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Damped diocotron quasi-modes of non-neutral plasmas and inviscid fluids

Ross L. Spencer® and S. Neil Rasband

Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

(Received 18 June 1996; accepted 30 September 1996)

Computations of damped diocotron oscillations (quasi-modes) are described for non-neutral plasmas
and inviscid fluids. The numerical method implements a suggestion made by Briggs, Daugherty, and
Levy some 25 years ago [Phys. Fluids 13, 421 (1970)] to push the branch line that forms the
continuum into the complex w-plane by solving the mode equation in the complex r-plane. For the
special case of power-law density profiles the calculation finds the same quasi-mode frequencies
found recently by Corngold [Phys. Plasmas 2, 620 (1995)]. It is found that the feature of the
continuum eigenfunctions which indicates the presence of a nearby quasi-mode is continuity of the
derivative of the regular part of the eigenfunctions near the singularity. The evolution of Rayleigh
modes, found in density profiles with steps, is also studied as the density steps are smoothed.
© 1997 American Institute of Physics. [S1070-664X(97)00801-X]

I. INTRODUCTION

The existence of a continuous spectrum and the possibil-
ity of damped oscillations for magnetized electron columns
was discussed in an early paper by Briggs, Daugherty, and
Levy,! which was based on even earlier work by Case.?
These oscillations are connected to the continuous spectrum
and their damping is called ‘‘spatial Landau damping’’ in
Briggs et al. More recently these oscillations have been stud-
ied experimentally by Pillai and Gould® and analytically (for
the case of power-law equilibrium density profiles) by
Corngold.* (Corngold refers to these damped oscillations as
“‘quasi-modes,’’ a terminology that will be followed in this
paper.) The continuation problem in the complex plane
solved analytically by Corngold for power-law profiles can
be solved numerically by implementing the suggestion of
Briggs et al. to solve the radial mode equation along a con-
tour in the complex r-plane (7 is radius in cylindrical coor-
dinates). Solving the mode equation along this complex
r-contour moves the branch line (which corresponds to the
continuum when the contour is real) into the complex
w-plane, making it possible to ‘“uncover’’ the damped quasi-
modes discussed by Briggs et al.

The diocotron mode equation and its general properties
are discussed in Sec. 11, the numerical method is described in
Sec. III, and comparisons with Corngold’s analytic results
are described in Sec. IV. In Sec. V the behavior of quasi-
mode frequencies as density profiles are changed from step-
like to very broad is described. The behavior of the quasi-
mode is tracked from its weakly damped beginnings where
the analysis of Briggs et al. applies all the way to the para-
bolic quasi-mode of Corngold. In Sec. VI we explore the
connection between quasi-mode frequencies and continuum
eigenfunctions. It is found that for weak damping the real
part of the quasi-mode frequency is close to the frequency of
the continuum eigenfunction whose regular part near the sin-
gularity has a continuous first derivative. In Sec. VII the
behavior of quasi-modes in density profiles with multiple
steps is studied. We find that as such profiles are smoothed
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enough that there is no apparent remnant of the density steps,
there are three different fates for the quasi-modes. They can
either become highly damped and join the deformed branch
line; they can become very weakly damped with resonant
radii in a neighborhood of the center of the plasma if the
density there is nearly constant; or two of them can both
approach a common quasi-mode. In Sec. VIII we conclude
the paper.

Il. MODE EQUATION

Consider an infinitely long column of non-neutral
plasma. The plasma is assumed to be so highly magnetized
by a strong magnetic field in the z-direction that the Larmor
radius is effectively zero, making it possible to model it as a
charged fluid moving at the E X B drift velocity. Under these
conditions the diocotron mode equation in cylindrical coor-
dinates (7, ) for perturbations proportional to e’?~ <" is

1d d 2 ng
__,,_‘ﬁ_@_ﬂm—d’ 0, (1)

where ¢ is the perturbed electrostatic potential; ¢ is the
charge of the particles that make up the plasma; €, is the
permittivity of free space; B is the uniform axial magnetic
field strength; w, is the EXB drift rotation frequency in the
equilibrium radial electric field wy(r)=—FE,/rB; and
ny(r) is the radial derivative of the equilibrium density. The
perturbed potential must be regular at the origin and vanish
at r=r,,, the location of the conducting cylinder which sur-
rounds the plasma. Note that Eq. (1) is also the mode equa-
tion for inviscid fluid motion, as pointed out by Briggs ef al.
Hence, all of the results discussed here also apply to inviscid
fluids.

If the equilibrium density drops to zero rapidly in radius,
leaving a sufficiently large vacuum region outside of the
plasma, or if the density has discontinuous steps, then Eq. (1)
will have solutions corresponding to undamped modes. The
rest of the fluid dynamics described by this equation, how-
ever, is associated with the continuum, singular modes with
frequencies that resonate with the equilibrium rotation:
w=mwy(r) for values of r where n((r)#0.
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As pointed out by Briggs ef al., if a step-like density
profile having an undamped normal mode of frequency w is
smoothed so that there is a small amount of n, at the radius
where w=mw(r), then there are two ways to describe the
new dynamics. Either we can say that the mode has merged
with the continuum and has lost its identity, or we can say
that it has been ‘‘pushed through’’ the continuum into the
lower half of the complex w-plane, becoming a damped
quasi-mode. [Note that having @ move down into the lower
half-plane is opposite to the figures in Briggs et al. The rea-
son is that their perturbations are proportional to exp(iwt)
instead of to exp(—iwt), the convention in this paper.] This
second description is similar to what happens in the case of
Landau damping, and indeed this effect for diocotron modes
is often referred to as ‘‘spatial Landau damping.”” As in Lan-
dau’s calculation, special care must be taken to analytically
continue the solutions into the lower half-w-plane.

