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ABSTRACT 
 
 
 

A NEW METHOD FOR THE RAPID CALCULATION  

OF FINELY-GRIDDED RESERVOIR SIMULATION  

PRESSURES 

 
 

Benjamin A. Hardy 
 

Department of Chemical Engineering 
 

Master of Science 
 
 
 

 A new method for the determination of finely-gridded reservoir simulation 

pressures has been developed. It is estimated to be as much as hundreds to thousands of 

times faster than other methods for very large reservoir simulation grids. The method 

extends the work of Weber et al.27 Weber demonstrated accuracies for the pressure 

solution normally requiring millions of cells using traditional finite-difference equations 

with only hundreds of cells. This was accomplished through the use of finite-difference 

equations that incorporate the physics of the flow. Although these coarse-grid solutions 

achieve accuracies normally requiring orders of magnitude more resolution, their coarse 

resolution does not resolve local pressure variations resulting from fine-grid permeability 

variations. Many oil reservoir simulation models require fine grids to adequately 

represent the reservoir properties. Weber’s coarse grids are of little value. This study



takes advantage of the accurate coarse-grid solutions of Weber, by nesting them in the 

requisite fine grids to achieve much faster solutions of the large systems.   

Application of the nested-grid method involved calculating an accurate solution 

on a coarse grid, nesting the coarse-grid solution as fixed points into a finer grid and 

solving. Best results were obtained when an optimal number of coarse-grid pressure 

points were nested into the fine grid and when an optimal number of nested-grid systems 

were used.  

Speed Increase Factor for Weber's Results 
Grid Size 106 109 

One Optimum Nested-Grid 115.84 812.98 
Two Optimum Nested-Grids 278.21 2796.81 
Three Optimum Nested Grids 351.32 3860.19 
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NOMENCLATURE 
 
 

a   Proportionality constant 
c  Integration constant 
i,j,k  Grid point location in x,y,z respectively  
n  Number of grid refinements; number of wells 
p   Pressure 
q   Flux of fluid through porous media  
r      Distance to the wells 
x,y,z  Cartesian coordinates 
 
A, B, C, D Variables determined by regression  
Fx, Fy, Fz Fraction of x, y, and z-distances that the fine-grid points are from point (1) 

of the course-grid block 
K   Permeability 
K′  Pseudo-permeability  
N  Parameter used to describe effectiveness of well, determined by regression 
P  Pressure 
 
NITER  Number of Iterations 
NFG  Number of fine-grid points 
NCG  Number of coarse-grid points 
NLAPLACE Parameter used to describe effectiveness of well for LaPlace SOR 
NWEBER Parameter used to describe effectiveness of well for Weber SOR 
NCG`  NCG – N           
NFG`  NFG – N           
Qn   Volumetric injection rate of well n 
rn   Distance to well n 
td  Dimensionless time 
ttotal  Total dimensionless time 
tcoarse-grid Dimensionless time required to calculate coarse-grid solution 
tnested-grid Dimensionless time required to calculate a given nested-grid solution  
 
λ   Ratio of pseudo-permeability to actual permeability  
µ   Fluid viscosity 
ω  Over-relaxation factor 
ωopt  Optimal Over-relaxation factor  
Ω  Solid angle 
+  Positive cell face 
-  Negative cell face 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

This thesis proposes a new method of linear algebra that provides a rapid solution 

of very large systems of equations. This work was motivated by the need for such a 

technology in reservoir simulation. However, the method is likely to be valuable in other 

disciplines where large systems of linear equations are encountered, such as in 

computational fluid mechanics. 

Oil is the lifeblood of America’s economy. It presently supplies more than 40% of 

the nation’s total energy demands.1 Recently the Department of Energy (DOE) has 

expressed two key concerns over oil in America:  (1) maintaining an immediate readiness 

to respond to oil supply disruptions and (2) keeping America’s oil fields producing in the 

future. The DOE has determined that one way to prevent an oil supply disruption is to 

make certain that domestic production of oil is maintained. Remaining U.S. oil fields are 

becoming progressively more costly to produce because much of the easily produced oil 

has already been recovered. Better technology is needed to locate and produce the 

residual oil.1 Many of the emerging technologies that will keep U.S. oil fields producing 

long into the future do and will employ reservoir simulators.
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1.1 Technologies That Depend on Reservoir Simulation 

Reservoir simulation became feasible some thirty years ago with the dawn of the 

computer age. Since that time, computer technology has increased greatly. Computer 

hardware and software have become continuously more powerful at an astonishing rate.  

However, throughout the history of computers reservoir simulators have always taxed the 

very fastest machines, and despite these enormous advances in computer technology, 

reservoir simulators continue to strain the largest and fastest computer systems. The need 

for faster reservoir simulation remains as critical today as it has ever been. Emerging 

technologies in the oil industry that depend on reservoir simulators would be greatly 

enhanced by more accurate and faster reservoir simulations. Brief descriptions of some of 

the emerging technologies key to optimal oil recovery are described as follows. 

Geostatistics:  Geostatistics involves gathering large quantities of data from 
exposed rock out-crops, where measurements of physical properties can be made 
with relative ease. The statistical variations in physical properties observed in the 
out-crops are applied to data obtained from well cores, logs, and from surface 
seismic data for subterranean reservoirs. Many possible subsurface models of the 
same field, each with some probability of being correct, can then be generated. 
Simulation of all the geostatistical reservoir models is practical only when 
simulations can be made rapidly. Results of these reservoir simulations are 
valuable as they can provide a measure of a field’s potential profitability as well 
as the associated risks.2  

 
Automated History Matching:  History matching plays a critical role in 
monitoring displacement processes, constructing good reservoir models, and 
predicting future reservoir performance. Production data are the most common 
type of reservoir data. Matching these data allows reservoir engineers to better 
characterize reservoir properties such as permeability and porosity.2 This process 
has been automated, and is relatively simple when the number of data values to be 
adjusted is small and when simulations can be accomplished rapidly. For more 
extensive applications, history matching remains a difficult and time-consuming 
task, as many simulations of the same field must be made to determine a data set 
that matches the production history of the field.2  

 
Optimization:  Optimization of reservoir production involves repeated 
simulations of a particular field to determine optimal reservoir design variables 



 3

and design functions such as well location, geometry, completion intervals, well 
rates, well remedial treatments, etc. Optimization software is available, yet fast, 
accurate and robust reservoir models are essential to enhance the optimization 
process.2 

 
Smart Wells:  Smart wells are equipped with down-hole measurement 
equipment, packers, and control valves. They use real-time simulations to control 
the production rate from different well segments through the use of packers, 
which isolate the various production intervals in a well, and valves, that control 
the amount of flow from each interval. Smart wells have the potential to 
significantly increase production (up to 65%).3 Optimal real-time control theory, 
used to determine proper packer and valve settings, requires rapid reservoir 
simulation.2 
 

1.2 Reservoir Descriptions 

Modern reservoir imaging techniques and advances in geological modeling are 

allowing very detailed reservoir descriptions. Often ten million cells or more may be used 

to describe reservoir rock properties. With current computers, most oil companies cannot 

afford to run routine fluid-flow simulations with more than about 100,000 grid blocks.4 

Typical reservoir models generally contain 10,000 – 100,000 cells.5  

The alternative to running multi-million cell simulation models that incorporate 

the geologic models, is “Upscaling”.  “Upscaling” is the practice by which a fine 

geologic model containing a detailed description of reservoir rock properties is replaced 

by a coarser scale description of equivalent reservoir rock properties which is more 

suitable for reservoir simulation. The coarsening of the geologic model can lead to 

reservoir simulation runs that can be completed in hours, as opposed to days. The 

challenge in applying this process is to retain an accurate representation of the physical 

characteristics of the geologic model critical to fluid flow.6 A variety of different methods 

has been proposed to upscale single and multiphase flow properties. Many 

studies7,8,9,10,11,12 and reviews 4,5,13,14,15,16 have been conducted, yet all upscaling methods 
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suffer from the problem that either, they make assumptions about the large-scale 

boundary conditions, which may significantly affect the results, or they require a fine-

grid solution to derive coarse grid properties.17 Other unsettled issues include grouping of 

upscaled relative permeabilities, robustness and process independence. There are still 

unresolved issues dealing with extending multi-phase scales up to three-phase flow, 

compositional flow, and flow in naturally occurring systems.5 Consequently, despite a 

huge literature on multiphase upscaling, the best approach is still very much an open 

issue. In fact, the current industry practice is to limit upscaling to single-phase properties 

only.17 

In a recent review, M. A. Christie stated that, “The most promising methods of the 

last few years may be those that regard upscaling as an integral part of the solution of the 

flow equations, rather than as an external process which have the correct boundary 

conditions to provide the correct answer.”5
 

 

1.3 Reservoir Simulation Approaches 

In the May 17th, 2004, Oil & Gas Journal,6 Scott Evans summarized four basic 

approaches that can be used for reservoir simulation in today’s high performance 

computing environments. 

“Four basic approaches that can be successfully used in reservoir simulation are 
available for subsurface modeling: 

1. Traditional. A geologic model “upscaled” to a second model and used 
for reservoir simulation. The result is two models, only one of which is 
used for simulation. 

2. Geologic. A geologic model run without coarsening in the reservoir 
simulator. The result is one model but with potentially very slow 
simulation runs 
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3. Hybrid. One model generated, but with varying scale, in which the 
model has more detail where needed and less where it is not. The 
result is one model with potentially more acceptable simulation runs. 

4. Multiscale. Two or more models, one fine and one coarse, linked and 
used simultaneously in the reservoir simulator. This is an area of 
industry research and would have each of the models used in the 
simulation as appropriate.” 

The multiscale approach is a current area of research and development. This 

methodology will hopefully provide a way to more accurately represent the static and 

dynamic properties of a reservoir with minimal computational power. Recent studies 

have shown how to use both coarse and fine grid information during reservoir 

simulations. 

 

1.4 Review of Multiscale Methods 

In 1991, Ramé and Killough18 presented the first implementation of a multiscale 

simulation technique. The method used the implicit-pressure, explicit saturation (IMPES) 

procedure to decouple the pressure equation from the conservation equations 

numerically. A fourth-order finite element method was used to solve the pressure 

equation on each coarse grid. Fine-scale information was interpolated from the coarse 

grid using a splines-under-tension technique, and the conservation equations for fluid 

transport were solved on the fine grid. Time stepping was performed on the fine grid and 

after several timesteps the current mobilities on the fine grid were passed to the coarse 

grid to update the pressure field. 2D examples for miscible flow were presented. 

In 1995 Guérillot and Verdière19 proposed a dual mesh method where the pressure 

field was first computed on a coarse grid, but where the saturation was moved on the fine 

grid. Using approximate boundary conditions, the velocity field was estimated within 
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each coarse block by solving for the pressure. This technique was applied to a 2D single-

phase model and in 1996 they extended their work to multiphase flow.20 They showed the 

results in 2D for two-phase flow models with simplified injection-production boundary 

conditions. Comparison of the time of calculation spent for the full fine-grid calculation 

and the dual mesh method gave a speed-up factor from 5 to 7.  

In 1996 Hou and Wu21 presented the derivation of a mathematically rigorous 

multiscale finite-element method for solving the class of elliptical problems that arise 

from composite material (steady-heat conduction through a composite material with 

tubular fiber reinforcement in a matrix) and flows in porous media. By constructing 

multiscale finite-element base functions that were adaptive to the local property of the 

differential operator, this method was able to capture efficiently the large-scale behavior 

of the solution without resolving the small-scale features. Results for flow in porous 

media were provided in 2D without gravity and capillary effects. 

In 1999 Guedes and Schoiozer22 implemented the same methodology as Guérillot 

and Verdière, using an upscaling method developed by Hermitte and Guerillot.23 They 

provided results in 2D and included gravity effects. Well boundary conditions were 

considered as sources or sinks applied in one grid block.  

Also in 1999, Gautier et al.24 presented a similar approach using streamline-based 

simulation (an IMPES method). The pressure solve method (psm) was used to upscale the 

transmissivities for each coarse-grid block from petrophysical properties defined on a 

fine grid. Gravity effects and wells where included. The well pressures were determined 

using Peaceman’s well model, and special attention was given to keep equivalent fluxes 

on both coarse and fine scales. The method was tested on a series of waterflood problems 
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and it was demonstrated that the method could give accurate estimates of oil production 

for large 3D models up to 8.5 times faster than direct simulation using streamlines on the 

fine grid. The results were very efficient in terms of CPU time and memory management.  

Arbogast and Bryant25 introduced a slightly different dual grid approach in 2001 

by using Green function methods to upscale transmissivities and a mixed finite-element 

method to solve the pressure field. Gravity and capillary effects were considered in their 

methodology. Similar to Guatier et al.24, they observed a reduction ratio for the time of 

calculation of about 2 to 10 compared to fine-grid simulation.  

Audigane and Blunt (2004)17 present an extension of the dual-mesh method of 

Guérillot and Verdière to 3D cases and included gravity and wells. Using an IMPES 

method, the pressure field was solved on the coarse mesh with a conventional finite-

difference scheme. Transmissivities were upscaled either with the psm method or with a 

simple geometric average (ga). The pressure field was reconstructed on the fine mesh 

using flux boundary conditions from the coarse-grid simulation. 

Multiscale methods continue to develop and make advances in reducing the cpu 

time of reservoir simulations. The solution of the pressure equation is the most time-

consuming step in any reservoir simulation5, and it has become more evident that 

improved mathematics, which will allow faster and more accurate simulations, is 

fundamental to improved reservoir simulation capabilities. 

In reservoir simulation, the primary concern is movement of gas, oil, and water in 

the reservoir.26 These fluids flow as a result of pressure variations in the reservoir. Hence, 

the accurate prediction of reservoir pressures is essential to a good reservoir simulator. 

This work proposes a new linear algebra technique for the solving of finely-gridded 
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reservoir pressures. The new method is multiscale, in that it involves the calculation of 

the reservoir pressures on a coarse grid and then uses the coarse-grid solution in a nested 

grid to calculate fine-grid pressures. Improved mathematics are key to the method and 

permit faster and more accurate solutions of the pressure equation. 

 

1.5 Summary 

 Better technology is needed to produce oil and gas reserves in a more effective 

manner. Many developing technologies that improve oil and gas production would be 

greatly enhanced by faster and more accurate reservoir simulators. In approaching 

reservoir simulation, the multiscale method is an area of industry research which has been 

shown by various researchers to reduce the computational time required to complete 

reservoir simulations. Calculation of reservoir pressures is the most time consuming step 

in any reservoir simulator; this thesis proposes a new linear algebraic method that 

incorporates the multiscale approach to calculate reservoir simulation pressures in an 

accurate and fast manner. 
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CHAPTER 2 
 
 

BACKGROUND 
 
 

2.1 Weber’s Equations and Nested-Grid Description 

The new pressure-solution method developed in this thesis is based on the work 

of Weber et al.27 They proposed that finite-difference equations, used to represent the 

pressure equation, be based on mathematical expressions that incorporate the physics of 

the process instead of on traditional polynomial expressions. In modeling reservoir 

pressures, equations incorporating the physically realistic ln(r) dependence on pressure 

for reservoirs with straight line wells, and a 1/r dependence for reservoirs with more 

complex well geometries were used (r is the distance to the wells). Weber investigated 

formulations in which ln(r)’s and 1/r’s were summed over all the wells in the reservoir, 

and in which only the single, closest well value was used. The results of Weber’s study 

that incorporated a 1/r dependence into the finite-difference equations are shown in 

Figure 1. The figure compares the accuracy of the pressures calculated by various 

methods for an 11x11x22 grid of a rectangular reservoir of similar geometry to that used 

in this study. The different methods were compared with an analytical solution generated 

by Weber.  

The new finite-difference equations showed a four-order-of-magnitude 

improvement in accuracy compared with traditional polynomial based finite-difference 

equations and approximately three-orders-of-magnitude improvement over Peaceman’s
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Correction. This dramatic improvement in accuracy was the catalyst for the development 

of a new method to calculate finely-gridded pressures.  

 

Figure 4: Reservoir Pressure Error Summary
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Figure 1. Weber et al. Results27 
 

 
The new method involves two steps:  (1) The creation of a course-grid solution 

using Weber’s finite-difference equations that incorporate the physics of the flow to 

obtain an accurate pressure solution on a small, coarse grid, and (2) nesting the coarse-

grid solutions into a desired fine grid and solving the system of equations to obtain 

detailed pressures that honor the nested-course-grid pressures. The improved 

mathematics of Weber et al. is vital to this method, as it permits the generation of 

accurate solutions on coarse grids. 
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2.2 Comparison to Multigrid Method 

This method is not a multigrid method, yet it does utilize some of the basic ideas 

of the multigrid method, namely coarse-grid relaxation and nested iteration. Multigrid 

methods are built on the fact that many standard iterative methods possess a smoothing 

property. The smoothing property describes the fact that as iterative methods progress to 

convergence the reduction in error decreases and becomes smooth. Figure 2 is taken from 

the book “A Multigrid Tutorial” by William L. Briggs28 and shows this smoothing effect 

for the weighted Jacobi method in a plot of the absolute error versus iteration number.  

The error decreases quickly within the first five iterations and then decreases slowly.  

 

 

 
Figure 2. Depiction of Smoothing Property28 

 

The initial rapid decrease in error is associated with the quick elimination of high-

frequency modes, and the slow decrease is due to the presence of low-frequency modes.  

The modes are Fourier modes where a small wave number, k, is associated with long 
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smooth waves, and large values of k correspond to highly oscillatory waves. As stated 

earlier, many standard iterative methods possess this smoothing property which makes 

them very effective at eliminating high-frequency or oscillatory components of the error, 

while leaving the low-frequency or smooth components relatively unchanged. Through 

the use of coarse grids, the multigrid method puts the smoothing property to good use as 

the smooth error is relatively more oscillatory on coarser grids. Hence relaxation 

becomes more effective on coarser grids. Coarse grids can be used to compute an 

improved initial guess for fine-grid relaxation, and a reliable way to improve the 

relaxation scheme on the fine grid is to use a good initial guess. This well-known 

technique of using a coarse grid to generate improved initial guesses on a fine grid is 

called nested iteration.  In a nut shell, multigrid methods relax on a fine grid until the 

smooth error is reached and the high frequency oscillations have been eliminated. The 

grid is then restricted to a coarse grid where the error is relatively more oscillatory. The 

grid is again relaxed until smooth error is reached. The coarse grid points become a new 

and improved initial guess for the fine grid where the coarse grid points are mapped to 

the fine grid through interpolation. The fine grid is relaxed again and the process 

continued to convergence.28 

The research of this thesis investigates the potential value of implementing, in a 

nested-grid/multiscale manner, the new finite-difference equations developed by Weber 

et al. However, unlike the multigrid method described previously, the new method can 

potentially be completed in only two steps, one using a course grid and a second using a 

fine grid. Only two grids are necessary because of the very high accuracy of the coarse-

grid solution using Weber’s solution.  
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This thesis describes development of this new method. The steps involved are 

outlined in Table I.  

 

Table I. General Objectives of Study 

Objectives of Study 

Test performance of various solvers as a function of grid size (Chapters 3,4) 
Analyze results to determine the best solver(s) for coarse and fine grids. Selected solver(s) 
will be used in nested-grid solution method (Chapter 5) 
Implement best solver(s) in the nested-grid solution method (Chapter 6) 
Consider potential value of applying interpolated values to initial solution guesses (Chapter 
7) 
Apply Weber’s coefficients in nested-grid solution method (Chapters 8,9) 

Regress all results to determine potential correlations that fit data (Chapter 10) 
Conduct a dimensionless time analysis using correlations determined from regressions and 
optimize the nested-grid configuration (Chapter 11) 
Analyze the error of the nested-grid solution method (Chapter 12) 

Investigate the use of multiple nested-grids to improve method further (Chapter 13) 
 

 

2.3 Reservoir Description 

In this work, the reservoir geometry considered is shown in Figure 3. Injection at 

1,500 psi occurs in one well; production at -1,500 psi occurs in the other well. The two 

wells are centered, one in each of the two cubic elements comprising the three-

dimensional rectangular reservoir. The boundary conditions of the reservoir are no flow, 

i.e. the pressure gradients in the direction normal to the boundaries are zero. 
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Figure 3. Hypothetical Reservoir Being Simulated27 

 

The dimensions of the reservoir are in the following ratio: 1x1x2. The actual 

reservoir dimensions were factored in by scaling the well radius with the size of the grid 

block. For grid blocks of 100 foot dimensions, the well radius of three inches becomes 

0.0025. Although gravity effects are assumed negligible, the reservoir was considered to 

lie with its largest dimension in the horizontal plane.  

