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ABSTRACT 
 
 
 

A METHOD FOR CHARACTERIZING THE PROPERTIES OF  
 

INDUSTRIAL FOAMS 
 
 
 

Shaun M. Salisbury 

Department of Mechanical Engineering 

Masters of Science 
 
 
 

Assessing the effect of foam layers on transport phenomena is of significant 

interest in many industries, so a method for predicting foam layer properties has been 

developed. A model of the propagation of radiation from an amplitude-modulated laser 

beam through a non-absorbing foam layer has been developed using diffusion theory. 

Measurements predicted by diffusion theory were compared to results generated using 

Monte Carlo methods for a variety of foam layer properties in both the time-domain and 

the frequency-domain. The properties that were varied include the layer thickness, the 

scattering coefficient, and the asymmetry parameter. Layer thicknesses between 8.5 mm 

and 18 cm were considered. Values of the scattering coefficient ranged from about 600 

m-1 to 14000 m-1, while the asymmetry parameter varied between 0 and 1. 



 



 

A conjugate-gradient algorithm was used to minimize the difference between 

simulated Monte Carlo measurements and diffusion theory predicted measurements. A 

large set of simulated measurements, calculated at various source-detector separations 

and three discrete frequencies were used to predict the layer properties. Ten blind cases 

were considered and property predictions were made for each. The predicted properties 

were within approximately 10% of the actual values, and on average the errors were 

approximately 4%. Predictions of sµ′  were all within approximately 5% with the majority 

being within 3%. Predictions of L were all within approximately 10% with the majority 

being within 7%. Attempts to separate g from sµ′  were unsuccessful, and it was 

determined that implementation of different source models might make such attempts 

possible.  

It was shown that with a large number of measurements, properties could be 

accurately predicted. A method for reducing the number of measurements needed for 

accurate property estimation was developed. Starting with a single measurement location, 

property predictions were made. An approach for updating the optimal detector location, 

based on the current estimate of the properties, was developed and applied to three cases. 

Property predictions for the three cases were made to within 10% of the actual values. A 

maximum of three measurement locations were necessary to obtain such predictions, a 

significant reduction as compared to the previously illustrated method. 
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 1 

1 - INTRODUCTION 

1.1 MOTIVATION AND DEFINITION OF PROBLEM  

 Many industrial processes result in the natural development of a foam layer. At 

times, foams are intentionally formed for a variety of industrial applications. Foams are 

used in applications such as enhanced oil recovery, the production of cosmetics, textile 

processing and the development of new insulation and construction materials [1].  Foam 

is used to fight fires in confined or inaccessible spaces, and use of foam minimizes the 

water damage that generally occurs when extinguishing a fire. Frequently, the only way 

to extinguish fires in flammable liquids is to use foam [1]. Due to their low density, their 

low thermal conductivity and their ability to efficiently fill a space, foams are excellent 

insulating materials. Foams are used in electric arc furnaces to shield refractory surfaces 

and to protect the liquid metal from the atmosphere [2].  

However, in other applications, the production of foam is an undesirable 

byproduct of chemical reactions occurring within a liquid. In chemical reactors and food 

processing applications, foam acts as a barrier to heat and mass transfer. The formation of 

foam is particularly problematic in the glass manufacturing industry. It is estimated that 

the formation of even a thin layer of foam on the surface of a glass melt may reduce the 

radiative heat flux from the combustion space to the melt by as much as 60% or more [3]. 



 

 2 

This increased resistance to heat transfer results in higher operating temperatures, 

increased NOx formation and energy consumption in glass melting furnaces [3]. Much 

effort has been devoted to performing detailed numerical simulations of the heat and 

mass transfer occurring in glass furnaces in order to increase the energy efficiency and 

decrease the environmental impact associated with glass manufacturing [4]. Due to the 

widespread existence and importance of foam, techniques for characterizing industrial 

foams are of interest. Methods of characterizing industrial foams are important to more 

accurately model the heat and mass transfer in glass furnaces and current techniques 

generally require carefully controlled laboratory conditions [5]. Due to the delicate nature 

of foams, properties of foam extracted from a process and examined in a lab are unlikely 

to be representative of the properties in situ. Therefore, furthering the progress of foam 

characterization methods depends largely on the ability to accurately measure the 

structural, radiative and thermophysical properties of glass foams in situ. 

Knowledge of the structural, radiative and thermophysical properties of foams 

will lead to greater ability to model the formation and stability of foams and to model the 

heat and mass transfer in foams. Clarification of the physical mechanisms involved in the 

production of foam and transport phenomena occurring in foam will lead to the ability to 

mitigate their undesirable effects and enhance their desirable characteristics in numerous 

industrial applications.  

The goal of this thesis is to develop and illustrate a method for characterizing 

foam layer properties. A technique for determining radiative and structural properties of 
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industrial foams will be developed using an inverse approach. The properties to be 

determined include the thickness of the layer (L) and the reduced scattering coefficient 

( sµ′ ). The reduced scattering coefficient is simply a term that combines the scattering 

property of the medium ( sµ ) with an asymmetry parameter (g) that characterizes the 

angular distribution of scattering in the medium. The reduced scattering coefficient is 

related to these two properties by ( )1s s gµ µ′ = − . Determining the properties of the foam 

requires a relationship between measurable quantities and the desired layer properties. 

This relationship will be obtained from a model of the radiative transfer within the foam 

layer. The radiative model will be based on diffusion theory. A number of blind cases 

were considered in order to validate the method that may be used over a broad range of 

property values. Monte Carlo simulations were used to generate measurements for 

specific foam layer properties. The simulated measurements were used as inputs to the 

inverse algorithm. The inverse technique employed a conjugate gradient method to 

minimize the error between the simulated measurements and their corresponding 

predicted values and thereby gave estimates for the layer properties. It should be noted 

that the Monte Carlo generated data was provided without knowledge of the properties 

used to generate the data. A design of experiments approach was used to improve the 

layer property predictions. The optimal range of detector locations and the frequency 

resulting in improved property prediction will be determined. Levels of error will be 

assessed to define a property range over which the proposed approach is acceptable. 
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1.2 SPECTROSCOPY OF TURBID MEDIA 

Spectroscopy is a widely accepted method of determining properties of turbid 

media. Spectroscopy is defined as the study of spectra produced when matter interacts 

with energy, usually electromagnetic radiation. In 1859 Gustav Robert Kirchhoff and 

Robert Bunsen first observed that each element has specific properties with regards to the 

light it emits [6]. This observation paved the way for the development of various 

spectroscopic techniques. A variety of techniques have been introduced which differ 

according to the type of energy used to probe the material (x-rays, visible light, infrared 

radiation, ultrasound, heat, etc.), or the nature of the physical interaction (emission, 

absorption, or scattering). Imaging techniques are based on similar principles, but 

imaging techniques and spectroscopic techniques are distinguished by their objectives. 

Imaging techniques are used to create an image of a substance by localizing property 

variations, and spectroscopic techniques are used to determine the bulk or average 

properties of the substance. Spectroscopy is a type of parameter estimation problem, 

which is a subset of the broad area of inverse problems [7, 8].  

 Spectroscopic methods can typically be categorized into three categories; 

spatially-resolved (also referred to as steady-state), time-domain, and frequency-domain. 

Spatially resolved methods use a continuous source and spatially-resolved measurements 

to infer the properties of the medium. Time-resolved methods use a pulsed laser source, 

and time-resolved measurements made at a limited number of detector locations to 

predict the layer properties. Frequency-domain methods use an amplitude-modulated 
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source, and characteristics of the reflected flux to estimate the properties of the layer. A 

typical setup for a frequency domain experiment is illustrated in Fig 1-1.                       

A Gaussian distributed laser beam is amplitude modulated at an angular frequency of 

ωο. The beam is incident on a semi-infinite foam layer with a thickness of L.  A detector 

located a distance rd from the center of the beam is used to measure the time-dependent 

reflected radiative flux. It is envisioned that the detector can be moved freely along the 

surface and that measurements can be obtained at an arbitrary number of locations. 

Characteristics of the reflected flux such as the DC-offset, the AC component and the 

phase shift (θ ) relative to the incident beam are related via a radiative transfer model to 

the desired properties of the medium. Diffusion theory is often used to model the 

radiative transfer in frequency domain methods [9-12]. The measurable characteristics of 

the reflected flux are illustrated graphically in Fig 1-2. 

 

L 

Detector 
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sµ′  

r 

rd 
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Figure 1-1: I llustrative schematic of exper imental setup. 
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Analytical expressions for the measurable quantities are obtained from a diffusion 

model. The diffusion approximation is obtained from simplifying approximations to the 

governing transport equation, and details of the derivation of the diffusion approximation 

equation will be given in Chapter 3.  

A key component in the diffusion approximation is a model of the source term. 

Various source terms have been studied [13], and it will be shown in Chapter 4 that 

proper selection of the source term results in good agreement with Monte Carlo 

simulations for conditions of interest. 

 
 
 

Figure 1-2: I llustration of the possible measurements. 
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2 - LITERATURE REVIEW 

2.1 PREVIOUS WORK 

Numerous investigators have proposed spectroscopic techniques for 

characterizing thick turbid media. These investigations have focused primarily on 

determining the reduced scattering coefficient and the absorption coefficient of biological 

tissues. The proposed techniques fall into one of three categories depending on whether 

the source is continuous, pulsed or modulated. A continuous source is used in spatially 

resolved methods, and measurements of the reflected flux at multiple locations are used 

to determine the radiative properties [14-16]. Although spatially resolved methods are 

simple to implement, they have not proven to be as successful as the time-dependent 

methods [17]. Kienle and Patterson [16] employed the use of spatially resolved methods 

to predict the scattering coefficient and absorption coefficient to within 10% and 15% 

respectively. A more recent attempt at using spatially resolved methods was performed 

by Hayakawa et al. [18]. Implementation of what is referred to as the δ-P1 approximation 

in the derivation of the diffusion approximation allowed for good results over a broader 

range of tissue properties. Use of the δ-P1 approximation differs from the standard 

diffusion approximation in that it includes an additional term, in the form of a δ function, 

to both the phase function and the radiance approximations. This approach yielded 
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predictions of the absorption coefficient ( aµ ) and reduced scattering coefficient to within 

16% and 23% respectively over a range of ( s aµ µ′ ) spanning nearly 3 orders of 

magnitude. The improved model also showed the capabilities of successfully separating 

the asymmetry parameter (g) from the reduced scattering coefficient to within 11% over a 

smaller range of ( s aµ µ′ ). 

Time domain methods use a pulsed source, and time-resolved measurements of 

the attenuation and the temporal broadening of the pulse at a single location are used to 

determine the radiative properties [16,19,20]. This approach provides the most 

information, but requires expensive laboratory equipment (ultra-fast laser and streak 

camera). Patterson et al. [19] showed the potential of this method. Measurements were 

simulated using Monte Carlo generated data and these data were fitted to the calculated 

measurements as predicted by diffusion theory. The model predictions proved to be in 

good agreement with the results of the Monte Carlo simulations. An additional 

contribution of their research was the investigation of the how measurements of the 

diffusely reflected light are affected by a finite tissue layer. They concluded that the finite 

tissue geometry approximation can have a significant effect on the signal if the 

observation time is long enough. Therefore, caution should be exercised when assuming 

that the signal is independent of the layer thickness. Madsen et al. [20] also illustrated the 

capabilities of a time-domain approach. The purpose of their study was to assess the 

accuracy of tissue property estimates that were made by fitting diffusion theory for the 

pulse shape to experimental observations. Consideration was also given to the sensitivity 
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of the accuracy of the predictions to the predicted tissue properties. When considering 

semi-infinite media, the predictions of the absorption coefficient and reduced scattering 

coefficient were within 10% or less. It was also determined that large errors were 

incurred for finite slabs less than 50 mm. It is therefore necessary to account for the loss 

of energy at the boundaries for geometries of decreasing depths.  

Significant attention has been given to the use of frequency-domain techniques. In 

frequency domain methods, the reflected flux due to an amplitude modulated laser beam 

is measured. Characteristics of the reflected flux are measured at different source-detector 

separations or at different source frequencies and the radiative properties of the medium 

can be deduced from these measurements [17]. In early frequency domain studies the use 

of phase shift and modulation measurements were utilized to make predictions of the 

tissue properties [9, 19]. In a more recent publication, Fishkin et al. [12] illustrated how 

the use of phase shift in conjunction with either the AC or DC component of the 

reflectance resulted in improved predictions as compared to using the modulation with 

the phase shift. They also concluded that the use of multiple frequencies in the inverse 

algorithm offered little to no improvement in the property estimation. Alexandrakis et al. 

[21] considered the potential of determining the optical properties of a two-layer turbid 

medium as well as the thickness of the top layer by using diffusion theory. Frequency 

domain Monte Carlo data were fitted to the model. Their results showed the ability to 

predict the properties of the bottom layer to within 10% however; the results for the top 

layer were less accurate. They also studied the effects of different frequencies, and 
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concluded that the diffusion approximation becomes less accurate as frequency is 

increased. In a more recent study, some of the same authors proposed a modified 

approach to the previously mentioned ideas [22]. A hybrid Monte Carlo diffusion model 

was used to predict the properties of a two-layer medium. Spatially resolved frequency-

domain measurements were fitted to the hybrid model and it was found that the model 

could predict sµ′  and aµ  for both layers as well as the top layer thickness to within 5%.  

It is important to note that in their study, the two layers were considered to have the same 

value for the refractive index.  

The development of the different methods of turbid media spectroscopy over time 

has progressed in the direction of frequency-domain studies. They have proven to be 

effective in property estimation and in addition to requiring less expensive laboratory 

equipment, frequency domain methods are more tolerant of noise [23,24]. Due to these 

advantages, frequency domain spectroscopic methods will be the technique employed in 

this research. 

 

2.2 RESEARCH OVERVIEW 

A vast majority of previous research has focused primarily on predicting the 

absorption and reduced scattering coefficients using diffusion theory for semi-infinite 

media. Attempts have been made to predict the layer thickness of two-layer turbid media, 

with acceptable results. However, for this research more representative boundary 

conditions for the diffusion model will be used to account for the refractive index 

mismatch at both surface interfaces. While some of the previous research was interested 
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in properties of both layers, the current study will only be interested in the effects of the 

interaction at the interfaces and not what might occur outside of those boundaries. In 

other words, if energy escapes the layer it is assumed that it is lost and will have no 

contribution to the reflected flux unless it escapes at a detector location. At this stage the 

effects of absorption will not be included. Future development of this technique will 

incorporate the effects of absorption.  

Chapter 3 will focus on the development of the forward problem, including the 

derivation of the diffusion equation. Selection of an appropriate source term for the 

diffusion equation will be discussed. The solution of this equation will be obtained using 

integral transforms in both the time domain and frequency domain.  

Chapter 4 will then demonstrate the ability of diffusion theory to model Monte 

Carlo simulated measurements for ten cases that cover a range of property values. 

Comparisons are made in both the time domain and frequency domain.  

The inverse problem will be described in Chapter 5. The Monte Carlo simulated 

measurements for ten blind cases with properties spanning a wide range of values are 

used as inputs to the inverse algorithm. The sensitivities of these measurements to the 

targeted properties play an important role in the inverse problem. Francoeur et al. [25] 

concluded that investigation of the sensitivities can lead to optimal measurement 

conditions. Another aspect of the current research will be to perform a sensitivity study 

for the various cases to assist in a design of optimal experiments. The design of optimal 

experiments will attempt to improve the predicted layer properties by identifying 

improved measurement conditions such as source frequency and the range of detectors 

over which to make the measurements.  
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3 - DIFFUSION MODELING OF THE RADIATIVE TRANSFER 
IN A NON-ABSORBING FOAM LAYER 

 

3.1 DIFFUSION APPROXIMATION 

The propagation of radiation is typically modeled according to transport theory, 

which is based on the principle of conservation of energy. The fundamental equation in 

transport theory is the radiative transfer equation (RTE). This section outlines the key 

points of the derivation of the diffusion approximation and likewise identifies conditions 

where diffusion theory breaks down. 

The RTE represents an energy balance along a line of sight, and may be written in 

the following form.  

( ) ( ) ( ) ( )
4

1
ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,t ss I r s t S r s t s s I r s t d

c t π
µ µ Φ Ω∂� � ′ ′ ′+ ⋅∇ + = + ⋅�� �∂� �

� � �

 (3.1) 

In Eq. (3.1), ( )ˆ, ,I r s t
�

 represents the scattered or diffuse intensity, and it is frequently 

referred to as the radiance [26]. For the problem of interest (see Fig 1-1), emission is 

negligible, so the source term, ( )ˆ, ,S r s t
�

 represents the rate at which radiative energy is 

scattered from the collimated beam into direction ŝ  at the specified location and time. 
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The diffusion approximation is obtained by assuming that the diffuse intensity varies 

linearly with the cosine of the scattering direction. 

( ) ( ) ( ), 3
ˆ ˆ, , ,

4 4

r t
I r s t s J r t

ϕ
π π

= + ⋅
�

�

� �

  (3.2) 

The radiant energy fluence rate ( ),r tϕ �

 and the radiant energy flux vector, ( ),J r t
�

�

, are 

defined as ( ) ( )4
ˆ, , ,r t I r s t dπϕ = Ω�

� �

 and ( ) ( )4
ˆ ˆ, , ,J r t sI r s t dπ= Ω�

�

� �

. Substituting Eq. (3.2) 

into Eq. (3.1) results in the following equation. 

( )
4

1 3 3
ˆ ˆ ˆ ˆ ˆ

4 4 4 4t ss s J S s s s J d
c t π

ϕ ϕµ µ Φ Ω
π π π π

∂� � � 	 � 	′ ′+ ⋅∇ + + ⋅ = + ⋅ + ⋅�� � 
 � 
 �∂� � �  � 

� �

 (3.3) 

Integrating each term in Eq. (3.3) over all directions yields 

( ) ( ) ( )1
, , ,s a or t J r t S r t

c t
µ µ ϕ∂� �′+ + + ∇ ⋅ =� �∂� �

�

� � �

 (3.4) 

where the isotropic source, ( ),oS r t
�

 is simply the source term integrated over all 

directions. Equation (3.3) is then multiplied by ŝ  and each term is integrated over all 

directions resulting in Eq. (3.5). 

( ) ( )1 1
, ,

3s a J r t r t
c t

µ µ ϕ∂� �′+ + = − ∇� �∂� �

�

� �

  (3.5) 
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In many cases, the temporal variation in the radiant energy flux vector is small compared 

to the other terms on the left hand side of Eq. (3.5) [27]. 

( )
( ) ( )

,1

,
s a

J r t
c

tJ r t
µ µ

∂
′<< +

∂

�

�

�

�

  (3.6) 

Under such conditions, Eq. (3.5) can be simplified further, resulting in Eq. (3.7). 

( ) ( )
( )

,
,

3 s a

r t
J r t

ϕ
µ µ

∇
= −

′ +

�

�

�

  (3.7) 

Substitution of Eq. (3.7) into Eq. (3.4) results in the standard governing equation for 

diffusion processes including the effects of absorption. 

( )21 1
,

3 a o
t

S r t
c t

ϕ ϕ µ ϕ
µ

∂ = ∇ − +
′∂

�

  (3.8) 

Generally speaking, the approximations used in the derivation of Eq. (3.8) are satisfied at 

locations far from the source in media which are strongly scattering and weakly 

absorbing. Chapter 4 will demonstrate the ability of diffusion theory to model the 

radiative transport of non-absorbing foam layers over a broad range of sµ′  and varying 

values of L . It is expected that the ability of diffusion theory to accurately predict 

radiative behavior will decrease with decreasing sµ′  and such modeling discrepancies will 

lead to less accurate predictions of foam layer properties. 



 

 16 

3.1.1  Source Model 

A key component in Eq. (3.8) is the source term representation. The ability of 

diffusion theory to accurately represent foam behavior is largely dependent upon the 

source term. Jones et al. [13] considered a number of different source term 

representations and investigated their ability to accurately model simulated foam 

behavior. They showed that use of a modified point source (MPS) resulted in good 

agreement over a broad range of sµ′ . The modified point source representation is simply a 

single isotropic source located at a specified distance into the medium, oz′  and is given by 

Eq. (3.9), 

( ) ( ) ( ) ( ), ,
2o o

r
S r z t P z z f t

r

δ
δ

π
′= −

�

  (3.9) 

where P  is the nominal of the laser and ( )f t
�

 represents the dependence of the source on 

time. Both pulsed and sinusoidal time profiles are considered. The use of a pulsed input 

will allow for comparison of diffusion theory to simulated measurements in the time 

domain, and the use of a sinusoidal input will result in the ability to compare in the 

frequency domain.  
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3.2 SOLUTION USING INTEGRAL TRANSFORMS 

For the current problem, the foam is assumed to be non-absorbing at the 

wavelength of the laser. In addition, the problem is assumed to be azimuthally symmetric. 

Given these approximations, the combination of Eq. (3.8) and Eq. (3.9) simplifies to 

( ) ( ) ( )
2

2

1 1 1

3 2 o
s

r
r P z z f t

c t r r r z r

δϕ ϕ ϕ δ
µ π
� �∂ ∂ ∂ ∂� 	 ′= + + −� 
 � �′∂ ∂ ∂ ∂� � �

�

 (3.10) 

Although the representation for ( )f t
�

 is different for the pulsed input and sinusoidal 

input, the procedure for arriving at their corresponding solutions is identical for the 

majority of the process. Thus, the time dependent portion of the source term will be left 

arbitrary until the solution requires that it be specified 

 It is convenient to non-dimensionalize the governing equation using the 

definitions given in the nomenclature section. Applying this notation to Eq. (3.10) results 

in the following equation. 

( ) ( ) ( )
2

2
2

1

2 oD a f
δ ρψ ψ ψρ δ ς ς τ

τ ρ ρ ρ ς ρ
� �� 	∂ ∂ ∂ ∂ ′= + + −� �
 �∂ ∂ ∂ ∂� � �

 (3.11) 

( )f τ is the non-dimensional representation of ( )f t
�

. It is necessary to define appropriate 

initial and boundary conditions using the non-dimensional notation. Prior to the energy 

source entering the layer the fluence rate is zero, so the initial condition is given by 

( ), ,0 0ψ ρ ς =   (3.12) 
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The fluence rate also vanishes at locations far from the source, so the following 

conditions are imposed asr → ∞ . 

( ), , 0ρψ ρ ς τ→ ∞ =  and 0
ρ

ψρ
ρ →∞

∂ =
∂

  (3.13) 

The fluence rate at 0ρ =  must be finite, and the fluence rate is symmetric about the z-

axis. Thus the following conditions are applied at 0ρ = . 

