind vector space (u, v), defined by M {(u, v), 1} = 0°(1)
and M {(u, v), 2} = ¢°(2). These curves are depicted in Fig.
2(a) for a true wind speed of 3 m/s and a true wind direction
of 0°, where the wind vector (u, v) has been converted to speed
and direction with the direction angle relative to the antenna
azimuth angle used in plotting. k£ = 1 corresponds to the relative
observation azimuth angle of 0°, while k = 2 corresponds to
90°. For this example an incidence angle of 40° was used for
both measurements. To generate this curve for k = 1, given
0° (1) and the respective ¥ (1), (1), and p (1) values for each
possible value of ¢ (and, subsequently, x ), a wind speed U was
computed using (4) such that M { (U cos x (1), U sin x(1)),
1} = 0°(1). The curve for k = 2 was similarly computed.
These curves intersect several times. The points along these
curves at which they intersect define the true ambiguity set D°.
Curves for other true wind directions are also shown in Fig. 2.
Note that depending on the wind direction, the number of ele-
ments in D° varies from 1 to 4.

Fig. 3 shows maps of D¢ for a true wind speed of 3 m/s at
two different incidence angles. To prepare Fig. 3(a), a true wind
direction (along the horizontal axis) was first selected, and D°
for that true wind direction was computed. The wind direction
of each of the elements of D¢ (the directions of each the ele-
ments of the ‘‘true ambiguity set’’) was then marked along the
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Wind Speed (m/s)

Wind Speed (m/s)

vertical corresponding to the true wind direction. This process
was repeated for each true wind direction. The result graphi-
cally illustrates how D° changes with the true wind direction for
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Fig. 2. The curves in (u, v) space, along which M {(u, v), k} = M{(u, v,), k} fork = 1, 2. (u,, v,) is the true wind speed
of 3 m/s and azimuth angle (relative to the first antenna beam) of: (a) 0°; (b) 45°; (c) 90°; (d) 135°; and (e) 180°, where the
observation azimuth angles are 0° and 90° for k = 1 and k = 2, respectively. Both antennas were vertically polarized and had
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an incidence angle of 40°. The SASS' model function was used to generate these plots.
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the SASS' model function. The vertical lines labeled (a)-(e)
correspond to the plots shown in Fig. 2. Fig. 3(b) was generated
in a similar manner, but for a different incidence angle of 20°.
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Fig. 3. A map of the true ambiguity set for a true wind speed of 3 m/s at
an incidence angle of: (a) 40°; and (b) 20°. The labeled vertical lines on
(a) correspond to the results from the plots shown in Fig. 2. Two obser-
vation azimuth angles at 0° and 90° (SASS configuration), both vertically
polarized, were used with the SASS' model function (see text).

For purposes of comparison, Fig. 4 was prepared in the same
manner as Fig. 3, but for the three-azimuth-angle NSCAT scat-
terometer configuration with all vertically polarized antennas.
Note that the additional azimuth angle reduces the number of
intersections at a given true wind direction to 1 or 2.

Figs. 3 and 4 can be misleading, since they show the rrue
ambiguity set. The true ambiguity set can only be obtained from
noise-free ¢° measurements. In the real world, the ¢° measure-
ments are always noisy. When the ¢° measurements are noisy
additional intersections may be produced or the curves may not
intersect at all. When the measurements are noisy, an objective
function (such as the maximum-likelihood (ML) objective func-
tion given in Section V) is formulated from the measurements
and minimized to provide estimates of the wind vector [3]. In
the noisy case, the wind vectors corresponding to the local min-
ima of the objective function define the noisy ambiguity set.
The number of minima depends on the true wind, the observa-
tion geometry, measurement integration time, and the noise re-
alization. To contrast the difference between the true and noisy
ambiguity sets, Figs. 5 and 6 were prepared, with Fig. S cor-
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Fig. 4. Same as Fig. 3, but for the three observation azimuth angles (0°,
65°, and 90°) NSCAT configuration (all vertically polarized).