 

2.4 Solution of the Pressure Equation 

The pressure equation is written in terms of average pressure for the conservation 

of mass flowing through porous material. The incompressible, steady-state, three-

dimensional pressure in a reservoir for which the mobility is everywhere uniform, is 

given by the Laplace equation: 
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Replacing each of the second derivatives by second-order, centered-difference 

approximations at grid point (i,j,k) yields 
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In the special case where ∆x = ∆y = ∆z the grid aspect ratio is unity and Equation (2-2) 

becomes 
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This is the traditional, finite-difference formulation used to solve the pressure equation in 

three dimensions.  

 

2.5 Summary 

 Weber et. al27 developed finite-difference equations that incorporate physics of 

flow and allow for pressure solutions, four-orders-of-magnitude more accurate, to be 

generated on coarse grids. The proposed new calculation method developed in this thesis 

takes advantage of Weber’s accurate coarse-grid solutions in a nested-grid calculation 

method to determine finely-gridded reservoir simulation pressures. Although this method 

incorporates some of the basic ideas of multigrid methods, namely coarse-grid relaxation 

and nested iteration, it is not a multigrid method as the coarse-grid pressure solutions are 

nested and fixed throughout the entire relaxation process of the fine grid. The reservoir 
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being simulated is of an idealized nature. The simplify assumptions include: (1) 

homogeneous permeability, (2) neglected gravity effects, (3) incompressibility (4) 

steady-state, and (5) dimensions of reservoir and placement of wells generate a 

symmetric pressure solution. 
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CHAPTER 3 
 
 

TESTING THE PERFORMANCE OF VARIOUS SOLVERS AS A FUNCTION 
OF GRID SIZE 

 
 
Reservoir simulations can be made at varying degrees of grid refinement ranging, 

as mentioned previously, from hundreds to millions of grid blocks. For this study, it was 

important to know how various solvers performed as a function of grid size so that the 

best solver(s) could be used for all grid sizes in the nested-grid method.  

The study was initialized by considering the performance of various numerical 

methods for the solution of systems of linear algebraic equations as a function of grid size 

on a standard desktop computer. The computer used four Intel (R) Pentium (R) 

processors running at 1.80GHz, and 655 MB of RAM. In the entire study, swapping 

RAM data to the hard drive paging was not apparent. Hence the same performance 

increase would be expected on any computer (workstation, supercomputer) with 

sufficient memory to avoid paging. Both direct and iterative methods were considered 

and compared. The performance metrics included convergence time, iterations required 

to converge, and run-time memory requirements.  

To study the performance of the various linear algebraic solvers as a function of 

grid size, a range of test grid sizes was selected. The grids were constructed so that the 

wells were always in the center of their respective cells. Table II summarizes the various 

grid sizes used.
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            Table II. Grid Sizes and Dimensions 

   

 

 

 

 

 

 

 

3.1 Direct Methods 

Direct solution methods perform very well for small grids, but can require 

excessive computational effort and computer memory as the number of grid points 

increases.29 Direct methods might be preferable for the course-grid solution, while 

iterative methods might be required for the fine grid. The direct elimination methods 

analyzed were Gauss Elimination29, the Doolittle LU factorization method29, and a band 

solver, DGBSV, from the LAPACK library.30 The programs were developed using 

Compaq Visual Fortran 6.5 (Fortran 90). Default compiler options were used throughout 

so that others could duplicate results. 

 

3.2 Iterative Methods 

Iterative methods can be divided into two general categories, stationary and 

nonstationary.31 Three standard stationary iterative methods were considered, namely 

Jacobi, Gauss-Seidel, and Successive-Over-Relaxation (SOR). Five advanced 

nonstationary iterative methods from MATLAB 7.032 and a hybrid of direct and iterative 

Grid Size Grid Dimensions 
250 5X5X10 
686 7X7X14 
1458 9X9X18 
2662 11X11X22 
9826 17X17X34 
18522 21X21X42 
71874 33X33X66 
101306 37X37X74 
265302 51X51X102 
549250 65X65X130 



 19

methods, Line Successive-Over-Relaxation (LSOR), were also considered. Iterative 

methods should be better suited for the large systems of equations required in this study. 

The computer programs for these solvers, other than the five found in MATLAB, were 

developed in-house with the incorporation of the Thomas algorithm (DGTSV) from the 

LAPACK library30 for LSOR. The in-house programs were developed in Compaq Visual 

Fortran 6.5 (Fortran 90).   

Some iterative methods require diagonal dominance to guarantee convergence 

and in general are less robust than direct solvers. The system of equations arising from 

the seven-point, second–order approximation of the Laplace equation used in the 

simulations of this study is always diagonally dominant. Hence, such iterative solvers 

work well.   

For any iterative method, an initial approximation must be made for the solution 

to start the process. Several choices are available:  (1) Simply let the solution (in this case 

the value of the pressure Pi,j,k at the various grid points) equal zero at all non-specified 

points; (2) Approximate Pi,j,k by some average of the well pressures and or boundary 

conditions; or  (3) Construct a solution on a course grid, and map the course-grid values 

onto the fine grid through interpolation.29 For the determination of the best solver to be 

used in the nested-grid method, the initial Pi,j,k  solution vector was set to 0.0 everywhere 

except at the wells, which was set to the average of the well pressures, 1500 and -1500. 

However, later in the study (See Chapters 6 and 9), coarse-grid points would be nested 

into the fine grid, and three-dimensional linear interpolation would also be considered to 

establish good starting values for iterative methods on the fine grid. 
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Iterative methods only generate an approximate solution after a finite number of 

iterative steps; the iterative process terminates when it meets a specified convergence 

criterion. In general, the number of iterations required to satisfy the convergence criterion 

is influenced by diagonal dominance, method of iteration, initial solution vector, and the 

convergence criterion itself.29 The convergence criterion used by the in-house iterative 

methods in this study is described by the following equation. 

 

| P1,1,1 + PImax,Jmax,Kmax | ≤ 10-6               (3-1) 
 

 
P1,1,1 and PImax,Jmax,Kmax are the values of the pressures at opposite corner points of the grid 

furthest from each other in three dimensions. The symmetry of the problem indicates that 

P1,1,1 equals PImax,Jmax,Kmax in a properly converged solution. P1,1,1 is the first to be 

calculated and hence is the least converged. PImax,Jma,Kmax is the last to be calculated and 

would be expected to be the most converged. Since the pressures are initially at zero and 

relax to their solution values asymptotically, with points near the wells changing most 

rapidly, this convergence criteria should represent the maximum error in the solution 

after many iterations.  

For the iterative method of SOR and the hybrid method of LSOR, another key 

factor in the determination of the number of iterations required for convergence was the 

value of the over-relaxation factor, ω. When ω equals one, SOR yields the Gauss-Seidel 

method. When ω is greater than one, but less than two, the system is over-relaxed; when 

the ω factor is equal two or greater than two, the system becomes unstable. Figure 4 

shows a plot of the iterations required for convergence as a function of the over-
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relaxation factor for a 17x17x34 grid solved by SOR. In this case it is apparent that by 

using the optimal over-relaxation factor one reduces the number of iterations required for 

convergence by approximately two orders of magnitude in comparison with the Gauss-

Seidel iteration method. 

Optimal Over-Relaxation Factor:  17x17x34
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Figure 4. Determination of the Optimal Over-Relaxation Factor 

 

The relaxation factor does not change the final solution since it multiplies the residual, 

which is zero when the final solution is reached. The major difficulty with the over-

relaxation method is the determination of the best value for ω. In general, the optimal 

value of the over-relaxation factor, ωopt, depends on the size of the system of equations 

and the nature of the equations. As a general rule, larger values of ωopt are associated with 

larger systems of equations.29 The optimum value of ω was determined by 
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experimentation for the various grid sizes considered in this study.  The process of 

finding ωopt was straight forward but often time consuming, especially for large grids.  

 

3.3  MATLAB 7.0 Iterative Methods 

MATLAB is a high-performance language for technical computing; the name 

stands for matrix laboratory. MATLAB incorporates LAPACK and BLAS libraries in its 

software for matrix computation. Nine functions are available in MATLAB that 

implement advanced iterative methods for sparse systems of simultaneous linear systems.  

Of these nine, five where considered: Biconjugate Gradient (BICG), Biconjugate 

Gradient stabilized (BICGSTAB), LSQR implementation of Conjugate Gradients on the 

Normal Equations (LSQR), Generalized Minimum Residual (GMRES), and 

Quasiminimal Residual (QMR). GMRES is a Krylove Subspace Method and was 

recommended for use in this study by simulation developers from ConocoPhillips. All of 

the MATAB algorithms were implemented without preconditioners, and the magnitude 

of the convergence tolerance was 10-6.  

 

3.4 Summary 

A standard desktop computer was used for the study of the performance of 

various solvers as a function of gird size. Direct solution methods considered were Gauss 

Elimination29, the Doolittle LU factorization method29, and a band solver, DGBSV, from 

the LAPACK library.30 Stationary iterative methods considered for the study were Jacobi, 

Gauss-Seidel, and Successive-Over-Relaxation (SOR). Five nonstationary iterative 

methods from MATLAB 7.0:  Biconjugate Gradient (BICG), Biconjugate Gradient 
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stabilized (BICGSTAB), LSQR implementation of Conjugate Gradients on the Normal 

Equations (LSQR), Generalized Minimum Residual (GMRES), and Quasiminimal 

Residual (QMR) were considered. A hybrid of direct and iterative methods, Line 

Successive-Over-Relaxation (LSOR), was also considered. SOR and LSOR require the 

determination of an optimal over-relaxation factor. 
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CHAPTER 4 
 
 

PERFORMANCE OF VARIOUS SOLVERS 
 

 
4.1 Direct Methods:  Results  

Figure 5 shows a plot of convergence time as a function of grid size for the direct 

methods of Gauss Elimination (GE), Doolittle LU factorization (LU) and the band solver, 

DGBSV, from the LAPACK library. Due to the computational limits of the computer, the 

solvers’ performance was only considered on smaller grid sizes.  

Direct Methods:  Time vs Grid Size 
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Figure 5. Direct Methods:  Time Required for Convergence as a Function of Grid Size



 26

A power law fit of the relationship between time and grid size is included for the DGBSV 

solver. GE and LU data points are nearly coincident and the same power law fit is used to 

describe both. Indeed, these direct methods proved to work reasonably well on small 

grids, yet bigger grid sizes required large amounts of memory and numerous calculation 

steps. The direct methods eventually became impractical for the larger grids. For 

example, an 11x11x22 grid results in 11⋅11⋅22 = 2,262 equations in 2,262 unknowns and 

a full coefficient matrix with (2,262)2 = 7,086,244 array elements. For the Gauss 

Elimination and Doolittle LU factorization programs, the next largest grid size 

considered, 17x17x34, has an input array of 96,550,276 elements and would have taken 

an estimated four and a half days to compute using 378,544 K of RAM. The banded 

solver from the LAPACK library, DGBSV, showed some improvement in both time and 

memory performance but still struggled on larger grids. The memory requirements for the 

direct methods are shown in Figure 6 with power law fits of the data for the DGBSV and 

LU/GE solver. These general trends were expected, yet the study was conducted for 

comparative purposes and to aid in understanding the solution process. Direct solutions 

could be preferable for obtaining the course-grid solutions for the new method. Again, 

since GE and LU memory requirements are so similar, the plotted points are essentially 

coincident and one trend line describes both. The left-most points are influenced by the 

finite amount of RAM that would be required even for a zero grid size, hence these points 

were excluded in the regression. 
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Direct Methods: RAM Requirements vs Grid Size
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Figure 6. Direct Methods:  Memory (RAM) Requirements as a Function of Grid Size 
 
 

 

4.2 Stationary and Nonstationary Iterative Methods:  Results  

  The iterative methods performance was tested at various grid sizes. Of all the 

iterative methods described in the previous chapter, LSOR was found to have the best 

convergence-time performance with SOR following closely. Of the five nonstationary 

MATLAB iterative methods, GMRES and LSQR were shown to have the best 

convergence-time performance. Figure 7 shows the convergence time performance of the 

various solvers as a function of grid size.  Once again a power law fit is included for the 

best performer, LSOR.  
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Itertative Methods:  Time vs Grid Size
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Figure 7. Iterative Methods:  Time Required for Convergence as a Function of Grid Size 
 

Extrapolation of the GMRES data from this plot suggests that GMRES could 

eventually perform better than any of the iterative methods at larger grid sizes. This can 

be seen by using the four data points for GMRES, which give a slope that indicates better 

performance for GMRES at larger grids; however GMRES memory requirements 

prohibited actual determination of results at larger grids. The potential of GMRES 

performing better than the other iterative methods at larger grids is somewhat diminished 

if the slope from the two largest grid sizes is used. Given the trends of the other iterative 

methods, decisions for GMRES were based on the data for the two largest grid sizes.  

QMR and BICG were stable for only the smallest grid size and had comparable 

convergence times to the other MATLAB iterative methods at the respective gird size. 

The use of a preconditioner at larger grid sizes could possibly help QMR and BICG to 
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stabilize and generate reasonable answers, but this was not done as this study was 

conducted without preconditioners. BICGSTAB was shown to be the slowest of the five 

MATLAB iterative methods. As expected, Jacobi and Gauss Seidel iterative methods 

performed poorly with respect to the other methods when comparing convergence time.  

SOR and LSOR performed better than all other iterative methods; LSOR had 

slightly better convergence times than SOR, but demanded more RAM than the other in-

house iterative methods for all grid sizes. It was difficult to determine how much memory 

was used for small grid sizes in MATLAB while the routines were in progress, yet for 

grid sizes larger than 17x17x34 the desktop computer did not have enough memory to 

complete the solution for any of the MATLAB methods. The results of the run-time 

memory performance of the various iterative methods are summarized in Figure 8. The 

values shown for SOR and LSOR are at the optimum over-relaxation factor, ωopt. Run-

time memory requirements for MATLAB iterative methods at a grid size of 17x17x34 

were determined for the three methods that worked at this grid size. These three points, 

which show similar memory requirements for MATLAB methods, are shown in Figure 8 

and indicate memory requirement two orders of magnitude larger than the stationary 

iterative methods. 

This completes the first objective of this thesis, which was to test the performance 

of various solvers as a function of grid size. From these results, the best solver to be used 

on coarse and fine grids can be determined. 
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Iterative Methods:  Memory Requirements vs Grid Size
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Figure 8. Iterative Methods:  Memory (RAM) Requirements as a Function of Grid Size 

  

4.3 Summary 

 Of the direct methods tested, the band solver, DGBSV, from the LAPACK library 

showed best performance with respect to both cpu time and memory requirements. LSOR 

showed the best cpu time performance of the stationary and nonstationary iterative 

methods, with SOR following closely behind; SOR and Gauss Seidel required the least 

amount of run-time memory of all iterative methods. These results will determine which 

solution algorithm should be used on both coarse and fine grids. 
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CHAPTER 5 
 

 
DETERMINATION OF BEST SOLVER 

 
 

The second objective of this study was to analyze the previous results and 

determine which solver(s) performed best for coarse and fine grids. The best solver(s) 

would then be used in the nested-grid method. As the study of various solution methods 

was conducted, it became apparent which solution method operated best for coarse and 

fine grids and which would be easily implemented into the nested-grid method.  

Of the direct methods considered, the band solver, DGBSV, from LAPACK 

library was shown to perform best with respect to cpu time required for convergence and 

run-time memory requirements. For iterative methods, LSOR showed the best cpu time 

performance, with Successive-Over-Relaxation (SOR) following closely behind. In 

regard to memory requirements, SOR and Gauss Seidel required the same and least 

amount of memory for any of the iterative methods considered.  

For the smallest grid sizes considered in this study, the cpu time and memory 

requirements for SOR were very similar to, but slightly larger than corresponding 

performance parameters of the band solver DGBSV. For grid sizes larger than the 

coarsest grid size, SOR performance was better than any of the direct methods 

considered. 

With its convergence time performance similar to LSOR, its memory 

requirements much lower, and similar performance to the best direct method on the 
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smallest grid considered, SOR became the primary candidate for the next phase of the 

study. 

To ensure that SOR was the best solver for the task, work was done with the 

LSOR routine to implement the nested-grid method.  The results showed little overall 

improvement to the speedup of the solution. This result was probably caused by the 

combination of direct and iterative methods incorporated into its solver routine. Due to 

memory constraints, the MATLAB iterative methods were not expected to perform well 

in the nested-grid method; however, the nested-grid method was implemented using 

GMRES and its performance recorded. 

 

5.1 Summary 

 SOR was determined to be the best solver for the next phase of the study. It had 

similar convergence time to LSOR and its memory requirements were much lower. SOR 

had similar performance to the best direct method on the smallest grid size considered 

and outperformed any direct method on all larger grids. Even though their overall 

performance parameters were not as good as SOR, GMRES and LSOR were also 

considered for implementation in the nested-grid method.  
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CHAPTER 6 
 
 

IMPLEMENTATION OF SOVER IN NESTED-GRID METHOD 
 
 

The third objective of this thesis was to implement the best solver in the nested-

grid solution method. In an effort to determine the potential advantage of the nested-grid 

solution method, a study was conducted in which selected pressure solutions were taken 

from a previously generated solution grid and inserted in matching locations from which 

they where taken, in an identical but unsolved grid. The pressure solution of the three 

dimensional grid was obtained again by iterating the system of equations to convergence, 

with the nested-grid pressures remaining constant throughout the iteration process. The 

performance improvement, or lack thereof, for the time required to reach convergence 

would be an indication of the future potential of applying Weber’s accurate pressure 

solutions in a nested-grid manner. These results would also be used to determine optimal 

coarse grid sizes to be nested into various fine-grids. 

 

6.1 Grid Geometries and General Setup 

For the previous study of direct and iterative solver performance, various grid 

sizes were utilized as shown before in Table II, Chapter 3. For the nested-grid study, only 

fine-grid sizes that resulted in grid points coincident with course grids were used. Table 

III shows the fine grids used in the nested-grid study.
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Table III. Fine-Grid Sizes Used in Nested-Grid Study 

 
 

 

 

 
 

 
 

For a given fine-grid size, the number of coarse-grid pressure points nested in the three-

dimensional array varied from a low concentration to a high concentration through 

various grid refinements. Table IV shows the level of grid refinement and the 

corresponding number of coarse-grid points nested into the fine-grid solution. The 

number of coarse-grid points includes the two wells. 

 

Table IV. Course-Grid Sizes 

Level of 
Refinement Coarse-Grid Size 

1 18 
2 130 
3 1026 
4 8194 
5 65538 

 

The course-grid points were positioned equally distant from one another within the fine 

grid, and in the two reservoir halves they were symmetrical. For example, as shown in 

Figure 9, in a fine-grid plane determined by the height and width the number of fixed 

points at the first level of refinement was 4, and in the plane determined from the height 

and length the number was 8. In three dimensions, these numbers equated to a total of 16 

fixed coarse-grid points plus the two wells for a total of 18 fixed grid points. 

Grid 
Size Grid Dimensions 

250 5x5x10 
1458 9x9x18 
9826 17x17x34 
71874 33x33x66 
549250 65x65x130 
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    Location of Nested-Grid Points in Two Dimensions 

 

 

Figure 9. Top and Side Plane Views of Fixed Points in a 5x5x10 Grid 

 

Under the constraint that the nested-grid points, for any fine grid, be positioned equally 

distant from one another and symmetrically in each reservoir half, the following 

mathematical expression was determined to establish the number of nested-grid points at 

any level of coarse-grid refinement for the specified fine-grids.  

 

Number of Coarse Grid Points = 23n+1 + 2               (6-1) 

 

The mathematical expression indicates the total number of fixed points in the three 

dimensional simulation depending on the number of grid refinements “n” desired; n must 

be greater than or equal to one.  In the case, where there are no additional nested-grid 

points, n equals zero, expression (6-1) fails, and the two wells become the number of 

coarse-grid points. The greatest amount of coarse-grid refinement achievable depended 

on the fine grid in which the coarse grid was being placed. Refinement of the coarse grid 

was continued until, for the given fine-grid size, further refinement would result in the 

coarse grid not being aligned properly with the fine grid. 