( )0, , 0ρψ ς τ =  and 
0

0
ρ

ψρ
ρ =

∂ =
∂

  (3.14) 

The boundary conditions for the z-direction are more complicated because of the 

refractive index mismatch at both interfaces. Previous researchers [17,22] have not 

accounted for this mismatch when attempting to predict layer thicknesses. Allowing for 

this mismatch leads to the following Robin boundary conditions in the z-direction. 

( )
0

,0,oH L
ς

ψ ψ ρ τ
ς =

∂ =
∂

  (3.15) 

( )
1

,1,LH L
ς

ψ ψ ρ τ
ς =

∂ = −
∂

  (3.16) 
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The boundary coefficient is given by ( ) ( )3 1 2 1sH µ′= − ℜ + ℜ , where the effective 

reflection coefficients ℜ  are obtained using the empirical correlation developed by Egan 

and Hilgeman [28]. 

A method of integral transforms is used to solve Eq. (3.11) subject to Eqs. (3.12) - 

(3.16). A series of transforms is used to remove the spatial dependences from the second 

order partial differential equation. The result of these transforms is a first order ordinary 

differential equation in time which can be solved using an integrating factor. The inverse 

transforms are then applied to return to the original space. Figure 3-1 shows the 

progression of the integral transform method for arriving at a solution to the governing 

equations. Full details of the transforms will not be given in the body of the text, but 

rather can be found in Appendix A. Only the main points of the derivation are presented 

here in the text. 
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Figure 3-1: Flow char t outlining the solution procedure. 
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The axial portion of the problem is removed using a finite Fourier transform that 

is constructed on the basis of the corresponding Sturm-Liouville problem. Based on the 

defined conditions, the appropriate finite Fourier transform and corresponding inverse 

finite Fourier transform are given in Eqs. (3.17) and (3.18) respectively. 

( ) ( ) ( )
1

0

, , , ,n nk dψ ρ β τ ς ψ ρ ς τ ς= �   (3.17) 

( ) ( ) ( )
1

, , , ,n n
n

kψ ρ ς τ ς ψ ρ β τ
∞

=
= �   (3.18) 

The kernel of transform ( )nk ς  is obtained from consideration of the corresponding 

Sturm-Liouville problem in ς .  

( ) ( ) ( )

( )2 2 2
2 2 2

cos sin
2

1

n n o n
n

L
n o o

n L

H L
k

H L
H L H L

H L

β β ς β ς
ς

β
β

+
=

� 	
+ + +
 �+� 

 (3.19) 

Applying Eq. (3.17) to Eq. (3.11) results in the following transformed equation. 

( ) ( ) ( )2 21

2n n oD Da k f
δ ρψ ψρ β ψ ς τ

τ ρ ρ ρ ρ
� 	∂ ∂ ∂ ′= − +
 �∂ ∂ ∂� 

 (3.20) 

The radial portion of the problem is treated using a Hankel transform. The appropriate 

Hankel transform and corresponding inverse Hankel transform are given in Eqs. (3.21) 

and (3.22) respectively. 
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( ) ( ) ( )
0

, , , ,n o nJ dψ λ β τ ρ λρ ψ ρ β τ ρ
∞

= �   (3.21) 

( ) ( ) ( )
0

, , , ,n o nJ dψ ρ β τ λ λρ ψ λ β τ λ
∞

= �   (3.22) 

Application of the Hankel transform eliminates the radial dependence, and reduces the 

problem to an ordinary differential equation in τ. 

( ) ( ) ( )2 2 2

2
n o

n

k
D a f

ςψ λ β ψ τ
τ

′∂ + + =
∂

  (3.23) 

Solution of Eq. (3.23) requires a definition of the time dependent portion of the source. 

Therefore, at this point each input type will be considered separately and solutions for 

each will be given. 

3.2.1  Time Domain 

For a pulsed input, the time dependent portion of the source term is represented 

by the following equation.  

( ) ( )of τ δ τ τ ′= −   (3.24) 

Substituting Eq. (3.24) into Eq. (3.23) and solving for the transformed fluence rate yields 
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( ) ( ) ( ){ }, , exp
2

n o
n o

k
p

ς
ψ λ β τ τ τ

′
′= − −   (3.25) 

where ( ) ( )2 2 2, n np D aλ β λ β= + . Finally, the solution is obtained by application of the 

inverse finite Fourier transform and the inverse Hankel transform. 

( ) ( ) ( ) ( ) ( ) ( ){ }
2

2 2

1

1
, , exp 0 exp

4 4 n o n n o
no o

k k a D
D D

ρψ ρ ς τ ς β τ τ
τ τ τ τ

∞

=

� �� � ′ ′= − − −�� �′ ′− −� �� �
 (3.26) 

The local non-dimensional reflected flux is obtained from the gradient of the fluence rate 

at the surface of the foam layer and is obtained using Eq. (3.15).  

( ) ( )
0

1
, ,0,

3
=

∂= =
′ ∂ o
s

R h
L ς

ψρ τ ψ ρ τ
µ ς

  (3.27) 

Where oh  is related to the boundary coefficient by 3o o sh H µ′= . A relationship for the 

reflected flux can then be obtained. 

( ) ( ) ( ) ( ) ( ) ( ){ }
2

2 2

1
, exp exp

4 4
o

n o n o n o
no o

h
R k k a D

D D

ρρ τ ς ς β τ τ
τ τ τ τ

∞

=

� �� � ′ ′= − − −�� �′ ′− −� �� �
 (3.28) 

 In Chapter 4, Eq. (3.28) will be used to compare Monte Carlo simulated 

measurements to diffusion theory. Although time domain measurements will not be used 

in the inverse problem, Monte Carlo measurements are simulated in the time domain and 
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therefore Eq. (3.28) serves as a good point of comparison before the simulated 

measurements are transformed into the frequency domain. 

3.2.2  Frequency Domain 

For a sinusoidal input, the time dependent portion of the source term in Eq. (3.23) 

is represented by the following equation.  

( ) ( )1 sin of Aτ τ τ ′= + −   (3.29) 

Inputting Eq. (3.29) into Eq. (3.23) and solving for the transformed variable results in the 

following. 

( ) ( ) ( )

( ) ( ) ( )

2

2 2

1
, , cos sin e

2 1

1
sin cos

2 1 1

n o p
n o o

n o
o o

k A
p

p p

k Ap A

p p p

τς
ψ λ β τ τ τ

ς
τ τ τ τ

−′ � 	′ ′= + −
 �+� 

′ � �′ ′+ − − − +� �+ +� �

 (3.30) 

The exponential term decays rapidly for 0τ >  and is therefore neglected and only the 

steady-periodic portion of the solution is retained. 

( ) ( ) ( ) ( ) ( ) ( ), , , , sin , cosp n n n o n oS T Uψ λ β τ λ β λ β τ τ λ β τ τ′ ′= + − − −  (3.31) 

where ( ), nS λ β , ( ), nT λ β , and ( ), nU λ β  are defined by the following equations. 
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( ) ( )
( ),

2 ,
n o

n
n

k
S

p

ς
λ β

λ β
′

=   (3.32) 

( ) ( ) ( )
( )2

,
,

2 , 1

n o n
n

n

k pA
T

p

ς λ β
λ β

λ β
′

=
+

  (3.33) 

( ) ( )
( )2,

2 , 1

n o
n

n

kA
U

p

ς
λ β

λ β
′

=
+

  (3.34) 

The non-dimensional reflected flux for the frequency domain is obtained by application 

of the inverse finite Fourier transform and the inverse Hankel transform used in 

conjunction with Eq. (3.27). 
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��
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where the phase shift θ
�

 is defined by 
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and the other terms are defined below. 
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Equations (3.38) and (3.39) both contain an infinite integral for which there is no closed 

form solution. Numerical evaluation of the integrals requires a significant amount of 

computation time, and this time is magnified because the integrals are nested inside of an 

infinite sum. However, recognizing that slight changes in the integral terms result in an 

expression to which there is a closed form solution leads to a more efficient way of 

evaluating the integrals. As λ increases, then ( ),
2

np 1λ β >> . Therefore, at a critical 

value of cλ , the second term in the denominator can be neglected. The integral portions 

of Eqs. (3.38) and (3.39) are then re-written in an approximate form.  
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Now consider the integral term of Eq. (3.37) and its exact solution in order to simplify 

Eq. (3.40). 
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Solving for the last term in Eq. (3.42) and substituting for the last term in Eq. (3.40) 

yields the simplified result for the integral term of Eq. (3.38). 
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Equation (3.38) can then be written in its simplified form. 
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The numerical integration only has to be performed over a narrow range from 0 to cλ  as 

opposed to the infinite nature of the previous version. To simplify Eq. (3.41) consider the 

following integral and its exact solution. 
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Solving for the last term in Eq. (3.45) and substituting for the last term in Eq. (3.41) 

yields the simplified result for the integral term of Eq. (3.39). 
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Equation (3.39) can then be written in its approximate form. 
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Evaluation of Eq. (3.44) and Eq. (3.47) require significantly less computation time than 

Eq. (3.38) and Eq. (3.39). In order to asses the time improvement of the approximation, a 

test case was considered wherein T and U were calculated for both the approximated and 

the exact forms of their respective equations. The cutoff value for cλ  was chosen to be 

the point when ( ),
2 4

np 10λ β > . T and U were calculated at ten detector locations for a 

single frequency and a single set of layer properties. Both comparisons of the values and 

the time to calculate those values were considered. For the exact case, the computation 

took approximately three days, whereas for the approximated case the computations took 

approximately two minutes. Thus a significant improvement is observed with regards to 

computation time. The values of the approximated form as compared to the exact form 

were all within 0.007% relative error. It can therefore be concluded that the 

approximation is in very good agreement and can be used in place of the exact form. 
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4 - COMPARISON OF DIFFUSION THEORY RESULTS WITH 
MONTE CARLO SIMULATIONS 

 

4.1 MONTE CARLO SIMULATION DEVELOPMENT 

Monte Carlo simulations are often used as benchmarks to which other methods of 

solving the RTE are compared [29]. The algorithm used for the current comparisons is 

based on the method outlined by Jacques and Wang [23], and simulates the random path 

that a photon may take as it traverses through the medium. The propagation of photons 

are based on probability distributions for the path length between scattering events, the 

deflection angles resulting from a scattering event, and the probability of reflectance or 

transmittance at a boundary.  

As was illustrated in Fig 1-1, photons are normally incident on a foam layer. The 

beam is Gaussian distributed with a radius of ro. The Monte Carlo method simulates the 

path that a photon takes as it undergoes multiple scattering interactions. Throughout the 

simulations, the reflected radiative flux from the medium is recorded, at select locations 

measured from the center of the source, as a function of time. Due to the randomness of 

the photon paths, it is necessary to launch a large number of photons to obtain clean 

reflectance signals.  
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For each of the scenarios presented in this research, the number of photons 

released into the medium is 107. Ten runs, resulting in a total of 108 photons, will be 

conducted in order to allow for some variation in the measurements. From the ten 

independent runs, the uncertainty for each simulated measurement can then be estimated. 

For the ten runs, the average and standard deviation of each measured value can be 

calculated. Using finite statistic theory a precision interval for each measurement is 

calculated [30].  

,′ = ± P xM M t Sν    (P %)  (4.1) 

Where ′M is the true mean, M is the sample mean, ,Ptν  is the t-estimator with degrees of 

freedom ν and probability C (%). xS is the standard deviation of the means calculated by 

x xS S= Ν . Here Ν  represents the sample size. The uncertainties were calculated 

using a 95% confidence interval and the corresponding t-estimator for that probability 

and the ten runs that were made is 2.262 [30]. The error levels presented in the next 

section were calculated using this approach. 

The time resolution is set to 20 ps, and the resolution in the radial direction is 1 

mm. The selection of an appropriate time resolution affects the reflected radiative flux 

simulations, as well as the Fast Fourier Transform (FFT). If the time resolution is set too 

large, then the location of the peak reflectance is not appropriately resolved. The time 

resolution also affects the range of frequency data when performing the FFT. The time 

resolution of 20 ps has been found to be a sufficient resolution for most scenarios of this 
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nature [23]. Because the radial resolution has some effect on the speed of the Monte 

Carlo calculations, a brief study was performed to identify the maximum radial resolution 

that could be used without compromising the resulting signal. Initially, a small radial step 

was used to obtain a benchmark solution. Solutions corresponding to increased values of 

the radial resolution were calculated and compared to the benchmark. It was concluded 

that a radial resolution of 1mm could be used without affecting the benchmark beyond 

the noise evident in Monte Carlo simulations. A radial resolution beyond 1 mm was not 

considered because measurements were to be taken at 1 mm increments, and an increased 

value in the radial step would cause overlap between detectors in the Monte Carlo code.  

The Monte Carlo simulations are performed in the time-domain and 

corresponding frequency-domain measurements can be calculated through the use of a 

FFT. Details of this transform, pertaining to the current problem, are described in Section 

4.3. The following sections will show the comparisons of Monte Carlo simulated 

measurements to the approximate solution resulting from diffusion theory. Comparisons 

of ten cases, each with randomly generated properties, were performed in both the time-

domain and frequency-domain. The results of three representative cases are presented in 

the next section, and the remaining results are presented in Appendix B. Table 4-1 

summarizes the properties used to generate the Monte Carlo simulated data. It should be 

noted that although the property values are listed here, these values were not known until 

after the inverse problem was solved. 
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4.2 TIME DOMAIN COMPARISON 

The output of the Monte Carlo simulations results in non-dimensional reflected 

flux measurements as a function of time generated by a simulated pulsed input. The 

reflectance was recorded at detector locations ranging from 15 mm to 60 mm at uniform 

increments of 1 mm. However, results at a smaller number of detector locations will be 

presented, and these results illustrate the trends over a range of layer properties. In the 

figures that follow, comparisons are made between Monte Carlo simulated reflectance 

profiles in the time-domain and measurements predicted by diffusion theory. Three 

specified detector locations are considered in order to illustrate the trends in not only 

agreement, but also with regards to the noise. For each figure, the symbols represent the 

Table 4-1. Summary of the proper ties used for  the ten blind cases that are considered in the 
following sections. 

 
Case # µµµµs (m

-1) g µµµµ
�

s (m
-1) L (m) 

1 1384 0.7666 323 0.0940 

2 6934 0.9254 517 0.1376 

3 6276 0.4460 3477 0.0395 

4 2432 0.9650 85 0.0655 

5 9313 0.1154 8238 0.1794 

6 7840 0.5069 3866 0.1298 

7 10125 0.7302 2731 0.1838 

8 13895 0.0387 13358 0.0086 

9 589 0.6120 229 0.1803 

10 2210 0.4638 1185 0.1529 
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average value for the ten independent runs, and the levels of error were determined as 

previously described. 

Case 1 
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Figure 4-1: Time-domain compar ison between diffusion theory and Monte Car lo simulations for   
case #1 ( sµµµµ ′′′′ ==== 323 m-1, L ==== 0.094 m) at a source-detector  separation of 15 mm. 
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Figure 4-2: Time-domain compar ison between diffusion theory and Monte Car lo simulations for   
case #1 ( sµµµµ ′′′′ ==== 323 m-1, L ==== 0.094 m)  at a source-detector  separation of 30 mm. 
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Case 3 
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Figure 4-3: Time-domain compar ison between diffusion theory and Monte Car lo simulations for   
case #1 ( sµµµµ ′′′′ ==== 323 m-1, L ==== 0.094 m)  at a source-detector  separation of 60 mm. 
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Figure 4-4: Time-domain compar ison between diffusion theory and Monte Car lo simulations for   
case #3 ( sµµµµ ′′′′ ==== 3477 m-1, L ==== 0.0395 m)   at a source-detector  separation of 15 mm. 
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Figure 4-5: Time-domain compar ison between diffusion theory and Monte Car lo simulations for   
case #3 ( sµµµµ ′′′′ ==== 3477 m-1, L ==== 0.0395 m)   at a source-detector  separation of 30 mm. 
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Figure 4-6: Time-domain compar ison between diffusion theory and Monte Car lo simulations for   
case #3 ( sµµµµ ′′′′ ==== 3477 m-1, L ==== 0.0395 m)   at a source-detector  separation of 40 mm. 
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Case 5 
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Figure 4-7: Time-domain compar ison between diffusion theory and Monte Car lo simulations for   
case #5 ( sµµµµ ′′′′ ==== 8238 m-1, L ==== 0.1794 m)   at a source-detector  separation of 15 mm. 
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Figure 4-8: Time-domain compar ison between diffusion theory and Monte Car lo simulations for   
case #5 ( sµµµµ ′′′′ ==== 8238 m-1, L ==== 0.1794 m)   at a source-detector  separation of 20 mm. 



 

 37 

 Some common trends can be noted when considering all of the cases presented. 

Generally speaking, the ability of diffusion theory to accurately predict the reflectance 

profile increases with larger source-detector separation. This is consistent with the 

approximations made in the development of diffusion theory. Another observation is the 

consistent ability of diffusion theory to accurately model radiation propagation at later 

times. For some of the cases, diffusion theory was unable to predict the magnitude near 

the peak at detector locations nearer to the source. Although diffusion theory becomes 

more accurate at detector locations further from the source, the level of noise in the 

Monte Carlo simulations also increases. The fact that frequency-domain measurements 

are less susceptible to noise levels will be illustrated in the next section. 
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Figure 4-9: Time-domain compar ison between diffusion theory and Monte Car lo simulations for   
case #5 ( sµµµµ ′′′′ ==== 8238 m-1, L ==== 0.1794 m)   at a source-detector  separation of 25 mm. 
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4.3 RELATING PULSED MONTE CARLO DATA TO MODULATED MONTE CARLO DATA 

THROUGH THE USE OF THE FFT 

As was previously mentioned, simulated measurements in the frequency-domain 

are obtained from the time-domain simulated profile through the use of a Fast Fourier 

Transform (FFT). The Monte Carlo code can be treated as a system that converts the 

input (the time-dependent source) into the output (the time-dependent reflectance 

profile). Figure 4-10 shows the flow for the conversion of a time-dependent source 

representation into the corresponding reflectance profile. The time-dependent portion 

may be either pulsed or frequency-modulated, and the corresponding reflectance profile 

is the output.  

Because the Monte Carlo data was simulated in the time-domain (corresponding 

to a pulsed input), use of the FFT is used in place of re-running the Monte Carlo 

simulations to represent a sinusoidal time-dependent input. Results for any oω  can be 

produced from the same time-dependent profile. The FFT algorithm used was taken from 

Numerical Recipes [31] and is incorporated into the Monte Carlo code included in the 

Appendix D. In order to relate the reflectance profile from the time-domain to the 

corresponding reflectance profile in the frequency-domain, it is necessary to introduce the 

Figure 4-10: I llustration of the Monte Car lo “ system” . 

Monte Carlo 
Code 

Time-dependent 
Source ( )v τ  

Reflectance 
Profile ( )R τ  
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Fourier transform and related notation. Full details of the derivation are not included here 

but can be found in Appendix C. 

( ) ( ) ( ){ }ˆ
f

i
foV f v e d F v

τ
τ τ τ

∞

−∞

= =�   (4.2) 

The modulation frequency of  is related to the angular source frequency oω  used 

previously by o of 2ω π= . The transfer function for this system is defined as 

( ) ( )
( )

ˆ

ˆ
R f

z f
V f

=   (4.3) 

where ( )R̂ f  is the Fourier transform of the reflectance profile and is defined below. 

( ) ( ){ } ( )ˆ
f

i
foR f F R R e d

τ
τ τ τ

∞

−∞

= = �   (4.4) 

To find the transfer function, let ( ) ( )v τ δ τ∗ =  be the time-dependent portion of the 

source and ( )R τ∗  be the corresponding reflectance profile. ( )R τ∗  is obtained from the 

Monte Carlo simulation with a pulse input and ( )R̂ f∗ is the corresponding Fourier 

transform of the reflectance. However, because ( )R τ∗  contains data at discrete time 

intervals, it is convenient to calculate ( )R̂ f∗  through the use of the FFT. Equation (4.2) 

can be used to evaluate the Fourier transform of the input ( )v τ∗ . 
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( ) ( )ˆ
f

i
foF f e d 1

τ
δ τ τ

∞
∗

−∞

= =�   (4.5) 

Therefore the transfer function simply becomes ( ) ( )ˆz f R f∗=  and can be used for any 

arbitrary input ( )v τ  to obtain the corresponding reflectance profile. Solving Eq. (4.3) for 

( )R̂ f  and substituting the result of the transfer function, the Fourier transformed 

reflectance profile for an arbitrary source is given by 

( ) ( ) ( )ˆ ˆ ˆR f R f F f∗=   (4.6) 

Applying the inverse Fourier transform to Eq. (4.6) results in a reflectance profile 

corresponding to the respective input ( )v τ . 

( ) ( ) ( )ˆ ˆ
f

i
foR R f F f e d

τ
τ τ

∞ −
∗

−∞

= �   (4.7) 

Consider the case of a sinusoidal modulated source input ( ) sinv 1 Aτ τ= + . 

( ) ( )ˆ sin

f
i

foF f 1 A e d
τ

τ τ
∞

−∞

= +�   (4.8) 

In order to evaluate Eq. (4.8), a definition of the exponential portion of the integral is 

needed [32]. 
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( ) ( )i2 f xx e dfπ ξδ ξ
∞

± −

−∞

− = �   (4.9) 

Applying the definition of Eq. (4.9) and recalling the complex form of the sine 

function, ( )sin 2i ie e iτ ττ −= −  Eq. (4.8) can be evaluated. 

( )ˆ
o o o

f Ai f 1 Ai f 1
F f

2 f 2 2 f 2 2 2 f 2
δ δ δ

π π π π π
� 	 � 	 � 	

= − + + −
 � 
 � 
 �
�  �  � 

 (4.10) 

Substituting Eq. (4.10) into Eq. (4.7) and evaluating the integral yields 

( ) ( ) ( ) ( )ˆ ˆ ˆi i
o o

Ai
R R 0 R f e R f e

2
τ ττ ∗ ∗ ∗ −� �= − − −

� �

�

 (4.11) 

It is important to note that R̂∗ , obtained from the FFT, is a complex number and therefore 

contains both real and imaginary components as a function of frequency. At this point it 

is necessary to introduce some notation that will be used to simplify Eq. (4.11). 