responding to the SASS antenna configuration, and Fig. 6 to the
NSCAT configuration. Fig. 5 should be compared with Fig. 3,
whereas Fig. 6 should be compared with Fig. 4. Figs. 5 and 6
were prepared as follows: For a given true wind speed and di-
rection the true o° set was computed. Noisy ¢° measurements
were simulated by Monte Carlo methods, and the noisy ambi-
guity set corresponding to each realization of the noisy ¢° sets
was determined using the ML objective function [3]. While de-
tails vary with the choice of objective function (see [3]), the
general characteristics remain the same. A total of 500 real-
izations for each true wind direction was used. A histogram of
the directions of the elements of the noisy ambiguity sets was
computed. This was repeated for each true direction and the
resulting histograms plotted. For a given true wind direction,
the average number and location of the wind directions corre-
sponding to the noisy ambiguity set can be seen. Note that there
are typically 2 to 4 members of the noisy ambiguity set, re-
gardless of the number of members of the true ambiguity set.
The increased number of elements of the noisy ambiguity set
relative to the true ambiguity set is due to the presence of noise.
The difference between the noisy ambiguity set and true ambi-
guity set is, in fact, one of the reasons that identifiability of the
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. Note that the parameter s (k) is the square root of ¢° (k) (see

text). w, (k), wy(k), and w;(k) are independent, zero-mean Gaussian random variables with variances which depend on k.

Geophysical modeling error in 9’ is not considered in this syst

wind vector estimation has been questioned. We will show that,
as the measurement noise level is reduced (by increasing the
measurement time), the noisy ambiguity set (corresponding to
the ML objective function) converges to the true, multimem-
bered ambiguity set D; i.e., that wind vector estimation is sys-
tem identifiable. Even if we could choose the observation angles
to ensure that the true ambiguity set D contains a single mem-
ber for all true winds, the noisy ambiguity set will generally be
multimembered. In either case, if a unique wind estimate is de-
sired, dealiasing is required.

III. THE SCATTEROMETER MEASUREMENT PROCESS

In this section we review the scatterometer measurement pro-
cess and discuss the noise model used in our identifiability
proof. Additional information can be found in [11] and [19].

Let us consider the measurement process for a particular ob-
servation k at a particular sample point within the measurement
swath. The radar scatterometer transmits a radar pulse of known
energy towards the ocean’s surface. A portion of this power is
reflected, or backscattered, toward the radar. The amount of
power in the return echo (signal) is measured by the scatter-
ometer. The power received is a function of the known radar
equation parameters and ¢°, which is a function of the wind
over the ocean’s surface. The measurement of the backscattered
power is corrupted by additive thermal noise. A separate mea-
surement of the noise-only power is made and subtracted from
the signal plus noise power measurement to estimate the signal
power. The o° measurement is obtained from the signal power
measurement using the radar equation [1], [19]. We denote the
resulting ¢° measurement made at the kth azimuth angle z (k).
Consequently, at each sample point a noisy measurement z (k)
of the true ¢°, denoted ¢° (%), is obtained for each of k = 1,
-+, N(N = 2 or3) azimuth angles. The model for the noisy
measurement z (k) of the true ¢° value is

z2(k) = o° (k) + v(k) (5)

em model.

where »(k) is a zero-mean Gaussian random variable whose
variance is dependent on the true ¢°, ¢° (k), and the time length
T of the measurement [2], [19].

The variance of the signal power measurement (and hence the
¢° measurement) is a quadratic function of ¢° (k) [2], [5]. The
variance of z(k) can be expressed as [2], [3], [5]

Var [z(k)] = o?(k)a°?(k) + B*(k)o° (k) + ¥’ (k) (6)

where a(k), B(k), and vy (k) depend on the known observation
azimuth angle and the length T of the return echo integration
period. o (k), B(k), and 7 (k) are all proportional to l/ﬁ.

To simplify the notation in the remainder of the paper, we
define s (k) as

s(k) £ Voo (k) = M {(u, v), k} = N[ (u, v), k}. (7)

Using this definition, we can write the general noise model for
¢° (k) in terms of the modified measurement parameter s (k)
(by combining (5) and (6)) as

z2(k) = s (k) [1 + wi (K] + s(k)wa(k) + ws(k)  (8)

where w, (k), w,(k), and w;(k) are independent, zero-mean
Gaussian random variables with known variances o? (k), 82 (k),
and y?(k), respectively. A diagram of the resulting scatter-
ometer measurement noise model is shown in Fig. 7.