The values of the coarse-grid pressure solutions were imbedded into the fine grid 

such that the previous zero initial value of the fine grid was permanently replaced by the 

value of the coarse-grid pressure in the specified location throughout the iteration 

Height 

Width Length 

Height 
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process. Table A.XII in Appendix A shows the coarse and fine grid sizes selected for the 

study, the number of fine-grid points between the course-grid points, and the percentage 

of coarse-grid points compared to the total number of fine-grid points. The number of 

coarse-grid points includes the two wells. The following figure shows the percentage of 

coarse-grid points in the nested-grid configurations used. 

 

Nested-Grid Configurations: Percent Fixed Points
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Figure 10. Nested-Grid Configurations: Percentage of Fixed Points  

 

6.2 Calculation of Coarse-Grid Pressure  

Successive-Over-Relaxation (SOR) was used to determine the coarse-grid 

pressure values at a pre-determined optimal over-relaxation factor. At this stage of the 

study, the goal was simply to demonstrate that the nested-grid solution method was 
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feasible; consequently, Weber’s solution was not used to generate the fine grid at this 

point. Instead, the coarse-grid pressures were extracted from a full fine-grid solution of 

LaPlace’s equation using traditional finite-difference equations and generated at a 

convergence criterion of 10-9. This stringent criterion was selected so that errors in the 

extracted coarse grid would not influence the accuracy of the final fine-grid solution in 

which the coarse-grid points were inserted, and for which, the convergence criterion was 

10-6.  

The very accurate fine-grid solution values were used to represent pressures that 

would be obtained by using the new finite-difference equations that incorporate the 

physics of the flow.  In practice, this method was taking selected accurate answers from 

the fine-grid solution to represent the coarse-grid values, and using them to generate the 

fine-grid solution again. This may be seen as using select parts of the answer to generate 

the answer again, yet this is exactly what the new finite-difference equations developed 

by Weber et al. permit. The new finite-difference equations allow a solution that is 

accurate on a coarse grid to be embedded into a finer grid to obtain, in a rapid manner, 

the final solution at fine-grid resolution. 

 

6.3 Calculation of Fine-Grid Pressure:  LaPlace SOR Results 

With coarse-grid solutions determined, the accurate course-grid pressures were 

fixed into the fine-grid solution. For each of the nested-grid combinations of Table A.XII, 

an optimal over-relaxation factor, ωopt, was determined, and the finely-gridded pressure 

solutions were generated at that value. Notable decreases in calculation times for the 

nested grids were observed. Table A.XIII in Appendix A shows the results. It tabulates 
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ωopt, number of iterations required for convergence, time required for convergence, and 

ratio of time per iteration for the various nested-grid setups. In the table, NFG refers to the 

total number of fine-grid points and NCG refers to the number of coarse-grid points nested 

into a given fine grid. The following figure shows the time required for convergence as a 

function of total grid size for the various nested-grid configurations. 

LaPlace SOR: Time Required for Convergence
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Figure 11. LaPlace SOR: Time Required for Convergence of Various Nested-Grids 

 

6.4 Nested-Grid Method:  GMRES Results  

Although GMRES did not appear from the previous studies to have the potential 

of being the best solver to use in the nested-grid method, it was investigated nonetheless 

because of its recommendation by industry as a state-of-the-art solver. As noted earlier, 



 39

all of the MATLAB iterative functions used large amounts of memory that made the 

solution of large grids impossible on the desktop computer being used. For this nested-

grid study, the same fine-grid sizes as shown in Table III were used. Course-grid points 

were spaced equally distant from one another within the fine grid, and in the two 

reservoir halves they were symmetrical. The pressure values of the coarse-grid points 

were taken from a previously generated fine-grid solution as described earlier. GMRES 

does not require an optimal over-relaxation factor.  

The results of the fine and nested-grid study for GMRES are shown in Table 

A.XIV of Appendix A. The following figure shows the time required for Convergence as 

a function of total grid size for GMRES. 

GMRES: Time Required for Convergence
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Figure 12. GMRES: Time Required for Convergence as a Function of Grid Size 
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Figure 12 reveals an interesting consequence of imbedding fixed points in the solution 

method. It can be seen that the original fine-grid solution (2 fixed points) was only 

achieved up to 9,826 fine-grid points. Grid sizes above this required too much memory to 

successfully determine a solution on the desktop computer. As fixed points were added to 

the fine grid, according to the coarse-grid refinement method, the previously unattainable 

solutions became attainable. The finely-gridded pressures for a grid size of 33x33x66 

(71,874 fine-grid points) was achieved by applying the nested-grid method using the 

same desktop computer. This result highlights the potential of the new method to 

compute reservoir simulation pressures for more refined grids on the same computer. 

However, even using the nested-grid method, the 65x65x130 grid was still too large for 

GMRES on the desktop computer. 

 

6.5 Data Analysis 

The data recorded in Tables A.XIII and A.XIV were used to determine the 

optimal number of fixed-coarse-grid points that should be embedded in a desired fine 

grid to obtain the pressure solution for any nested-grid setup in the least amount of time. 

This was done by first regressing the results in Tables A.XIII and A.XIV to obtain 

mathematical expressions to predict both ωopt (for SOR only) and the number of 

iterations (NIter) required for convergence, for any nested-grid setup. Both of the 

expressions were functions of the number of fixed-coarse-grid points (NCG) and the total 

number of fine-grid points (NFG). These results were then used in a dimensionless time 

analysis which predicted the performance of any nested-grid arrangement using the 

functions generated for Niter. Preliminary analysis of these results is recorded in Appendix 
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B and was reported in the Canadian International Petroleum Conference Paper 2005-

112.33 The results showed a significant improvement was achieved by implementation of 

the nested-grid algorithm for LaPlace SOR and GMRES. These results became the 

foundation of the study that was done later when Weber’s equations were applied in the 

solution algorithm. Later in the study, a better regression for all of the data, including the 

data collected when Weber’s equations were incorporated into the nested-grid algorithm, 

was obtained and applied in the dimensionless time analysis. These results are reported 

later in the thesis in Chapters 10 and 11. 

 

6.6 Summary 

 The nested-grid method was implemented using various nested-grid 

configurations. LaPlace SOR and GMRES were used to calculate the finely-gridded 

pressures on the nested-grid configurations and performance data was recorded (See 

Tables A.XIII and A.XIV). Significant improvements in the time required for 

convergence were noted for both LaPlace SOR and GMRES, as nested-pressures were 

fixed in the fine-grid. These improvements gave a strong indication that Weber’s accurate 

pressure-solutions could be implemented in a nested-grid method and reduce computation 

time required to achieve finely-gridded reservoir simulation pressures. 
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CHAPTER 7 
 
 

INTERPOLATION 
 

 
7.1 Considering Interpolation  

Before Weber’s equations were implemented, the fourth objective of the study, 

which was to consider the possible advantages of interpolation, needed to be satisfied. As 

mentioned previously in Chapter 3, iterative methods require an initial approximation of 

the solution to begin the iterative process. In an effort to speed up the solution method 

further, a three-dimensional linear interpolation of the nested-grid configuration was 

computed. After interpolation was completed, the finely-gridded pressure solution was 

achieved by iterating to convergence using SOR and the nested-grid method described in 

Chapter 6. If interpolation proved to be worthwhile it would be incorporated later in the 

study with Weber’s equations. Previously, as described in Chapter 6, the starting pressure 

values for the calculation of a fine-pressure grid were the pressure values of any nested-

grid points, the pressure values of the wells, and all remaining pressure values were zero. 

By interpolating the values of the accurate nested-grid points over the zero starting values 

of the other grid points, the solution convergence should accelerate. The interpolation 

program came from the literature, where a two dimensional example was extended to 

three dimensions.34 The essential equation to the interpolation program in three 

dimensions is as follows.
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P(I, J, K) = 
P(1) * (1 - Fx) * (1 - Fy) * (1 - Fz) + 
P(2) * Fx * (1 - Fy) * (1 - Fz) + 
P(3) * Fx * Fy * (1 - Fz) + 
P(4) * (1 - Fx) * Fy * (1 - Fz) + 
P(5) * (1 - Fx) * (1 - Fy) * Fz + 
P(6) * Fx * (1 - Fy) * Fz + 
P(7) * Fx * Fy * Fz + 
P(8) * (1 - Fx) * Fy * Fz                  (7-1) 

 
 
P(1) through P(8) are the course-grid block pressures. Fx, Fy, and Fz represent the 

fraction of x, y, and z-distances that the fine-grid points are from point (1) of the course-

grid block.  For example, if the new grid point is exactly in the middle of eight existing 

grid points, i.e. at the old cell corners, Fx = Fy = Fz = 0.5. Note that even for this simple 

linear interpolation, twenty-four multiplications and three divisions are required for each 

interpolated value. The interpolation is much more computer time intensive than the SOR 

iterations.   

To obtain the final fine-grid pressure solution using interpolation, the nested-grid 

pressure values were interpolated and the resulting grid was iterated to convergence with 

the values of specified nested-grid points remaining fixed throughout. Table A.XV in 

Appendix A shows the results of the interpolation study. Table A.XVI in Appendix A 

shows the total time required to obtain, at the same ωopt, the fine-grid pressure solution 

with interpolation, the time required to obtain the fine-grid pressure solution without 

interpolation, and the resulting ratio. The following figure shows how the time required 

to obtain the full fine-grid solution with and without interpolation for the various nested-

grid configurations compare. 
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Comparison of Time Required to Obtian Full Fine-Grid Pressure 
Solution With and Without Interpolation
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Figure 13. Comparison of Time Required to Obtain Full Fine-Grid Pressure 
Solution With and Without Interpolation 

 
 

As shown in Figure 13, the results of the interpolation program did not show a 

significant amount of improvement. It was evident in many cases that the time required to 

generate a fine-grid pressure solution using interpolation took longer than the time 

required to simply iterate the nested-grid algorithm to convergence. The values in the last 

column of Table A.XVI, are ratios of the time required to linearly interpolate the fine-

grid solution and then iterate it to convergence, divided by the iteration time required 
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when interpolation was not used. The ratios indicate that larger fine-grids benefited the 

most from the interpolation algorithm.  

 

7.2 Summary 

In an effort to speed up the solution method further, a three-dimensional linear 

interpolation of the nested-grid configuration was computed. Interpolation was not found 

to reduce the cpu time required to obtain the finely-gridded pressures in a significant 

manner. The lack of significant improvement using interpolation emphasizes the impact 

that the optimal over-relaxation factor has on the solution of a system of equations. It was 

thought that the interpolation program would possibly improve the solution method, yet 

for interpolation in three dimensions it became clear that the time required to simply 

interpolate values for every grid point added enough time to the overall solution method 

to make it an undesirable algorithm step. For this reason, interpolation was not 

recommended for further use in the study. 
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CHAPTER 8 
 
 

WEBER’S COEFFICIENTS 
 

 
With validation that the nested-grid method could be applied successfully and that 

interpolation was not beneficial, the next objective of successfully applying Weber’s 

coefficients in the nested-grid solution method was pursued. Dan Weber et al.27 

considered finite-difference equations for reservoir pressures based on two new 

functional forms: Σln(r) and  Σ1/r; where r represents the distance to each of the wells. 

The ln(r) formulation was used to determine pressures from straight-line wells and the 1/r 

form was used to represent pressures from point sources. Weber et al. determined that for 

finite-difference equations based on inverse-r functions, it was possible to reduce the 

pressure errors compared to traditional polynomial based finite-difference formulations 

by a factor of 10,071 using a finite-volume formulation.27 According to Weber et al., the 

most accurate pressure solutions are achieved with a volumetric approach in which the 

flux varied throughout the finite difference grid cell as prescribed by the following 

equation. 

∑ +=
wells
all

n n

n c
r
Q

ap               (8-1) 

Qn is the volumetric injection rate of well n, rn is the distance to well n, c is the 

integration constant, p is the pressure, and a is a proportionality constant. Darcy’s law, in
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which q is the flux of fluid through the porous media, K is permeability, and µ is fluid 

viscosity is as follows. 

dr
dpKq

µ
−=                                   (8-2) 

Equation (8-1) and (8-2) were used to determine the total flux through various faces of 

the grid cell being analyzed.  As an example, the following equation determines the total 

flux through one of the x-faces of a given cell: 

 

( )∫ ∫ ∫
∆

+

∆
−

∆
+

∆
− ++

=−=
2

2

2

2

3222

yy

yy

zz

zz

xx
x

j

j

k

k
zyx

xdzdyK
adA

dx
dpK

Q
µµ

                        (8-3) 

The double integral in Equation (8-3) includes the solid angle, Ω, subtended by the cell 

face relative to the well point source. A surface at a point is defined to be the surface area 

of the projection of that surface onto a unit sphere centered at that point. In other words, 

the solid angle is 4π times the ratio of the area of the face projected on a sphere of unit 

radius, centered at the well, to the entire area of the sphere. The completed double 

integration in equation (8-3), results in the following expression. 
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The proportionality constant, a, in Equation (8-3) was determined by subtracting the 

pressures at adjacent grid points, which results in the following equation in terms of the 

pressures pi+1 and pi: 
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With these equations established, the total flux through the cell’s x-face to the right of the 

cell center becomes. 
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Hence traditional finite difference equations, such as those used previously in the study, 

can be used for the Weber formulations if the usual permeability K is replace by the 

pseudo-permeability, K′, as shown in the following equation. 
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Weber recommended that in the implementation of his equations, pseudo-

permeability coefficients be calculated for the 18 interior faces in each direction of the 27 

cells immediately surrounding and including the well. The remaining grid points 

maintained their physically assigned permeability and did not need to be corrected by 

Weber’s equations.  

To understand how these equations were implemented into discretized space, the 

following explanation is given. Figure 10 shows a two dimensional 5x5 view of a plane 

that includes a well for a given 5x5x10 reservoir which is centered at grid point iw,jw,kw. 
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In this two dimensional slice of the reservoir, nine of the 27 cells immediately 

surrounding the well are represented with their corresponding cell faces in negative and 

positive directions. Coefficients are calculated for the 18 interior cell faces in each 

direction; the coefficients across any interface between two grid cells must be consistent 

to preserve continuity. 
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• • • • •

• • • • •
 

Figure 14. Application of Weber’s Coefficients 

 

The spacing between the various grid points in each of the three dimensions is 

defined as follows, but any values could be used. 

 
1=∆x    1=∆y    1=∆z  

 
The distances from a well to the various grid points and their corresponding cell faces are 

given by the following equations which only apply to equally spaced grids: 

 

For the two x-faces (the cell faces perpendicular to the x axis) of the cell (i,j,k)  
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Well Cell iw,jw,kw Well’s x- Cell Face 
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Lightly shaded cells 
represent a two 
dimensional slice of 
the 27 cells 
immediately 
surrounding and 
including the well. 
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The corresponding y and z distances are defined by the following equations. 
 

( ) yjwjy ∆−=   ( ) zkwkz ∆−=                     (8-8c,d) 
 

For the two y-faces (the cell faces perpendicular to the y axis) of the cell (i,j,k)  
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The corresponding x and z distances are defined by the following equations. 

 

( ) xiwix ∆−=    ( ) zkwkz ∆−=                  (8-9c,d) 

 

For the two z-faces (the cell faces perpendicular to the z axis of the cell (i,j,k)  
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The corresponding x and y distances are defined by the following equations. 
 

( ) xiwix ∆−=    ( ) yjwjy ∆−=                           (8-10c,d) 
 

With the above distances defined, the solid angle could be calculated for the 

various cell faces of a given grid block located at a specified distance from the well.  The 

following equations show the mathematical expressions used to calculate the solid angle 

for the positive and negative face of the cell in the x direction. Similar expressions were 

used in the y and z directions. 
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For the two x-faces (the cell faces perpendicular to the x axis) of the cell (i,j,k) 
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In addition to the solid angles computed, the various radial distances from the 

well are also needed before the pseudo-permeability can be determined. The equations 

used to determine the radial distance of a given point from a well are as follows.  
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Values of r to be used in pseudo-permeability calculation for cell (i,j,k) in x direction 

 
( ) xiwix ∆+−=+ 1   ( ) yjwjy ∆−=   ( ) zkwkz ∆−=  

 
222

1 zyxrx ++= ++                   (8-13a) 
 

( ) xiwix ∆−−=− 1   ( ) yjwjy ∆−=   ( ) zkwkz ∆−=  
 

222
1 zyxrx ++= −−                  (8-13b) 

 

Values of r to be used in pseudo-permeability calculation for cell (i,j,k) in y direction 

 
( ) xiwix ∆−=   ( ) yjwjy ∆+−=+ 1   ( ) zkwkz ∆−=  

 
222

1 zyxry ++= ++                      (8-14a) 
 

( ) xiwix ∆−=   ( ) yjwjy ∆−−=− 1   ( ) zkwkz ∆−=  
 

222
1 zyxry ++= −−                                 (8-14b) 

 

Values of r to be used in pseudo-permeability calculation for cell (i,j,k) in z direction 

 
( ) xiwix ∆−=   ( ) yjwjy ∆−=   ( ) zkwkz ∆+−=+ 1  

 
222

1 ++ ++= zyxrz                            (8-15a) 
 

( ) xiwix ∆−=   ( ) yjwjy ∆−=   ( ) zkwkz ∆−−=− 1  
 

222
1 −− ++= zyxrz                (8-15b) 

 

The radial distance “r” from the well to any particular point is given by 

 
( ) xiwix ∆−=   ( ) yjwjy ∆−=   ( ) zkwkz ∆−=  
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 222 zyxr ++=                         (8-16) 
 

With the distances, solid angles and radial distances calculated, it was possible to 

determine the pseudo-permeability K′ using Equation (8-7). To incorporate the pseudo-

permeabilities into the mathematical expression used to calculate the pressure for a grid 

point, the ratio (λ) of pseudo-permeability to actual permeability had to be calculated. 

The mathematical expressions for lambda values in all directions are shown below.    

  

Lambda calculations for the two x-faces of the cell (i,j,k) 
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Lambda calculations for the two y-faces of the cell (i,j,k) 
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Lambda calculations for the two y-faces of the cell (i,j,k) 
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From these lambda coefficients, the values of pressure for the grid cells 

influenced by Weber’s coefficients could be calculated by the following equation. 
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For the idealized reservoir in this study, the rest of the pressure values are determined by 

setting the permeability-ratios or value of lambda to 1.0 everywhere else on the grid. 

The reservoir simulated in this study had two wells and the solution algorithm 

took this into account by determining the x, y, z distances, solid angles and radial 

distances from both wells to each grid point under consideration. The resulting numeric 

information was used to determine correct lambda values which could then be applied in 

Equation (8-20) to determine pressures. In general, when a reservoir has more than one 

well, all of the equations outlined in the previous description must be solved from the 

perspective of each well and the respective information combined in the calculation of 

the lambda coefficients. 

For the calculations of this study, the value of the volumetric injection rate, Q, 

was set to 250 for the injector well and to -250 for the producer well. Any reasonable 

volumetric injection rate could have been used. At any time in the solution algorithm, if 

the value of the radial distance from the well to a given grid point becomes zero in any 

direction, the radius becomes that of the well for the calculation in that respective 

direction. The radius of the well is always scaled to be the ratio of a three inch radius (six 

inch diameter wellbore) divided by the length of one of the dimensions of a simulation 

grid block. For example, a well radius of 0.0025, which was used by Weber, corresponds 

to a 3 inch radius well and grid blocks representing 100 feet on each side.   

Around a given well, Weber calculated coefficients for only the interior cell faces 

of the 3x3x3 cluster, a total of eighteen in each direction. This same constraint was 
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placed on the coefficients as they were applied to the solution in this study. As the grid 

was refined, this constrained pattern was scaled and appropriately resized for the finer 

grids used.  

 

8.1 Summary  

The math of Weber et al.27 is summarized in this Chapter. The end result is six 

lambda (Weber) coefficients that can be easily incorporated into traditional finite-

difference formulations to calculate accurate pressure solutions. Weber’s coefficient need 

only be calculated for the interior cell faces of a block of cells around the well. For the 

coarsest grid considered, a block of twenty-seven cells was used which resulted in the 

calculation of eighteen coefficients in each direction. Finer grids required the calculation 

of more coefficients, as the same pattern was applied over a larger number of grid cells.   
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CHAPTER 9 
 
 

STUDY WITH WEBER’S COEFFICIENTS APPLIED 
 

 
9.1 Grid Geometries and General Setup 
 

The application of Weber’s coefficients in the nested-grid method was conducted 

in a very similar manner to what was described in Chapter 6. A key difference in this 

portion of the study was that the coarse-grid points being nested into the finer grids 

actually came from a coarser grid. Previously the fixed points were applied in correct 

locations, but the fixed points were not actually obtained from smaller, coarser grids. To 

better validate the new method, Weber’s equations were implemented in a practical 

manner, which meant that the coarse-grid points from a coarser grid size, had to be 

inserted into a more refined grid in physically the same location. Using Cartesian 

coordinates in three dimensions dictates that only certain grid sizes are capable of this 

refinement. 