( ) ( ) ( )ˆ Re Imo o oR f f i f∗ = +   (4.12)  

Re() and Im() are used to simply represent the real and imaginary components 

respectively of the complex number at the specified frequencies. The following properties 

of the FFT allow for simplification of the previous equations [32]. 
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( ) ( )
( ) ( )
( )

Re Re

Im Im

Im

o o

o o

f f

f f

0 0

− =

− = −

=

  (4.13) 

Substituting Eqs. (4.12) and (4.13) into Eq. (4.11) and performing some simplifying 

algebra yields the following reflectance profile corresponding to a sinusoidal input. 

( ) ( ) ( ) ( ) ( )Re Re Im sin
2 2

o oR 0 A f fτ τ θ= + + −
�

 (4.14) 

Where θ  represents the phase shift between the input and the output and is defined by the 

following equation. 

( )
( )

Im
tan

Re
o1

o

f

f
θ − � �

= � �
� �� �

  (4.15) 

Equation (4.14) takes the same form as Eq. (3.35) and therefore makes for easy 

frequency-domain comparisons between diffusion theory predictions and transformed 

Monte Carlo simulations. 

 
 

4.4 FREQUENCY DOMAIN COMPARISON 

Comparisons between diffusion theory and simulated data in the frequency-

domain can be made two different ways; the overall sinusoidal reflectance and the 

individual characteristics of the reflected flux. Both were previously illustrated in Fig 1-2. 
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The sinusoidal profiles are presented for the same three cases that were shown in the 

previous section at a single detector location and a single modulation frequency plotted as 

a function of time. The sinusoidal profiles for the other seven cases can be found in the 

Appendix B. Equation (3.35) and Eq. (4.14) are used to generate the modulated 

reflectance curves for diffusion theory and the simulated measurements respectively. The 

characteristics of the reflected flux (DC, AC, θ ) are obtained from these same equations, 

where the general form is given by the following equation.  

( ) ( )sinR DC ACτ τ θ= + −
�

  (4.16) 

For each case, the AC component and phase shift of the sinusoidal profile are also plotted 

as a function of the detector location for two frequencies. The DC offset is also plotted as 

a function of the detector location. However, it is only plotted at a single frequency 

because the DC offset is simply scaled between different frequencies. The AC 

component, and phase shift for the other seven cases can be found in the Appendix B. 

Although a variety of detector locations and modulation frequencies could be considered 

for each case, only a select few are presented here to illustrate the accuracy trends 

associated with diffusion theory modeling. It should be noted that although measured 

phase shift values can only vary between 0 and 2π, at times a factor of 2π  was added to 

the simulated phase shift values in order to maintain a continuous curve. 
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Case1 

 

 As compared to the time-domain plot for the same case (see Fig 4-3), the level of 

noise in the measurements in Fig 4-11 is significantly reduced in the frequency-domain. 

This illustrates the claim made earlier that frequency-domain techniques are less 

susceptible to the noise levels than are those of the time-domain. The trends of the 

sinusoidal curves at other frequencies are very similar and therefore results at additional 

frequencies offer no further useful information. Figure 4-11 shows good agreement 

between diffusion theory and the simulated measurements. The shapes are very similar; 

however, the DC offset appears to be slightly off. The plot is somewhat misleading, and 

the DC offset agreement is verified in Fig 4-12. Consideration of each individual 

characteristic shows the detailed agreement between diffusion theory and Monte Carlo 

simulations.  
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Figure 4-11: Frequency-domain compar ison between diffusion theory and Monte Carlo simulations 
for  case #1 ( sµµµµ ′′′′ ==== 323 m-1, L ==== 0.094 m) at dr ==== 60 mm and of ==== 100 MHz. 
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Figure 4-13: Compar ison between diffusion theory and Monte Car lo simulations of AC values for  
case #1 ( sµµµµ ′′′′ ==== 323 m-1, L ==== 0.094 m) at (a) of ==== 100 MHz, (b) of ==== 200 MHz. 
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Figure 4-12: Compar ison between diffusion theory and Monte Car lo simulations of DC values for  
case #1 ( sµµµµ ′′′′ ==== 323 m-1, L ==== 0.094 m) at of ==== 100 MHz. 
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 The results for case 1 show excellent agreement and relatively small noise levels 

over the full range of detector locations. The difference in noise levels between time-

domain and frequency-domain measurements are again illustrated. Similar results are 

seen for the other nine cases with increased noise for the higher scattering cases. Based 

on the noise levels for each case, some discretion was used to select an upper limit of the 

detector location for each case. This upper limit was selected when either the noise level 

was on the same order of magnitude as the measurement, or if the maximum detector 

location was reached. In some cases the reflectance signal was non-existent at large 

source-detector separations; for these reasons not all cases have the same upper detector 

limit. The ranges presented in these comparisons are ultimately the ranges that are used in 

the inverse problem. The remainder of the cases is presented in succession and some 

general trends are noted at the end. 
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     (a)                   (b) 

Figure 4-14: Compar ison of the phase shift between diffusion theory and Monte Car lo simulations 
for  case #1 ( sµµµµ ′′′′ ==== 323 m-1, L ==== 0.094 m) at (a) of ==== 100 MHz, (b) of ==== 200 MHz. 
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Case 3 
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Figure 4-15: Frequency-domain compar ison between diffusion theory and Monte Carlo simulations 
for  case #3 ( sµµµµ ′′′′ ==== 3477 m-1, L ==== 0.0395 m) at dr ==== 40 mm and of ==== 100 MHz. 
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Figure 4-16: Compar ison between diffusion theory and Monte Car lo simulations of DC values for  
case #3 ( sµµµµ ′′′′ ==== 3477 m-1, L ==== 0.0395 m) at of ==== 100 MHz. 
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     (a)                   (b) 

Figure 4-18: Compar ison of the phase shift between diffusion theory and Monte Car lo simulations 
for  case #3 ( sµµµµ ′′′′ ==== 3477 m-1, L ==== 0.0395 m) at (a) of ==== 100 MHz, (b) of ==== 200 MHz. 
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      (a)                     (b) 

Figure 4-17: Compar ison between diffusion theory and Monte Car lo simulations of AC values for  
case #3 ( sµµµµ ′′′′ ==== 3477 m-1, L ==== 0.0395 m) at (a) of ==== 100 MHz, (b) of ==== 200 MHz. 
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Case 5 
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Figure 4-19: Frequency-domain compar ison between diffusion theory and Monte Carlo simulations 
for  case #5 ( sµµµµ ′′′′ ==== 8238 m-1, L ==== 0.1794 m) at dr ==== 25 mm and of ==== 100 MHz. 
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Figure 4-20: Compar ison between diffusion theory and Monte Car lo simulations of DC values for  
case #5 ( sµµµµ ′′′′ ==== 8238 m-1, L ==== 0.1794 m) at of ==== 100 MHz. 
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     (a)                    (b) 

Figure 4-21: Compar ison between diffusion theory and Monte Car lo simulations of AC values for  
case #5 ( sµµµµ ′′′′ ==== 8238 m-1, L ==== 0.1794 m) at (a) of ==== 100 MHz, (b) of ==== 200 MHz. 
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    (a)                   (b) 

Figure 4-22: Compar ison of the phase shift between diffusion theory and Monte Car lo simulations 
for  case #5 ( sµµµµ ′′′′ ==== 8238 m-1, L ==== 0.1794 m) at (a) of ==== 100 MHz, (b) of ==== 200 MHz. 
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For all of the cases presented, some recurring trends are observed. As the source-

detector separation distance increases, the AC and DC components decrease. Conversely, 

as the detector locations get further from the source, the phase shift values increase. 

Intuitively this is an expected result. As the source-detector separation increases, the 

overall signal decreases, therefore causing the AC and DC components to decrease. Also, 

photons that are detected further from the source generally have undergone more 

scattering interactions and the time required to arrive at that location is generally higher 

than locations closer to the source. This leads to an increased value in the phase shift. 

Trends with respect to frequency are also observed. As the frequency is increased, the 

phase shift also increases. The same trend is seen when considering the AC component 

and DC offset of the reflected flux.  

 For some of the cases (1, 2, and 9) the level of noise is negligible over the full 

range of detector locations. However, for the other cases an increasing degree of noise is 

evident as source-detector separation distance and frequency increases. For all of these 

cases where the noise is significant, the value of sµ′  is greater than 1000 m-1. This is 

expected since as sµ′  increases, the mean free path between scattering events decreases, 

thereby decreasing the number of photons that reach the detectors furthest from the 

source; hence the signal-to-noise ratio also decreases.  

 When adapting the inverse method, that is presented in Chapter 5, to actual 

experimental conditions, it is important to present the signal-to-noise ratios that allowed 

for successful predictions of the foam properties in order select proper instrumentation. 
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The signal-to-noise ratios for the three cases previously considered are presented as a 

function of the detector location for a single modulation frequency.  
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Figure 4-23: Case #1 signal-to-noise ratios (S/N) for  the (a) DC offset, (b) AC component, and (c) 
phase shift plotted as a function of detector  location. 
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Figure 4-24: Case #3 signal-to-noise ratios (S/N) for  the (a) DC offset, (b) AC component, and (c) 
phase shift plotted as a function of detector  location. 
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Average signal-to-noise ratios of the various ranges of detector locations of all ten cases 

are presented in Table 4-2 for each measurement type for a single modulation frequency. 
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Figure 4-25: Case #5 signal-to-noise ratios (S/N) for  the (a) DC offset, (b) AC component, and (c) 
phase shift plotted as a function of detector  location. 
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Table 4-2. Average signal-to-noise ratios of each measurement type at a modulation frequency of 
100 MHz and the combined average. 

 
Case # (S/N)DC (S/N)AC (S/N)θθθθ (S/N)comb 

1 276 243 344 288 

2 247 179 276 234 

3 111 46 112 90 

4 331 321 426 359 

5 101 25 72 66 

6 120 39 95 85 

7 127 62 120 103 

8 24 17 61 34 

9 316 273 353 314 

10 176 88 160 85 



 

 56 



 

 57 

5 - DETERMINATION OF THE FOAM LAYER PROPERTIES 

5.1 CONJUGATE-GRADIENT ALGORITHM  

The use of gradient-based algorithms to solve inverse problems is common 

practice. For the current research, a conjugate-gradient algorithm was chosen to solve the 

inverse problem of interest. The basis for this approach was taken from the algorithm 

development of Özi � ik and Orlande [8]. The methodology of the conjugate-gradient 

algorithm is the use of gradients to determine the search direction and a suitable step size 

is used in order to minimize the objective function. As with any inverse problem, an 

efficient way of solving the forward problem is necessary. The diffusion theory solution 

presented in Chapter 3 is used to solve the forward problem.  

Each iteration of the inverse algorithm requires the calculation of diffusion theory 

predicted measurements. These predictions are compared to the Monte Carlo simulated 

measurements in the form of a normalized objective function. It is necessary to normalize 

the objective function because of the varying degrees of magnitudes between the 

measurement types. Estimation of the desired parameters is obtained by minimizing the 

difference between the simulated and predicted measurement values.  

( ) ( ) ( )M P M P
P

M M

T

X
� � � �− −

= � � � �
� � � �

  (5.1) 
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In Eq. (5.1), M  represents a vector of simulated measurements obtained from the Monte 

Carlo method and ΨΨΨΨ is the vector of predicted measurements, based on diffusion theory, 

for the current values of the desired parameters P. The iterative procedure for the 

conjugate-gradient method for the minimization of Eq. (5.1) is given by 

k 1 k k kβ+ = −P P d   (5.2) 

where kβ  is the search step size, kd  is the direction of descent and the superscript k 

represents the number of iterations. The direction of descent combines the current 

gradient direction ( )kX∇ P , and the direction of descent of the previous iteration. 

( )k k k k 1X γ −= ∇ +d P d   (5.3) 

kγ  is known as the conjugation coefficient and assures that the negative gradient 

direction is less than 90�  and is defined as 

( ) ( ) ( )

( )

N
k k k 1

j jj 1k
N 2

k

jj 1

X X X

X

γ

−

=

=

� �� � � �∇ ∇ − ∇� �� � � �� �
=

� �∇
� �

�

�

P P P

P

      for , ,...k 1 2=  (5.4) 

with 0 0γ =  for k 0=  and N represents the number of unknown parameters. Equation 

(5.5) is known as the Polak-Ribiere expression [33,34]. Another possible expression for 

the conjugation gradient is the Fletcher-Reeves expression [33,34,35]. The Polak-Ribiere 

expression is used for this problem because there is some evidence that it provides 
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improved convergence in nonlinear estimation problems [31,34]. ( )kX∇ P  is an Nx1 

matrix, and the jth component of the gradient direction evaluated at iteration k is simply 

the jth entry of the column vector. The expression for the gradient direction is obtained by 

differentiating Eq. (5.1) with respect to the vector of unknown parameters P. 

( ) ( ) ( )k
Tk kX 2
� �−
� �∇ = −
� �
� �

M P
P J

M
  (5.6) 

kJ  is the normalized sensitivity matrix given by the following equation. 

( )

N1 1 2 1 1

1 1 1 2 1 N

N1 2 2 2 2

2 1 2 2 2 N

N1 I 2 I I

I 1 I 2 I N

PP P

M P M P M P

PP P

M P M P M P

PP P

M P M P M P

Ψ Ψ Ψ

Ψ Ψ Ψ

Ψ Ψ Ψ

∂ ∂ ∂� �
� �∂ ∂ ∂
� �
� �∂ ∂ ∂
� �∂ ∂ ∂� �
� �
� �

∂ ∂ ∂� �
� �∂ ∂ ∂� �

�

�

� � � �

�

J P =  (5.7) 

 

I represents the total number of measurements (including all measurement types) used in 

the inverse problem. Due to the complex nature of the diffusion theory solution, the 

derivatives of the measurements with respect to the parameters were calculated 

numerically using a central difference scheme.  

Finally the search step size kβ  can be determined by minimizing ( )k 1X +P  with 

respect to kβ . Details of the derivation are presented in detail elsewhere [8].  
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( )Tk k k

k
Tk k k k

β
� �� � −

� � � �=
� � � �
� � � �

J d P M

J d J d
  (5.8) 

Having calculated Eqs. (5.3) - (5.8), the iterative procedure given in Eq. (5.2) can be 

implemented until the updated parameters cease to change from one iteration to the next 

(within some level of error). 

 Because many of the necessary calculations are computationally expensive, and in 

order to accommodate a large measurement data set, the inverse problem was coded in 

the C++ programming language and executed on various supercomputers available 

through CAEDM at BYU. A copy of the complete code can be found in Appendix D. The 

following section shows the results of the inverse problem for the ten cases previously 

discussed. 

 

5.2 INVERSE SOLUTION FOR BLIND CASES 

This section is dedicated to illustrating the ability to accurately predict foam layer 

properties through the use of a conjugate-gradient inversion algorithm. The inverse 

algorithm is based on diffusion theory and uses Monte Carlo simulated measurements as 

inputs. For the same three cases that have been used up to this point, the conjugate-

gradient algorithm is used to predict the layer properties with no prior knowledge of their 

values. The results of the other seven cases are given in Appendix B. The inverse 

algorithm was performed blindly with respect to the properties to be estimated. As was 

previously mentioned, the actual values of the properties were not known before 
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performing the inverse algorithm. The Monte Carlo method was used to simulate the 

measurement set (DC, AC, and θ) at three specified frequencies over a range of detector 

locations. The range of detector locations used in the inverse algorithm for the individual 

cases was 15-60 mm, corresponding to the range used in the previous chapter. The use of 

a large measurement set usually improves the parameter estimation in inverse problems. 

Ten initial guesses for the property values were randomly generated as starting points for 

the inverse algorithm for each case. Considering different start values and ensuring that 

the algorithm converges to the same point, helps to make certain that the algorithm is not 

trapped at a local minimum. The iteration history is presented for a few of the start values 

to illustrate common convergence for different initial guesses. 

Case 1 

 The iteration history shows convergence for two of the start values after about 12 

iterations. In each case, the algorithm converged to the same values. Similar trends are 
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Figure 5-1: I teration history of the inverse algor ithm for  case #1. 
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observed for the other cases. The number of iterations necessary to achieve convergence 

varied from 5 to 25. Typically, a start value far from the converged value required more 

iterations to reach convergence.  

Case 3 
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Figure 5-2: I teration history of the inverse algor ithm for  case #3. 
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Figure 5-3: I teration history of the inverse algor ithm for  case #5. 
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 For each case, the iteration histories converged to the same values. As was 

mentioned earlier, a total of ten random start guesses were used to assure that a global 

optimum was reached. With all ten of the start values for each of the ten cases, 

convergence was achieved. Generally speaking convergence was attained by about 

twenty iterations. A couple of exceptions were observed to this commonality. For case 8, 

about 40 iterations were needed for both parameters to reach converged values (see 

Appendix B). Nevertheless, the algorithm proved to be consistent in the prediction of 

foam layer properties. At this point the predicted values can be compared to the actual 

property values that were used as inputs to the Monte Carlo simulation. 

 

Table 5-1. Summary of the predicted values as compared to the actual values for  the ten blind 
cases and the corresponding relative er ror  for  each parameter . 

 
 Actual Values Predicted Values Relative Errors 

Case # µµµµ
�

s (m
-1) L (m) µµµµ

�

s (m
-1) L (m) � s

�
′  L

�  

1 323 0.0940 317.0 0.0907 1.9% 3.5% 

2 517 0.1376 511.1 0.1307 1.2% 5.0% 

3 3477 0.0395 3460.1 0.0378 0.5% 4.4% 

4 85 0.0655 82.6 0.0661 3.0% 0.9% 

5 8238 0.1794 8125 0.1655 1.4% 7.8% 

6 3866 0.1298 3745 0.1164 3.1% 10.3% 

7 2731 0.1838 2688 0.1690 1.6% 8.1% 

8 13358 0.0086 13308 0.00856 0.4% 0.5% 

9 229 0.1803 216.2 0.1709 5.4% 5.2% 

10 1185 0.1529 1172 0.1420 1.1% 7.1% 
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As can be seen in the columns representing the errors, the predictions of the layer 

properties agree very well with the actual values. The predictions for sµ′  resulted in less 

error than the predictions for the layer thickness L.  The case with the worst prediction of 

sµ′  is number 9. The scattering coefficient ( sµ ) for this case is the smallest of the ten 

cases (see Table 4-1). The case with the best predictions of sµ′  is number 8, where sµ is 

the largest. These results are consistent with the observation that diffusion theory more 

accurately models radiative transport as the scattering coefficient increases [13]. Figure 

5-4 shows 
sµε ′  as a function of sµ . This figure shows the upper limit of the error 

decreasing as sµ  increases for all ten cases. Similar trends are seen in Fig 5-5 where 
sµε ′  

is plotted as a function of sµ′ . This is expected since the reduced scattering coefficient is 

directly proportional to the scattering coefficient.  
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Figure 5-4: The er ror  of the reduced scatter ing coefficient predictions as a function of the scatter ing 
coefficient for  all ten cases. 
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 The trends regarding the error in the layer thickness predictions as a function of L 

are illustrated in Fig 5-6. It appears that generally speaking, Lε  tends to increase with 

increasing layer thickness. 
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Figure 5-5: The er ror  of the reduced scatter ing coefficient predictions as a function of the reduced 
scatter ing coefficient for  all ten cases. 
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Figure 5-6: The er ror  of the layer  thickness predictions as a function of L for  all ten cases. 
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As has been shown in comparisons between diffusion theory and Monte Carlo 

simulations, various levels of modeling accuracy have been observed depending on the 

source frequency and the source-detector separation distance. These measurement 

conditions also greatly affect the sensitivities of the measurements with respect to the 

layer properties. The sensitivities play a significant role in the ability of an inverse 

algorithm to estimate parameters [7]. These observations indicate that an optimal 

combination of measurements exists. Although it would be nearly impossible to 

investigate every combination of such conditions, a method for determining measurement 

conditions that improves layer property predictions is attempted. 

 

5.3 DETERMINING OPTIMAL MEASUREMENT CONDITIONS 

The idea of determining optimal measurement conditions in spectroscopic 

methods is an area of research that, to the author’s knowledge, has received little 

attention. In a recent study, Francoeur et al. [25] provided some insightful information on 

the subject of inverse problems. By use of the discrete-ordinates finite-volume method 

for modeling the radiation transport, a preliminary sensitivity analysis was performed to 

determine some optimal parameters for the design of frequency-modulation based optical 

diagnostic techniques. An important aspect of inverse problems involves the sensitivities 

of the measurements to the unknown parameters and plays a key role in parameter 

estimation. The authors gave a general criterion that states estimation of the targeted 

property is feasible when the normalized sensitivity coefficients are greater than 0.1. 
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Accurate estimation of the targeted property is difficult when the normalized sensitivities 

are between 0.01 and 0.1, and essentially impossible for sensitivities less than 0.01. They 

concluded the use of frequency domain measurement techniques is very promising to 

characterize participating media for a wide spectrum of engineering applications and that 

consideration of the sensitivities will make it possible to select optimal measurement 

conditions for measurement setups, thereby improving the ability to estimate layer 

properties. 

Özi � ik and Orlande [8] present a method of designing for optimum experiments, 

where the idea is to maximize the determinant of the sensitivity matrix J (see Section 

5.1). However, at times the location of the maximum sensitivities may not provide 

enough information regarding the optimal measurement conditions. Because diffusion 

theory is an approximate model, an assessment of the modeling accuracy should be 

included. Often times these two factors behave in an opposite manner as shown in Fig 5-

7. Therefore, a method that balances the effects of the sensitivities and modeling 

accuracy is proposed. 
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Figure 5-7: I llustration of potentially different trends between the sensitivity and the modeling 

accuracy. 
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It is desirable to combine the two effects into a single objective function. This is a 

challenging task since their values are on different orders of magnitude. The difficulty 

arises in proper scaling of the two effects in order to appropriately combine them into a 

single objective. The combined objective (Γ ), is set to be minimized and the general 

form of the objective can be written as shown in the following equation. 

1 1 2 2

1 1 2 2

f f f f

f f f f
Γ ∗ ∗

− −= +
− −

� �

� �   (5.9) 

The term Γ is used to denote the combined effects of the sensitivities and the modeling 

error. The modeling error is simply the relative error between the simulated 

measurements and the predicted measurements. The subscript 1 represents the 

sensitivities and the subscript 2 denotes the modeling error. The different symbols 

represent user specified indifference values (~) and allowable values (* ). The indifference 

value is defined as the point beyond which the user is no longer concerned with whether 

or not improvements are made. The allowable value is exactly what it says, the point at 

which if no further improvements are made, then the results would be allowable. The 

selection of these values is somewhat arbitrary and was chosen by considering the 

maximum and minimum values for the investigated conditions. Equation (5.9) is defined 

such that, at the indifference values, the combined objective is equal to zero and at the 

allowable values the overall objective is equivalent to two.  