In Section V, we make use of the conditional probability dis-
tribution of z(k) given s(k); it is given as

p(z(k)|s(k))
1 1

V2m [ (k)s* (k) + B2(k)s2(K) + v2(R)]7

* exp {—% [2(k) - LK) /[ (k)s* (k)

+ B2(k)s* (k) + vz(k)]} (%)

Authorized licensed use limited to: Brigham Young University. Downloaded on February 2, 2009 at 12:37 from IEEE Xplore. Restrictions apply.
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Measurement z (k) is a random variable due to the presence
of the noise » (k). Since o*(k), B2(k), and v*(k) can be ex-
pressed as

(k) = 1Ta(k)

82(k) = 2b(k)

Y (K) = 3.e(k) (10)
where a(k), b(k), and c(k) are positive constants that are in-
dependent of the measurement time 7, we see that as T — oo,
o? (k) = 0, 8%(k) = 0, and ¥* (k) — 0. This corresponds to
reducing the measurement noise to zero, which is equivalent to
reducing the so-called measurement K, (see [3], [5]) to zero.
Note that K}, can also be decreased by increasing the measure-
ment signal-to-noise ratio. From (6) and (10) it follows that Var
[z(k)] = 0as T — oo; hence z(k) converges in probability to
the deterministic quantity s*(k) = ¢° (k). This result is used in
the identifiability proof.

IV. IDENTIFIABILITY

In this section we discuss the meaning and significance of
identifiability. In order to give a formal definition of identifi-
ability, define 8(T) to be an estimate of the desired parameter
vector @ (in this case, the wind vector). 9(T) is a function of
the measurements (which depend on the time T used to make
the measurements), the true system (including the true wind
vector), the estimation scheme, and the system model. The set
Df is the set of parameter vectors for which the system model
gives a perfect description of the true system. When D¢ consists
of more than one point, there will be several parameter vectors
within the system model which will give a perfect description
of the true system. Then the system may be said to be ‘‘system
identifiable’’ for a given estimation scheme if [18]

lim inf HG(T) - 0” = 0.

T— o feD*

(11)

While the parameter estimate may not be unique, the estimate
will be consistent to within the unique set D. If D¢ consists of
only a single point, the parameter estimate will be both con-
sistent and unique.

For scatterometer wind estimation the system model in-
cludes: (i) The scatterometer measurement geometry (including
the number, the polarization, and the azimuth and incidence
angles of the measurements); (ii) the geophysical model func-
tion I relating ¢° and the wind; and (iii) the ¢° noise mea-
surement model (described in Section III). We assume that the
geometric quantities and O are known. The estimation ap-
proach we employ is the maximum-likelihood.

Our interest in the identifiability of this system arises from
two sources: (i) The bi-cosine nature of the geophysical model
function which results in multimembered true ambiguity sets;
and (ii) the multiplicative nature of the measurement noise. In
regard to the latter, consider estimating a signed parameter 6
from measurements z (k) = On(k), where n(k) is the zero-mean
Gaussian process. If the variance of n (k) is known, a consistent
estimate of the magnitude of 6 can be obtained, but not the sign
of §; hence 6 is not uniquely identifiable. If, however, the vari-
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ance of n(k) is unknown, it is not possible to formulate a con-
sistent estimate of either the magnitude or the sign of 8, and
therefore 6 is not identifiable.

V. IDENTIFIABILITY OF THE SET D°

Let us consider the identifiability of » and v (or, equivalently,
the wind speed and direction). As mentioned above, (u,, v,) is
the true wind vector and D¢ is the corresponding true ambiguity
set. Let Z, = (z(1), -+, z(N ))7; its elements are statistically
independent. From (9), the conditional probability of Z, given
(u, v)is

P(Zplu’ v)
1 1
J’L‘_ T [@2(k)s* (k) + B2(K)$(K) + v (0)]"

u::jz

- exp {—— [z(k) — sz(k)] /[ (k)s*

2(k)s* (k) + ﬂk)]} (12)

The log-likelihood function [12] L(u, v) is given as

L(u, v) = {~— log [o (k)s* (k) + B*(k)s*(k) + 7* (k)]

—1zk) = SR /[ (k)s* (k)
B2(k)s* (k) + v*(K)]}-

The maximum-likelihood objective function is the negative of
L(u, v). The ML estimates are obtained by minimizing the ML
objective function.