 In the study using Weber’s equations, a reservoir 500 feet by 500 feet by 1,000 

feet was simulated. To ensure symmetry in the placement of the wells, the height and 

width of the reservoir must be represented by an odd number of grid points and the depth 

be represented by double the number of grid points allocated to the height or width. In 

this case, the smallest grid size that could be used to provide a reasonable representation 

of the reservoir was a 5x5x10 grid. To refine the grid in a way that ensured that 

calculated pressures from a 5x5x10 reservoir were honored by the new, 
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more refined grid, required that the dimensions of the more refined grid be an odd 

multiple of the original. For example, in this portion of the study the larger, more refined 

grid sizes considered are odd multiples of the dimensions of the original course grid and 

are displayed in the following table. 

 

Table V. Grid Dimensions and Size 
 

Grid Size Total Grid Points 
5X5X10 250 

15X15X30 6750 
25X25X50 31250 
35X35X70 85750 
45X45X90 182250 
55X55X110 332750 
65X65X130 549250 
75X75X150 843750 

 

 Multiplying the coarse-grid dimensions by an odd number ensures that the courser 

grid-block pressure information can be properly placed in a more refined grid. This was 

essential in the passage of pressure information from coarser grids to finer grids. To 

illustrate this point, the following figures are included. 

Figure 15 shows an end view of a 5x5x10 reservoir. The numbers exterior to the 

grid represent overall height and width of the reservoir. The numbers on the interior of 

the cells represent the distance at the center of the particular grid cell in the respective x, 

y and z directions. Simply put, the center of the first cell in Figure 15 is located fifty feet 

in the x, y and z directions. In the nested-grid method, the calculated pressure value from 

this coarse grid is passed on to a finer grid where it becomes the pressure for the grid cell 

that is likewise centered at fifty feet by fifty feet by fifty feet. Figure 16 shows the more 
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refined 15x15x30 grid with the pressure solution locations of the 5x5x10 grid highlighted 

within. 

 
100 200 300 400 500

100
50 150 250 350 450

200
150

300
250

400
350

500
450

 

Figure 15. Coarse-Grid Dimensions in Feet 

 

It is evident that the previously calculated pressures from the 5x5x10 grid fit 

nicely into the 15x15x30 grid and that the numerical value of the pressures calculated on 

the course grid can be maintained on the finer grid. This pattern of refinement can be 

continued on to extremely large grid sizes. As long as this same pattern of grid 

refinement is continued, one can start with a finer grid than 5x5x10 as the original coarse-

grid size and proceed in grid refinements from there. 
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Figure 16. 5x5x10 Coarse-Grid Pressures Nested Into a 15x15x30 Grid 

 

To extend the grid sizes considered, this study included very coarse grids that 

were subsets of the 5x5x10 grid. For example, the fewest number of coarse-grid points 

used was sixteen. These sixteen points were selected from the solution of a 5x5x10 grid 

and nested into larger grids. An algorithm to do this was developed to ensure that the 

location and pressure information of the points being inserted into the finer grids was not 

compromised. 

To fix any point taken from a coarse grid into a finer grid, the x, y, z coordinates 

of a given point on the coarse grid were taken and multiplied by the same multiple that 
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the fine grid was of the course grid. For the grid sizes used in this study the multipliers 

were 1,3,5,7,9,11,13 and 15. Once multiplied by the specified multiplier, the 

corresponding spacing value was subtracted from this value. The spacing value was 

calculated by subtracting one from the multiplier and then dividing by two. In this study 

the spacing values were 0,1,2,3,4,5,6 and 7. For example, from a coarse grid of 5x5x10, if 

we looked at the point 2,2,2, its corresponding coordinates on a finer grid of 15x15x30 

become 5,5,5.  

 

(2 · 3) – [(3-1)/2] = 5              (9-1) 

 

This simple pattern could be extended to any of the nested-grid set ups and was used in 

programming the nested-grid method. Consequently, in the nested-grid study a particular 

pattern could be selected on the original coarse grid and then using the method described 

above, that same pattern could be maintained on successively finer and finer grids. 

 

9.2 Nested-Grid Results 

With Weber’s equations and the method for proper transfer of pressure 

information during nested-grid calculations established, the computer algorithm 

developed in Fortran 90 generated results. Table A.XVII in Appendix A displays the 

results obtained. The table displays the fine-grid dimensions, the total number of fine-grid 

points, the total number of coarse grid points, the optimal over-relaxation factor, the 

number of iterations required for convergence, the time required for convergence, and the 

time per iteration. In this portion of the study the number of coarse-grid points includes 
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the wells. Figure 17 shows the time required for convergence for the various nested-grid 

configurations considered. 

Weber SOR: Time Required for Convergence
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Figure 17. Weber SOR: Time Required for Convergence of Various Nested-Grid 
Configurations 

 

9.3 Regression and Dimensionless Time Analysis 

Regression of the performance data recorded in Table A.XVII was conducted and 

correlations for ωopt and NIter were developed and applied in a dimensionless time 

analysis. These initial results of are found in Appendix C. After reviewing all of the data 

collected, it was determined that better mathematical correlations for ωopt and NIter could 

be developed. The finalized regression and dimensionless time analysis are discussed in 

Chapters 10 and 11.  
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9.4 Summary  

The nested-grid study applying Weber’s coefficients was conducted in a very 

similar manner to that discussed in Chapter 6. Fine-grid sizes that were odd multiples of 

the original coarse-grid size allowed for the accurate coarse-grid pressure solutions of 

Weber to be nested into desired fine grids. Various nested-grid configurations were 

considered and the resulting performance data was recorded (See Table A.XVII).
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CHAPTER 10 
 
 

REGRESSION OF ALL RESULTS 
 

 
 Previous work, as recorded in Appendix B and C, indicated that mathematical 

correlations could be generated from performance data to predict the number of iterations 

required to reach convergence for any nested-grid setup as well as the optimal over-

relaxation factor. The regression derived correlations were essential to the optimization of 

the nested-grid algorithm and achieved the sixth objective of the study. These earlier 

correlations were reviewed and it was determined that better correlations could be made 

that would be more viable and potentially fit the data better. In summary, the data sets 

regressed were LaPlace SOR, GMRES, and Weber SOR.  

 

10.1 Regression of LaPlace and Weber SOR 

The performance data from the study done using LaPlace SOR and Weber SOR 

was combined and regressed as a whole. In order to fit the data that was generated by 

Successive-Over-Relaxation, the following logarithmic fit of the data was used.  The 

logarithm of the number of iterations required for convergence was calculated and a 

correlation of the following form was generated to match the actual value. 

 

LOG10(NITER) = A + B⋅LOG(NCG`) + C⋅LOG(NFG`- NCG`)                (10-1) 
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This equation is equivalent to the following exponential equation. 

 

NITER = A⋅(NCG`)B⋅(NFG` - NCG`)C               (10-2)  

 

A, B and C are constants determined by the linear regression and NCG` and NFG` 

are described as follows. 

NCG` = NCG – N                (10-3) 

NFG` = NFG – N                           (10-4) 

 

 In these expressions NCG is simply the number of course grid points nested into 

the fine grid and NFG is the total number of fine grid points. The quantity NFG` - NCG` is 

the number of unknown grid points in the fine-grid solution. The parameter N was 

introduced to attempt to physically account for the fact that the wells in Weber’s solution 

are not as effective in relaxing the solution as the other fixed points because of the low 

permeabilites around them. If N = 0 there is no reduction in effectiveness. If N = 2 the 

wells are totally ineffective. In the regression, the constraint N < 2 was used. This 

equation was used to fit the data from LaPlace SOR and Weber SOR in one regression 

where a separate value of N was regressed from the Laplace data and a separate value of 

N was regressed from the Weber data. The values of A, B, and C were constant. The end 

result was a correlation that predicted the number of iterations required for convergence 

that could be adjusted to fit the data from Laplace SOR or Weber SOR simply by 

changing the value of N. The correlation determined from the regression of the data is as 

follows. 
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LOG(NITER) = 0.9460 – 0.3531⋅LOG(NCG`) + 0.4127⋅LOG(NFG`- NCG`)       (10-5) 

NLAPLACE = 1.5373 

NWEBER = 1.9915 

 

The correlation had an overall R2 value of 0.986, with and R2 value of 0.985 for LaPlace 

SOR data and a R2 value of 0.990 for Weber SOR data. The following figure shows how 

the calculated and actual values compare for LaPlace SOR and Weber SOR. The R2 value 

on the plot is the overall value. 
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Figure 18. LaPlace and Weber SOR Combined Data Set Regression 

 

Another important variable that needed to be predicted from the data collected 

was the optimal over-relaxation factor for any nested-grid configuration. This correlation 
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was also generated by using all of the data from LaPlace SOR and Weber SOR. The 

general expression is as follows 

 

ωopt = 2 – [A⋅(NCG`)B ⋅ (NFG` – NCG`)C]            (10-6) 

  

A, B, and C were determined by the regression as well as values of N for both 

LaPlace and Weber data. The expression, with the value of the variables determined from 

the regression, is as follows. 

 

ωopt = 2 – [1.6923⋅(NCG`)0.4310 ⋅ (NFG` – NCG`)-.4464]                    (10-7) 

NLAPLACE = 0.0000 

NWEBER = 1.9922 

 

This resulted in an overall R2 value of 0.995, with an R2 value of 0.998 and 0.990 for the 

LaPlace and Weber data respectively. The following figure show the how well the 

calculated and actual ORF values agree for LaPlace SOR and Weber SOR; the R2 value 

shown on the plot is the overall value. Expression (10-7) can be used to predict the 

optimal over-relaxation factor for any nested-grid configuration of the idealized 

reservoirs studied. The beginnings of a program that determines the optimal over-

relaxation factor as part of the solution algorithm of Successive-Over-Relaxation for any 

grid is reported in Appendix D. 
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Combined LaPlace/Weber SOR Over-Relaxation Factor (ORF)
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Figure 19. LaPlace and Weber SOR Combined ORF Regression 

 

10.2 GMRES Regression 

The general form of the correlation used to fit the data from GMRES to determine 

the number of iterations required for convergence took the following form. 

 

NITER = A⋅(NFG – NCG)B⋅(1 + C⋅NCG)D                    (10-8) 

 

A, B, C, and D are the variables determined by the regression. The regression 

generated the various fixed parameters which are shown in the following correlation. 

 

NITER = 2.8952⋅(NFG – NCG)0.3593⋅(1 + 0.0031⋅NCG)-0.4577               (10-9) 
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The correlation had an R2 value of 0.995. GRMES does not require an optimal over-

relaxation factor. 
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Figure 20. GMRES Regression 

 

10.3 Summary 

 The performance data from LaPlace SOR, Weber SOR, and GMRES were 

regressed to generate mathematical correlations that can be used to predict the number of 

iterations required for convergence as well as the optimal over-relaxation factor for any 

nested-grid configuration. The correlations predicted the actual values of number of 

iterations and over-relaxation factor very well. These correlations will be used in the 

dimensionless time analysis of the next chapter. 
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CHAPTER 11 
 
 

DIMENSIONLESS CPU TIME AND OPTIMUM COARSE GRID SIZE 
 

 
11.1 Dimensionless Time 

Previous simulation runs for various grid sizes at different levels of coarse-grid 

refinement (Chapters 6 and 9) identified optimal performance of the nested-grid method 

for the three solution algorithms considered. A plot of the ratio of time/iteration for all of 

the nested-grid setups as a function of the total grid size is shown in Figure 21 for all of 

the data sets.  
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Figure 21. Time/Iteration as a Function of Total Grid Size
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The time/iteration was found to vary more or less directly with the total number of 

fine-grid points for all data sets. This observation suggested that the number of iterations 

multiplied by the grid size might serve as a dimensionless time value which was 

independent of the computer being used. The dimensionless cpu time expression was in 

turn used to determine the optimal number of fixed-coarse-grid points to be nested into a 

given fine grid, achieving another overall objective of the study. The expression for the 

total dimensionless time was. 

 

td = NCG ⋅ NITER(2,NCG) + NFG ⋅ NITER(NCG,NFG)                     (11-1) 

 

As evident, the expression is made of up two terms:  the time required for the 

calculation of the coarse grid with two wells, and the time required for the calculation of 

the nested-grid solution with two wells. The number of iterations, NITER, is a function of 

the number of nested-coarse-grid points and the total number of fine-grid points 

NITER(NCG,NFG) as discussed in Chapter 10. For the first term of expression (11-1), which 

determines the coarse-grid-dimensionless time, the number of iterations is a function of 

the number of wells (which become nested-coarse-grid points) and the number of coarse-

grid points (which become equivalent to the total number of fine-grid points in this case). 

The second term of expression (11-1) is determined as specified with no special 

significance of the variables involved. The dimensionless time required for the 

calculation of either the coarse or fine-grid pressure solution is the product of the number 

of coarse or fine grid points used to model the reservoir with the number of iterations 

required for convergence of the respective coarse or fine grid. The sum of these two 
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terms yields total dimensionless time. The function value for dimensionless time was 

minimized by determining the optimum number of fixed-coarse-grid points that should 

be nested in a given fine grid.  The optimization was accomplished using the Solver tool 

in Microsoft Excel and the results recorded for Laplace SOR, Weber SOR, and GMRES. 

 

11.2 LaPlace SOR: Optimization of the Nested-Grid Method 

Figure 22 shows a plot of the improvement obtained for the LaPlace SOR method 

by the optimized-nested-grid method. The line, 2 Fixed Points, represents the 

dimensionless time required to obtain the fine-grid pressure solution with only the wells 

acting as fixed points, and the line, Optimal Number of Fixed Points, represents the 

dimensionless time required to obtain the fine-grid pressure solution using the optimal 

number of nested-grid pressures. 

Dimensionless Time:  LaPlace SOR
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Figure 22. Laplace SOR:  Improvement Obtained by the Nested-Grid Method 
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Table A.XVIII summarizes the data displayed in Figure 22 and shows the ratio of 

improvement obtained by using the optimized-nested-grid method. For a grid size of one 

million, an improvement of 38 times over the tradition solution method was noted. 

Extrapolating the data to one billion grid points yielded an improvement of 263 times. 

This assumed that the computer being used could handle such large memory demands; 

the desktop used in this study could not. 

For these nested-grid set ups, it was determined that at the optimal number of 

fixed-coarse-grid points, the calculation of the coarse-grid pressures took about 21% of 

the total time on average, with the nested-fine-grid calculation taking the remainder of the 

time. It was clear that for LaPlace SOR the nested-grid method reduced calculation time 

significantly; the ratio of improvement varied a value of 2 on the coarest grid to a value 

of 263 on the finest grid. 

 

11.3 GMRES: Optimization of the Nested-Grid Method 

A similar dimensionless time study was done to compare the performance of 

GMRES with GMRES using the nested-grid method. The previous Figure 21 shows a 

plot of the time/iteration as a function of grid size. The time/iteration was found to vary 

more or less directly with the total number of fine-grid points. A dimensionless time 

analysis was conducted using Equation (11-1) multiplied by twenty to correct the 

variation in constants determined from the power-law fit shown in Figure 21. This was 

done so that the three algorithms considered could eventually be compared directly. The 

results of the GMRES study are shown in the following figure.  
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Dimensionless Time:  GMRES
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Figure 23. GMRES:  Improvement Obtained by the Nested-Grid Method 

 

 Figure 23 indicates that GMRES also benefits from the implementation of the 

nested-grid method. At a grid size of one million the ratio of improvement is 9 times and 

at a grid size of one billion the ratio is 95. Table A.XIX in Appendix A tabulates the 

results shown in Figure 23. On average the coarse-grid calculation took about 26% of the 

total dimensionless time. 

 

11.4 Weber SOR:  Optimization of the Nested-Grid Method 

 The dimensionless time results obtained using Weber’s equations in the algorithm 

are shown in Figure 24 and are tabulated in Table A.XX. 
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Dimensionless Time:  Weber SOR
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Figure 24. Weber SOR: Improvement Obtained by the Nested-Grid Method 

 
These results indicate a significant increase in performance. At a grid size of one million, 

an improvement by a factor of 116 is noted, and at a grid size of one billion, an 

improvement of 813 is noted. For Weber SOR, the dimensionless time analysis was 

conducted using Equation (11-1) multiplied by 0.9 to correct the variation in constants 

determined by the power-law fit displayed in Figure 21. The coarse-grid solution took on 

average about 21% of the total dimensionless time required to obtain the finely-gridded 

pressure solution. 

 

11.5 Comparison of the Performance of the Different Methods 

A plot of the improvement ratio verses total grid size for the three methods is 

shown in the following figure. This figure indicates that Weber SOR showed the greatest 
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ratio of improvement from the solution with two fixed points to the solution with the 

optimum number of fixed points nested into the fine grid. 

Ratio of Improvement
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Figure 25.  Ratio of Improvement 

 

The next figure indicates how the algorithms LaPlace SOR, GMRES, and Weber 

SOR performed with respect to each other for their traditional and optimized solutions. 

Improved performance of these algorithms from their performance when only two wells 

were fixed was consistently observed. It is interesting to note that the SOR algorithm at 

its ωopt performed better than even an advanced algorithm such as GMRES. These results 

indicate that the previous conclusion made in Chapter 4, that GMRES would not 

outperform LaPlace SOR at large grid sizes, was correct. Also of interest is the 

observation that despite different times required to generate a solution for LaPlace and 

Weber SOR when the only fixed points were the wells, at the optimal number of nested-
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grid points, their respective dimensionless times became very similar. This indicates that 

although generating coarse grids using Weber’s math requires more time, when an 

optimal number of these coarse-grid pressure points are nested into a fine-grid, similar 

performance is seen as that for the optimal performance of LaPlace SOR. This shows that 

the cost of the time required to generate Weber’s accurate solutions does not decrease its 

optimized performance.  

Dimensionless CPU Time:  A Comparison of All Algorithms
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Figure 26. Dimensionless Time Summary 

 

11.6 Optimal Number of Fixed Points 

The dimensionless time analysis indicates an optimal number of fixed points to be 

nested into a given fine grid. Figure 27 shows how the optimal number of fixed points 
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compares for each of the algorithms used to solve the problem. Weber SOR requires the 

least number of coarse-grid points to be nested into the fine-grid to obtain optimal 

performance. This is most likely due to the fact that the Weber’s accurate coarse-grid 

solutions require the most time to generate a pressure solution.  

Optimal Number of Fixed Points vs Total Grid Size
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Figure 27. Optimal Number of Fixed Points 

 

11.7 Summary 

 For LaPlace SOR, GMRES, and Weber SOR the time/iteration, determined from 

the performance data, was observed to vary more or less directly with total grid size. This 

allowed for a dimensionless cpu time expression to be developed which incorporated the 

mathematical correlations described in Chapter 10 and represented the actual cpu time 

required for convergence of a particular nested-grid configuration. The dimensionless 

time expression was minimized by optimizing the number of coarse-grid points in any 
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given nested-grid setup. The results showed significant reductions in the amount of 

computational time required to obtain finely-gridded pressures solutions. Weber SOR 

ratio of improvement ranged from 7 on the coarsest nested-grid setup to 813 on the finest 

nested-grid. This verified that the solution method developed in this thesis generates fast, 

accurate pressure solutions on fine grids. 
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CHAPTER 12 
 
 

ERROR ANALYSIS 
 
 

To determine the accuracy of the solution obtained using the nested-grid method a 

one-step, fine-grid solution was generated for each of the grid sizes in the nested-grid 

study using the algorithm that applied Weber’s Equations. A rigorous convergence 

criterion of 10-9 was set. For these solutions, there were no fixed points embedded in the 

desired solution grid which meant that the solution simply relaxed around the values of 

the two wells until the convergence criterion was satisfied. These pressure solutions were 

generated to obtain an accurate pressure solution for the given reservoir at different grid 

sizes against which the pressures generated from the nested-grid method at the same grid 

size could be compared. Weber’s previous work showed that his equations made the 

solution four orders of magnitude more accurate than traditional finite-difference 

formulations and very close to the analytical solution. The data displayed in Figure 1 of 

Chapter 2 showed that for Weber’s inverse-r finite volume method the average error (psi) 

for an 11x11x22 grid from the analytical solution was 0.0182 and the maximum error 

was 0.0757. The single-grid solutions generated in this error analysis contained this four 

order of magnitude improvement in accuracy. 