 The individual objectives are defined in the following equations. The first part of 

the overall objective regards the sensitivities. The determinant of the sensitivity matrix is 
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very important when determining optimal measurement conditions. In the absence of 

modeling error, the determinant may be used to determine the optimal measurement set. 

J JT
1

1
f

I
=   (5.10) 

The term I represents the number of measurements being considered.  The portion of the 

objective that includes the effects of modeling error is given in Eq. (5.11). 

2
I

j j
2

jj 1

M1
f

I M

Ψ

=

� 	−
= 
 �


 �
� 

�   (5.11) 

In this equation, Mj represents the jth component of the simulated measurement 

vector, and Ψj represents the jth component of the predicted measurement vector based on 

the current estimate of the properties of the foam layer.  

Now that the objective is defined, the procedure for determining the optimal 

measurement set is set forth. Because this is a non-linear problem (the sensitivities are a 

function of the unknown parameters), only a local optimum experimental design is 

possible by using some prior information regarding the expected values for the unknown 

parameters. Therefore, the first step in this procedure is to obtain an initial estimate of the 

expected values as was done in Section 5.2. Using those predictions, Γ can then be 

calculated as a function of both frequency and detector range to be used. As was 

mentioned previously, there is an immense amount of measurement set combinations that 

could be considered. For this study three frequencies are considered, along with a varying 
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number of detectors. A minimum and maximum detector location is set for each case (the 

same limits that were used for previous comparisons). Either the minimum or the 

maximum is used as a reference detector and additional detectors are added either away 

from or toward the source respectively. The minimum value of Γ is located and the 

corresponding frequency and range of detectors is then used to re-calculate the layer 

properties via the inverse algorithm. This procedure is repeated until the measurement 

conditions, and therefore the predicted layer properties, cease to change. This procedure 

is illustrated in detail for one of the ten cases. The preliminary initial property predictions 

for case 3 (see Table 5-1 for property values) are used to calculate Γ for the three 

frequencies and range of detectors. For case 3, the reference detector was at 40 mm and 

additional detectors were added towards the source up to a maximum of 26 detectors.  

From the results shown in Fig 5-8, the minimum error occurs at 100 MHz using 

about 4 detectors which correspond to the range of 40-37 mm. Using those conditions for 
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Figure 5-8: The objective function ΓΓΓΓ     plotted as a function of frequency and the number  of detectors 
for  case 3 for  the first iteration. 
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the input measurements into the inverse algorithm, new property predictions are obtained. 

The original and updated property values are listed below. 

 : . .s 3460 1 3477 6µ′ → 1m−  

: . .L 0 0378 0 0381→ m  

Using these updated values, the objective function is re-calculated to check for any 

further changes in the measurement set. Figure 5-9 clearly shows that the minimum 

occurs at 100 MHz when using a single detector location at 40 mm. Re-calculating the 

layer property predictions yields the following. 

: . .s 3477 6 3480 2µ′ → 1m−  

: . .L 0 0381 0 0382→ m  

Following the same procedure, the objective is again calculated for the updated values of 

the properties.  
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Figure 5-9: The objective function ΓΓΓΓ  plotted as a function of frequency and the number  of detectors 
for  case 3 for  the second iteration. 
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 At this point, the optimum has been reached. These results say that the optimum, 

over the range studied, occurs when using a 100 MHz source frequency at a single 

detector location of 40 mm.  

A way of validating this method is necessary. The inverse algorithm can be run 

for the different combinations of frequencies and detector locations over the range being 

studied. Figure 5-11 shows the total error for the layer property predictions as a function 

of both frequency and the number of detectors. Once the actual property inputs used in 

the blind cases have been disclosed, the total error defined by Eq. (5.12) could be 

calculated. 

( ) ( ), ,/ /
2 2

s pred s act pred act100 1 1 L Lε µ µ′ ′= − + −  (5.12) 
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Figure 5-10: The objective function ΓΓΓΓ  plotted as a function of frequency and the number  of detectors 
for  case 3 for  the third iteration. 
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The total error is plotted to verify that the optimal measurement conditions predicted are 

in fact the optimal measurement conditions. 

 

 This verification plot would indicate that using 2 detectors ranging from 39-40 

mm at a source frequency of 100 MHz would result in the smallest error for the range 

investigated. Thus the proposed method effectively improved the predictions and nearly 

found the optimum in this case. However, the results for the other nine cases were 

inconsistent and unreliable. For some of these cases, the total error of the layer property 

predictions increased after the optimal number of detectors was selected. Table 5-2 shows 

the results both before and after the optimization with their corresponding total errors as 

calculated from Eq. (5.13). 
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Figure 5-11: Ver ification of the optimal measurement conditions selected. 



 

 74 

 

 Although half of the cases showed some improvement, the change was very 

slight. Generally speaking, whether improvements were made or not, the level of change 

for the property predictions was very small, insignificant enough that the use of this 

method is not worth the cost of performing the optimization portion of the algorithm.  

 Further consideration regarding the choice of the objective function may explain 

the inconsistencies of the optimization. The approach used to include the effects of the 

modeling error may not lead to improved property predictions. The way the objective is 

defined, the number of detectors and their locations are selected based partially on how 

well the measurement predictions agree with the simulated measurements at the current 

estimate of the properties. However, because diffusion theory may not be in good 

agreement near the actual values of the parameters, this optimization routine may in fact 

take the property predictions further from the actual values to a location where the 

Table 5-2. Summary of the predicted values before and after  the optimization along with their  
cor responding total er rors. The bolded cases indicate those that improved. 

 
 Before Opt. After  Opt. Total Error  

Case # µµµµ
�

s (m
-1) L (m) µµµµ

�

s (m
-1) L (m) Before After 

1 317.0 0.0907 318.4 0.0895 4.0% 5.0% 

2 511.1 0.1307 509.3 0.1280 5.2% 7.2% 

3 3460.1 0.0378 3480.2 0.0382 4.4% 3.3% 

4 82.6 0.0661 86.8 0.0677 3.1% 3.9% 

5 8125 0.1655 8133 0.1665 7.9% 7.3% 

6 3745 0.1164 3745.4 0.1177 10.8% 9.8% 

7 2688 0.1690 2684.3 0.1673 8.2% 9.1% 

8 13308 0.00856 13300 0.00855 0.6% 0.7% 

9 216.2 0.1709 216.1 0.1731 7.5% 6.8% 

10 1172 0.1420 1192 0.1422 7.2% 7.0% 
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measurements are in better agreement, but where the predicted properties may not be in 

good agreement. This observation illustrates the need to further investigate more 

appropriate methods when selecting the number of measurements and their locations. 

5.4 SYSTEMATIC SELECTION OF A M INIMAL NUMBER OF DETECTORS 

 Up to this point, a large number of measurements have been used to predict 

properties. Although this approach has proven to be effective in accurately predicting the 

layer properties, the cost of taking such a large number of measurements in a physical lab 

is high. Therefore a method for using a select few measurements is discussed. 

 This approach is developed based on the fact that the actual layer properties are 

already known. However, it is expected that this approach, once developed, can be 

applied to situations where the actual layer properties are unknown. For a number of 

cases with varying property values, diffusion theory based measurements were calculated 

and compared to Monte Carlo simulations (see Section 4.4). The combined relative error, 

including all three measurement types, was calculated as a function of rd at a single 

modulation frequency of 100 MHz. Figure 5-12 shows representative plots of the error 

for the same three cases that have been considered thus far. As can be seen in Fig 5-12, a 

clear minimum error occurs at an intermediate value of rd. This minimum value 

essentially shows the point where modeling error (dominates left of the minimum) and 

noise (dominates right of the minimum) are balanced. For the three cases shown here, a 

clearly defined minimum occurs at different locations. Other cases were also considered 

and minima were observed for each case.  
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 The detector location resulting in the combined minimum measurement error was 

identified for each case and plotted as a function of the product sLµ′  in order to observe 

the behavior. Figure 5-13 shows a plot of the detector location at which the combined 
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Figure 5-12: Total measurement er ror  between diffusion theory and Monte Car lo simulations for  (a) 

case #1, (b) case #3, and (c) case #5 plotted as a function of detector  location. 
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measurement error plotted as a function of sLµ′ , is a minimum. Recognizing a decaying 

trend, an exponential curve was fit to the data. 

 

 It can be seen that the optimal detector location decays very rapidly to a value of 

approximately 9 mm. Thus for a wide range of sLµ′ , the optimal detector location is 

roughly the same. Using this information, sequential steps are set forth that lead to 

accurate property predictions with a reduced number of measurements.  

 First, the three measurement types at a single detector location of 9 mm are used 

to obtain the first estimate of the property values based on random initial guesses of the 

properties. Based on these first estimates, an optimal detector location is calculated from 

the curve fit shown in Fig 5-13. Measurements at this new location are then used to 

obtain updated predictions for the properties. These steps are repeated until the calculated 
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Figure 5-13: Optimal detector  location plotted as a function of the product of sLµ ′ with its 
cor responding curve fit. 
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optimal detector location stops changing. This procedure was performed for the three 

cases considered thus far and the iterative progression is summarized in Table 5-3.  

 

The results in this table clearly show the ability to accurately predict foam layer 

properties with only a few measurements. For the three cases shown here, the predictions 

were all within 10%. Although the predictions obtained with a reduced number of 

measurements may not be as good as when using a large measurement set, the reduction 

in measurements is significant. For case #1, the progression of optimal detector location 

selection actually resulted in a higher overall prediction error. This could be caused by 

two reasons. First, the curve fit for the optimal detector location is not a perfect fit and 

therefore the property predictions may get slightly worse with the progression of the 

optimal detector selection. Secondly, the presented technique does not include the effects 

of sensitivities. As was mentioned previously, the accuracy of property predictions is 

generally improved by maximizing the sensitivities. For these two reasons, the property 

predictions may not be the best. Regardless of the less than optimal results, this technique 

has significantly reduced the number of measurements needed for good property 

estimation, and the reader should be reminded that the goal of this exercise was to simply 

Table 5-3. I terative progression of a method for  selecting a reduced number  of detector  locations. 
 

Case # rd,opt (mm) µµµµ
�

s (m
-1) L (m) Prediction er ror  

9 326.7 0.0906 3.8 % 

23 309.9 0.0916 4.8 % 1 

24 309.6 0.0914 5.0 % 

9 3316.5 0.0366 8.7 % 
3 

10 3342.7 0.0366 8.4 % 

5 9 7848.7 0.1638 9.9 % 
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demonstrate a technique for which one could systematically select a few detector 

locations that resulted in good property estimation.  
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6 - CONCLUSIONS AND RECOMMENDATIONS 

6.1 OBJECTIVE SUMMARY 

The ability to predict structural and radiative properties of layers through the use 

of an inverse algorithm has been demonstrated for ten blind cases. A significant part of 

inverse problems requires a method to accurately solve the forward problem. A diffusion 

theory model capable of modeling radiative transfer through a non-absorbing, scattering 

foam layer has been derived by applying simplifying approximations to the RTE.  The 

resulting governing equation was solved through the use of integral transforms in both 

the time-domain and frequency-domain.  

Numerical Monte Carlo methods were used to simulate experimental reflected 

flux measurements of foam layers. Such measurements were simulated in the time-

domain (representative of a pulsed laser source), and reflectance simulations were 

recorded at various source-detector separations distances. Pulsed simulated 

measurements were related to representative modulated measurements through the use of 

a FFT. The development of the FFT came from the consideration of the transfer function 

for the specified system.  

Comparisons of diffusion theory predicted measurements and Monte Carlo 

simulated measurements were made in both the time-domain and frequency-domain to 
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determine how well diffusion theory modeled simulated measurements and ultimately 

give insight as to its ability to accurately predict layer properties. Comparisons made in 

the time-domain showed good agreement for all cases. Agreement between the two 

tended to improve at larger times and increased source-detector separation distances. 

However, for such conditions, the signal-to-noise ratio decreases significantly and 

consequently the uncertainty in the measurements increases. Because measurements in 

the frequency-domain are less sensitive to noise, comparison between simulated 

measurements and diffusion theory predictions appears to be better than those of the 

time-domain. For frequency-domain comparisons, appropriate consideration of the source 

modulation frequency as well as source-detector separation distance was investigated. 

Agreement for all ten cases was very good. Evidence of noise is apparent for some of the 

cases at higher frequencies and for increased source-detector separation. Nevertheless, 

diffusion theory proved its ability to accurately model radiation propagation over the 

range of property values considered. 

Use of a conjugate-gradient method for solving inverse problems was employed 

to predict layer properties in ten blind tests. The relative errors in the predicted properties 

were generally less than 10%, and on average, the errors were approximately 4%. 

Predictions of sµ′  were all within approximately 5% with the majority being within 3%. 

This is an impressive result since the actual values of sµ′  range over approximately four 

orders of magnitude. Generally, the prediction error of sµ′  decreased as sµ′  increased. 

This was expected since diffusion theory more accurately models radiative transport as 
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sµ′  increases. Predictions of L were all within approximately 10% with the majority being 

within 7%. These results are likewise impressive in that the actual values ranged from 

approximately 8.5 mm to 18 cm.  

An attempt at optimizing the modulation frequency and the number of detectors 

and their locations was made to improve the property predictions. Mixed results were 

observed with about half of the cases considered showing improved results, while the 

other half resulted in worse predictions. In either case, the changes in property 

predictions due to the optimization were minimal.  

 

6.2 RECOMMENDATIONS 

It is recommended that the inverse problem be extended to cases where the 

simulated foam layers include the effects of absorption. The procedure illustrated in this 

research is easily extended to mildly absorbing foams. An additional problem of interest 

would be to separate the asymmetry parameter (g) and the scattering coefficient ( sµ ) 

from the reduced scattering coefficient ( sµ′ ). For this task, a source representation 

different from the modified Point Source is necessary. Such a representation would 

require that g and sµ  appear independently so as to satisfy the identifiability criterion [3].  
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APPENDIX A– DETAILED SOLUTION TO THE DIFFUSION 
APPROXIMATION USING INTEGRAL TRANSFORMS 

 

 Beginning with the non-dimensional form of the diffusion equation and its 

corresponding boundary conditions, the detailed derivation of the diffusion theory model 

in presented here.  
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Consider the associated Sturm-Liouville problem in ζ. 
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Applying the two boundary conditions in ζ, yields the following transcendental function 

for the eigenvalues. 

( ) ( )2 2cos sin 0+ − − =o L o LL H H H H Lβ β β β  (A.8) 

where the eigenfunctions are given by 

( ) 1 2cos sin= +n n nZ c cς β ς β ς   (A.9) 

The eigenvalues are the positive roots of Eq.(A.8), for n=1,2,…, . The normalization 

factor for the eigenfunction is given by 
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Integrating the previous equations by parts yields the following equation. 
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Consider the term inside of the integral of Eq. (A.11) and the squared representation of 

the eigenfunction. 
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Adding the two previous equations together results in the following equation. 
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Integrating each term of Eq. (A.14) over ζ from 0 to 1 yields the following succession of 

equations. 
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Solving Eq. (A.11) for the integral term, substituting into Eq. (A.16), and applying the 

appropriate boundary conditions in ζ, results in the following equation after some 

simplifying algebra. 
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The kernel for the integral transform can now be defined as follows. 

( ) ( )= n
n

n

Z
k

N

ς
ς   (A.18) 

 The Fourier Transform and its inverse can now be introduced and is subsequently 

used to remove the spatial dependence of ζ.  
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Application of the Fourier Transform to Eq. (A.1) results in the following term-by-term 

integration. 
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The Fourier Transformed equation can now be defined. 
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 The forward and inverse Hankel Transforms are given in the following equations 

respectively. The forward transform is used to remove the remaining spatial dependence. 

( ) ( ) ( )
0

, , , ,
∞
�=n o nJψ λ β τ ρ λρ ψ ρ β τ   (A.26) 

( ) ( ) ( )
0

, , , ,
∞

= �n o nJ dψ ρ β τ λ λρ ψ λ β τ λ   (A.27) 

Applying the Hankel Transform to Eq. (A.25) takes us one step closer to the solution. 

( )
1

0

∂ ∂=� ∂ ∂oJ d
ψ ψρ λρ ρ
τ τ

  (A.28) 

( ) ( )
1

2

0

1
, ,

� 	∂ ∂ = −� 
 �∂ ∂� 
o nJ d

ψρ ρ λρ ρ λ ψ λ β τ
ρ ρ ρ

 (A.29) 
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( ) ( ) ( )
1

0

0 1= =� o oJ d J
δ ρ

ρ λρ ρ
ρ

  (A.30) 

Equation (A.25) can be modified to incorporate the results of the Hankel Transform. 

( ) ( ) ( )2 2 2

2

′∂ + + +
∂

n o
n

k
D a f

ςψ λ β ψ τ
τ

  (A.31) 

For convenience let the following be defined as ( ) ( )2 2 2, = +n np D aλ β λ β . Equation 

(A.31) can be solved using an integrating factor approach, and the solution is listed 

below. 

( ) ( ) ( )
0

, ,
2

−
′−′

′ ′= �

p
n o p

n

k e
e f d

τ τ
τς

ψ λ β τ τ τ   (A.32) 

 At this point it is necessary to introduce the time-dependent portion of the source 

term. First consider the case when ( ) ( )of τ δ τ τ ′= −  which corresponds to a pulsed input. 

Solving Eq. (A.32) for the pulsed input and using a *  notation to distinguish its solution 

from the modulated source input solution that will follow the current discussion yields 

( ) ( ) ( ), ,
2

′− −∗ ′
= opn o

n

k
e τ τς

ψ λ β τ   (A.33) 

Applying the inverse Hankel Transform given in Eq. (A.27) 

( ) ( ) ( ) ( )( ){ }2 2 2

0

, , exp
2

∞
∗ ′

′= − + −�
n o

n o n o

k
J D a d

ς
ψ ρ β τ λ λρ λ β τ τ λ  (A.34) 

( ) ( )
( ) ( ) ( )

2
2 2, , exp

4 4
∗ � �′ � �′= − − −� �′ ′− −� �� �

n o
n n o

o o

k
a

D D

ς ρψ ρ β τ β τ τ
τ τ τ τ

 (A.35) 

Applying the inverse Fourier Transform given in Eq. (A.20) 
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( ) ( ) ( )
( ) ( ) ( )

2
2 2

1
, , exp

4 4

∞∗

=

� �′ � �′= − − −� � �′ ′− −� �� �

n o n
n o

n o o

k k
a D

D D

ς ς ρψ ρ ς τ β τ τ
τ τ τ τ

 (A.36) 

 The local non-dimensional reflected flux is obtained from the gradient of the 

fluence rate at the surface of the foam layer and is related to the boundary condition given 

by Eq.(A.5).  

( ) ( )
0

1
, ,0,

3
=

∂= =
′ ∂ o
s

R h
L ς

ψρ τ ψ ρ τ
µ ς

  (A.37) 

Where oh  is related to the boundary coefficient by 3o o sh H µ′= . A relationship for the 

reflected flux can then be obtained. 

( ) ( ) ( ) ( ) ( ) ( ){ }
2

2 2

1
, exp exp

4 4

∞

=

� �� � ′ ′= − − −�� �′ ′− −� �� �

o
n o n o n o

no o

h
R k k a D

D D

ρρ τ ς ς β τ τ
τ τ τ τ

 (A.38) 

 Now consider the case when ( ) ( )1 sin ′= + − of Aτ τ τ  which corresponds to a 

modulated input. Solving Eq. (A.32) for the modulated input yields 

( ) ( ) ( )
0

, , 1 sin
2

′− −′
′ ′� �= + −� � �

n o p p
n o

k
e e A d

τ
τ τς

ψ λ β τ τ τ τ  (A.39) 

Evaluating this integral results in the following 

( ) ( ) ( )

( ) ( ) ( )

2

2 2

1
, , cos sin e

2 1

1
sin cos

2 1 1

n o p
n o o

n o
o o

k A
p

p p

k Ap A

p p p

τς
ψ λ β τ τ τ

ς
τ τ τ τ

−′ � 	′ ′= + −
 �+� 

′ � �′ ′+ − − − +� �+ +� �

 (A.40) 

The exponential term decays rapidly for 0τ >  and is therefore neglected and only the 

periodic portion of the solution is retained. 
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( ) ( ) ( ) ( ) ( ) ( ), , , , sin , cosp n n n o n oS T Uψ λ β τ λ β λ β τ τ λ β τ τ′ ′= + − − −  (A.41) 

where ( ), nS λ β , ( ), nT λ β , and ( ), nU λ β  are defined by the following equations. 

( ) ( )
( ),

2 ,
n o

n
n

k
S

p

ς
λ β

λ β
′

=   (A.42) 

( ) ( ) ( )
( )2

,
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2 , 1
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ς λ β
λ β

λ β
′
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+

  (A.43) 

( ) ( )
( )2,

2 , 1

n o
n

n

kA
U

p

ς
λ β

λ β
′

=
+

  (A.44) 

Applying the inverse Hankel Transform as defined in Eq. (A.27) 

( ) ( ) ( )
0

, , , ,
∞

= �p n o nJ dψ ρ β τ λ λρ ψ λ β τ λ   (A.45) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

, , , , sin
2 2

, cos
2

′
′ ′= + −

′ ′− −

n o
p n n n o n o

n o n o

k A
S k T

A
k U

ς
ψ ρ β τ ρ β ς ρ β τ τ

ς ρ β τ τ
 (A.46) 

where ( ), nS λ β , ( ), nT λ β , and ( ), nU λ β  are defined by the following equations. 

( ) ( )0

1
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,

∞
= �n

n

S d
p

λ β λ
λ β

  (A.47) 
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, 1

∞
= �

+
n

n

n

p
T d

p

λ β
λ β λ
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  (A.48) 
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1
,

, 1

∞
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U d
p

λ β λ
λ β

  (A.49) 

Applying the inverse Fourier Transform given in Eq. (A.20) 

( ) ( ) ( ) ( ) ( ) ( )
1

, , , , sin , cos
∞

=
′ ′= + − − −�p o o

n
S T Uψ ρ ς τ ρ ς ρ ς τ τ ρ ς τ τ  (A.50) 
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 The non-dimensional reflected flux for the frequency domain is also given by Eq. 

(A.37). Some algebraic manipulation gives the following results. 