To show identifiability of the point-wise estimation scheme
using the ML objective function, we need to show that as T —
o (corresponding to a longer and longer measurement (for
which the noise variance goes to zero)), the locations of global
minima of —L(u, v) converge in probability to the members
of D° [4], [8].

To show convergence in probability we first show that: (a)
—L(u, v)/T converges in the mean-squared sense (which is
stronger than convergence in probability) to the deterministic
function E[ — L(u, v)/T]; and (b) that the set of maximum-
likelihood estimates of u# and v converge in probability to the
location of the minimum of E{ —L(u, v)/T]. Doing this is
equivalent to showing that the set A of the (#, v) which min-
imize —L(u, v)/T for T = oo is equal to D, where 4, is de-
fined as [4], [8]

- {(u., o) TIE{LE{M}

]

We note that the set A, is the set of maximum-likelihood esti-
mates of (u, v) as T = o. Hence if A, = D, the maximum-
likelihood estimate is consistent and the set D¢ is identifiable
[41.

Since the mathematical details of the proof are tedious, we
provide only an outline of the procedure used in the identifi-

(13)

A

G

= min lim E[

uv T

(14)
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ability proof here; the full details are contained in [11]. The
procedural outline is as follows.

To show (a) we first compute the limit of E[ —L(u, v)/T]
as T — oo. Using the results given in Section III, this limit is
seen to be both non-negative and deterministic; i.e., it is not a
function of the realization of the noise. We then compute
E{[—L(u,v)/T — E{—L(u, v)/T1}}. In the limit as T —
oo, this expression converges to zero, which proves the desired
result (a).

To show (b), we note that because convergence in the mean-
square sense is stronger than convergence in probability, it fol-
lows that since ~L(u, v)/T converges in the mean-square to
the deterministic function E[ —L(u, v)/T] in the limit as T —
oo, the locations of the minima of —~L(u, v)/T converge in
probability to the minima of E[ —L(u, v)/T]. These minimia
define the set A;; hence we need only show that 4, = D It is
straightforward to show that the limit of E[ —L(u, v)/T]as T
— o is zero at the (u, v) contained in D, but is nonzero else-
where. Since the limit of E[ —L(u, v)/T] as T = oo is non-
negative, it follows that 4, = D, which proves the result (b).

It follows that wind vector estimation is therefore identifiable
to the multimember set D°. The wind estimate will be uniquely
identifiable (i.e., to a single (u, v) estimate) if and only if D¢
contains a single member (see Section II).

VI. CONCLUSIONS

In this paper we have considered the identifiability of wind
vectors estimated from wind scatterometer measurements of o°.
We have given an estimation of theoretical proof that wind vec-
tors are set-wise identifiable from wind scatterometer measure-
ments. Our results show that due to the nature of the geophysical
model function M relating the vector wind and the radar back-
scatter, there will be a set of wind vectors which result from
point-wise wind estimation, rather than from a single estimate.
In the limit, this set is unique and the vector estimates are con-
sistent. Within this set a selection of a single wind vector cannot
be made from the measurements taken at a single sample point.
To obtain a single vector estimate, additional constraints such
as continuity considerations with nearby measurements must be
imposed. This is the first time, to the authors’ knowledge, that
an estimation-theoretical explanation has been given to support
the traditional intuitive approach to wind estimation in which
all of the wind vectors corresponding to the local minima of the
objective are retained and used in the second, post-estimation
processing step known as dealiasing.

While we have shown set-wise identifiability of wind vectors
estimated on a point-wise basis, the issue of dealiasing remains.
Current approaches to dealiasing are based on various, often ad
hoc, methods of selecting single vectors from the noisy ambi-
guity sets based on comparisons with adjacent noisy ambiguity
sets. A theoretical analysis is difficult. We are currently exam-
ining techniques for estimating the entire wind field over the
observation swath. This fundamentally new approach avoids the
need for dealiasing [9]-[11].
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