With the pressure solutions obtained for various grid sizes, the pressures from the 

nested-grid study, which utilized Weber’s equations, were calculated. The convergence 

criterion was set to 10-6. The nested-grid solutions were then compared with the
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previously obtained single-step solutions. The comparison of these two solutions was 

completed through two calculations. First, the absolute difference between the two 

solutions was determined as expressed in the following equation.  

 

Absolute Difference = ABS [(One-Step Solution) – (Nested-Grid Solution)]          (12-1) 

 

The second calculation communicated the percent difference in the nested-grid solution 

from the original single-step solution obtained at the convergence criterion of 10-9. The 

following equation expresses the calculation of this value. 

 

Absolute Percentage Difference from One-Step Solution = 

[(Absolute Difference)/(One-Step Solution)]*100 
(12-2) 

 

12.1 Error Analysis Results 

The values of these two calculations were tabulated in Excel and the average and 

maximum values for each grid were determined and recorded in the following tables. For 

grid sizes larger than 25x25x50 only half of the reservoir was analyzed to make the 

analysis more manageable in Excel. The symmetry of the pressure solution permitted 

this. For the tables referred to in this chapter, the number of fixed points includes the 

wells. For Tables A.XXI and A.XXII, when the number of fixed points is 18, 54 or 250 

the fixed points were taken from a 5x5x10 grid. The maximum and average absolute 

difference results are displayed in Table A.XXI of Appendix A.  The absolute values 

show that the maximum absolute difference for the grids considered never exceeds 
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0.1902 and the average absolute difference never exceeds 0.0168. These errors are of the 

same magnitude of found by Weber (0.0757 maximum and 0.0182 average) and hence 

demonstrate the nested-grid solution method does not substantially decrease the 

extraordinary accuracy of his solution. The well pressures are at + 1500 psi, hence these 

maximum and average differences correspond to only 0.0067% and 0.0006% of the 

overall pressure drop, respectively. In all cases, the maximum error on the nested-grid 

solution occurred at fixed grid points, i.e. at the location of the nested-grid points that 

came from a coarser grid. The coarsest grid used to generate nested-grid points was the 

5x5x10 grid.  

Table A.XXII records the maximum and average percent difference for the same 

data. It is evident from this table of nested-grids that all maximum percent differences 

recorded were under 5%. The nested-grid solution varies from the single-step solution, 

that is already four orders of magnitude more accurate, by under 5% at most and on 

average by less than 1%. This meant that all points generated using the nested-grid 

method were at least 95% accurate with respect to the original single-step solution.  

The coarsest grid (5x5x10) used to generate nested-grid points in Table A.XXII 

introduced less than 5% error around the coarse-grid points that were fixed into the 

desired fine-grid. If a finer grid, such as a 15x15x30 or a 25x25x50, was used to generate 

coarse-grid points, the maximum and average error was reduced. The following two 

tables show how the maximum and average absolute difference were reduced 

significantly when 18, 54, and 250 coarse-grid points were nested into a 25x25x50 fine 

grid that had coarse-grid points coming from a 15x15x30 grid instead of a 5x5x10 grid. 
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Table VI. Nested-Grid Points Take From a 5x5x10 Grid 

Grid Dimensions Number of 
Fixed Points 

Maximum 
Absolute 

Difference 

Average 
Absolute 

Difference 
25X25X50 18 0.0411 0.0104 
25X25X50 54 0.1489 0.0156 
25X25X50 250 0.1901 0.0065 

 

Table VII. Nested-Grid Points Taken From a 15x15x30 Grid 

Grid Dimensions Number of 
Fixed Points 

Maximum 
Absolute 

Difference 

Average 
Absolute 

Difference 
25X25X50 18 0.0009 0.0009 
25X25X50 54 0.0160 0.0030 
25X25X50 250 0.0160 0.0021 

 

From these two tables, it was clear that by using a finer grid to generate the coarse-grid 

points the absolute error was reduced. The next two tables show the maximum and 

average percent difference for the same arrangement. 

 

Table VIII. Nested-Grid Points Taken From a 5x5x10 Grid 

Grid Dimensions Number of 
Fixed Points 

Maximum % 
Difference 

Average % 
Difference 

25X25X50 18 0.82 0.29 
25X25X50 54 3.65 0.46 
25X25X50 250 4.41 0.19 

 

Table IX. Nested-Grid Points Taken From a 15x15x30 Grid 

Grid Dimensions Number of 
Fixed Points 

Maximum % 
Difference 

Average % 
Difference 

25X25X50 18 0.03 0.03 
25X25X50 54 0.39 0.09 
25X25X50 250 0.50 0.05 
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Once again, the fixed grids of 18 and 54 were sub-grids of the coarse 5x5x10 grid 

and the 18, 54, and 250 fixed grids were sub-grids of the 15x15x30 coarse grid. From the 

last two tables, it is clear that the maximum and average percent difference is also 

reduced significantly by taking the nested-grid points from a finer grid, 15x15x30 instead 

of 5x5x10. The maximum percent difference in Tables VIII and IX was reduced by a 

factor of 27, 9 and 9 for the 18, 54, and 250 fixed points respectively. From Table 

A.XXII, the maximum percent difference from the 10-9 solution was less then 5% for any 

grid point in the fine-grid pressure solution when the coarsest grid, 5x5x10, was used to 

generate the fixed points nested in the solution. A finer coarse grid, 15x15x30, decreases 

the maximum percent difference greatly. The trend of reduced percent difference as a 

finer coarse grid is used should hold throughout all possible nested-grid systems. It 

should be noted that for a given grid from which coarse-grid points are taken, if more 

fixed points are nested into a finer grid from that solution the result is more error in the 

final finely-gridded solution, as the error inherent in each fixed point influences the final 

solution. 

It is true that Weber’s solution is very accurate and we can probably assume that 

it is the actual analytical solution for the error analysis; however, the 5% maximum error 

relative to the actual solution obtained using the coarsest grid in the study may still be 

disconcerting. A potential source of trouble with this analysis was that well pressures, + 

1500, which are physically unrealistic, were chosen, to get symmetric reservoir pressures. 

A zero pressure surface exists in the solution. Division by these zero’s and near-zeros to 

get the percent errors may create misleading values.  Percent difference would possibly 

look better if the well pressures were realistic values, for example 8,000 psi for the 
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injection well and -5,000 psi for the production well. Also, a more rigorous convergence 

criterion than that describe in Chapter 3, would most likely reduce all measures of error. 

 

12.2 Summary 

 Two measurements, absolute difference and absolute percentage difference from a 

one-step solution, were made to determine the amount of error inherent in the nested-grid 

method applied with Weber’s equations. The absolute difference values showed that for 

the grid sizes considered, the maximum absolute difference never exceeds 0.1902 and the 

average absolute difference never exceeds 0.0168. These errors are of the same 

magnitude found by Weber (0.0757 maximum and 0.0182 average) and demonstrate that 

the nested-grid solution method does not substantially decrease the extraordinary 

accuracy of his solution. For the coarsest grid used, the maximum percent difference 

recorded was under 5%. This may be disconcerting, but potential remedies for this would 

be using a finer coarse grid, using more realistic well pressures that do not generate a 

symmetric solution or using a more rigorous convergence criterion.  
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CHAPTER 13 
 
 

MULTIPLE NESTED-GRIDS 
 
 

 In an effort to improve on the methods developed to this point and meet the last 

objective of this study, the idea of solving multiple grids to obtain the final finely-gridded 

pressure solution was considered and evaluated. It was anticipated that multiple nested-

grid systems might further reduce the amount of time required to obtain the final fine-grid 

solution. 

 The general idea behind this analysis was straight forward and involved using the 

dimensionless time analysis to determine how long multiple nested-grids systems took to 

determine finely-gridded pressures. To this point in the research, the optimal 

dimensionless time to obtain the full finely-gridded pressure solution was obtained by the 

following expression. 

ttotal = tcoarse-grid + tnested-grid             (13-1) 

 

This equation was replaced in this part of the study by the following expression. 

 

ttotal = tcoarse-grid + t1st nested-grid +t2nd nested-grid + t3rd nested-grid + t4th nested-grid +…     (13-2)
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As the expression suggests, there is a possibility that a large number of nested grids could 

be used in the calculation of overall dimensionless time required to obtain the full fine-

grid pressure solution. The analysis of dimensionless time was set up in Excel using the 

Solver tool to run an optimization analysis. The optimization process determined the 

appropriate size of intermediate nested grids for total grid sizes of 103, 105, and 106. This 

initial study was done to demonstrate in theory the potential of this process. 

 

13.1 Results 

 The study was initially conducted for a total grid size of 105. To help understand 

some of the logic of the optimization setup, the following tables are included which 

depict what a three nested-grid system involves. The ultimate goal of the optimization 

routine is to minimize the total time required to generate the full fine-grid solution.  In 

this example, the sum of the dimensionless time required for the solution of the original 

coarse grid and three nested-grid systems was required to obtain the final solution. Table 

X shows the nested-grid systems generated by Excel’s optimization software when three 

nested grids were used to determine the solution of the finely-gridded pressures for a grid 

size of 105.  

 
Table X. Size of Coarse and Fine Grids in Nested-Grid Method 

Three Nested Grids 
1st Fixed Grid Size (NCG) 169.3 
1st Total Grid Size (NFG) 5194.0 

  
2nd Fixed Grid Size (NCG) 5194.0 
2nd Total Grid Size (NFG) 29460.5 

  
3rd Fixed Grid Size (NCG) 29460.5 
3rd Total Grid Size (NFG) 100000 
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Table XI  shows how much dimensionless time was required to solve each of the grids 

and the total dimensionless time required. 

 

Table XI. Dimensionless Time Required to Solve Nested-Grid Method 

Course-Grid 
Calculation Nested-Grid Calculation Total Time 

Coarse Grid 1st Nested Grid 2nd Nested Grid 3rd Nested Grid 
Time Time Time Time 

59212.2201 228044.0282 737000.0365 2105409.336 
3129665.621

 

Similar studies were conducted for grid sizes of 103 and 106. The results of all 

these studies are summarized in Figure 28 where the total dimensionless time required to 

obtain the finely-gridded pressure solution for a grid sizes of 103, 105, and 106 is plotted 

verses the number of nested grids used. It is evident from the plot that multiple nested 

grids have potential to reduce computational time even further.  

Comparing the ratio of improvement in performance from a single nested grid, 

what was previously done in the study, to what was achieved when multiple nested grids 

were used is as follows. For the grid sizes of 103, 105, and 106 a factor of improvement of 

2.1, 2.9, and 3.4 were noted respectively.  

The ratio of improvement in dimensionless time for a single-grid solution to the 

largest number of nested-grids for the grid sizes of 103, 105, and 106 was a factor of 34.2, 

173.8, and 392.2. For all of the grid sizes, after the use of maximum number of nested-

grid systems shown in Figure 28, the total dimensionless time could not be determined 

using the Solver in Excel. It is clear from Figure 28 that as the number of nested grids 

increased, for all grid sizes considered, the overall dimensionless time reduction 

decreased and became insignificant. Consequently, one could achieve close the same 
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dimensionless time reduction using two or three nested-grid systems as the maximum 

number of nested grids shown in the figure for all three grid sizes considered. 

Multiple Nested-Grid Analysis

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

0 1 2 3 4 5 6 7 8 9 10 11

Number of Nested Grids

To
ta

l D
im

en
sio

nl
es

s T
im

e

1,000 100,000 1,000,000

Figure 28. Multiple Nested-Grid Analysis: 103, 105, and 106 Grid Sizes 

 

13.2 Practical Multiple Nested-Grid Study 

 The multiple nested-grid study to this point was essentially theoretical as the 

nested-grid systems could be realistically difficult to represent in a simulation while 

maintaining the integrity of the physical dimensions being studied. Due to this concern, a 

study was done where the nested-grid system was scaled using practical grid sizes. 

Practical nested-grid systems are systems where both coarse and fine girds have an 

integer number of grid points and the coarse grid points can be directly nested into the 

finer grid without compromising the physical reality of the reservoir being simulated. The 

total grid size calculated in the practical nested-grid study was a 1215x1215x2430 grid or 
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3,587,226,750 grid points. The original coarse grid calculated was a 5x5x10 grid or 250 

grid points. This grid was then nested into the successively larger grid of 15x15x30, 

which was then nested in a 45x45x90 grid and so on until the final 1215x1215x2430 grid 

size was achieved. The dimensional time analysis results are shown in Figure 29. Each 

line represents the cumulative dimensionless time required to solve a given fine-grid. The 

top line, which is the dimensionless time without nested grids, indicates how long it takes 

to calculate each of the grid sizes using Weber SOR with two wells. The line underneath, 

which is the dimensionless time with practical nested grids, indicates how long it takes to 

calculate the same grid size using a practical setup of multiple nested-grids. 

Cumulative Dimensionless Time:  Multiple Nested-Grids
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Figure 29. Practical Nested-Grid Configuration 
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This practical study shows a similar trend in the decrease of dimensionless time required 

to obtain the final finely-gridded pressure solution when optimized multiple nested-grids 

are used. It was clear that the use of multiple nested-grid systems was advantageous even 

when the system was not optimized.  

A final plot compares the optimized, multiple nested-grid solution with the 

practical nested-grid solution and no nested-grid solution. The optimized grid 

configurations have the optimal theoretical number of nested-grid points.  

Cumulative Dimensionless Time:  Multiple Nested-Grids
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Figure 30. A Look at Optimal, Practical and No Nested Grid 

 
The plot indicates that when the system of four multiple nested-grids was optimized the 

overall dimensionless time to calculate the finely-gridded pressure solution was reduced 

further than in the practical implementation of multiple nested-grids by 1.7 times. 
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However, the practical implementation of the multiple nested-grid method would be the 

easiest to implement for a given reservoir. 

 

13.3 Summary 

 The benefit of using multiple nested-grid systems to achieve the finely-gridded 

pressure solution was investigated. A theoretical study indicated improvements from a 

single-nested grid system ranging from a factor of about 2.1 on a grid size of 103 to a 

factor of 3.4 on a grid size of 106. In all the cases studied, using more than three nested-

grid systems was not useful in decreasing the dimensionless time further. The use of 

practical multiple nested-grids configurations was seen to perform essentially as well as 

the optimized nested-grid configurations.   
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CHAPTER 14 
 
 

CONCLUSION AND FUTURE WORK 
 
 
14.1 Conclusions 

Better technology is needed to produce oil and gas reserves in a more effective 

manner. Many developing technologies that improve oil and gas production would be 

greatly enhanced by faster and more accurate reservoir simulators. In approaching 

reservoir simulation, the multiscale method is an area of industry research which has been 

shown by various researchers to reduce the computational time required to complete 

reservoir simulations. Calculation of reservoir pressures is the most time consuming step 

in any reservoir simulator; this thesis proposes a new linear algebraic method that 

incorporates the multiscale approach to calculate reservoir simulation pressures in an 

accurate and fast manner. 

Weber et. al27 developed finite-difference equations that incorporate physics of 

flow and allow for pressure solutions, four-orders-of-magnitude more accurate, to be 

generated on coarse grids. The proposed new calculation method developed in this thesis 

takes advantage of Weber’s accurate coarse-grid solutions in a nested-grid calculation 

method to determine finely-gridded reservoir simulation pressures. Although this method 

incorporates some of the basic ideas of multigrid methods, namely coarse-grid relaxation 

and nested iteration, it is not a multigrid method. The coarse-grid pressure 
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solutions are nested into a finer grid and fixed throughout the relaxation process on the 

desired fine grid. The reservoir being simulated is of an idealized nature. The simplify 

assumptions include: (1) homogeneous permeability, (2) neglected gravity effects, (3) 

incompressibility, (4) steady-state, and (5) dimensions of reservoir and placement of 

wells generate a symmetric pressure solution. 

A standard desktop computer was used for the study of the performance of 

various solvers as a function of gird size. Direct solution methods considered were Gauss 

Elimination29, the Doolittle LU factorization method29, and a band solver, DGBSV, from 

the LAPACK library.30 Stationary iterative methods considered for the study were Jacobi, 

Gauss-Seidel, and Successive-Over-Relaxation (SOR). Five nonstationary iterative 

methods from MATLAB 7.0:  Biconjugate Gradient (BICG), Biconjugate Gradient 

stabilized (BICGSTAB), LSQR implementation of Conjugate Gradients on the Normal 

Equations (LSQR), Generalized Minimum Residual (GMRES), and Quasiminimal 

Residual (QMR) were considered. A hybrid of direct and iterative methods, Line 

Successive-Over-Relaxation (LSOR), was also considered. SOR and LSOR required the 

determination of an optimal over-relaxation factor.  

Of the direct methods tested, the band solver, DGBSV, from the LAPACK library 

showed best performance with respect to both cpu time and memory requirements. LSOR 

showed the best cpu time performance of the stationary and nonstationary iterative 

methods, with SOR following closely behind; SOR and Gauss Seidel required the least 

amount of run-time memory of all iterative methods.  

SOR was determined to be the best solver for the next phase of the study. It had 

similar convergence time to LSOR and its memory requirements were much lower. SOR 
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had similar performance to the best direct method on the smallest grid size considered 

and outperformed any direct method on all larger grids. Even though their overall 

performance parameters were not as good as SOR, GMRES and LSOR were also 

considered for implementation in the nested-grid method. 

The nested-grid method was implemented using various nested-grid 

configurations. LaPlace SOR and GMRES were used to calculate the finely-gridded 

pressures on the nested-grid configurations and performance data was recorded (See 

Tables A.XIII and A.XIV). Significant improvements in the time required for 

convergence were noted for both LaPlace SOR and GMRES, as nested-pressures were 

fixed in the fine-grid. These improvements gave a strong indication that Weber’s accurate 

pressure-solutions could be implemented in a nested-grid method and reduce computation 

time required to achieve finely-gridded reservoir simulation pressures. 

In an effort to speed up the solution method further, a three-dimensional linear 

interpolation of the nested-grid configuration was computed. Interpolation was not found 

to reduce the cpu time required to obtain the finely-gridded pressures in a significant 

manner. The lack of significant improvement using interpolation emphasizes the impact 

that the optimal over-relaxation factor has on the solution of a system of equations. It was 

thought that the interpolation program would possibly improve the solution method, yet 

for interpolation in three dimensions it became clear that the time required to simply 

interpolate values for every grid point added enough time to the overall solution method 

to make it an undesirable algorithm step. For this reason, interpolation was not 

recommended for further use in the study. 
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The math of Weber et al.27 is summarized in Chapter 8. The end result is six 

lambda (Weber) coefficients that can be easily incorporated into traditional finite-

difference formulations to calculate accurate pressure solutions. Weber’s coefficient need 

only be calculated for the interior cell faces of a block of cells around the well. For the 

coarsest grid considered, a block of twenty-seven cells was used which resulted in the 

calculation of eighteen coefficients in each direction. Finer grids required the calculation 

of more coefficients, as the same pattern was applied over a larger number of grid cells.   

The nested-grid study, applied with Weber’s coefficients, was conducted in a very 

similar manner to that discussed in Chapter 6. Fine-grid sizes that were odd multiples of 

the original coarse-grid size allowed for the accurate coarse-grid pressure solutions of 

Weber to be nested into desired fine grids. Various nested-grid configurations were 

considered and the resulting performance data was recorded (See Table A.XVII).  

The performance data from LaPlace SOR, Weber SOR, and GMRES were 

regressed to generate mathematical correlations that could be used to predict the number 

of iterations required for convergence as well as the optimal over-relaxation factor for 

any nested-grid configuration. The correlations predicted the actual values of number of 

iterations required for convergence and the over-relaxation factor very well. These 

correlations were used in the dimensionless time analysis of Chapter 11. 

 For LaPlace SOR, GMRES, and Weber SOR the time/iteration, determined from 

the performance data, was observed to vary more or less directly with total grid size. This 

allowed for a dimensionless cpu time expression to be developed which incorporated the 

mathematical correlations described in Chapter 10 and represented the actual cpu time 

required for convergence of a particular nested-grid configuration. The dimensionless 
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time expression was minimized, by optimizing the number of coarse-grid points in any 

given nested-grid setup. The results showed significant reductions in the amount of 

computational time required to obtain finely-gridded pressures solutions. The ratio of 

dimensionless time improvement for Weber SOR ranged from 7 on the coarsest nested-

grid setup to 813 on the finest nested-grid. This verified that the solution method 

developed in this thesis generates fast, accurate pressure solutions on fine grids. 