( ) ( ) ( ) ( ) ( )2 2, , , , sin= + + −
��

o n o n nR h S h T Uρ τ ρ β ρ β ρ β τ θ  (A.51) 

where the phase shift θ
�

 is defined by 

( )
( )

-1 ,0
= +tan

,0o
U

T

ρ
θ τ

ρ
� �

′ � �
� �� �

�

  (A.52) 

and the other terms are defined below. 

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
1 10

0 0
,

2 , 2

∞∞ ∞
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′ ′
= =� ��
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k k k kJ
S d K a

p D
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APPENDIX B– RESULTS FOR ADDITIONAL SEVEN CASES 

 

B.1 TIME-DOMAIN COMPARISONS 

 The contents of this appendix include comparisons between Monte Carlo 

simulations and diffusion theory predictions for the additional seven cases not included in 

the body of this work. Both time-domain and frequency-domain comparisons are given. 
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Figure B-1: Time-domain compar ison between diffusion theory and Monte Car lo simulations for   
case #2 ( sµµµµ ′′′′ ==== 517 m-1, L ==== 0.1376 m)  at a source-detector  separation of 15 mm. 
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Figure B-2: Time-domain compar ison between diffusion theory and Monte Car lo simulations for   
case #2 ( sµµµµ ′′′′ ==== 517 m-1, L ==== 0.1376 m)   at a source-detector  separation of 30 mm. 
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Figure B-3: Time-domain compar ison between diffusion theory and Monte Car lo simulations for   
case #2 ( sµµµµ ′′′′ ==== 517 m-1, L ==== 0.1376 m)   at a source-detector  separation of 60 mm. 
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Case 4 

 

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0 0.1 0.2 0.3 0.4 0.5

MC
Diffusion 
Theory

R

τ

r
d
 = 15 mm

 
 

Figure B-4: Time-domain compar ison between diffusion theory and Monte Car lo simulations for  
case #4 ( sµµµµ ′′′′ ==== 85 m-1, L ==== 0.0655 m)   at a source-detector  separation of 15 mm. 
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Figure B-5: Time-domain compar ison between diffusion theory and Monte Car lo simulations for  
case #4 ( sµµµµ ′′′′ ==== 85 m-1, L ==== 0.0655 m)   at a source-detector  separation of 30 mm. 
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Case 6 
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Figure B-7: Time-domain compar ison between diffusion theory and Monte Car lo simulations for  
case #6 ( sµµµµ ′′′′ ==== 3866 m-1, L ==== 0.1298 m)   at a source-detector  separation of 15 mm. 
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Figure B-6: Time-domain compar ison between diffusion theory and Monte Car lo simulations for  
case #4 ( sµµµµ ′′′′ ==== 85 m-1, L ==== 0.0655 m)   at a source-detector  separation of 60 mm. 
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Figure B-8: Time-domain compar ison between diffusion theory and Monte Car lo simulations for  
case #6 ( sµµµµ ′′′′ ==== 3866 m-1, L ==== 0.1298 m)   at a source-detector  separation of 30 mm. 
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Figure B-9: Time-domain compar ison between diffusion theory and Monte Car lo simulations for  
case #6 ( sµµµµ ′′′′ ==== 3866 m-1, L ==== 0.1298 m)   at a source-detector  separation of 40 mm. 
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Case 7 
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Figure B-10: Time-domain compar ison between diffusion theory and Monte Car lo simulations for  
case #7 ( sµµµµ ′′′′ ==== 2731 m-1, L ==== 0.1838 m)   at a source-detector  separation of 15 mm. 
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Figure B-11: Time-domain compar ison between diffusion theory and Monte Car lo simulations for  
case #7 ( sµµµµ ′′′′ ==== 2731 m-1, L ==== 0.1838 m)   at a source-detector  separation of 30 mm. 
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Case 8 
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Figure B-12: Time-domain compar ison between diffusion theory and Monte Car lo simulations for  
case #7 ( sµµµµ ′′′′ ==== 2731 m-1, L ==== 0.1838 m)   at a source-detector  separation of 40 mm. 

0

2 10-8

4 10-8

6 10-8

8 10-8

1 10-7

0 1 2 3 4 5 6

MC
Diffusion 
Theory

R

τ

r
d
 = 15 mm

 
 

Figure B-13: Time-domain compar ison between diffusion theory and Monte Car lo simulations for  
case #8 ( sµµµµ ′′′′ ==== 13358 m-1, L ==== 0.0086 m)   at a source-detector  separation of 15 mm. 
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Figure B-14: Time-domain compar ison between diffusion theory and Monte Car lo simulations for  
case #8 ( sµµµµ ′′′′ ==== 13358 m-1, L ==== 0.0086 m)   at a source-detector  separation of 20 mm. 
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Figure B-15: Time-domain compar ison between diffusion theory and Monte Car lo simulations for  
case #8 ( sµµµµ ′′′′ ==== 13358 m-1, L ==== 0.0086 m)   at a source-detector  separation of 25 mm. 
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Case 9 
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Figure B-16: Time-domain compar ison between diffusion theory and Monte Car lo simulations for  
case #9 ( sµµµµ ′′′′ ==== 229 m-1, L ==== 0.1803 m)   at a source-detector  separation of 15 mm. 
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Figure B-17: Time-domain compar ison between diffusion theory and Monte Car lo simulations for  
case #9 ( sµµµµ ′′′′ ==== 229 m-1, L ==== 0.1803 m)   at a source-detector  separation of 30 mm. 
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Case 10 
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Figure B-18: Time-domain compar ison between diffusion theory and Monte Car lo simulations for  
case #9 ( sµµµµ ′′′′ ==== 229 m-1, L ==== 0.1803 m)   at a source-detector  separation of 60 mm. 
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Figure B-19: Time-domain compar ison between diffusion theory and Monte Car lo simulations for  
case #10 ( sµµµµ ′′′′ ==== 1185 m-1, L ==== 0.1529 m)   at a source-detector  separation of 15 mm. 
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Figure B-20: Time-domain compar ison between diffusion theory and Monte Car lo simulations for  
case #10 ( sµµµµ ′′′′ ==== 1185 m-1, L ==== 0.1529 m)   at a source-detector  separation of 30 mm. 
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Figure B-21: Time-domain compar ison between diffusion theory and Monte Car lo simulations for  
case #10 ( sµµµµ ′′′′ ==== 1185 m-1, L ==== 0.1529 m)   at a source-detector  separation of 60 mm. 
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B.2 FREQUENCY-DOMAIN COMPARISONS 

Case2 
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Figure B-22: Frequency-domain compar ison between diffusion theory and Monte Car lo simulations 
for  case #2 ( sµµµµ ′′′′ ==== 517 m-1, L ==== 0.1376 m) at dr ==== 60 mm and of ==== 100 MHz. 
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Figure B-23: Compar ison between diffusion theory and Monte Car lo simulations of AC values for  
case #2 ( sµµµµ ′′′′ ==== 517 m-1, L ==== 0.1376 m) at (a) of ==== 100 MHz, (b) of ==== 200 MHz. 
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Case 4 
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Figure B-24: Compar isons between diffusion theory and Monte Car lo simulations of the phase shift 
for  case #2 ( sµµµµ ′′′′ ==== 517 m-1, L ==== 0.1376 m) at (a) of ==== 100 MHz, (b) of ==== 200 MHz. 
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Figure B-25: Frequency-domain compar ison between diffusion theory and Monte Car lo simulations 
for  case #4 ( sµµµµ ′′′′ ==== 85 m-1, L ==== 0.0655 m) at dr ==== 60 mm and of ==== 100 MHz. 
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Figure B-26: Compar ison between diffusion theory and Monte Car lo simulations of AC values for  
case #4 ( sµµµµ ′′′′ ==== 85 m-1, L ==== 0.0655 m) at (a) of ==== 100 MHz, (b) of ==== 200 MHz. 
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Figure B-27: Compar ison of the phase shift between diffusion theory and Monte Car lo simulations 
for  case #4 ( sµµµµ ′′′′ ==== 85 m-1, L ==== 0.0655 m) at (a) of ==== 100 MHz, (b) of ==== 200 MHz. 
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Case 6 
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Figure B-28: Frequency-domain compar ison between diffusion theory and Monte Car lo simulations 
for  case #6 ( sµµµµ ′′′′ ==== 3866 m-1, L ==== 0.1298 m) at dr ==== 40 mm and of ==== 100 MHz. 

10-8

10-7

10-6

10-5

15 20 25 30 35 40

f
o
 = 100 MHz

MC
Diffusion 
Theory

AC

r
d
 (mm)

10-9

10-8

10-7

10-6

10-5

15 20 25 30 35 40

f
o
 = 200 MHz

MC
Diffusion 
Theory

r
d
 (mm)

 
       (a)        (b) 

Figure B-29: Compar ison between diffusion theory and Monte Car lo simulations of AC values for  
case #6 ( sµµµµ ′′′′ ==== 3866 m-1, L ==== 0.1298 m) at (a) of ==== 100 MHz, (b) of ==== 200 MHz. 
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Case 7 
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Figure B-30: Compar ison of the phase shift between diffusion theory and Monte Car lo simulations 
for  case #6 ( sµµµµ ′′′′ ==== 3866 m-1, L ==== 0.1298 m) at (a) of ==== 100 MHz, (b) of ==== 200 MHz. 
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Figure B-31: Frequency-domain compar ison between diffusion theory and Monte Car lo simulations 
for  case #7 ( sµµµµ ′′′′ ==== 2731 m-1, L ==== 0.1838 m) at dr ==== 40 mm and of ==== 100 MHz. 
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Figure B-33: Compar ison of the phase shift between diffusion theory and Monte Car lo simulations 
for  case #7 ( sµµµµ ′′′′ ==== 2731 m-1, L ==== 0.1838 m) at (a) of ==== 100 MHz, (b) of ==== 200 MHz. 
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Figure B-32: Compar ison between diffusion theory and Monte Car lo simulations of AC values for  
case #7 ( sµµµµ ′′′′ ==== 2731 m-1, L ==== 0.1838 m) at (a) of ==== 100 MHz, (b) of ==== 200 MHz. 
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Case 8 

2.5 10-9

3 10-9

3.5 10-9

4 10-9

4.5 10-9

5 10-9

0 2 4 6 8 10

MC
Diffusion 
Theory

R

τ  
 

Figure B-34: Frequency-domain compar ison between diffusion theory and Monte Car lo simulations 
for  case #8 ( sµµµµ ′′′′ ==== 13358 m-1, L ==== 0.0086 m) at dr ==== 25 mm and of ==== 100 MHz. 
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Figure B-35: Compar ison between diffusion theory and Monte Car lo simulations of AC values for  
case #8 ( sµµµµ ′′′′ ==== 13358 m-1, L ==== 0.0086 m) at (a) of ==== 100 MHz, (b) of ==== 200 MHz. 
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Case 9 

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

14 16 18 20 22 24 26

f
o
 = 100 MHz

MC
Diffusion 
Theory

θ

r
d
 (mm)

 

3

4

5

6

7

8

14 16 18 20 22 24 26

f
o
 = 200 MHz

MC
Diffusion 
Theory

r
d
 (mm)

 
     (a)                   (b) 

Figure B-36: Compar ison of the phase shift between diffusion theory and Monte Car lo simulations 
for  case #8 ( sµµµµ ′′′′ ==== 13358 m-1, L ==== 0.0086 m) at (a) of ==== 100 MHz, (b) of ==== 200 MHz. 
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Figure B-37: Frequency-domain compar ison between diffusion theory and Monte Car lo simulations 
for  case #9 ( sµµµµ ′′′′ ==== 229 m-1, L ==== 0.1803 m) at dr ==== 60 mm and of ==== 100 MHz. 
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Figure B-38: Compar ison between diffusion theory and Monte Car lo simulations of AC values for  
case #9 ( sµµµµ ′′′′ ==== 229 m-1, L ==== 0.1803 m) at (a) of ==== 100 MHz, (b) of ==== 200 MHz. 
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Figure B-39: Compar ison of the phase shift between diffusion theory and Monte Car lo simulations 
for  case #9 ( sµµµµ ′′′′ ==== 229 m-1, L ==== 0.1803 m) at (a) of ==== 100 MHz, (b) of ==== 200 MHz. 
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Case 10 
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Figure B-41: Compar ison between diffusion theory and Monte Car lo simulations of AC values for  
case #10 ( sµµµµ ′′′′ ==== 1185 m-1, L ==== 0.1529 m) at (a) of ==== 100 MHz, (b) of ==== 200 MHz. 
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Figure B-40: Frequency-domain compar ison between diffusion theory and Monte Car lo simulations 
for  case #10 ( sµµµµ ′′′′ ==== 1185 m-1, L ==== 0.1529 m) at dr ==== 60 mm and of ==== 100 MHz. 
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B.3 INVERSION ALGORITHM CONVERGENCE HISTORIES 

Case 2 
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Figure B-42: Compar ison of the phase shift between diffusion theory and Monte Car lo simulations 
for  case #10 ( sµµµµ ′′′′ ==== 1185 m-1, L ==== 0.1529 m) at (a) of ==== 100 MHz, (b) of ==== 200 MHz. 
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Figure B-43: I teration history of the inverse algor ithm for  case #2. 
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Case 4 
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Figure B-44: I teration history of the inverse algor ithm for  case #4. 
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Figure B-45: I teration history of the inverse algor ithm for  case #6. 
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Case 7 
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Figure B-46: I teration history of the inverse algor ithm for  case #7. 
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Figure B-47: I teration history of the inverse algor ithm for  case #8. 
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Case 9 
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Figure B-48: I teration history of the inverse algor ithm for  case #9. 

0

500

1000

1500

2000

2500

3000

3500

4000

0

0.05

0.1

0.15

0 5 10 15

µ'
s

L

µ'
s
 (m-1) L (m)

iteration  
 

Figure B-49: I teration history of the inverse algor ithm for  case #10. 
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APPENDIX C– DERIVATION OF MONTE CARLO CONVERSION 
FROM TIME-DOMAIN TO FREQUENCY DOMAIN 

 

 The Monte Carlo method is treated as a system that converts the input (the time-

dependent portion of the source) into the output (the time-dependent reflectance profile). 

The simulations in this research were generated for a pulsed source representation. 

However, frequency-domain measurements are necessary for the inverse problem. The 

following shows the derivation of the equations necessary to convert time-domain 

measurements into frequency-domain measurements. Consider the Fourier transform. 

( ) ( ) ( ){ }ˆ
f

i
foF f v e d F v

τ
τ τ τ

∞

−∞

= =�   (C.1) 

The transfer function for this system is defined as 

( ) ( )
( )

ˆ

ˆ
R f

z f
F f

=   (C.2) 

where ( )R̂ f  is the Fourier transform of the reflectance profile and is defined below. 

( ) ( ){ } ( )ˆ
f

i
foR f F R R e d

τ
τ τ τ

∞

−∞

= = �   (C.3) 

 To find ( )z f , let ( ) ( )v τ δ τ∗ =  be the time-dependent portion of the source and 

( )R τ∗  be the corresponding reflectance profile. ( )R τ∗  is obtained from the Monte Carlo 

simulation with a pulse input and ( )R̂ f∗ is the corresponding Fourier transform of the 
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reflectance. However, because ( )R τ∗  contains data at discrete time intervals, it is 

convenient to calculate ( )R̂ f∗  through the use of the FFT. Equation (C.1) can be used to 

evaluate the Fourier transform of the input ( )v τ∗ . 

( ) ( )ˆ
f

i
foF f e d 1

τ
δ τ τ

∞
∗

−∞

= =�   (C.4) 

 The transfer function simply becomes ( ) ( )ˆz f R f∗=  and can be used for any 

arbitrary input ( )v τ  to obtain the corresponding reflectance profile. Solving Eq. (C.2) for 

( )R̂ f  and substituting the result of the transfer function, the Fourier transformed 

reflectance profile for an arbitrary source is given by 

( ) ( ) ( )ˆ ˆ ˆR f R f F f∗=   (C.5) 

Applying the inverse Fourier transform to Eq. (C.5) results in a reflectance profile 

corresponding to the respective input ( )v τ . 

( ) ( ) ( )ˆ ˆ
f

i
foR R f F f e d

τ
τ τ

∞ −
∗

−∞

= �   (C.6) 

Consider the case of a sinusoidal modulated source input ( ) sinv 1 Aτ τ= + . 

( ) ( )ˆ sin

f
i

foF f 1 A e d
τ

τ τ
∞

−∞

= +�   (C.7) 

Evaluation of Eq. (C.7) requires a definition of the exponential portion of the integral 

[32]. 

( ) ( )i2 f xx e dfπ ξδ ξ
∞

± −

−∞

− = �   (C.8) 
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Applying the definition of Eq. (C.8) and recalling the complex form of the sine 

function, ( )sin 2i ie e iτ ττ −= −  Eq. (C.7) can be evaluated re-written in the following form 

( )ˆ
2

o o

f f
i ii i

f fe e
F f e d A e d

i

τ ττ τ
τ τ

−− −∞ ∞

−∞ −∞

−= +� �  (C.9) 

This equation can now be evaluated to yield the following. 

( )ˆ
o o o

f Ai f 1 Ai f 1
F f

2 f 2 2 f 2 2 2 f 2
δ δ δ

π π π π π
� 	 � 	 � 	

= − + + −
 � 
 � 
 �
�  �  � 

 (C.10) 

Substituting Eq. (C.10) into Eq. (C.6) and evaluating the integral yields 

( ) ( ) ( ) ( )ˆ ˆ ˆi i
o o

Ai
R R 0 R f e R f e

2
τ ττ ∗ ∗ ∗ −� �= − − −

� �

�

 (C.11) 

Considering only the bracketed term and putting the complex exponential terms into their 

sine and cosine counterparts allows for some simplification. 

( ) ( )[ ] ( ) ( ) ( )ˆ ˆcos sin cos sinb o oR R f i R f iτ τ τ τ τ∗ ∗ � �= − + − − + −� �
�

 (C.12) 

Recalling the odd and even function properties of periodic functions allows for some 

further simplification. 

( )
( )

cos cos

sin sin

τ τ
τ τ

− =

− = −
  (C.13) 

Using these properties, Eq. (C.12) can be re-written in the following form. 

( ) ( )[ ] ( )[ ]ˆ ˆcos sin cos sinb o oR R f i R f iτ τ τ τ τ∗ ∗= − + − −
�

 (C.14) 
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 It is important to note that R̂∗ , obtained from the FFT, is a complex number and 

therefore contains both real and imaginary components as a function of frequency. At this 

point it is necessary to introduce some notation that will be used to simplify Eq. (C.14). 

( ) ( ) ( )ˆ Re Imo o oR f f i f∗ = +   (C.15) 

Re() and Im() are used to simply represent the real and imaginary components 

respectively of the complex number at the specified frequencies. The following properties 

of the FFT allow for simplification of the previous equations. 

( ) ( )
( ) ( )
( )

Re Re

Im Im

Im

o o

o o

f f

f f

0 0

− =

− = −

=

  (C.16) 

Substituting this notation into Eq. (C.14) results in 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

Re Im cos Re Im sin

Re Im cos Re Im sin

b o o o o

o o o o

R f i f f i f

f i f f i f

τ τ

τ τ

� � � �= − + −� � � �

� � � �− + + +� � � �

�

 (C.17) 

Grouping like terms of Eq. (C.17) and putting the results back into the bracketed portion 

of Eq. (C.11) results in the following. 

( ) ( ) ( ) ( )Re Im cos Re sino o
Ai

R 0 2i f 2i f
2

τ τ τ� �= − +� �
�

 (C.18) 

Distributing the terms yields 

( ) ( ) ( ) ( )Re Im cos Re sino oR 0 A f A fτ τ τ= − +
�

 (C.19) 
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 Although this equation is in a simplified form, some manipulation can be done to 

put it in a similar form to that resulting from diffusion theory, thereby making it simple to 

compare measurements. Eq. (C.19) can now be written in a different form. 

( ) ( ) ( ) ( )

( )
( ) ( )

( )
( ) ( )

Re Re Im

Re Im
sin cos

Re Im Re Im

2 2
o o

o o

2 2 2 2
o o o o

R 0 A f f

f f

f f f f

τ

τ τ

= + +

� �
� �−
� �+ +� �� �

�

 (C.20) 

These terms can be simplified by considering a right triangle that contains an angle θ 

with an opposite side of Im(fo) and adjacent side of Re(fo). 

( ) ( ) ( ) ( ) [ ]Re Re Im sin cos cos sin
2 2

o oR 0 A f fτ τ θ τ θ= + + −
�

 (C.21) 

Using trigonometric identities Eq. (C.21) can be written in its final form which 

corresponds to a sinusoidal input. 

( ) ( ) ( ) ( ) ( )Re Re Im sin
2 2

o oR 0 A f fτ τ θ= + + −
�

 (C.22) 

Where θ  represents the phase shift between the input and the output and is defined by the 

following equation. 

( )
( )

Im
tan

Re
o1

o

f

f
θ − � �

= � �
� �� �

  (C.23) 
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APPENDIX D– SOURCE CODES USED IN THIS RESEARCH 

 

D.1 MONTE CARLO SIMULATION SOURCE CODE INCLUDING THE FAST FOURIER 

TRANSFORM  

Source code file: fmc.C 
 

Compile instructions: use the following command in a UNIX command window in 
the directory where fmc.C is located 

  g++ fmc.C –o desirednameofexecutable –lm -O 
 run executable by typing “ ./”  then name of executable file, 

then press “Enter.”  
 

User Inputs: values defining the layer properties and measurement 
 parameters 

 
Program Output Files:  reflect.txt – reflectance profile at various detector locations 

 FFT.txt – The fast Fourier transformed data  
 meas.txt – calculated measurements from FFT data 
 

Source Code: 
/* This is a Monte Carlo simulation code. It simulates non-dimensional reflectance measurements in the 
time-domain some distance from a laser source. Corresponding frequency-domain measurements are 
calculated by applying a Fast Fourier Transform to the time-domain data. */ 
 
#include <iomanip> 
#include <fstream> 
#include <iostream> 
#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <time.h> 
using namespace std; 
 
#define np 1.0E7   // number of photons  
#define g 0.75     // asymmetry parameter  
#define mua 0      // absorption coefficient (m-1) 
#define mus 8332   // scattering coefficient (m-1) 
#define mu (mua+mus)   // attenuation coefficient (m-1)   
#define musp (mus*(1-g))  // reduced scattering coefficient (m-1) 
#define h 0.05  // layer thickness: h must be less than or equal to 0.2 m to be within the range of  
   // the curve fit for taumax 
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#define A 0.3     // Amplitude of oscillation for modulated source  
#define wmin 0.001   // minimum weight of photon allowed to continue tracking the photon 
#define psrw 0.10    // probability of surviving the roulette wheel     
#define taumin 10    // minimum value of tau        
#define taumax1 ceil(musp*(-7.3488*pow(h,6)-120.08*pow(h,5)+126*pow(h,4)-44.978*pow(h,3)+ 
      5.7272*pow(h,2)+0.0732*h+0.00029)) 
#define taumax max(taumax1,double(taumin))  // minimum value of tau  
#define nt int(taumax/dtau)  // the number of time bins  
#define csize (2*rad+1)       // the number of columns in the reflectance array  
#define dt 20.1416015625e-12  // time resolution (sec), it is such a weird number only to simplify  
       the frequency increments of the FFT  
#define dtau (dt*omega)  // non-dimensional time resolution     
#define ro 0.001   // laser beam radius (m)     
#define dr ro    // radial resolution (m)     
#define rad 46   // the number of detector locations     
#define rsmall 0.015    // minimum detector location (m)   
#define rbig 0.060     // maximum detector location (m)    
#define omega (2*pi*0.1e9)  // angular frequency used for the non-dimensional time definition  
#define siz 65536    // size of input array to FFT algorithm    
#define fmax 5   // maximum frequency output from FFT algorithm in GHz   
#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr 
#define nf 1.3    // foam index of refraction     
#define na 1.0    // air index of refraction      
#define ng 1.5    // glass index of refraction     
#define c0 3.0e8     // speed of light in a vacuum (m/s)    
#define c c0/nf     // speed of light in foam (m/s)    
#define pi 3.14159265358979 
#define IM1 2147483563 
#define IM2 2147483399     
#define AM (1.0/IM1)     
#define IMM1 (IM1 - 1)     
#define IA1 40014     
#define IA2 40692  
#define IQ1 53668 
#define IQ2 52774 
#define IR1 12211 
#define IR2 3791 
#define NTAB 32 
#define NDIV (1+IMM1/NTAB) 
#define EPS 1.2e-7 
#define RNMX (1.0-EPS) 
 
double ran2(long *idum); 
 
int main () 
{   
 //Define internal variables  
 double ap,dp,tp,lpt,lpnd,w,path,x,y,z,mux,muy,muz,rin,theta,lw,tau,fct,random; 
 double s,xnew,ynew,znew,phi,muxnew,muynew,muznew,alphai,alphac,alphat,ir,sc,rc,xc,yc; 
 long * idum, seed;  
 double reflect[nt+1][csize]; 
 double r[rad]={ 0} ; 
 long double j,jprint; 
 int jtc,i,m,check,ii,k,jj;  
 
 //Variables declaration for the FFT algorithm 
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 unsigned long n,mmax,istep; 
 double wtemp,wr,wpr,wpi,wi,tempr,tempi,freq,mod,AC,DC; 
 unsigned long nn = siz/2; 
 int isign = 1; 
 double data[siz+1][rad+1]; 
  
 //Relate variables to their pointers  
 idum=&seed; 
 srand((unsigned)time(NULL)); 
 seed=-int(1e6*rand()/RAND_MAX)*2-1; 
  
 //Define detector location array 
 for (i=0; i<rad; i++) 
  r[i]=rsmall+(rbig-rsmall)/(rad-1)*i; 
  
 //Initialize the Reflectance Array: time = row, radius = column  
 for (i=0; i<=nt; i++) 
 {  
  for (m=0; m<csize; m++) 
   reflect[i][m]=0; 
 }  
  
 for (i=0; i<=siz; i++) 
  for (m=0; m<=rad; m++) 
   data[i][m]=0; 
  
 //Initialize the photon tracking parameters  
 ap=0; 
 dp=0; 
 tp=0; 
 lpt=0; 
 lpnd=0; 
 lw=0; 
 jprint=np/10; 
  
 //Track the photon bundles 
 
 for(j=1; j<=np; j++) 
 {  
  if (fmod(j,jprint)==0) 
   cout<<"Number of Bundles = "<<j<<endl; 
    
  rin=ro*sqrt(-log(ran2(idum))); 
  theta=2*pi*ran2(idum); 
  x=rin*cos(theta); 
  y=rin*sin(theta);   
  z=0; 
  mux=0; 
  muy=0; 
  muz=1.0; 
  w=1.0; 
  path=0; 
  bool cont=true;   
step:  
  //Calculate the path length for the next step 
  s=-log(ran2(idum))/mu; 
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  //Move the Photon Bundle 
  xnew=x+mux*s; 
  ynew=y+muy*s; 
  znew=z+muz*s; 
   
  //If there is no boundary interaction 
  if(znew>0 && znew<h) 
  {  
   //Update the position of the photon bundle 
   x=xnew; 
   y=ynew; 
   z=znew;   
 
   //Update the weight of the photon bundle   
   ap=ap+w*(1-mus/mu); 
   w=w*(mus/mu); 
 
   //Calculate the total path length 
   path=path+s;   
   
   //Calculate the new scattering direction 
   if(g<0.01) 
    theta=acos(2*ran2(idum)-1); 
   else 

theta=acos((1+g*g-pow(((1-g*g)/(1-g+2*g*ran2(idum))),2))/(2*g)); 
  
   phi=2*pi*ran2(idum); 
 
   if(fabs(muz)>=0.99999) 
   {  
    muxnew=sin(theta)*cos(phi); 
    muynew=sin(theta)*sin(phi); 
    muznew=muz*cos(theta)/fabs(muz); 
   }  
   else 
   {  

muxnew=sin(theta)*(mux*muz*cos(phi)-muy*sin(phi)) 
/sqrt(1-pow(muz,2))+mux*cos(theta); 

muynew=sin(theta)*(muy*muz*cos(phi)+mux*sin(phi)) 
/sqrt(1-pow(muz,2))+muy*cos(theta); 

    muznew=-sin(theta)*cos(phi)*sqrt(1-pow(muz,2)) 
+muz*cos(theta); 

   }  
   mux=muxnew; 
   muy=muynew; 
   muz=muznew; 
   
   goto check; 
  }  
 
  //if there is an interaction with the interface at z=0 
  else if(znew<=0) 
  {   
   //Calculate the angle of incidence 
   alphai=pi-acos(muz); 
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   alphac=asin(na/nf); 
 
   //Calculate the internal reflectance 
   if(alphai>0.05 && alphai<alphac) 
   {  
    alphat=asin(nf*sin(alphai)/na); 
    ir=(pow(sin(alphai-alphat),2)/pow(sin(alphai+alphat),2)+ 

pow(tan(alphai-alphat),2)/pow(tan(alphai+alphat),2))/2; 
   }  
   else if(alphai<=0.05) 
    ir=pow((nf-na),2)/pow((nf+na),2); 
   else 
    ir=1; 
 
   //Calculate the point at which the photon crosses the interface 
   sc=s+fabs(znew)/muz; 
   xc=x+mux*sc; 
   yc=y+muy*sc; 
   rc=sqrt(pow(xc,2)+pow(yc,2)); 
   jtc=int((path+sc)/(c*dt)); 
 
   //Update the reflectance or the photon tracking parameter 
   ap=ap+w*(1-mus/mu)*(sc/s); 
   w=w*(1-(1-mus/mu)*(sc/s)); 
    
   check=1; 
 
   if(jtc>nt) 
   {  
    lpt=lpt+(1-ir)*w; 
    goto after; 
   }  
    
   for(i=0; i<rad; i++) 
   {  
    if((r[i]-dr/2)<=rc && rc<(r[i]+dr/2)) 
    {  
     dp=dp+(1-ir)*w; 
     reflect[jtc][2*i+1]=reflect[jtc][2*i+1]+(1-ir)*w; 
     check=0; 
    }  
   }  
    
   if(check == 1) 
    lpnd=lpnd+(1-ir)*w; 
after: 
   //Update the photon weight 
   ap=ap+w*ir*(1-mus/mu)*(1-sc/s); 
   w=w*ir*(1-(1-mus/mu)*(1-sc/s)); 
 

//Update the position and direction of the portion of the photon bundle that was 
internally reflected 

   x=xnew; 
   y=ynew; 
   z=-znew; 
   muz=-muz; 
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   //Calculate the total path length the photon bundle has traveled 
   path=path+s; 
 
   //Calculate the new scattering direction 
   if(g<0.01) 
    theta=acos(2*ran2(idum)-1); 
   else 
    theta=acos((1+g*g-pow(((1-g*g)/ 

(1-g+2*g*ran2(idum))),2))/(2*g)); 
  
   phi=2*pi*ran2(idum); 
 
   if(fabs(muz)>=0.99999) 
   {  
    muxnew=sin(theta)*cos(phi); 
    muynew=sin(theta)*sin(phi); 
    muznew=muz*cos(theta)/fabs(muz); 
   }  
   else 
   {   
    muxnew=sin(theta)*(mux*muz*cos(phi)-muy*sin(phi))/ 

sqrt(1-pow(muz,2))+mux*cos(theta); 
muynew=sin(theta)*(muy*muz*cos(phi)+mux*sin(phi))/ 

sqrt(1-pow(muz,2))+muy*cos(theta); 
    muznew=-sin(theta)*cos(phi)*sqrt(1-pow(muz,2)) 

+muz*cos(theta); 
   }   
   mux=muxnew; 
   muy=muynew; 
   muz=muznew;   
   goto check; 
  }  
 
  //If there is an interaction with the interface at z=h 
  else if(znew>=h) 
  {  
   //Calculate the angle of incidence 
   alphai=acos(muz); 
   
   //Calculate the internal reflectance 
   if((nf*sin(alphai)/ng)>1) 
    ir=1; 
   else if(alphai<0.05) 
    ir=pow((nf-ng),2)/pow((nf+ng),2); 
   else 
   {  
    alphat=asin(nf*sin(alphai)/ng); 
    ir=(pow(sin(alphai-alphat),2)/pow(sin(alphai+alphat),2)+ 

pow(tan(alphai-alphat),2)/pow(tan(alphai+alphat),2))/2; 
   }  
   
   //Update the photon tracking parameter 
   tp=tp+(1-ir)*w; 
 
   //Update the photon weight 
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   sc=s+fabs(znew)/muz; 
   ap=ap+w*ir*(1-mus/mu)*(1-sc/s); 
   w=w*ir*(1-(1-mus/mu)*(1-sc/s)); 
 

//Update the position and direction of the portion of the photon  bundle that was 
internally reflected 

   x=xnew; 
   y=ynew; 
   z=2*h-znew; 
   muz=-muz; 
 
   //Calculate the total path length the photon bundle has traveled 
   path=path+s; 
 
   //Calculate the new scattering direction 
   if(g<0.01) 
    theta=acos(2*ran2(idum)-1); 
   else 
    theta=acos((1+g*g-pow(((1-g*g)/ 

(1-g+2*g*ran2(idum))),2))/(2*g)); 
  
   phi=2*pi*ran2(idum); 
 
   if(fabs(muz)>=0.99999) 
   {  
    muxnew=sin(theta)*cos(phi); 
    muynew=sin(theta)*sin(phi); 
    muznew=muz*cos(theta)/fabs(muz); 
   }  
   else 
   {  
    muxnew=sin(theta)*(mux*muz*cos(phi)-muy*sin(phi))/ 

sqrt(1-pow(muz,2))+mux*cos(theta); 
muynew=sin(theta)*(muy*muz*cos(phi)+mux*sin(phi))/ 

sqrt(1-pow(muz,2))+muy*cos(theta); 
    muznew=-sin(theta)*cos(phi)*sqrt(1-pow(muz,2)) 

+muz*cos(theta); 
   }  
   mux=muxnew; 
   muy=muynew; 
   muz=muznew; 
   
   goto check; 
  }    
check:   
  /*Decide whether to continue tracking the photon*/ 
  random=double(rand())/RAND_MAX;  
   
  if((path/(c*dt))>nt) 
  {  
   lpt=lpt+w; 
   cont=false; 
  }  
  else if(w<wmin && random<=psrw) 
  {  
   w=w+lw; 
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   lw=0; 
   cont=true; 
  }  
  else if(w<wmin && random>psrw) 
  {  
   lw=lw+w; 
   cont=false; 
  }  
   
  if(cont==true) 
   goto step; 
  
 
  if (fmod(j,jprint)==0) 
  {  
   //Output the conservation of energy results 
   ofstream outdat ("ec.dat"); 
   outdat<<setprecision(20)<< 
    "Number of Photons ="<<j<<endl<< 
    "Detected Photons ="<<dp<<endl<< 
    "Transmitted Photons ="<<tp<<endl<< 
    "Absorbed Photons ="<<ap<<endl<< 
    "Photons with excess time of flight ="<<lpt<<endl<< 
    "Photons reflected but not detected ="<<lpnd<<endl<< 
    "Lost Weight ="<<lw<<endl<< 
    "Total ="<<dp+tp+lpt+lpnd+lw+ap<<endl<<endl; 
    
   //Output the reflectance profiles    
   fct=2*j*dr*dt*c/(h*pow(ro,2)); 
   for(i=0; i<=nt; i++) 
    for(ii=0; ii<rad; ii++) 
     reflect[i][2*ii+2]=reflect[i][2* ii+1]/(fct*r[ii]);   
 
   ofstream outrefl ("reflect.txt"); 
    
   outrefl<<left<<"#_of_Photons = "<<setw(15)<<j<<endl<< 

setw(25)<<"time_bin"<<setw(25)<<"tau"; 
    
   for(ii=0; ii<rad; ii++) 

         
   outrefl<<setw(4)<<right<<"out_"<<setw(21)<<left<<r[ii]<< 
 setw(5)<<right<<"Refl_"<<setw(20)<<left<<r[ii]<<endl; 
   
   for(i=0; i<=nt; i++) 
   {  
    tau=(i+0.5)*dt*omega; 
    outrefl<<showpoint<<fixed<<setprecision(15)<< 
 setw(25)<<i<<setw(25)<<tau; 
     
    for(ii=1; ii<csize; ii++) 
     outrefl<<setw(25)<<reflect[i][ii]; 
    outrefl<<endl;     
   }     
  }  
 }  
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 // Shift the data so the initial data point corresponds to zero time for the FFT algorithm 
 for(i=0; i<nt; i++) 
  for(ii=0; ii<rad; ii++) 
   data[2*i+3][ii+1]=(reflect[i][2* ii+2]+reflect[i+1][2*ii+2])/2; 
  
 // Initialize and format output files 
 ofstream outFFT ("FFT.txt"); 
 ofstream outMeas ("Meas.txt"); 
  
 outFFT<<right<<setw(25)<<""; 
 outMeas<<right<<setw(25)<<""; 
    
 for(ii=0; ii<rad; ii++) 
 {  
  outFFT<<setw(12)<<right<<"r_"<<setw(13)<<left<<r[ii]<<setw(25)<<""; 
  outMeas<<setw(12)<<right<<"r_"<<setw(13)<<left<<r[ii]<<setw(75)<<""; 
 }  
 outFFT<<endl; 
 outMeas<<endl;  
  
 outFFT<<setw(25)<<"Frequency (GHz)"; 
 outMeas<<setw(25)<<"Frequency (GHz)"; 
  
 for(ii=0; ii<rad; ii++) 
 {  
  outFFT<<setw(25)<<"Real"<<setw(25)<<"Imaginary"; 
  outMeas<<setw(25)<<"DC"<<setw(25)<<"AC"<<setw(25)<<"Modulation" 

<<setw(25)<<"Phase_Shift"; 
 }   
 outFFT<<endl; 
 outMeas<<endl; 
 
 // Begin the FFT algorithm  
 for(ii=1; ii<=rad; ii++) 
 {  
  n=nn << 1; 
  k=1; 
  for (i=1;i<n;i+=2) 
  {   
   if(k>i) 
   {  
    SWAP(data[k][ii],data[i][ii]); 
    SWAP(data[k+1][ii],data[i+1][ii]); 
   }  
    
   m=n >> 1; 
   while (m >= 2 && k > m) 
   {  
    k -= m; 
    m >>= 1; 
   }  
   k += m; 
  }  
   
  mmax=2; 
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  while(n > mmax) 
  {  
   istep=mmax << 1; 
   theta=isign*(2*pi/mmax); 
   wtemp=sin(0.5*theta); 
   wpr = -2.0*wtemp*wtemp; 
   wpi=sin(theta); 
   wr=1.0; 
   wi=0.0; 
   for(m=1;m<mmax;m+=2) 
   {  
    for(i=m;i<=n;i+=istep) 
    {  
     k=i+mmax; 
     tempr=wr*data[k][ii]-wi*data[k+1][ii]; 
     tempi=wr*data[k+1][ii]+wi*data[k][ii]; 
     data[k][ii]=data[i][ii]-tempr; 
     data[k+1][ii]=data[i+1][ii]-tempi; 
     data[i][ii] += tempr; 
     data[i+1][ii] += tempi; 
    }  
    wr=(wtemp=wr)*wpr-wi*wpi+wr; 
    wi=wi*wpr+wtemp*wpi+wi; 
   }  
   mmax=istep; 
  }  
 }   
  
 // Output the data as a function of frequency with a maximum  frequency of fmax  
 for(jj=1;jj<(fmax*siz*dt*1e9+2);jj+=2) 
 {  
  freq=(jj-1)/(siz*dt*1e9); 
  outFFT<<setw(25)<<setprecision(15)<<freq; 
  outMeas<<setw(25)<<setprecision(15)<<freq; 
   
  for(ii=1; ii<=rad; ii++) 
  {     
   mod=A*pow((pow(data[jj+1][ii],2)+pow(data[jj][ii],2))/ 
 (pow(data[2][ii],2)+pow(data[1][ii],2)),0.5); 
   phi=atan2(data[jj+1][ii],data[jj][ii]); 
   AC=A*dtau*freq*1e9*2*pi/omega* 
 pow((pow(data[jj+1][ii],2)+pow(data[jj][ii],2)),0.5); 
   DC=data[1][ii]*dtau*freq*1e9*2*pi/omega; 
    
   outFFT<<setw(25)<<data[jj][ii]*dtau<<setw(25)<<data[jj+1][ii]*dtau; 
   outMeas<<setw(25)<<DC<<setw(25)<<AC<<setw(25) 
 <<mod<<setw(25)<<phi; 
  }    
  outFFT<<endl; 
  outMeas<<endl; 
 }  
   
  
  
}  
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// Random Number Generator 
double ran2(long *idum) 
{   
 int j; 
 long k; 
 static long idum2=123456789; 
 static long iy=0; 
 static long iv[NTAB]; 
 double temp; 
  
 if(* idum <= 0) 
 {   
  if(-(* idum) < 1) * idum = 1; 
  else * idum = -(* idum); 
  idum2 = (* idum); 
  for(j=NTAB+7;j>=0;j--) 
  {  
   k=(*idum)/IQ1; 
   * idum = IA1*(* idum-k*IQ1)-k*IR1; 
   if(idum < 0) * idum += IM1; 
   if(j < NTAB) iv[j] = * idum; 
  }  
  iy = iv[0]; 
 }    
 k = (* idum)/IQ1; 
 * idum = IA1*(* idum-k*IQ1)-k*IR1; 
 if(* idum < 0) * idum += IM1; 
 k = idum2/IQ2; 
 idum2 = IA2*(idum2-k*IQ2)-k*IR2; 
 if(idum2 < 0) idum2 += IM2; 
 j = iy/NDIV; 
 iy = iv[j]-idum2; 
 iv[j] = * idum; 
 if(iy < 1) iy += IMM1; 
 temp = AM * iy; 
 if(temp > RNMX) return RNMX; 
 else return temp; 
  
}  
 

D.2 CONJUGATE-GRADIENT INVERSION ALGORITHM CODE 

Source code file: inv_MPS.C 
 

Compile instructions: use the following command in a UNIX command window in 
the directory where inv_MPS.C is located 

  g++ inv_MPS.C –o desirednameofexecutable –lm -O 
 run executable by typing “ ./”  then name of executable file, 

then press “Enter.”  
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User Inputs: initial guesses for the parameters, the detector range to be 
 used in inverse problem, desired frequency and other 
 measurement parameters (see note below). 