 Two measurements, absolute difference and absolute percentage difference from a 

one-step solution, were made to determine the amount of error inherent in the nested-grid 

method applied with Weber’s equations. The absolute difference values showed that for 

the grid sizes considered, the maximum absolute difference never exceeds 0.1902 and the 

average absolute difference never exceeds 0.0168. These errors are of the same 

magnitude found by Weber (0.0757 maximum and 0.0182 average) and demonstrate that 

the nested-grid solution method does not substantially decrease the extraordinary 

accuracy of his solution. For the coarsest grid used, the maximum percent difference 

recorded was under 5%. This may be disconcerting, but potential remedies for this would 

be using a finer coarse grid, using more realistic well pressures that do not generate a 

symmetric solution or using a more rigorous convergence criterion. 

 The benefit of using multiple nested-grid systems to achieve the finely-gridded 

pressure solution was investigated. A theoretical study indicated improvements from a 

single-nested grid system ranging from a factor of about 2.1 on a grid size of 103 to a 

factor of 3.4 on a grid size of 106. In all cases studied, using more than three nested-grid 

systems was not useful in decreasing the dimensionless time further. The use of practical 
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multiple nested-grids configurations was seen to perform essentially as well as the 

optimized nested-grid configurations.   

The nested-grid method dramatically improves the speed at which a solution of 

finely-gridded pressures can be generated. Keys to the success of this new method were 

the new finite-difference equations that incorporated the physics of the flow, the 

placement of an optimal number of nested-grid points into the fine grid, and the use of an 

optimal number of nested-grid systems. The end result was an accurate and fast solution 

method.  

 

14.2 Future Work 

Recommended future work involves investigating the effect of permeability 

variations on the solution method, as the cases studied were of an idealized system. This 

would involve the investigation of heterogeneous reservoirs and might be approached 

through a series of larger and smaller nested grids similar to multigrid methods, or by 

judicious choice of scaled-up coefficients. In addition, the work that was initiated in this 

thesis and described in Appendix D, which initiates the development of an algorithm that 

can determine the optimal over-relaxation factor, used in Successive-Over-Relaxation, 

for any grid, should be continued. Weber’s work is valid only for wells that can be 

approximated by points or straight lines. The wells must be centered in the grid cells.  

This work should be extended to include wells of arbitrary shape and location. These new 

technologies should then be used to create a computer program that can be used to solve 

the pressure equation in reservoir simulators throughout the petroleum industry.   
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APPENDIX A 
 
 

TABLES REFERRED TO IN BODY OF THESIS 
 
 
 

Table A.XII. Nested-Grid Configurations 
 

Fine-Grid 
Dimensions 

Fine-
Grid 
Size 

Coarse-
Grid Size 

Number of 
Fine-Grid 

Points 
Between 

Coarse-Grid 
Points 

Percent of Fixed 
Points 

5X5X10 250 18 1 6.4000 
9X9X18 1458 18 3 1.0974 

17X17X34 9826 18 7 0.1628 
33X33X66 71874 18 15 0.0223 

65X65X130 549250 18 31 0.0029 
9X9X18 1458 130 1 8.7791 

17X17X34 9826 130 3 1.3027 
33X33X66 71874 130 7 0.1781 

65X65X130 549250 130 15 0.0233 
17X17X34 9826 1026 1 10.4213 
33X33X66 71874 1026 3 1.4247 

65X65X130 549250 1026 7 0.1868 
33X33X66 71874 8194 1 11.3977 

65X65X130 549250 8194 3 1.4915 
65X65X130 549250 65538 1 11.9319 

 
 
 

Table A.XIII. LaPlace SOR:  Fine and Nested-Grid Results 
  

NFG NCG ωopt NITER Time(s) Time/Iter 
250 2 1.800 82 0.007 8.61E-05 
1458 2 1.910 255 0.086 3.36E-04 
9826 2 1.968 546 1.179 2.16E-03 
71874 2 1.988 1104 33.562 3.04E-02 
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Table A.XIII. continued 
549250 2 1.996 3356 881.925 2.63E-01 

250 18 1.490 32 0.003 1.41E-04 
1458 18 1.780 58 0.019 3.24E-04 
9826 18 1.910 182 0.410 2.19E-03 
71874 18 1.969 483 15.328 3.26E-02 
549250 18 1.989 902 242.160 2.68E-01 
1458 130 1.460 37 0.019 9.54E-05 
9826 130 1.751 79 0.191 2.42E-03 
71874 130 1.912 212 7.081 3.40E-02 
549250 130 1.971 533 145.910 2.74E-01 
9826 1026 1.410 35 0.082 2.87E-03 
71874 1026 1.770 85 2.941 3.45E-02 
549250 1026 1.920 257 73.582 2.92E-01 
71874 8194 1.430 35 1.223 3.46E-02 
549250 8194 1.760 94 28.425 2.99E-01 
549250 65538 1.430 37 12.160 3.28E-01 

 
 

                   
       Table A.XIV. GMRES:  Fine and Nested-Grid Results 

NFG NCG NITER Time(s) Time/Iter 
250 2 22 0.063 2.84E-03 
1458 2 42 0.322 7.66E-03 
9826 2 80 3.153 3.94E-02 
71874 2 - - - 
549250 2 - - - 

250 18 20 0.063 3.13E-03 
1458 18 40 0.294 7.34E-03 
9826 18 80 4.966 6.21E-02 
71874 18 155 355.688 2.29E+00 
549250 18 - - - 
1458 130 30 0.219 7.29E-03 
9826 130 67 3.225 4.81E-02 
71874 130 137 289.081 2.11E+00 
549250 130 - - - 
9826 1026 36 1.494 4.15E-02 
71874 1026 89 123.544 1.39E+00 
549250 1026 - - - 
71874 8194 36 25.534 7.09E-01 
549250 8194 - - - 
549250 65538 - - - 
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Table A.XV. Interpolation Study 

NFG NCG 
Time to 

Interpolate 
Nested-Grid (s) 

Time to Iterate to Convergence 
from Interpolated Starting 

Values (s) 
Total Time (s)

250 18 0.010 0.003 0.013 
1458 18 0.019 0.029 0.048 
9826 18 0.140 0.430 0.570 
71874 18 1.016 14.288 15.304 
549250 18 7.424 364.785 372.209 
1458 130 0.021 0.023 0.044 
9826 130 0.144 0.187 0.331 
71874 130 1.019 6.351 7.370 
549250 130 7.380 123.351 130.732 
9826 1026 0.131 0.085 0.216 
71874 1026 1.016 2.507 3.523 
549250 1026 7.355 62.531 69.886 
71874 8194 0.962 0.805 1.767 
549250 8194 7.324 13.539 20.863 
549250 65538 6.861 4.937 11.798 

 
 
 

Table A.XVI. Interpolation Study:  Comparison with No Interpolation 
 

NFG NCG 

Time Required to 
Compute Pressure 

Solution with 
Interpolation (s) 

Time Required to 
Compute Pressure 
Solution Without 
Interpolation (s) 

Ratio of 
Interpolation to No 

Interpolation 

250 18 1.32E-02 3.16E-03 4.20 
1458 18 4.82E-02 1.90E-02 2.53 
9826 18 5.70E-01 4.10E-01 1.39 
71874 18 1.53E+01 1.53E+01 1.00 
549250 18 3.72E+02 2.42E+02 1.54 
1458 130 4.42E-02 1.93E-02 2.29 
9826 130 3.31E-01 1.91E-01 1.73 
71874 130 7.37E+00 7.08E+00 1.04 
549250 130 1.31E+02 1.46E+02 0.90 
9826 1026 2.16E-01 8.18E-02 2.65 
71874 1026 3.52E+00 2.94E+00 1.20 
549250 1026 6.99E+01 7.36E+01 0.95 
71874 8194 1.77E+00 1.22E+00 1.44 
549250 8194 2.09E+01 2.84E+01 0.73 
549250 65538 1.18E+01 1.22E+01 0.97 
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Table A.XVII. Weber SOR:  Fine and Nested-Grid Results with Weber’s Coefficients 

Dimensions NFG NCG ωopt NITER Time(s) Time/Iter 
5x5x10 250 2 1.9831 634 4.947E-02 7.803E-05 

15x15x30 6750 2 1.9947 1875 4.489E+00 2.394E-03 
25x25x50 31250 2 1.9975 3410 1.249E+02 3.661E-02 
35x35x70 85750 2 1.9977 4762 5.457E+02 1.146E-01 
45x45x90 182250 2 1.9982 6370 1.640E+03 2.575E-01 
55x55x110 332750 2 1.9985 8284 3.785E+03 4.569E-01 
65x65x130 549250 2 1.9989 10371 8.036E+03 7.749E-01 
75x75x150 843750 2 1.999 13057 1.570E+04 1.203E+00 

5x5x10 250 18 1.47 25 1.875E-03 7.500E-05 
15x15x30 6750 18 1.89 115 3.042E-01 2.645E-03 
25x25x50 31250 18 1.96 250 1.576E+01 6.305E-02 
35x35x70 85750 18 1.974 361 6.591E+01 1.826E-01 
45x45x90 182250 18 1.9795 470 1.163E+02 2.475E-01 
55x55x110 332750 18 1.9851 584 2.668E+02 4.568E-01 
65x65x130 549250 18 1.9888 536 4.328E+02 8.075E-01 
75x75x150 843750 18 1.9912 1209 1.535E+03 1.270E+00 
15x15x30 6750 54 1.81 75 2.156E-01 2.874E-03 
25x25x50 31250 54 1.911 142 9.063E+00 6.382E-02 
35x35x70 85750 54 1.951 214 4.000E+01 1.869E-01 
45x45x90 182250 54 1.963 315 7.966E+01 2.529E-01 
55x55x110 332750 54 1.974 340 1.586E+02 4.664E-01 
65x65x130 549250 54 1.981 263 2.113E+02 8.034E-01 
75x75x150 843750 54     
15x15x30 6750 130 1.75 55 1.262E-01 2.294E-03 
45x45x90 182250 130 1.94 254 6.455E+01 2.541E-01 
75x75x150 843750 130     
15x15x30 6750 250 1.678 41 1.045E-01 2.549E-03 
25x25x50 31250 250 1.829 94 6.262E+00 6.662E-02 
35x35x70 85750 250 1.883 128 2.411E+01 1.884E-01 
45x45x90 182250 250 1.9159 183 4.760E+01 2.601E-01 
55x55x110 332750 250 1.9513 277 1.324E+02 4.780E-01 
65x65x130 549250 250 1.9529 289 2.372E+02 8.207E-01 
75x75x150 843750 250 1.9617 347 4.369E+02 1.259E+00 
45x45x90 182250 1026 1.817 123 3.141E+01 2.554E-01 
75x75x150 843750 1026     
45x45x90 182250 6750 1.63 48 1.224E+01 2.550E-01 
75x75x150 843750 6750     
75x75x150 843750 31250 1.631 48 6.062E+01 1.263E+00 
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Table A.XVIII. LaPlace SOR:  Dimensionless Time Results of Nested-Grid Method 
 

Optimal 
NCG NFG 

Dimensionless 
Time:  Two 
Fixed Points 

Dimensionless 
Time:  Optimal 

Fixed Points 

Ratio of 
Improvement

11 5.00E+01 2.78E+03 1.15E+03 2 
18 1.00E+02 7.57E+03 2.59E+03 3 
36 2.50E+02 2.80E+04 7.47E+03 4 
61 5.00E+02 7.50E+04 1.65E+04 5 
104 1.00E+03 2.00E+05 3.65E+04 5 
140 1.46E+03 3.41E+05 5.60E+04 6 
369 5.00E+03 1.95E+06 2.27E+05 9 
630 9.83E+03 5.06E+06 4.90E+05 10 
1322 2.50E+04 1.89E+07 1.41E+06 13 
2293 5.00E+04 5.04E+07 3.10E+06 16 
3060 7.19E+04 8.42E+07 4.68E+06 18 
15469 5.49E+05 1.49E+09 4.68E+07 32 
24948 1.00E+06 3.47E+09 9.22E+07 38 
90139 5.00E+06 3.37E+10 5.70E+08 59 
156786 1.00E+07 8.98E+10 1.25E+09 72 
986868 1.00E+08 2.32E+12 1.69E+10 138 
6217592 1.00E+09 6.01E+13 2.28E+11 263 

 
 
 

Table A.XIX. GMRES:  Dimensionless Time Results of Nested-Grid Method 

Optimal 
NCG NFG 

Dimensionless 
Time:  Two 
Fixed Points 

Dimensionless 
Time:  Optimal 

Fixed Points 

Ratio of 
Improvement 

7 1.00E+02 3.00E+04 2.99E+04 1 
36 2.50E+02 1.05E+05 1.02E+05 1 
112 5.00E+02 2.69E+05 2.50E+05 1 
274 1.00E+03 6.90E+05 5.84E+05 1 
411 1.46E+03 1.15E+06 9.09E+05 1 
1271 5.00E+03 6.16E+06 3.62E+06 2 
2210 9.83E+03 1.54E+07 7.50E+06 2 
4590 2.50E+04 5.49E+07 2.01E+07 3 
7790 5.00E+04 1.41E+08 4.15E+07 3 
10249 7.19E+04 2.31E+08 6.04E+07 4 
47000 5.49E+05 3.66E+09 4.90E+08 7 
73485 1.00E+06 8.27E+09 9.05E+08 9 
243985 5.00E+06 7.37E+10 4.69E+09 16 
409156 1.00E+07 1.89E+11 9.51E+09 20 
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Table A.XIX. continued 
2281845 1.00E+08 4.33E+12 9.94E+10 44 
12746216 1.00E+09 9.89E+13 1.04E+12 95 

 
 
 

Table A.XX. Weber SOR:  Dimensionless Time Results of Nested-Grid Method 

Optimal 
NCG NFG 

Dimensionless 
Time:  Two 
Fixed Points 

Dimensionless 
Time:  Optimal 

Fixed Points 

Ratio of 
Improvement 

6 5.00E+01 1.01E+04 1.42E+03 7 
9 1.00E+02 2.78E+04 3.19E+03 9 
17 2.50E+02 1.03E+05 9.15E+03 11 
28 5.00E+02 2.76E+05 2.02E+04 14 
47 1.00E+03 7.38E+05 4.44E+04 17 
63 1.46E+03 1.26E+06 6.80E+04 18 
164 5.00E+03 7.19E+06 2.75E+05 26 
280 9.83E+03 1.87E+07 5.91E+05 32 
588 2.50E+04 6.98E+07 1.70E+06 41 
1021 5.00E+04 1.86E+08 3.73E+06 50 
1364 7.19E+04 3.10E+08 5.62E+06 55 
6913 5.49E+05 5.49E+09 5.61E+07 98 
11157 1.00E+06 1.28E+10 1.11E+08 116 
40376 5.00E+06 1.24E+11 6.82E+08 182 
70268 1.00E+07 3.31E+11 1.49E+09 222 
442903 1.00E+08 8.57E+12 2.02E+10 424 
2792858 1.00E+09 2.22E+14 2.73E+11 813 

 
 
 

Table A.XXI.  Absolute Difference from a 10-9 Solution 

Grid 
Dimensions 

Number of 
Fixed Points 

Maximum 
Absolute 

Difference 

Average 
Absolute 

Difference 
5X5X10 18 0.0000 0.0000 

15X15X30 18 0.0439 0.0130 
15X15X30 54 0.1329 0.0168 
15X15X30 250 0.1838 0.0098 
25X25X50 18 0.0411 0.0104 
25X25X50 54 0.1489 0.0156 
25X25X50 250 0.1901 0.0065 
35X35X70 18 0.0400 0.0089 
35X35X70 54 0.1544 0.0139 
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Table A.XXI. continued 
35X35X70 250 0.1902 0.0050 
45X45X90 18 0.0387 0.0075 
45X45X90 54 0.1573 0.0125 
45X45X90 250 0.1895 0.0044 
45X45X90 1026 0.0521 0.0057 
45X45X90 6750 0.0597 0.0068 

55X55X110 18 0.0387 0.0063 
55X55X110 54 0.1591 0.0106 
55X55X110 250 0.1888 0.0041 
65X65X130 18 0.0418 0.0056 
65X65X130 54 0.1603 0.0099 
65X65X130 250 0.1882 0.0040 
75X75150 250 0.1879 0.0042 

75X75X150 31250 0.0919 0.0052 
 

 
 

Table A.XXII. Percent Difference from 10-9 Solution 

Grid 
Dimensions 

Number of 
Fixed Points 

Maximum % 
Difference 

Average % 
Difference 

5X5X10 18 0.00 0.00 
15X15X30 18 0.87 0.35 
15X15X30 54 3.24 0.50 
15X15X30 250 4.27 0.28 
25X25X50 18 0.82 0.29 
25X25X50 54 3.65 0.46 
25X25X50 250 4.41 0.19 
35X35X70 18 0.99 0.25 
35X35X70 54 3.79 0.40 
35X35X70 250 4.41 0.14 
45X45X90 18 1.18 0.21 
45X45X90 54 3.86 0.36 
45X45X90 250 4.40 0.13 
45X45X90 1026 0.99 0.14 
45X45X90 6750 1.26 0.18 

55X55X110 18 1.32 0.18 
55X55X110 54 3.91 0.30 
55X55X110 250 4.38 0.12 
65X65X130 18 1.43 0.17 
65X65X130 54 3.94 0.30 
65X65X130 250 4.37 0.11 
75X75X150 250 4.36 0.12 
75X75X150 31250 1.94 0.13 
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APPENDIX B 
 
 

 This Appendix contains the original regression analysis of the nested-grid results 

on the solution of the LaPlace equation using SOR and GMRES. It served as the basis for 

CIPC Paper 2005-112.33 Subsequent regression analyses were thought to be preferable 

and are included in the body of the thesis. 

 

B.1  Laplace SOR:  Nested-Grid Method 

Table B.XXIII. Laplace SOR:  Fine and Nested-Grid Results 
 

NFG NCG ωopt NITER TIME(s) TIME/ITER 
250 2 1.800 82 0.007 8.61E-05 
1458 2 1.910 255 0.086 3.36E-04 
9826 2 1.968 546 1.179 2.16E-03 
71874 2 1.988 1104 33.562 3.04E-02 
549250 2 1.996 3356 881.925 2.63E-01 

250 18 1.490 32 0.003 1.41E-04 
1458 18 1.780 58 0.019 3.24E-04 
9826 18 1.910 182 0.410 2.19E-03 
71874 18 1.969 483 15.328 3.26E-02 
549250 18 1.989 902 242.160 2.68E-01 
1458 130 1.460 37 0.019 9.54E-05 
9826 130 1.751 79 0.191 2.42E-03 
71874 130 1.912 212 7.081 3.40E-02 
549250 130 1.971 533 145.910 2.74E-01 
9826 1026 1.410 35 0.082 2.87E-03 
71874 1026 1.770 85 2.941 3.45E-02 
549250 1026 1.920 257 73.582 2.92E-01 
71874 8194 1.430 35 1.223 3.46E-02 
549250 8194 1.760 94 28.425 2.99E-01 
549250 65538 1.430 37 12.160 3.28E-01 
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This data was used to determine the optimal number of fixed-coarse-grid points that 

should be embedded in a desired fine grid to obtain the pressure solution for any nested-

grid setup in the least amount of time. This was done by regression of the results in Table 

B.XXIII to obtain mathematical expressions to predict both ωopt and the number of 

iterations (NITER) required for convergence, for any nested-grid setup. Both of the 

expressions were functions of the number of fixed-coarse-grid points (NCG) and the total 

number of fine-grid points (NFG).  

The following correlation was found to predict the optimal value of ω:  

 

ωopt = 2 - [ 2.43 ⋅ (NCG)0.51 ⋅  (NFG)-2.40 ⋅  (NFG-NCG)1.88 ]           (B-1) 

 

It predicts the ωopt of Table B.XXIII with a Pearson correlation coefficient of 0.999 or R2
 

value of 0.998  

The expression for the number of iterations required to solve the pressure 

equations to a tolerance of 10-6 at ωopt is given by the following function: 

 

NITER(NCG,NFG) = 7.93 ⋅ (NCG)-0.50 ⋅ (NFG)0.38 ⋅ (NFG - NCG)0.10            (B-2) 

 

The correlation coefficient, which correlates the actual and calculated values of NITER for 

this expression, was 0.995 which is equivalent to a R2 value of 0.990. 
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B.2 GMRES:  Nested-Grid Method 

The correlation for the number of iterations as a function of coarse and fine grid 

points was determined and is as follows 

. 