 
Program Output Files:  dif.txt – measurements based on diffusion theory 

 sens.txt – sensitivities of the measurements with respect to 
 the parameters  
 pars.txt – convergence history of the estimated parameters 
 

Source Code: 
 
/*This code is set to perform the inverse problem using a Modified Point Source model. It is coded such 
that any arbitrary range of detector locations can be used for the measurement set at a single frequency. The 
measurement file (MC.txt) should include DC, AC, and Phase shift (in that order) for the full range of 
detectors defined by "rsmall" to "rbig".*/ 
 
#include <iomanip> 
#include <iostream> 
#include <fstream> 
#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
using namespace std; 
 
#define na 1.0 
#define nf 1.3 
#define ng 1.5 
#define nb 1e6 
#define c (3e8/nf) 
#define ro 0.001  
#define drad int(1000*(rbig-rsmall)+1.0001) 
#define rad int(1000*(rmax-rmin)+1.0001) 
#define rmin 0.020 // minimum desired detector location to be used in the inverse algorithm 
#define rrmin int(1000*(rmin-rsmall)+0.0001) 
#define rmax 0.020 // maximum desired detector location to be used in the inverse algorithm 
#define rsmall 0.015 // smallest measurement location contained within MC.txt 
#define rbig 0.040 // largest measurement location contained within MC.txt 
#define a ro/L 
#define A 0.3 
#define d (c/(3*musp*omega*pow(ro,2))) 
#define N 1000001 
#define MM 10 
#define pi 3.141592653589793 
#define conv 0.0001 
#define conv1 0.00001 
#define L_start 0.08 // initial guess for layer thickness (m) 
#define musp_start 198 // initial guess for the reduced scattering coefficient (m-1) 
#define inc_musp (1e-7*mid_musp) // increment used for numerical derivative 
#define min_musp (mid_musp-inc_musp) 
#define max_musp (mid_musp+inc_musp) 
#define inc_L (2e-7*mid_L)  // increment used for numerical derivative 
#define min_L (mid_L-inc_L/2) 
#define max_L (mid_L+inc_L/2) 
#define zetao (1/(musp*L)) 
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#define tauo (omega/(musp*c)) 
#define omega 2*pi*1e9*freq 
#define freq 0.01  //source frequency (GHz) 
 
double bessj0(double xxx[N],double bess[N],double siz); 
double bessjj0(double xxx); 
double bessi0(double xxx); 
double bessk0(double xxx); 
double bessi1(double xxx); 
double bessk1(double xxx); 
 
int main() 
{  
 ifstream infile("MC.txt"); 
 ofstream outmeas("dif20-20.txt", ios::app); 
 ofstream outsens("sens20-20.txt", ios::app); 
 ofstream outpar("pars20-20.txt", ios::app); 
 
 /*Variables needed for the binding routine and more*/ 
 int nbb,i,rr,count,count2,ncc,checkS,checkT,checkU,term; 
 double x,fp,fc,dx,x1,x2,x11,x22,dxx,ddxx,fpp,fcc; 
 double *xb1 = new double[N]; 
 double *xb2 = new double[N]; 
 double *xbb1 = new double[N]; 
 double *xbb2 = new double[N]; 
 double *xbb3 = new double[N]; 
 double *xbb4 = new double[N]; 
 double *y = new double[N]; 
 double *y1 = new double[N]; 
 double *bessy = new double [N]; 
 double *bessxbb1 = new double [N]; 
 double *bessxbb2 = new double [N]; 
 double *r = new double [rad]; 
 double *rho = new double [rad]; 
 double *MC = new double [3*drad]; 
 double *meas = new double [3*rad]; 
 double *epsilon = new double [3*rad]; 
 double sens[3*rad][2] = { 0} ; 
 double *GS = new double [2]; 
 double *GSold = new double [2]; 
 double *dk = new double [2]; 
 double *dkold = new double [2]; 
 
 /*Variables needed for the root finding technique*/ 
 int j,k,iter,checkmusp,checkL; 
 double fL,fH,xL,xH,swap,del,f,fLL,fHH,xLL,xHH,ff; 
 double *beta = new double[N]; 
 double * lambda = new double[N]; 
 double xacc = 1e-6; 
 double maxit = 100; 
 
 /*Variables necessary for the diffusion model* / 
 double RO,RL,hO,hL,HO,HL,NN,KO,Kzetao,Ssum1,Tsum1,Usum1,U2sum; 
 double *bess = new double [N]; 
 double *bess1 = new double [N]; 
 double *bess2 = new double [N]; 
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 double *Ssum2 = new double [N]; 
 double *Tsum2 = new double [N]; 
 double *Usum2 = new double [N]; 
  
 /*Variables necessary for the Numerical Integration*/ 
 double tnm,sumS,sumT,sumU1,sumU2,del1,ddel1,it,aa,bb,sold,told,u1old,u2old,musp,L; 
 double mid_musp,mid_L,mid_muspold,mid_Lold,gam,step,top,bot; 
 int kk,jj,n,fr; 
 double *sn = new double [N];  
 double *tn = new double [N]; 
 double *un1 = new double [N]; 
 double *un2 = new double [N]; 
 double *xx1 = new double [N];  
 double *xx2 = new double [N]; 
 
 double DC[3][rad] = { 0} ; 
 double AC[3][rad] = { 0} ; 
 double Phase[3][rad] = { 0} ; 
    
 for (i=0; i<rad; i++) 
 {  
  r[i]=rmin+0.001*i; //assumes uniform increments of 0.001 m 
  rho[i]=r[i]/ro; 
 }  
 for (i=0; i<(3*drad); i++) 
  infile >> MC[i]; 
    
 x1=0.01; 
 x2=50000; 
 x11=0.01; 
 x22=50000; 
  
 RO=1-(1-(-0.4399+0.7099*nf/na-0.3319*pow(nf,2)/pow(na,2)+ 
         0.0636*pow(nf,3)/pow(na,3)))/(pow(nf,2)/pow(na,2)); 
 RL=1-(1-(-0.4399+0.7099*nf/ng-0.3319*pow(nf,2)/pow(ng,2)+ 
        0.0636*pow(nf,3)/pow(ng,3)))/(pow(nf,2)/pow(ng,2)); 
 hO=(1-RO)/(2*(1+RO)); 
 hL=(1-RL)/(2*(1+RL));  
   
 mid_musp = musp_start;  
 mid_L = L_start; 
 term=0; 
 checkmusp=5; 
 checkL=5; 
  
 outpar<<setprecision(10)<<setw(15)<<mid_L<<setw(15)<<mid_musp<<endl; 
  
 iter=1;  
begin:; 
 musp=min_musp-inc_musp; 
 L=mid_L; 
 k=-1; 
  
 do 
 {  
  k=k+1; 
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  musp=musp+inc_musp; 
  cout<<endl<<"Current musp = "<<musp<<endl<<endl; 
  HO=3*musp*hO; 
  HL=3*musp*hL; 
  nbb=0; 
  count=0; 
  dx=(x2-x1)/nb; 
  dxx=(x22-x11)/nb; 
   
  /*Here we begin the binding routine*/  
  fp=(x=x1)*L*(HL+HO)*cos(x=x1)-(pow((x=x1),2)-HO*HL*pow(L,2))*sin(x=x1); 
  
  for (i=1;i<=nb;i++) 
  {  
   fc=(x+=dx)*L*(HL+HO)*cos(x)-(pow((x),2)-HO*HL*pow(L,2))*sin(x); 
 
   if (fc* fp <= 0.0) 
   {  
    xb1[++nbb]=x-dx; 
    xb2[nbb]=x; 
    count=count+1; 
   }  
   fp=fc; 
  }  
  
  /*Here we begin the root finding technique for the eigenvalues using the information  
  from the binding routine*/ 
  for (i=1;i<=count;i++) 
  {  
   fL=(x=xb1[i])*L*(HL+HO)*cos(x=xb1[i])-(pow((x=xb1[i]),2)-  
    HO*HL*pow(L,2))*sin(x=xb1[i]); 
   fH=(x=xb2[i])*L*(HL+HO)*cos(x=xb2[i])-(pow((x=xb2[i]),2)-  
    HO*HL*pow(L,2))*sin(x=xb2[i]); 
 
   if (fL < 0.0) 
   {  
    xL=xb1[i]; 
    xH=xb2[i]; 
   }  
   else 
   {  
    xL=xb2[i]; 
    xH=xb1[i]; 
    swap=fL; 
    fL=fH; 
    fH=swap; 
   }  
   dx=xH-xL; 
   for (j=1;j<=maxit;j++) 
   {  
    beta[i]=xL+dx*fL/(fL-fH); 
    f=(x=beta[i])*L*(HL+HO)*cos(x=beta[i])-(pow((x=beta[i]),2)- 
     HO*HL*pow(L,2))*sin(x=beta[i]); 
     
    if (f < 0.0) 
    {  
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     del=xL-beta[i]; 
     xL=beta[i]; 
     fL=f; 
    }  
    else 
    {  
     del=xH-beta[i]; 
     xH=beta[i]; 
     fH=f; 
    }  
    dx=xH-xL; 
 
    if (fabs(del) < xacc || f == 0.0) 
     goto quit1; 
   }  
quit1:; 
  
  }  
    
  checkmusp=0;      
    
  for (rr=0; rr<rad; rr++) 
  {  
   count2=0; 
   ncc=0; 
   cout<<"Current Radial Location = "<<r[rr]<<endl; 
   y[1]=x11; 
   y1[1]=rho[rr]*y[1]; 
    
   for (i=2;i<=nb;i++) 
   {  
    y[i]=y[i-1]+dxx; 
    y1[i]=rho[rr]*y[i];  
   }  
    
   bessj0(y1,bessy,nb); 
   fpp=bessy[1]; 
  
   for (i=2;i<=nb;i++) 
   {  
    fcc=bessy[i]; 
 
    if (fcc*fpp <= 0.0) 
    {  
     xbb1[++ncc]=y[i]-dxx; 
     xbb2[ncc]=y[i]; 
     count2=count2+1; 
    }  
    fpp=fcc; 
   }    
  
   for(i=1;i<=count2;i++) 
   {  
    xbb3[i]=xbb1[i]*rho[rr]; 
    xbb4[i]=xbb2[i]*rho[rr]; 
   }  
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   bessj0(xbb3,bessxbb1,count2); 
   bessj0(xbb4,bessxbb2,count2); 
     
   /*Here we begin the root finding technique for the values of lambda using the  
   information from the binding routine*/ 
   for (i=1;i<=count2;i++) 
   {  
    fLL=bessxbb1[i]; 
    fHH=bessxbb2[i]; 
 
    if (fLL < 0.0) 
    {  
     xLL=xbb1[i]; 
     xHH=xbb2[i]; 
    }  
    else 
    {  
     xLL=xbb2[i]; 
     xHH=xbb1[i]; 
     swap=fLL; 
     fLL=fHH; 
     fHH=swap; 
    }  
    ddxx=xHH-xLL; 
    for (j=1;j<=maxit;j++) 
    {  
     lambda[i]=xLL+ddxx*fLL/(fLL-fHH); 
     ff=bessjj0(rho[rr]* lambda[i]);   
    
     if (ff < 0.0) 
     {  
      del=xLL-lambda[i]; 
      xLL=lambda[i]; 
      fLL=ff; 
     }  
     else 
     {  
      del=xHH-lambda[i]; 
      xHH=lambda[i]; 
      fHH=ff; 
     }  
     ddxx=xHH-xLL; 
 
     if (fabs(del) < xacc || f == 0.0) 
      goto quit2; 
    }  
quit2:;  
   }  
   
   kk=0; 
   checkS=0; 
   checkT=0; 
   checkU=0; 
    
   do /*Summing Loop*/ 
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   {   
    kk=kk+1; 
    Ssum1=0; 
    Tsum1=0; 
    Usum1=0; 
    U2sum=0; 
    NN=((pow(beta[kk],2)+pow(HO,2)*pow(L,2))*(1+HL*L/(pow 

(beta[kk],2)+pow(HL,2)*pow(L,2)))+HO*L)/(2*pow(beta[kk],2)); 
    KO=1/sqrt(NN); 
    Kzetao=(cos(beta[kk]*zetao)+HO*L/beta[kk] 

*sin(beta[kk]*zetao))/sqrt(NN); 
   
    jj=0; 
    do 
    {  
     jj=jj+1; 
     aa=lambda[jj-1]; 
     bb=lambda[jj]; 
   
     i=1; 
     for(n=1;n<=MM;n++) 
     {   
      if(n==1) 
      {  
       xx1[i]=0.5*(aa+bb); 
       i=i+1; 
       goto quit3; 
      }  
      for(it=1,j=1;j<n-1;j++) it *=3; 
      tnm=it; 
      del1=(bb-aa)/(3.0*tnm); 
      ddel1=del1+del1; 
      xx1[i]=aa+0.5*del1; 
      i=i+1; 
 
      for(j=1;j<=it;j++) 
      {  
       xx1[i]=xx1[i-1]+ddel1; 
       i=i+1; 
       xx1[i]=xx1[i-1]+del1; 
       i=i+1; 
      }  
quit3:; 
     }  
    
     for(j=1;j<i;j++) 
      xx2[j]=rho[rr]*xx1[j]; 
   
     bessj0(xx2,bess,i);    
    
     i=1; /*Definite Integration between two finite numbers for S */ 
     n=1; 
     sold=0; 
      
     if(pow(1/d,2)-(conv1*pow((pow(aa,2) 

+pow((a*beta[kk]),2)),2)) < 0) 
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      goto Send3;      
     do 
     {   
      if(n==1) 
      {  
       sn[jj]=(bb-aa)*xx1[i]*d*bess[i] 

/(pow(xx1[i],2)+pow((a*beta[kk]),2)); 
       i=i+1; 
       goto Send1; 
      }  
      for(it=1,j=1;j<n-1;j++) it *=3; 
      tnm=it; 
      sumS=0.0; 
      for(j=1;j<=it;j++) 
      {  
       sumS += xx1[i]*d*bess[i]/(pow(xx1[i],2) 

+pow((a*beta[kk]),2)); 
       i=i+1; 
       sumS += xx1[i]*d*bess[i]/(pow(xx1[i],2) 

+pow((a*beta[kk]),2)); 
       i=i+1; 
      }  
    
      sold=sn[jj]; 
      sn[jj]=(sn[jj]+(bb-aa)*sumS/tnm)/3.0; 
Send1:;  
      n=n+1; 
     
      if(n>MM) 
       goto Send2; 
          
     }  
     while(fabs((sn[jj]-sold)/sn[jj]) > conv); 
Send2:;    
     Ssum1=Ssum1+sn[jj]; 
    
     if(jj>=count2) 
      goto Send3; 
    }  
    while(checkS < 5); 
Send3:; 
    if(aa==0) 
     checkS=checkS+1; 
     
    jj=0; 
    do 
    {  
     jj=jj+1; 
     aa=lambda[jj-1]; 
     bb=lambda[jj]; 
   
     i=1; 
     for(n=1;n<=MM;n++) 
     {   
      if(n==1) 
      {  



 

 150 

       xx1[i]=0.5*(aa+bb); 
       i=i+1; 
       goto quit4; 
      }  
      for(it=1,j=1;j<n-1;j++) it *=3; 
      tnm=it; 
      del1=(bb-aa)/(3.0*tnm); 
      ddel1=del1+del1; 
      xx1[i]=aa+0.5*del1; 
      i=i+1; 
 
      for(j=1;j<=it;j++) 
      {  
       xx1[i]=xx1[i-1]+ddel1; 
       i=i+1; 
       xx1[i]=xx1[i-1]+del1; 
       i=i+1; 
      }  
 
quit4:; 
 
     }  
    
     for(j=1;j<i;j++) 
      xx2[j]=rho[rr]*xx1[j]; 
   
     bessj0(xx2,bess,i); 
    
     i=1;/*Definite Integration between two finite numbers for T */ 
     n=1; 
     told=0; 
            
     if(pow(1/d,2)<(conv1*pow((pow(aa,2) 

+pow((a*beta[kk]),2)),2))) 
      goto Tend3;      
       
     do 
     {   
      if(n==1) 
      {        
       tn[jj]=(bb-aa)*xx1[i]*d*bess[i]* 

(pow(xx1[i],2)+pow((a*beta[kk]),2))/ 
(pow((pow(xx1[i],2)+pow 
((a*beta[kk]),2)),2)+1/pow(d,2)); 

       i=i+1; 
       goto Tend1; 
      }  
      for(it=1,j=1;j<n-1;j++) it *=3; 
      tnm=it; 
      sumT=0.0; 
      for(j=1;j<=it;j++) 
      {  
       sumT += xx1[i]*d*bess[i]*(pow(xx1[i],2)+ 

pow((a*beta[kk]),2))/(pow((pow(xx1[i],2) 
+pow((a*beta[kk]),2)),2)+1/pow(d,2)); 

       i=i+1; 
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       sumT += xx1[i]*d*bess[i]*(pow(xx1[i],2)+ 
pow((a*beta[kk]),2))/(pow((pow(xx1[i],2) 
+pow((a*beta[kk]),2)),2)+1/pow(d,2)); 

       i=i+1; 
      }  
    
      told=tn[jj]; 
      tn[jj]=(tn[jj]+(bb-aa)*sumT/tnm)/3.0; 
Tend1:;  
      n=n+1; 
     
      if(n>MM) 
       goto Tend2; 
          
     }  
     while(fabs((tn[jj]-told)/tn[jj]) > conv); 
Tend2:;    
     Tsum1=Tsum1+tn[jj]; 
    
     if(jj>=count2) 
      goto Tend3; 
    }  
    while(checkT < 5); 
Tend3:; 
    if(aa==0) 
     checkT=checkT+1; 
   
    jj=0; 
    do 
    {  
     jj=jj+1; 
     aa=lambda[jj-1]; 
     bb=lambda[jj]; 
   
     i=1; 
     for(n=1;n<=MM;n++) 
     {   
      if(n==1) 
      {   
       xx1[i]=0.5*(aa+bb); 
       i=i+1; 
       goto quit5; 
      }  
      for(it=1,j=1;j<n-1;j++) it *=3; 
      tnm=it; 
      del1=(bb-aa)/(3.0*tnm); 
      ddel1=del1+del1; 
      xx1[i]=aa+0.5*del1; 
      i=i+1; 
 
      for(j=1;j<=it;j++) 
      {  
       xx1[i]=xx1[i-1]+ddel1; 
       i=i+1; 
       xx1[i]=xx1[i-1]+del1; 
       i=i+1; 
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      }  
quit5:; 
     }  
  
     for(j=1;j<i;j++) 
      xx2[j]=rho[rr]*xx1[j]; 
   
     bessj0(xx2,bess,i);    
      
     i=1; 
     n=1; 
     u1old=0; 
     u2old=0; 
      
     if(pow(1/d,2)<(conv1*pow((pow(aa,2) 

+pow((a*beta[kk]),2)),2))) 
      goto Uend3;  
    
     do/*Definite Integration between two finite numbers for U*/ 
     {   
      if(n==1) 
      {  
       un1[jj]=(bb-aa)*xx1[i]*bess[i]/ 

(pow((pow(xx1[i],2)+pow( 
(a*beta[kk]),2)),2)+1/pow(d,2)); 

       un2[jj]=(bb-aa)*xx1[i]*bess[i]/ 
pow((pow(xx1[i],2)+pow( 
(a*beta[kk]),2)),2); 

       i=i+1; 
       goto Uend1; 
      }  
      for(it=1,j=1;j<n-1;j++) it *=3; 
      tnm=it; 
      sumU1=0.0; 
      sumU2=0.0; 
      for(j=1;j<=it;j++) 
      {  
       sumU1 += xx1[i]*bess[i]/ 

(pow((pow(xx1[i],2)+ 
pow((a*beta[kk]),2)),2)+1/pow(d,2)); 

       sumU2 += xx1[i]*bess[i]/ 
pow((pow(xx1[i],2)+ 
pow((a*beta[kk]),2)),2); 

       i=i+1; 
       sumU1 += xx1[i]*bess[i]/ 

(pow((pow(xx1[i],2)+ 
pow((a*beta[kk]),2)),2)+1/pow(d,2)); 

       sumU2 += xx1[i]*bess[i]/ 
pow((pow(xx1[i],2)+ 
pow((a*beta[kk]),2)),2); 

       i=i+1; 
      }  
    
      u1old=un1[jj]; 
      un1[jj]=(un1[jj]+(bb-aa)*sumU1/tnm)/3.0; 
      u2old=un2[jj]; 
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      un2[jj]=(un2[jj]+(bb-aa)*sumU2/tnm)/3.0; 
Uend1:;  
      n=n+1; 
      if(n>MM) 
       goto Uend2;  
     }  
     while(fabs((un1[jj]-u1old)/un1[jj]) >  

conv || fabs((un2[jj]-u2old)/un2[jj]) > conv ); 
Uend2:; 
     Usum1=Usum1+un1[jj]; 
     U2sum=U2sum+un2[jj]; 
    
     if(jj>=count2) 
      goto Uend3; 
    }  
    while(checkU < 5); 
Uend3:;   
      
    if(aa==0) 
     checkU=checkU+1; 
    
    Ssum2[kk]=Ssum2[kk-1]+KO*Kzetao*d*bessk0(a*rho[rr]*beta[kk]); 
    Tsum2[kk]=Tsum2[kk-1]+KO*Kzetao* 

(Tsum1+d*bessk0(a*rho[rr]*beta[kk])-Ssum1); 
    Usum2[kk]=Usum2[kk-1]+KO*Kzetao*(Usum1+rho[rr]/ 

(2*a*beta[kk])*bessk1(a*rho[rr]*beta[kk])-U2sum); 
   }  
   while(fabs(Ssum2[kk]-Ssum2[kk-1])!=0 || fabs(Tsum2[kk]-Tsum2[kk-1])!=0 || 

 fabs(Usum2[kk]-Usum2[kk-1])!=0); 
   
   DC[k][rr]=hO*Ssum2[kk]/(2*pow(d,2)); 
   AC[k][rr]=hO*A/(2*pow(d,2))*sqrt(pow(Tsum2[kk],2)+pow(Usum2[kk],2)); 
   Phase[k][rr]=tauo+atan2(Usum2[kk],Tsum2[kk]); 
         
   if(checkmusp>=5) 
    Phase[k][rr]=Phase[k][rr]+2*pi; 
     
   if(Usum2[kk]<0 && checkmusp<5) 
   {  
    Phase[k][rr]=Phase[k][rr]+2*pi; 
    checkmusp=checkmusp+1; 
   }  
     
  }  
   
 }  
 while(k < 2); 
  
 for (i=0; i<rad; i++) 
 {   
  meas[i]=DC[1][i]; 
  epsilon[i]=(MC[i+rrmin]-meas[i])/MC[i+rrmin];    
  outmeas<<setprecision(15)<<setw(25)<<DC[0][i]<<setw(25)<<DC[1][i]<<setw(25) 

<<DC[2][i]<<setw(25)<<MC[i+rrmin]<<setw(25)<<mid_musp<<setw(25) 
<<max_musp-min_musp<<endl; 
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  sens[i][0]=(DC[2][i]-DC[0][i])*mid_musp/MC[i+rrmin]/(max_musp-min_musp); 
  
 }  
   
 musp=mid_musp; 
 L=min_L-inc_L; 
 k=-1; 
  
 do 
 {  
  k=k+1; 
  L=L+inc_L; 
  cout<<endl<<"Current L = "<<L<<endl<<endl; 
  HO=3*musp*hO; 
  HL=3*musp*hL; 
  nbb=0; 
  count=0; 
  dx=(x2-x1)/nb; 
  dxx=(x22-x11)/nb; 
   
  //Here we begin the binding routine 
  
  fp=(x=x1)*L*(HL+HO)*cos(x=x1)-(pow((x=x1),2)-HO*HL*pow(L,2))*sin(x=x1); 
  
  for (i=1;i<=nb;i++) 
  {  
   fc=(x+=dx)*L*(HL+HO)*cos(x)-(pow((x),2)-HO*HL*pow(L,2))*sin(x); 
 
   if (fc* fp <= 0.0) 
   {  
    xb1[++nbb]=x-dx; 
    xb2[nbb]=x; 
    count=count+1; 
   }  
   fp=fc; 
  }  
  

//Here we begin the root finding technique for the eigenvalues using the information from 
the binding routine 

  for (i=1;i<=count;i++) 
  {  

fL=(x=xb1[i])*L*(HL+HO)*cos(x=xb1[i])-(pow((x=xb1[i]),2)-
HO*HL*pow(L,2))*sin(x=xb1[i]); 
fH=(x=xb2[i])*L*(HL+HO)*cos(x=xb2[i])-(pow((x=xb2[i]),2)-
HO*HL*pow(L,2))*sin(x=xb2[i]); 

 
   if (fL < 0.0) 
   {  
    xL=xb1[i]; 
    xH=xb2[i]; 
   }  
   else 
   {  
    xL=xb2[i]; 
    xH=xb1[i]; 
    swap=fL; 
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    fL=fH; 
    fH=swap; 
   }  
   dx=xH-xL; 
   for (j=1;j<=maxit;j++) 
   {  
    beta[i]=xL+dx*fL/(fL-fH); 
    f=(x=beta[i])*L*(HL+HO)*cos(x=beta[i])-(pow((x=beta[i]),2)-HO*HL 

*pow(L,2))*sin(x=beta[i]); 
    
    if (f < 0.0) 
    {  
     del=xL-beta[i]; 
     xL=beta[i]; 
     fL=f; 
    }  
    else 
    {  
     del=xH-beta[i]; 
     xH=beta[i]; 
     fH=f; 
    }  
    dx=xH-xL; 
 
    if (fabs(del) < xacc || f == 0.0) 
     goto qquit1; 
   }  
qquit1:; 
  
  }  
    
  checkL=0;      
    
  for (rr=0; rr<rad; rr++) 
  {  
   count2=0; 
   ncc=0; 
   cout<<"Current Radial Location = "<<r[rr]<<endl; 
   y[1]=x11; 
   y1[1]=rho[rr]*y[1]; 
    
   for (i=2;i<=nb;i++) 
   {  
    y[i]=y[i-1]+dxx; 
    y1[i]=rho[rr]*y[i];  
   }  
    
   bessj0(y1,bessy,nb); 
   fpp=bessy[1]; 
  
   for (i=2;i<=nb;i++) 
   {  
    fcc=bessy[i]; 
 
    if (fcc*fpp <= 0.0) 
    {  
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     xbb1[++ncc]=y[i]-dxx; 
     xbb2[ncc]=y[i]; 
     count2=count2+1; 
    }  
    fpp=fcc; 
   }    
  
   for(i=1;i<=count2;i++) 
   {  
    xbb3[i]=xbb1[i]*rho[rr]; 
    xbb4[i]=xbb2[i]*rho[rr]; 
   }  
  
   bessj0(xbb3,bessxbb1,count2); 
   bessj0(xbb4,bessxbb2,count2); 
     

//Here we begin the root finding technique for the values of lambda using the 
information from the binding routine 

   for (i=1;i<=count2;i++) 
   {  
    fLL=bessxbb1[i]; 
    fHH=bessxbb2[i]; 
 
    if (fLL < 0.0) 
    {  
     xLL=xbb1[i]; 
     xHH=xbb2[i]; 
    }  
    else 
    {  
     xLL=xbb2[i]; 
     xHH=xbb1[i]; 
     swap=fLL; 
     fLL=fHH; 
     fHH=swap; 
    }  
    ddxx=xHH-xLL; 
    for (j=1;j<=maxit;j++) 
    {  
     lambda[i]=xLL+ddxx*fLL/(fLL-fHH); 
     ff=bessjj0(rho[rr]* lambda[i]);   
    
     if (ff < 0.0) 
     {  
      del=xLL-lambda[i]; 
      xLL=lambda[i]; 
      fLL=ff; 
     }  
     else 
     {  
      del=xHH-lambda[i]; 
      xHH=lambda[i]; 
      fHH=ff; 
     }  
     ddxx=xHH-xLL; 
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     if (fabs(del) < xacc || f == 0.0) 
      goto qquit2; 
    }  
qquit2:; 
  
   }  
   
   kk=0; 
   checkS=0; 
   checkT=0; 
   checkU=0; 
    
   do //Summing Loop 
   {   
    kk=kk+1; 
    Ssum1=0; 
    Tsum1=0; 
    Usum1=0; 
    U2sum=0; 
    NN=((pow(beta[kk],2)+pow(HO,2)*pow(L,2))*(1+HL*L/( 

pow(beta[kk],2)+pow(HL,2)*pow(L,2)))+HO*L)/(2*pow(beta[kk],2)); 
    KO=1/sqrt(NN);       
    Kzetao=(cos(beta[kk]*zetao)+HO*L/ 

beta[kk]*sin(beta[kk]*zetao))/sqrt(NN); 
   
    jj=0; 
    do 
    {  
     jj=jj+1; 
     aa=lambda[jj-1]; 
     bb=lambda[jj]; 
   
     i=1; 
     for(n=1;n<=MM;n++) 
     {   
      if(n==1) 
      {  
       xx1[i]=0.5*(aa+bb); 
       i=i+1; 
       goto qquit3; 
      }  
      for(it=1,j=1;j<n-1;j++) it *=3; 
      tnm=it; 
      del1=(bb-aa)/(3.0*tnm); 
      ddel1=del1+del1; 
      xx1[i]=aa+0.5*del1; 
      i=i+1; 
 
      for(j=1;j<=it;j++) 
      {  
       xx1[i]=xx1[i-1]+ddel1; 
       i=i+1; 
       xx1[i]=xx1[i-1]+del1; 
       i=i+1; 
      }  
qquit3:; 
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     }  
    
     for(j=1;j<i;j++) 
      xx2[j]=rho[rr]*xx1[j]; 
   
     bessj0(xx2,bess,i); 
    
    
     i=1;//Definite Integration between two finite numbers for S  
     n=1; 
     sold=0; 
      
     if(pow(1/d,2)-(conv1*pow((pow 

(aa,2)+pow((a*beta[kk]),2)),2)) < 0) 
      goto SSend3; 
       
     do 
     {   
      if(n==1) 
      {  
       sn[jj]=(bb-aa)*xx1[i]*d*bess[i]/ 

(pow(xx1[i],2)+pow((a*beta[kk]),2)); 
       i=i+1; 
       goto SSend1; 
      }  
      for(it=1,j=1;j<n-1;j++) it *=3; 
      tnm=it; 
      sumS=0.0; 
      for(j=1;j<=it;j++) 
      {  
       sumS += xx1[i]*d*bess[i]/ 

(pow(xx1[i],2)+pow((a*beta[kk]),2)); 
       i=i+1; 
       sumS += xx1[i]*d*bess[i]/ 

(pow(xx1[i],2)+pow((a*beta[kk]),2)); 
       i=i+1; 
      }  
    
      sold=sn[jj]; 
      sn[jj]=(sn[jj]+(bb-aa)*sumS/tnm)/3.0; 
SSend1:;  
      n=n+1; 
     
      if(n>MM) 
       goto SSend2; 
          
     }  
     while(fabs((sn[jj]-sold)/sn[jj]) > conv); 
SSend2:;    
     Ssum1=Ssum1+sn[jj]; 
    
     if(jj>=count2) 
      goto SSend3; 
    }  
    while(checkS < 5); 
SSend3:; 
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    if(aa==0) 
     checkS=checkS+1; 
     
    jj=0; 
    do 
    {  
     jj=jj+1; 
     aa=lambda[jj-1]; 
     bb=lambda[jj]; 
   
     i=1; 
     for(n=1;n<=MM;n++) 
     {   
      if(n==1) 
      {  
       xx1[i]=0.5*(aa+bb); 
       i=i+1; 
       goto qquit4; 
      }  
      for(it=1,j=1;j<n-1;j++) it *=3; 
      tnm=it; 
      del1=(bb-aa)/(3.0*tnm); 
      ddel1=del1+del1; 
      xx1[i]=aa+0.5*del1; 
      i=i+1; 
 
      for(j=1;j<=it;j++) 
      {  
       xx1[i]=xx1[i-1]+ddel1; 
       i=i+1; 
       xx1[i]=xx1[i-1]+del1; 
       i=i+1; 
      }  
qquit4:; 
     }  
    
     for(j=1;j<i;j++) 
      xx2[j]=rho[rr]*xx1[j]; 
   
     bessj0(xx2,bess,i); 
    
     i=1;//Definite Integration between two finite numbers for T  
     n=1; 
     told=0;      
     if(pow(1/d,2)<(conv1*pow((pow(aa,2)+pow( 

(a*beta[kk]),2)),2))) 
      goto TTend3;      
       
     do 
     {   
      if(n==1) 
      {        
       tn[jj]=(bb-aa)*xx1[i]*d*bess[i]*(pow(xx1[i] 

,2)+pow((a*beta[kk]),2))/(pow((pow(xx1[i] 
,2)+pow((a*beta[kk]),2)),2)+1/pow(d,2)); 

       i=i+1; 
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       goto TTend1; 
      }  
      for(it=1,j=1;j<n-1;j++) it *=3; 
      tnm=it; 
      sumT=0.0; 
      for(j=1;j<=it;j++) 
      {  
       sumT += xx1[i]*d*bess[i]*(pow(xx1[i],2)+ 

pow((a*beta[kk]),2))/(pow((pow(xx1[i],2) 
+pow((a*beta[kk]),2)),2)+1/pow(d,2)); 

       i=i+1; 
       sumT += xx1[i]*d*bess[i]*(pow(xx1[i],2)+ 

pow((a*beta[kk]),2))/(pow((pow(xx1[i],2) 
+pow((a*beta[kk]),2)),2)+1/pow(d,2)); 

       i=i+1; 
      }  
    
      told=tn[jj]; 
      tn[jj]=(tn[jj]+(bb-aa)*sumT/tnm)/3.0; 
TTend1:;  
      n=n+1; 
     
      if(n>MM) 
       goto TTend2; 
          
     }  
     while(fabs((tn[jj]-told)/tn[jj]) > conv); 
TTend2:;    
     Tsum1=Tsum1+tn[jj]; 
    
     if(jj>=count2) 
      goto TTend3; 
    }  
    while(checkT < 5); 
TTend3:; 
    if(aa==0) 
     checkT=checkT+1; 
   
    jj=0; 
    do 
    {  
     jj=jj+1; 
     aa=lambda[jj-1]; 
     bb=lambda[jj]; 
   
     i=1; 
     for(n=1;n<=MM;n++) 
     {   
      if(n==1) 
      {   
       xx1[i]=0.5*(aa+bb); 
       i=i+1; 
       goto qquit5; 
      }  
      for(it=1,j=1;j<n-1;j++) it *=3; 
      tnm=it; 
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      del1=(bb-aa)/(3.0*tnm); 
      ddel1=del1+del1; 
      xx1[i]=aa+0.5*del1; 
      i=i+1; 
 
      for(j=1;j<=it;j++) 
      {  
       xx1[i]=xx1[i-1]+ddel1; 
       i=i+1; 
       xx1[i]=xx1[i-1]+del1; 
       i=i+1; 
      }  
qquit5:; 
     }  
  
     for(j=1;j<i;j++) 
      xx2[j]=rho[rr]*xx1[j]; 
   
     bessj0(xx2,bess,i);    
      
     i=1; 
     n=1; 
     u1old=0; 
     u2old=0;      
     if(pow(1/d,2)<(conv1*pow((pow(aa,2) 

+pow((a*beta[kk]),2)),2))) 
      goto UUend3;  
    
     do//Definite Integration between two finite numbers for U 
     {   
      if(n==1) 
      {  
       un1[jj]=(bb-aa)*xx1[i]*bess[i]/(pow((pow( 

xx1[i],2)+pow((a*beta[kk]),2)),2)+1/pow(d,
2)); 

       un2[jj]=(bb-aa)*xx1[i]*bess[i]/pow((pow( 
xx1[i],2)+pow((a*beta[kk]),2)),2); 

       i=i+1; 
       goto UUend1; 
      }  
      for(it=1,j=1;j<n-1;j++) it *=3; 
      tnm=it; 
      sumU1=0.0; 
      sumU2=0.0; 
      for(j=1;j<=it;j++) 
      {  
       sumU1 += xx1[i]*bess[i]/(pow((pow(xx1[i] 

,2)+pow((a*beta[kk]),2)),2)+1/pow(d,2)); 
       sumU2 += xx1[i]*bess[i]/pow((pow(xx1[i] 

,2)+pow((a*beta[kk]),2)),2); 
       i=i+1; 
       sumU1 += xx1[i]*bess[i]/(pow((pow(xx1[i] 

,2)+pow((a*beta[kk]),2)),2)+1/pow(d,2)); 
       sumU2 += xx1[i]*bess[i]/pow((pow(xx1[i] 

,2)+pow((a*beta[kk]),2)),2); 
       i=i+1; 
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      }  
    
      u1old=un1[jj]; 
      un1[jj]=(un1[jj]+(bb-aa)*sumU1/tnm)/3.0; 
      u2old=un2[jj]; 
      un2[jj]=(un2[jj]+(bb-aa)*sumU2/tnm)/3.0; 
UUend1:;  
      n=n+1; 
      if(n>MM) 
       goto UUend2;  
     }  
     while(fabs((un1[jj]-u1old)/un1[jj]) > conv || fabs((un2[jj]- 
      u2old)/un2[jj]) > conv ); 
UUend2:; 
     Usum1=Usum1+un1[jj]; 
     U2sum=U2sum+un2[jj]; 
    
     if(jj>=count2) 
      goto UUend3; 
    }  
    while(checkU < 5); 
UUend3:;   
      
    if(aa==0) 
     checkU=checkU+1; 
    
    Ssum2[kk]=Ssum2[kk-1]+KO*Kzetao*d*bessk0(a*rho[rr]*beta[kk]); 
    Tsum2[kk]=Tsum2[kk-1]+KO*Kzetao*(Tsum1+ 

d*bessk0(a*rho[rr]*beta[kk])-Ssum1); 
    Usum2[kk]=Usum2[kk-1]+KO*Kzetao*(Usum1+rho[rr]/ 

(2*a*beta[kk])*bessk1(a*rho[rr]*beta[kk])-U2sum); 
   }  

  while(fabs(Ssum2[kk]-Ssum2[kk-1])!=0 || fabs(Tsum2[kk]-Tsum2[kk-1])!=0 ||  
   fabs(Usum2[kk]-Usum2[kk-1])!=0); 

   
   DC[k][rr]=hO*Ssum2[kk]/(2*pow(d,2)); 
   AC[k][rr]=hO*A/(2*pow(d,2))*sqrt(pow(Tsum2[kk],2)+ 

pow(Usum2[kk],2)); 
   Phase[k][rr]=tauo+atan2(Usum2[kk],Tsum2[kk]); 
     
   if(checkL>=5) 
    Phase[k][rr]=Phase[k][rr]+2*pi; 
     
   if(Usum2[kk]<0 && checkL<5) 
   {  
    Phase[k][rr]=Phase[k][rr]+2*pi; 
    checkL=checkL+1; 
   }  
    
  }  
   
 }  
 while(k < 1); 
  
  
 for (i=0; i<rad; i++) 
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  sens[i][1]=(DC[1][i]-DC[0][i])*mid_L/MC[i+rrmin]/(max_L-min_L); 
   
  
 for (i=0; i<(3*rad); i++) 
 {  
  for (j=0; j<2; j++) 
   outsens<<setprecision(15)<<setw(25)<<sens[i][j];   
  outsens<<endl; 
 }  
    
 GS[0]=0; 
 GS[1]=0; 
  
 for (i=0; i<(3*rad); i++) 
 {  
  GS[0]=GS[0]-2*epsilon[i]*sens[i][0]; 
  GS[1]=GS[1]-2*epsilon[i]*sens[i][1]; 
 }  
  
 if (iter==1) 
  gam=0; 
  
 else 
  gam=(GS[0]*(GS[0]-GSold[0])+GS[1]*(GS[1]-GSold[1]))/ 

(pow(GSold[0],2)+pow(GSold[1],2));  
  
 dk[0]=GS[0]+gam*dkold[0]; 
 dk[1]=GS[1]+gam*dkold[1]; 
  
 top=0; 
 bot=0; 
  
 for (i=0; i<(3*rad); i++) 
 {  
  top=top+(-(sens[i][0]*dk[0]+sens[i][1]*dk[1])*epsilon[i]); 
  bot=bot+pow((sens[i][0]*dk[0]+sens[i][1]*dk[1]),2); 
 }  
 step=top/bot; 
 mid_muspold=mid_musp; 
 mid_Lold=mid_L; 
 mid_musp=mid_musp-step*dk[0]*mid_musp; 
 mid_L=mid_L-step*dk[1]*mid_L; 
  
 if(fabs(mid_musp-mid_muspold)/mid_musp<1e-10 && fabs(mid_L-mid_Lold)/mid_L<1e-10) 
  term=term+1; 
   
 if(term>5) 
  goto end; 
  
 outpar<<setprecision(10)<<setw(15)<<mid_L<<setw(15)<<mid_musp<<endl; 
  
 dkold[0]=dk[0]; 
 dkold[1]=dk[1]; 
 GSold[0]=GS[0]; 
 GSold[1]=GS[1]; 
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 iter=iter+1; 
  
 goto begin; 
end:; 
 cout<<"Done"<<endl; 
}   
  
 
double bessj0(double xxx[N],double bess[N],double siz) 
{  
 double ax,z,x2x,y,ans1,ans2; 
 
 for(int i=1;i<=siz;i++) 
 {  
  if((ax=fabs(xxx[i])) < 8.0) 
  {  
   y=pow(xxx[i],2); 
   ans1=57568490574.0+y*(-13362590354.0+y*(651619640.7+ 

y*(-11214424.18+y*(77392.33017+y*(-184.9052456))))); 
   ans2=57568490411.0+y*(1029532985.0+y*(9494680.718+y*(59272.64853+ 

y*(267.8532712+y*1.0)))); 
   bess[i]=ans1/ans2; 
  }  
  else 
  {  
   z=8.0/ax; 
   y=pow(z,2); 
   x2x=ax-0.785398164; 
   ans1=1.0+y*(-0.1098628627e-2+y*(0.2734510407e-4+ 

y*(-0.2073370639e-5+y*0.2093887211e-6))); 
   ans2=-0.1562499995e-1+y*(0.1430488765e-3+y*(-0.691114765e-5+ 

y*(0.7621095161e-6-y*0.934935152e-7))); 
   bess[i]=sqrt(0.636619772/ax)*(cos(x2x)*ans1-z*sin(x2x)*ans2); 
  }  
 }  
 
 return bess[N]; 
}  
 
double bessjj0(double xxx) 
{  
 double ax,z,x2x,y,ans1,ans2,bess; 
   
 if((ax=fabs(xxx)) < 8.0) 
 {  
  y=pow(xxx,2); 
  ans1=57568490574.0+y*(-13362590354.0+y*(651619640.7+ 

y*(-11214424.18+y*(77392.33017+y*(-184.9052456))))); 
  ans2=57568490411.0+y*(1029532985.0+y*(9494680.718+y*(59272.64853+ 

y*(267.8532712+y*1.0)))); 
  bess=ans1/ans2; 
 }  
 else 
 {  
  z=8.0/ax; 
  y=pow(z,2); 
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  x2x=ax-0.785398164; 
  ans1=1.0+y*(-0.1098628627e-2+y*(0.2734510407e-4+ 

y*(-0.2073370639e-5+y*0.2093887211e-6))); 
  ans2=-0.1562499995e-1+y*(0.1430488765e-3+y*(-0.691114765e-5+ 

y*(0.7621095161e-6-y*0.934935152e-7))); 
  bess=sqrt(0.636619772/ax)*(cos(x2x)*ans1-z*sin(x2x)*ans2); 
 }  
 
 
 return bess; 
}  
double bessi0(double xxx) 
{  
 double ax,ans,y; 
  
 if((ax=fabs(xxx)) < 3.75) 
 {  
  y=xxx/3.75; 
  y*=y; 
  ans=1.0+y*(3.5156229+y*(3.0899424+y*(1.2067492+y*(0.2659732+ 

y*(0.360768e-1+y*0.45813e-2))))); 
 }  
 else 
 {  
  y=3.75/ax;  
  ans=(exp(ax)/sqrt(ax))*(0.39894228+y*(0.1328592e-1+y*(0.225319e-2+y* 

(-0.157565e-2+y*(0.916281e-2+y*(-0.2057706e-1+ 
y*(0.2635537e-1+y*(-0.1647633e-1+y*0.392377e-2)))))))); 

 }  
  
 return ans; 
}  
 
double bessk0(double xxx) 
{  
 double bessi0(double xxx); 
 double y,ans; 
  
 if (xxx<= 2.0) 
 {  
  y=xxx*xxx/4.0; 
  ans=(-log(xxx/2.0)*bessi0(xxx))+(-0.57721566+y*(0.42278420+y*(0.23069756+ 

y*(0.3488590e-1+y*(0.262698e-2+y*(0.10750e-3+y*0.74e-5)))))); 
 }  
 else 
 {  
  y=2.0/xxx; 
  ans=(exp(-xxx)/sqrt(xxx))*(1.25331414+y*(-0.7832358e-1+y*(0.2189568e-1+ 

y*(-0.1062446e-1+y*(0.587872e-2+y*(-0.251540e-2+y*0.53208e-3)))))); 
 }  
  
 return ans; 
}  
 
double bessi1(double xxx) 
{  
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 double ax,ans,y; 
  
 if((ax=fabs(xxx)) < 3.75) 
 {  
  y=xxx/3.75; 
  y*=y; 
  ans=ax*(0.5+y*(0.87890594+y*(0.51498869+y*(0.15084934+ 

y*(0.2658733e-1+y*(0.301532e-2+y*0.32411e-3)))))); 
 }  
 else 
 {  
  y=3.75/ax;  
  ans=0.2282967e-1+y*(-0.2895312e-1+y*(0.1787654e-1-y*0.420059e-2)); 
  ans=0.39894228+y*(-0.3988024e-1+y*(-0.362018e-2+y*(0.163801e-2+ 

y*(-0.1031555e-1+y*ans)))); 
  ans *= (exp(ax)/sqrt(ax)); 
 }  
  
 return xxx < 0.0 ? -ans : ans; 
}  
 
double bessk1(double xxx) 
{  
 double bessi1(double xxx); 
 double y,ans; 
  
 if (xxx<= 2.0) 
 {  
  y=xxx*xxx/4.0; 
  ans=(log(xxx/2.0)*bessi1(xxx))+(1.0/xxx)*(1.0+y*(0.15443144+y*(-0.67278579+ 

y*(-0.18156897+y*(-0.1919402e-1+y*(-0.110404e-2+y*(-0.4686e-4))))))); 
 }  
 else 
 {  
  y=2.0/xxx; 
  ans=(exp(-xxx)/sqrt(xxx))*(1.25331414+y*(0.23498619+y*(-0.3655620e-1+ 

y*(0.1504268e-1+y*(-0.780353e-2+y*(0.325614e-2+y*(-0.68245e-3))))))); 
 }  
  
 return ans; 
}  
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