NITER = 4.27 ⋅ (NCG)-0.08 ⋅ (NFG)-6.06 ⋅ (NFG - NCG)6.40              (B-3) 

 

The correlation coefficient was 0.984 and the R2 value was 0.969. Successful application 

of the nested-grid method was initially expected only for grid sizes equal to or smaller 

than 17x17x34.  

The results of the fine and nested grid study for GMRES are shown in Table 

B.XXIV. 

Table B.XXIV. Fine and Nested-Grid Results for GMRES 

NFG NCG NITER TIME(s) TIME/ITER 
250 2 22 0.063 2.84E-03 
1458 2 42 0.322 7.66E-03 
9826 2 80 3.153 3.94E-02 
71874 2 - - - 
549250 2 - - - 

250 18 20 0.063 3.13E-03 
1458 18 40 0.294 7.34E-03 
9826 18 80 4.966 6.21E-02 
71874 18 155 355.688 2.29E+00 
549250 18 - - - 
1458 130 30 0.219 7.29E-03 
9826 130 67 3.225 4.81E-02 
71874 130 137 289.081 2.11E+00 
549250 130 - - - 
9826 1026 36 1.494 4.15E-02 
71874 1026 89 123.544 1.39E+00 
549250 1026 - - - 
71874 8194 36 25.534 7.09E-01 
549250 8194 - - - 
549250 65538 - - - 
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Table B.XXIV reveals an interesting consequence of imbedding fixed points in the 

solution method. It can be seen that the original fine-grid solution was only achieved up 

to 9,826 fine-grid points. Grid sizes above this required too much memory to successfully 

determine a solution on the desktop computer. As fixed points were added to the fine 

grid, according to the nested-grid method, the previously unattainable solutions became 

attainable. The finely-gridded pressures for a grid size of 33x33x66 (71,874 fine grid 

points) was achieved by applying the nested-grid method using the same desktop 

computer. This result highlights the potential of the new method to compute reservoir 

simulation pressures for more refined grids on the same computer. However, even using 

the nested-grid method, the 65x65x130 grid was still too large for GMRES to handle on 

the desktop computer.  

 

B.3 LaPlace SOR: Optimization of the Nested Grid Method 

Simulation runs for various grid sizes at different levels of coarse-grid refinement 

identified optimal performance of the nested-grid method. A plot of the ratio of 

time/iteration for all of the nested-grid setups was made as a function of the total grid size 

and is shown in Figure B.31. The time/iteration was found to vary almost directly with 

the total number of fine-grid points. This observation was used in the development of a 

mathematical expression that generates a dimensionless time value which is independent 

of the computer being used. The dimensionless time expression was in turn used to 

determine the optimal number of fixed-coarse-grid points to be nested into a given fine 

grid. The expression for the total dimensionless time was. 
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td = NCG ⋅ NITER(2,NCG) + NFG ⋅ NITER(NCG,NFG)                  (B-4) 

 

Time/Iteration vs Total Grid Size
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Figure B.31. LaPlace SOR Time/Iteration as a Function of Total Grid 

 

As evident, the dimensionless time expression is made of up two terms: the time 

required for the calculation of the coarse grid with two wells, and the time required for 

the calculation of the nested-fine-grid solution with two wells. The number of iterations, 

NITER, is a function of the number of nested-coarse-grid points and the total number of 

fine-grid points. For the coarse-grid dimensionless-time calculation, the number of 

iterations is a function of the number of wells (which become nested-coarse-grid points) 

and the number of coarse-grid points (the number of coarse-grid points is equivalent to 

the total number of fine-grid points). The time required for the calculation of either the 



 116

coarse or fine-grid pressure solution is the product of the number of coarse or fine grid 

points used to model the reservoir with the number of iterations required for convergence 

of the respective grid. The sum of these two yields the total dimensionless time. This 

function for dimensionless time was optimized by determining the optimum number of 

fixed-coarse-grid points that should be nested in a given fine-grid solution. The 

optimization was accomplished using the Solver tool in Microsoft Excel. 

The optimized dimensionless time results indicate significant reductions in 

computational time required to obtain the finely-gridded pressure solution for larger 

grids. Figure B.32 shows a plot of the improvement obtained by the nested-grid method 

(SOR_OPTFP) compared to the original full solution without nested-grid pressures 

(SOR_2FP), both being solved using the SOR algorithm at ωopt.  

Dimensionless Time as a Function of Grid Size
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Figure B.32. Improvement Obtained by the Nested-Grid Method 
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Table B.XXV summarizes the data displayed in Figure B.32 and shows the ratio of 

improvement obtained by using the nested-grid method. For a grid size of one million, an 

improvement of 77 times is noted for the optimized-nested-fine-grid solution over the full 

solution on a fine grid solved with SOR. Extrapolating the data to one billion points 

yields an improvement of 1,022 times. This assumes that the computer being used can 

handle such large memory demands. The desktop used in this study could not. 

 
 

Table B.XXV. Dimensionless Time Results of Nested-Grid Method 
 

OPTIMAL 
NCG NFG FULL 

TIME 
OPTIMAL 

TIME 
RATIO OF 

IMPROVEMENT 
13 5.00E+01 1.84E+03 9.51E+02 2 
22 1.00E+02 5.16E+03 2.06E+03 3 
43 2.50E+02 2.01E+04 5.72E+03 4 
72 5.00E+02 5.62E+04 1.24E+04 5 
121 1.00E+03 1.57E+05 2.67E+04 6 
161 1.46E+03 2.74E+05 4.07E+04 7 
403 5.00E+03 1.71E+06 1.60E+05 11 
668 9.83E+03 4.64E+06 3.38E+05 14 
1341 2.50E+04 1.85E+07 9.53E+05 19 
2250 5.00E+04 5.18E+07 2.06E+06 25 
2951 7.19E+04 8.87E+07 3.07E+06 29 
13484 5.49E+05 1.81E+09 2.93E+07 62 
21101 1.00E+06 4.40E+09 5.70E+07 77 
70259 5.00E+06 4.78E+10 3.39E+08 141 
117953 1.00E+07 1.33E+11 7.31E+08 183 
659496 1.00E+08 4.05E+12 9.39E+09 432 
3687808 1.00E+09 1.23E+14 1.20E+11 1022 

 

A plot of the optimum number of coarse-grid points as a function of the number 

of fine-grid points is shown in Figure B.33.  
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Optimal NCG vs NFG 

y = 0.4422x0.7927

R2 = 0.9999

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

NFG

N
C

G

Figure B.33. Optimal Number of Coarse-Grid Points Nested Into Fine Grid 

 

For all of the nested-grid set ups, it was determined that at the optimal number of 

fixed-coarse-grid points, the calculation of the coarse-grid pressures takes about 20-24% 

of the total time, with the nested-fine-grid-calculation taking the remainder of the time. 

The nested-grid method speeds up the calculation of the finely-gridded reservoir 

pressures and makes feasible the simulation of larger grids on standard desktop/laptop 

computers.  

 

B.4 GMRES: Optimization of the Nested Grid Method 

A similar study was done to compare the performance of GMRES with SOR 

using the new method. A plot of the time/iteration as a function of grid size was also 
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constructed from the results obtained from the nested-grid study using GMRES instead of 

SOR and is shown in Figure B.34. 

Time/Iteration vs Total Grid Size
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Figure B.34. GMRES: Time/Iteration as a Function of Total Grid Size 

 

The time/iteration was found again to vary more or less directly with the total number of 

fine-grid points. A dimensionless time analysis was conducted using Equation (B-4) 

multiplied by twenty to correct the variation in constants. This was done so that SOR and 

GMRES could be compared directly. The dimensionless times calculated using Equation 

(B-4) are in essentially the same ratio as the actual time values for the data collected.  A 

correlation coefficient of 0.938 was obtained when the two ratios were analyzed. A plot 

of the performance, in dimensionless time, of the original GMRES function with the 

original full fine-grid SOR and SOR applied with the optimized nested-grid method is 

shown in Figure B.35. These results indicate that the previous conclusion, that GMRES 
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would not outperform SOR, is essentially validated except for extremely large grid sizes 

(1 billion) at which point GMRES has better performance than SOR. 

Dimensionless Time as a Function of Grid Size
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Figure B.35. Optimized Nested-Grid Method Using SOR Compared with GMRES 
 

 Determination of the optimal number of fixed-grid points that should be nested 

into the fine grid using GMRES was determined next. The results are displayed in Table 

B.XXVI.  

Table B.XXVI. Dimensionless Time Results of Nested-Grid Method    

OPTIMAL 
NCG 

NFG FULL 
TIME 

OPTIMAL 
TIME 

RATIO OF 
IMPROVEMENT 

16 5.00E+01 1.17E+04 2.51E+03 4.7 
30 1.00E+02 3.39E+04 8.14E+03 4.2 
71 2.50E+02 1.25E+05 3.21E+04 3.9 
137 5.00E+02 3.24E+05 8.45E+04 3.8 
268 1.00E+03 8.31E+05 2.16E+05 3.8 
385 1.46E+03 1.38E+06 3.58E+05 3.9 
1266 5.00E+03 7.24E+06 1.83E+06 4.0 
2430 9.83E+03 1.79E+07 4.44E+06 4.0 
5984 2.50E+04 6.26E+07 1.51E+07 4.1 
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Table B.XXVI. continued 
11676 5.00E+04 1.58E+08 3.74E+07 4.2 
16564 7.19E+04 2.57E+08 6.02E+07 4.3 
117187 5.49E+05 3.92E+09 8.59E+08 4.6 
208339 1.00E+06 8.74E+09 1.88E+09 4.6 
974551 5.00E+06 7.54E+10 1.54E+10 4.9 
1891579 1.00E+07 1.91E+11 3.79E+10 5.0 
17024133 1.00E+08 4.16E+12 7.61E+11 5.5 
151734513 1.00E+09 9.07E+13 1.52E+13 6.0 

 

These results show an average speed up of about 4.5 times in the performance of GMRES 

when the optimal number of fixed points is nested into the solution algorithm. It is 

evident that GMRES by itself does not perform as well as SOR; this was observed in the 

initial study of GMRES. The optimized performance of GMRES is seen to be much 

slower than the optimized performance of SOR especially at larger grid sizes; however 

the optimized performance of GMRES does outperform SOR_2FP at larger grid sizes.  

Figure B.36 displays the results. 

These results indicate that SOR generates significant improvement over even 

advanced algorithms such as GMRES when the new method is applied. It is believed that 

improved performance of the pressure solution calculation with the nested-grid method 

using SOR is due to the increased number of fixed points around which the final solution 

can relax. 



 122

Dimensionless Time as a Function of Grid Size
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Figure B.36. Comparison of Improvement Obtained by the Nested-Grid Method for 
GMRES and SOR 
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APPENDIX C 
 
 

 This Appendix contains the original regression analysis of the nested-grid results 

on the solution of the pressure using Weber’s coefficients. Subsequent regression 

analyses were thought to be preferable and are included in the body of the thesis. 

 
C.1 Weber SOR: Nested-Grid Results 

 

Table C.XXVII. Weber SOR:  Fine and Nested-Grid Results with Weber’s Coefficients 

DIMENSIONS NFG NCG OPT 
ORF NITER TIME(s) TIME/ITER 

5x5x10 250 2 1.9831 634 0.049 7.80E-05 
15x15x30 6750 2 1.9947 1875 4.489 2.39E-03 
25x25x50 31250 2 1.9975 3410 124.852 3.66E-02 
35x35x70 85750 2 1.9977 4762 545.705 1.15E-01 
45x45x90 182250 2 1.9982 6370 1640.267 2.57E-01 
55x55x110 332750 2 1.9985 8284 3785.215 4.57E-01 
65x65x130 549250 2 1.9989 10371 8036.465 7.75E-01 
75x75x150 843750 2 1.999 13057 15704.155 1.20E+00 

5x5x10 250 16 1.47 25 0.002 7.50E-05 
15x15x30 6750 16 1.89 115 1.372 1.19E-02 
25x25x50 31250 16 1.96 250 15.762 6.30E-02 
35x35x70 85750 16 1.974 361 65.910 1.83E-01 
45x45x90 182250 16 1.9795 470 116.330 2.48E-01 
55x55x110 332750 16 1.9851 584 266.795 4.57E-01 
65x65x130 549250 16 1.9888 536 432.823 8.08E-01 
75x75x150 843750 16 1.9912 1209 1534.991 1.27E+00 
15x15x30 6750 54 1.81 75 1.040 1.39E-02 
25x25x50 31250 54 1.911 142 9.063 6.38E-02 
35x35x70 85750 54 1.951 214 39.997 1.87E-01 
45x45x90 182250 54 1.963 315 79.660 2.53E-01 
55x55x110 332750 54 1.974 340 158.568 4.66E-01 
65x65x130 549250 54 1.981 263 211.304 8.03E-01 
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Table C.XXVII. continued 
75x75x150 843750 54     
15x15x30 6750 128 1.75 55 0.126 2.29E-03 
45x45x90 182250 128 1.94 254 64.549 2.54E-01 
75x75x150 843750 128     
15x15x30 6750 250 1.678 41 0.660 1.61E-02 
25x25x50 31250 250 1.829 94 6.262 6.66E-02 
35x35x70 85750 250 1.883 128 24.113 1.88E-01 
45x45x90 182250 250 1.9159 183 47.596 2.60E-01 
55x55x110 332750 250 1.9513 277 132.412 4.78E-01 
65x65x130 549250 250 1.9529 289 237.171 8.21E-01 
75x75x150 843750 250 1.9617 347 436.920 1.26E+00 
45x45x90 182250 1024 1.817 123 31.412 2.55E-01 
75x75x150 843750 1024     
45x45x90 182250 6750 1.63 48 12.238 2.55E-01 
75x75x150 843750 6750     
75x75x150 843750 31250 1.631 48 60.624 1.26E+00 

 

A regression of the results in Table C.XXVII allowed the generation of 

mathematical expressions to predict both ωopt
 and NITERrequired for convergence for any 

nested-grid setup. The following correlation predicts the optimal value of the over-

relaxation factor ωopt with a correlation coefficient of 0.973 or a R2 value of 0.94.   

 

ωopt = 2 - [ 1.99 ⋅ (NCG)0.54⋅  (NFG)-0.53 ⋅  (NFG-NCG)0.00 ]           (C-1) 

 

The mathematical expression for the number of iterations required to reach a convergence 

criterion of 10-6 had a correlation coefficient of 0.997 or a R2 value of 0.995. Once again 

the convergence criterion was the absolute difference between the two entirely opposite 

grid cells P1,1,1 and PImax,Jmax,Kmax. 

 

NITER = 87.50 ⋅ (NCG)-1.21 ⋅ (NFG)0.41 ⋅ (NFG - NCG)0.02              (C-2) 
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C.2 Optimization of the Nested Grid Method 

A plot of the ratio of time/iteration as a function of total grid size was constructed 

and is shown in Figure C.37. 
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Figure C.37. Weber Time/Iteration as a Function of Total Grid Size 

 

Once again the time/iteration was found to vary almost directly with the total number of 

fine-grid points. The same expression for dimensionless time was used as explained 

previously in Appendix B. 

td = NCG · NITER(2,NCG) + NFG · NITER(NCG,NFG)                 (C-3) 

 



 126

A comparison of the dimensionless time required to achieve a fine-grid solution without 

fixed points and with the optimal number of fixed points nested into the fine grid showed 

a dramatic enhancement in performance.  

Dimensionless Time as a Function of Grid 
Size:Weber's Equations
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Figure C.38. Improvement Obtained by Nested-Grid Method  
 

Table C.XXVIII shows the data displayed in Figure C.38 as well as the ratio of 

improvement obtained by using the nested-grid method. For a fine grid size of one 

million, the ratio of improvement of dimensionless time required for the original fine-grid 

solution to the fine-grid solution obtained using the optimum number of nested fixed 

points is 2,659. This is a tremendous increase. Comparing the performance of the nested-

grid method using Weber’s coefficients with the work done previously which used 

traditional finite-difference equations and GMRES, shows that Weber’s coefficients 

enhance the nested-grid performance even further for large grids. 
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Table C.XXVIII. Performance of Nested-Grid Method Using Weber’s Coefficients 

OPTIMAL 
NCG NFG FULL TIME OPTIMAL 

TIME 
RATIO OF 

IMPROVEMENT
11 5.00E+01 3.01E+04 7.30E+03 4 
16 1.00E+02 8.09E+04 1.25E+04 6 
26 2.50E+02 2.99E+05 2.54E+04 12 
37 5.00E+02 8.03E+05 4.33E+04 19 
54 1.00E+03 2.16E+06 7.40E+04 29 
67 1.46E+03 3.69E+06 9.91E+04 37 
130 5.00E+03 2.14E+07 2.57E+05 83 
188 9.83E+03 5.61E+07 4.33E+05 130 
311 2.50E+04 2.13E+08 8.91E+05 239 
453 5.00E+04 5.71E+08 1.52E+06 375 
551 7.19E+04 9.58E+08 2.01E+06 476 
1659 5.49E+05 1.74E+10 9.69E+06 1797 
2295 1.00E+06 4.09E+10 1.54E+07 2659 
5488 5.00E+06 4.06E+11 5.34E+07 7611 
7990 1.00E+07 1.09E+12 9.12E+07 11971 
27814 1.00E+08 2.91E+13 5.40E+08 53903 
96830 1.00E+09 7.76E+14 3.20E+09 242710 

 

 

Dimensionless Time as a Function of Grid Size
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Figure C.39. Comparison of Dimensionless Time for all Solution Algorithms 
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APPENDIX D 
 
 

OPTIMAL OVER-RELAXATION FACTOR FINDER 
 
 

The implementation of the nested-grid method, using Successive-Over-Relaxation, 

requires that an optimal value be used for the over-relaxation factor in order to achieve 

best performance. In the previous portions of the study, many hours were spent running 

the pressure simulations at different over-relaxation factors to determine which was best 

suited for the particular grid system being studied at the time. This quickly became a time 

consuming but necessary part of the project. In order to make the method of Successive-

Over-Relaxation more suitable for real-life implementation in the nested-grid method, it 

was hoped that an algorithm could be developed that would allow the determination of 

the optimal over-relaxation factor, ωopt, while the interative solution progressed. 

The residual or error in the calculated pressure from its final value was observed 

to decay exponentially; consequently, an exponential decay term was used in an equation 

which approximated the pressure at a given iteration n in the relaxation process. 

 

Pn = P∞ + ae-bn                 (D-1) 

 

P is the pressure at grid point P1,1,1 or PImax,Jmax,Kmax, P∞ is the pressure  at the same grid 

point after an infinite number of iterations, and the ae-bn term represents the error in the 
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pressure solution which decays exponentially. This equation was used at three different 

iteration steps to determine how the b value changed throughout the convergence process 

at different over-relaxation factors. In equation (D-1) the values of P can be the pressure 

at any particular point, yet the convergence criterion in this study was the absolute 

difference between P1,1,1 and PImax,,Jmax,Kmax. Consequently, for the following analysis, the 

values of P are the value of the absolute difference between these two grid points as the 

solution progresses to convergence. The following equations show how the value of b 

was determined. Initially equation (D-1) was written for three different iteration steps as 

follows. 

 

Pn = P∞ + ae-bn              (D-2) 

Pn-1 = P∞ + ae-b(n-1)                (D-3) 

Pn-2 = P∞ + ae-b(n-2)              (D-4) 

 

These equations were subtracted from each other which makes the P∞ term drop out.  

 

Pn – Pn-1 = ae-bn – ae-b(n-1) = ae-bn(1-eb)                   (D-5) 

Pn-1 – Pn-2 = ae-b(n-1) –ae-b(n-2) = ae-b(n-1)(1-eb)               (D-6) 

 

The ratio of the differences was calculated which eliminates the a variable 
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The resulting equation is solved for b. 
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Equation (D-8) is the mathematical expression that determined how the value of b 

changed with respect to the iteration process at a particular over-relaxation factor. It was 

assumed initially that a large b value would be evident as the optimal over-relaxation 

factor was approached, indicating an increased rate of convergence. If this were the case, 

an algorithm to determine ωopt would simply have to adjust the over-relaxation factor 

during the iteration process until the largest value of b was calculated and then finish 

relaxing to the solution at the over-relaxation factor that generated the largest b value.  

A number of pressure simulations were run in order to determine if the b value 

changed in a distinct manner as the optimal over-relaxation factor was approached.  The 

following figures summarize the results obtained for a 15x15x30 grid with 250 nested-

grid points fixed in the solution method using Weber’s equations. As the b value required 

a minimum of three iterations to be determined, the plots’ independent variable,Number 

of B Values, is the number of iterations required for convergence minus two. The 

dependent variable is simply the value of b as expressed in equation (D-8).  

 



 132

ORF 1.0

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250

Number of B Values

V
al

ue
 o

f B

 

Figure D.40. ORF 1.0 
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Figure D.41. ORF 1.1 
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Figure D.42. ORF 1.2 
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Figure D.43. ORF 1.3 
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Figure D.44. ORF 1.4 
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Figure D.45. ORF 1.5 
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ORF 1.6

-4

-3

-2

-1

0

1

2

3

4

5

0 10 20 30 40 50 60

Number of B Values

V
al

ue
 o

f B

 

Figure D.46. ORF 1.6 
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Figure D.47. ORF 1.67 
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Figure D.48. ORF 1.678, ωopt 
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Figure D.49. ORF 1.7 
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Figure D.50. ORF 1.8 
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Figure D.51. ORF 1.9 
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Figure D.52. ORF 1.99 

 

These figures reflect the general trends that were observed with all nested-grid 

arrangements studied. For low over-relaxation factors, the values of b initially oscillated 

during the first few iterations and then were suppressed to a near zero value for the 

remainder of the iterations. As the over-relaxation factor approached ωopt, the plots 

indicate an increase in the duration of the oscillatory nature of the b value from the first 

iteration. At ωopt the b value never was suppressed as previously observed with lower 

over-relaxation factors, but instead oscillated in value throughout the relaxation process. 

Over-relaxation factors larger than ωopt showed continued and increased oscillation as the 

over-relaxation factor approached the unstable value of 2.0. These figures indicate that 

the rate of exponential decay of the error became essentially random around ωopt; 

consequently, there appeared to be no effective way of determining ωopt from a single run.  
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APPENDIX E 
 
 

 This Appendix contains a brief summary of all programs used in this thesis. As 

part of this summary, there is a brief description of things to pay attention to when 

running the programs. All working programs are contained on the CD that is included 

with this thesis. The programs are organized generally into Direct and Iterative Methods 

and the individual programs are found in corresponding folders.  

 
DIRECT METHODS 

 
DGBSVREAD 
 
 This folder contains the banded solver taken from the LAPACK library30 as well 
as a Visual Basic input generation file. The Visual Basic program LUARRAYIN 
generates a coefficient matrix input array. This input array is read into the Fortran 
program DGBSVREAD to obtain the pressure solution. 
 
Things to Consider:  LUARRAYIN 
 
LINES 11-13 
 
 Set the dimensions of the reservoir. 
 
 Imax = 11 
 Jmax = 11 
 Kmax = 22 
 
LINE 49 
  
 Make sure the proper output file is designated. 
 
 Open “E:\Band11x11x22.dat” For Output as #1 
 
When the output file has been correctly generated, open the file in notebook and make 
two corrections to the lines that have the well pressures of 1500, and –1500. The 
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formatting distorts these two lines, and a space needs to be added so all columns are 
properly aligned. If this is not done the correct answer will not be generated when this 
input is used in the Fortran program DGBSVREAD. 
 
 
Things to Consider:  DGBSVREAD 
 
LINES 8,9 

 
Make sure the appropriate input file generated from Visual Basic program 
LUARRAYIN is used and that a desired output file is specified. 
 
OPEN(1,FILE="D:/BAND11X11X22.dat")  
OPEN(2,FILE="D:/ANSWER.txt") 

 
LINES 11-13 
 
 Make sure the proper dimensions of the reservoir are entered. 
 
  IMAX=11 
  JMAX=11 
  KMAX=22 
 
LINE 28 

 
Make sure that the number following LDAB is  = IMAX2 + 1. In this case (11x11) 
+1 = 122. 
 
READ(1,300),(AB(J,I),J=LDAB,122,-1),B(I) 

  
LINE 57 
 

This contains the output format so make sure a number equal to IMAX leads the 
formatting description. In this case the number is 11. 
 
200 FORMAT(11F16.3) 

 
LINE 60 
 

Make sure that the first and third format specifications are led by the number 
IMAX2. In this case the number is 11x11 = 121. 

 
300 FORMAT(121F2.0,F3.0,121F2.0,F11.0) 
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FEB22LU 
  
 This folder contains the Doolittle LU decomposition as described in the book 
Numerical Methods for Scientists and Engineers.29  
 
Things to Consider:  FEB22LU 
 
LINE 5 

 
Make sure the Dimensions of the various arrays agree with the dimensions of grid 
being used. For example in this case 5x5x10 = 250. 
 
DIMENSION A(250,250),B(250),BP(250),X(250) 

 
LINES 11-13 
 
 Make sure the proper grid dimensions are entered. 
 
 IMAX=5 
 JMAX=5 
 KMAX=10 
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SGAUSSELIM 
  
 This folder contains the Gauss Elimination solution method. This program was 
taken from the book Numerical Methods for Scientists and Engineers.29 
 
Things to Consider:  SGAUSSELIM 
 
LINE 6 
 

Make sure the proper dimensions are allocated to each array. For example 
5x5x10 = 250. 

  
DIMENSION A(250,250),B(250),X(250) 

 
LINE 12-14 
 
 Make sure proper dimensions are entered. 
  

IMAX=5 
 JMAX=5 
 KMAX=10 
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ITERATIVE METHODS 
 
JACOBIMARO5 
 
 This folder contains the Jacobi iterative method. 
 
Things to Consider:  JACOBIMAR05 
 
LINE 12 
 
 Designate desired output file. 
  

OPEN(1,FILE=DR//":/JACOBI.txt") 
 
LINES 14-16 
 
 Make sure proper dimensions are entered. 
  

IMAX = 5 
 JMAX = 5 
 KMAX = 10  
 
LINE 118 
 

Make sure that the first number in the format description equals IMAX. For 
example IMAX is equal to 5 in this case. 

 
200 FORMAT(5F16.6) 
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LSOR 
 
 This folder contains the hybrid of Successive-Over-Relaxation and the tridiagonal 
solver (DGTSV) from LAPACK library.30 The Visual Basic program REVMEM 
provides the input file for the Fortran program SOVLVER3. To generate the input file 
from REVMEM, simply change the values of the desired dimensions and run the 
program. Before using the input file, open it in notepad and make sure that the lines 
containing the well pressures 1500, -1500 are not out of line with the other columns. This 
input file is fed into the program SOLVER3 which takes care of the rest. 
 
Things to Consider:  REVMEM 
 
LINES 9-11 
 
 Make sure the proper dimensions of desired grid are entered. 
 
 Imax = 11 
 Jmax = 11 
 Kmax = 22 
 
LINE 54 
 
 Make sure proper output file is designated. 
 
    Open "e:\TDMA11.dat" For Output As #1  
 
 
Things to Consider:  SOLVER3 
 
LINES 18,19 
 

Make sure that the proper input file is being used, as generated in Visual Basic 
REVMEM program, and that an output file is designated. 

  
OPEN(1,FILE=DR1//":/TDMA11.dat") 

 OPEN(2,FILE=DR2//":/LSOR.txt") 
 
LINE 21-23 
 
 Make sure the proper dimensions of the grid are entered 
 
 IMAX=11 
 JMAX=11 
 KMAX=22 
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LINE 30 
 
 Make sure that the Optimal Over-Relaxation-Factor is being used. 
 
 ORF=1.8 
 
LINE 156 
 

Make sure the output format is correct. The first number in the format description 
should be equal to IMAX. 
 
200 FORMAT(11F16.6) 
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MATLAB 
 
 The Fortran 90 programs in this folder are responsible for generating the b vector 
that is used in MATLAB 7.0 to solve nested-grid arrangements. The Visual Basic 
programs generate the A matrix that is likewise used in MATLAB 7.0. The two input 
files generated from these programs are uploaded into MATLAB 7.0 and then the various 
solvers can be quickly and readily used to determine the solution. For help with 
MATLAB algorithms, simply use the HELP option. 
 
Things to Consider:  (These comments are based on MATLABREV1, but the same 
principles apply to the other Fortran programs) 
 
 
LINE 15 
 
 Make sure the desired output file is in place. 
 
 OPEN(1,FILE=DR//":/MATREV5B1.txt") 
 
LINE 17-19 
 
 Make sure that the proper dimensions are entered. 
 
 IMAX = 5 
 JMAX = 5 
 KMAX = 10 
 
LINE 21 
 
 For fastest time, enter in the Optimal Over-Relaxation-Factor. 
 
 ORF = 1.988 
 
LINE 172 
  

After this point the correct b vector will be written to the output file and the rest of 
the code is not necessary, but simple recalculates the pressure solution using the 
nested grid points designated previously. 

 
A similar pattern exits for all of the Fortran MATLAB programs 
 
MATLABREV1:  Generates input b vector with 18 Fixed Points 
MATLABREV2:  Generates input b vector with 130 Fixed Points 
REV3MATLAB:  Generates input b vector with 1026 Fixed Points 
MATLABREV4:  Generates input b vector with 8194 Fixed Points 
MATLABREV5:  Generates input b vector with 65538 Fixed Points 
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Things to Consider:  (These comments are based on SNOW2, but the same principles 
apply to the other Visual Basic programs) 
 
LINE 24 
 
 Make sure proper output file is designated. 
 

Open "E:\MAT17A3.dat" For Output As #1 
 
LINE 26-28 
 
 Make sure the correct grid dimensions are entered. 
 

Imax = 17 
    Jmax = 17 
    Kmax = 34 
 
LINES 105, 110, 120, 157,165, 171, 177, 185, 192, 198 
 

Note the format of the output which indicates column and row indices as well as 
values of diagonal bands of input matrix.  
 
    Write #1, COLIND, ROWIND, NNZ 
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LAPLACE_SOR 
 
This folder contains the files used in the LaPlace SOR nested-grid method.  
 
SOR 
 
The folder named SOR contains the Successive-Over-Relaxation algorithm that can be 
changed to Gauss-Seidel by setting the value of the Over-Relaxation-Factor to 1.0. 
 
Things to Consider:  SOR 
 
LINE 13 
  
 Enter desired output file name. 

OPEN(1,FILE=DR//":/5X5X10.txt") 
 
LINES 15-18 
 
 Enter the proper dimensions of the grid and the desired ORF value. 
  

IMAX =5 
 JMAX =5 
 KMAX =10 
 ORF = 1.8 
 
LINE 32 
  

Location in code where the convergence criterion can be adjusted. 
 
LINE 92 
 

Make sure leading number in format description equals IMAX. In the case shown, 
IMAX = 5. 
 

200 FORMAT(5F16.6) 
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AREV1, AVREV2, AREV3, AREV4, AREV5 
 
These folders contain programs that first calculate the entire fine-grid solution for a given 
grid size using SOR with only two wells. The initial part of the programs can be used to 
obtain solutions for the Gauss Seidel method (set ORF = 1.0) and for SOR  (use optimal 
ORF value). The programs continue by determining the location of the fixed points for a 
given grid refinement and then nest the fixed pressures into the unsolved grid. The finely-
gridded pressure solution is then determined again by the nested-grid method. 
 
AREV1 18 Fixed Points  
AREV2 130 Fixed Points 
AREV3 1026 Fixed Points 
AREV4 8194 Fixed Points 
AREV5 65538 Fixed Points 
 
Things to Consider:  (These comments are based on AREV1, but the same principles 
apply to the other programs) 
 
LINE 15 
 Make sure the desired output is designated 
 
 OPEN(1,FILE=DR//":/5X5X10.txt") 
  
LINE 17-20 
  

Make sure the proper dimensions for the grid are entered and that the desired 
value for ORF is set. 
 
IMAX =5 
JMAX =5 
KMAX =10 
ORF = 1.8 

 
LINE 34 
  
 The convergence criterion for SOR can be altered here. 
 
LINES 34-116 
 

Calculates and displays the SOR output of the fine-grid solution, which by this 
point in the code has been determined in its entirety. 

 
LINES 122-162 
 

This portion of the code designates the position of the fixed points in the nested-
grid configuration. 
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LINE 169 
 
 Set the ORF value for the nested-grid calculation 

 
ORF=1.5 
 

LINES 175-257 
 

This portion of the code is the nested-grid algorithm and determines the finely-
gridded pressures. 
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17FIXAREV, 17FIXAREV2, 17FIXAREV3, 17FIXAREV4, 17FIXAREV5 
 
These programs calculate the nested-grid solution by reading in desired nested-grid 
points for a specified level of grid refinement from a previously calculated fine-grid 
pressure solution. With the nested-grid configuration established, the fine-grid solution is 
determined. 
 
To conduct a nested-grid study on the performance of LaPlace SOR, these are the fastest 
programs to run as the input has previously been generated using the SOR program. 
 
17FIXAREV  18 Fixed Points 
17FIXAREV2  130 Fixed Points 
17FIXAREV3  1026 Fixed Points 
17FIXAREV4  8194 Fixed Points 
17FIXAREV5  65538 Fixed Points  
 
Things to Consider (These comments are based on 17FIXAREV, but same pattern 
applies to other programs) 
 
LINE 15, 16 
  

Make sure to designate the proper input and output files. Input files can be 
generated using the SOR program. 
 
OPEN(1,FILE=DR//":/9X9X18.txt") 
OPEN(2,FILE=DR//":/9OUT.TXT") 

 
LINES 18-21 
 
 Set the proper dimensions and Over-Relaxation-Factor 
 
 IMAX = 9 
 JMAX = 9 
 KMAX = 18 
 ORF = 1.78 
 
LINE 31  
 
 Reads in the previously determined pressure values. 
 

READ(1,201)P 
 
LINE 33,34 
 
 Make sure the Input/Output format description agrees with the files being used. 
 



 152

200 FORMAT(9F16.6) 
201 FORMAT(9F16.9) 

 
LINE 39-78 
 
 Sets the location of the fixed points in the nested grid configuration. 
 
LINE  88-151 
 
 Calculation of the nested-grid solution. 
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WEBER 
 
 This file contains all the programs used with Weber’s coefficients in the nested-
grid method. The program HAWK3 was used to generate accurate pressures on a course 
grid. These pressures are then read into other programs that are made to handle a certain 
number of nested-grid points. 
 
FALCONREV1 18 Fixed Points 
FALCONREV2 54 Fixed Points 
OSPREYREV3 130 Fixed Points 
FALCONREV3 250 Fixed Points 
OSPREYREV5  1026 Fixed Points 
OSPREYREV6 6750 Fixed Points 
HARRIER  31250 Fixed Points  
 
HAWK3 
 
Things to Consider:  HAWK3 
 
LINES 3-25 
 

These lines allocate space required for various arrays used in this algorithm. 
 
 DOUBLE PRECISION, ALLOCATABLE :: OHMXP(:,:,:),OHMXM(:,:,:) 
 DOUBLE PRECISION, ALLOCATABLE :: OHMYP(:,:,:),OHMYM(:,:,:) 
 DOUBLE PRECISION, ALLOCATABLE :: OHMZP(:,:,:),OHMZM(:,:,:) 
 

OHMXP: solid angle for positive x face of a given cell with respect to the first 
well. 
OHMXM: solid angle for negative x face of a given cell with respect to the first 
well. 

  
Same nomenclature pattern applies in y and z directions. 

 
 DOUBLE PRECISION, ALLOCATABLE :: OHMXPT(:,:,:),OHMXMT(:,:,:) 
 DOUBLE PRECISION, ALLOCATABLE :: OHMYPT(:,:,:),OHMYMT(:,:,:) 
 DOUBLE PRECISION, ALLOCATABLE :: OHMZPT(:,:,:),OHMZMT(:,:,:) 
 

OHMXPT: solid angle for positive x face of a given cell with respect to the 
second well. 
OHMXMT: solid angle for negative x face of a given cell with respect to the 
second well. 

  
Same nomenclature pattern applies in y and z directions. 

 
 DOUBLE PRECISION, ALLOCATABLE :: RXP(:,:,:),RXM(:,:,:) 
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 DOUBLE PRECISION, ALLOCATABLE :: RYP(:,:,:),RYM(:,:,:) 
 DOUBLE PRECISION, ALLOCATABLE :: RZP(:,:,:),RZM(:,:,:) 
 
 RXP: radial distance of a given point in positive direction from the first well. 
 RXM: radial distance of a given point in negative direction from the first well. 

 
Same nomenclature pattern applies in the y and z directions. 

 
 DOUBLE PRECISION, ALLOCATABLE :: RXPT(:,:,:),RXMT(:,:,:) 
 DOUBLE PRECISION, ALLOCATABLE :: RYPT(:,:,:),RYMT(:,:,:) 
 DOUBLE PRECISION, ALLOCATABLE :: RZPT(:,:,:),RZMT(:,:,:) 
 

RXPT: radial distance of a given point in positive direction from the second well. 
RXMT: radial distance of a given point in negative direction from the second 
well. 
 
Same nomenclature pattern applies in the y and z directions. 

 
 DOUBLE PRECISION, ALLOCATABLE :: R(:,:,:) 
 DOUBLE PRECISION, ALLOCATABLE :: RT(:,:,:) 
 DOUBLE PRECISION, ALLOCATABLE :: P(:,:,:) 
 
 R: radial distance from the first well to any particular point. 
 RT: radial distance from the second well to any particular point. 
 P: array that contains pressure solution. 
 
 

DOUBLE PRECISION, ALLOCATABLE :: 
LAMBDAXP(:,:,:),LAMBDAXM(:,:,:) 
DOUBLE PRECISION, ALLOCATABLE :: 
LAMBDAYP(:,:,:),LAMBDAYM(:,:,:) 
DOUBLE PRECISION, ALLOCATABLE :: 
LAMBDAZM(:,:,:),LAMBDAZP(:,:,:) 
 
LAMBDAXP: Lambda values for x-face in positive direction 
LAMBDAXM: Lambda values for x-face in negative direction 
 
Same nomenclature pattern applies in the y and z directions. 
 

LINE 40 
 
 Specify desired output file name. 
 
 OPEN(1,FILE=DR2//":/75NG.txt") 
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LINES 43-45 
 
 These lines set the actual dimensions of the reservoir in feet. 
  

XLENGTH=500 
 YLENGTH=500 
 ZLENGTH=1000 
 
LINES 48-51 
 

These lines set the dimensions of the grid used as well as the Over-Relaxation-
Factor. 

 
 IMAX=5 
 JMAX=5 
 KMAX=10  
 ORF=1.9831 
 
LINE 53-55 
  

These lines specify variables that are used in the determination of the influence of  
Weber’s coefficients as the grid is refined. 

 
CDIM=5 

 WS=IMAX/CDIM 
 WSS=REAL(WS) 
 
LINE 58-59 
 
 These lines allow you to specify the injection rate of the wells. 
 
 Q1=250.0 
 Q2=-250.0 
 
LINE 61,62 
 
 Specify the format of output files. 
 

200 FORMAT(5F16.9)  
300 FORMAT(5F16.9) 

 
LINE 65-74 
 

These lines determine the physical size of the grid cells used and specify the ratio 
of the well radius to the length of a cell side. 
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LINE 141-143 
  
 These lines specify the grid spacing. 
 
LINE 149-481 
 
 Calculation of Weber’s coefficients around the first well. 
 
LINE 486-841 
 
 Calculation of Weber’s coefficients around the second well. 
 
LINE 886-939 
 
 Calculation of the finely-gridded pressure for the specified grid. 
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FALCONREV1  
 

This program is like HAWK3, but it does the nested-grid calculation using 
Weber’s equations. The same patterns apply to all the other programs that use the nested-
grid method. 

 
FALCONREV1 18 Fixed Points 
FALCONREV2 54 Fixed Points 
FALCONREV3 250 Fixed Points 
OSPREYREV3 130 Fixed Points 
OSPREYREV5 1026 Fixed Points 
OSPREYREV6 6750 Fixed Points 
HARRIER  31250 Fixed Points 
 
Things to Consider:  FALCONREV1 (Similar patterns are found in all remaining files 
found in the Weber  folder) 
 
LINE 27 
 
 These are the additional arrays needed to make the nested-grid method work. 
 
 DOUBLE PRECISION, ALLOCATABLE :: PP(:,:,:),DD(:,:,:),BP(:,:,:),VAL(:) 
 
LINES 32-33 
 
 Additional parameters required for the nested-grid method. 
 
158-865 
 
 Calculation of Weber’s coefficients for both wells. 
 
LINES 907-1070 
 
 These lines determine and fix the nested-grid points. 
 
LINES 1098-1181 
 
 Determines the finely-gridded pressures using the nested-grid configuration. 
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