Briggs et al. show how this continuation may be effected
in their Figs. 6 and 9, where the interval in » along which the
mode equation is to be solved is deformed into the complex
plane. The remainder of this paper is a description of what
happens when this picture is taken seriously.

lll. NUMERICAL METHOD

3

The quasi-mode may be ‘‘uncovered,”” as described by
Briggs et al., by deforming into the complex plane the inter-
val along which Eq. (1) is solved. The idea is to make the
analytically-continued function mwy(r) describe a curve in
the complex w-plane that dips sufficiently far into the lower
half-w-plane. Since mwy(r) gives all the values of w at
which the mode equation is singular, this deformation pushes
the branch line down into the lower half-w plane, leaving the
quasi-mode exposed above it. With the branch line out of the
way it is then possible to calculate the quasi-mode fre-
quency.

As an example, consider the family of power-law pro-
files discussed by Corngold:*

r\2P
no(r)=ng| 1 — ; >
| 1 r 2p qnoo (2)
wo(r)= g T\ [P @0~ 2gp5
where p takes on integer values 1,2,3, ..., r,, is the radius of

the conducting cylinder that surrounds the plasma, and n is
the central density. Substitution of complex values of r/r,,
into the expression for wy(r) shows that to make wy(») dip
into the lower half of the w-plane the r-contour must be
pushed up into the upper half of the complex r-plane.

This deformation may be made numerically by changing
the independent variable from r to s according to

r=ry[s+ih(s)],
h(0)=0; h(1)=0; h(s)=0;

where 7, is the radius of the conducting cylinder that sur-
rounds the plasma.

The numerical procedure consists of rewriting Eq. (1) in
terms of s instead of », subdividing the s-interval [0, 1] into

3)

0=s=1,
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small subintervals. The resulting differential equation is
solved in two different ways. The first is to make finite-
difference approximations to the derivatives that appear in
the transformed mode equation. The second is to expand ¢
in terms of cubic splines and to use a Galerkin approxima-
tion to the differential equation. These two different ways of
calculating have provided a check on the numerical results
presented here. In either case a homogeneous system of
equations is obtained which is solved by matrix shooting.’
This simply means that the numerical approximation to the
mode equation at one of the grid points in s is removed and
replaced by the equation ¢=1; then the resulting inhomoge-
neous system is solved. The mode frequency w is then varied
until the equation that was removed from the system is sat-
isfied. If A(s), the imaginary part of r(s), is large enough
and properly shaped, this algorithm finds quasi-modes.

The analytic continuations of some density profiles, es-
pecially those with sharp gradients, often have places in the
complex r-plane where they become large or change rapidly,
making it difficult to compute efficiently. In such cases it is
sometimes helpful to shape the r-contour so that it only has
a large imaginary part near the radius where the quasi-mode
is located. Practical experience has shown that the following
form for i(s) is usually sufficiently flexible to find quasi-
modes:

h(s)=4hos(1—s)e 750, )

where &, is a parameter that determines the height of the
r-contour. The parameters s, and w make a Gaussian multi-
plier that can be used to make r(s) nearly real except near
r(sg), making it possible to avoid troublesome places in the
complex r-plane.

IV. COMPARISON WITH ANALYTIC CALCULATIONS

Corngold* studied the power-law profiles given in Eq.
(2), showing that the mode equation could be put in the form
of the hypergeometric differential equation. This makes it
relatively easy to effect the required analytic continuation of
¢(r) into the complex r-plane. An exact calculation like this
is precisely what is needed to verify that the numerical
method described above is working, but Corngold does not
give exact results; he emphasizes the qualitative behavior of
the quasi-mode frequencies as functions of mode number
m and density profile parameter p. Moreover, there are two
misprints in his paper that must be corrected in order to see
that the numerical method described here agrees with his
analytic treatment. Hence, it is necessary to briefly review
his calculation.

The exact dispersion relation for the quasi-mode fre-
quencies in Corngold’s calculation is

T(a+b+1)
T(a)T'(b)
+1;2;1—2)=0, (5)

F(a,b:atb+1:2)—2i (1-z)F(at1,b

where F is the hypergeometric function. The quasi-mode fre-
quency o is related to the solution z of this equation by

R. L. Spencer and S. N. Rasband
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FIG. 1. A contour in the complex r-plane which uncovers the damped
quasi-mode for a parabolic density profile is shown. The arrowheads indi-
cate the direction of increasing contour parameter s, with the arrowheads
equally spaced in s. This contour has #,=0.5, s,=0.5, and w=10° [mean-
ing that the Gaussian in 4(7) is essentially unity]. The star shows the place
in the complex r-plane where the quasi-mode lies, i.e., the complex value of
r where mw(r) is equal to the complex frequency of the quasi-mode.

(1+p)z—1
W=Mmawy (1 +p)Z N (6)
and the parameters a and b are given by
2
—m m +1
a=-—— (— + p—;
2p 2p p
()
2
— m m p+1
b=—+ —) +—
2p 2p p

In Corngold’s paper the factor 2 i in Eq. (5) is given with a
positive sign, but —2 i as given above is correct.

As a first check the numerical procedure was applied to
the m=2 mode of the parabolic density profile used by
Corngold (p=1) with contour parameters #/y=0.5,
50=0.5, w=10° (effectively setting the Gaussian to 1), and
with 5000 subintervals. This contour is shown in Fig. 1,
while Fig. 2 shows the corresponding contour in the complex
w-plane of the function mwy(7), the deformed branch-line
contour. Using the numerical procedure of Sec. III, a quasi-
mode was found at w/wgy=1.06249648—:0.04260298
while the corresponding solution of Eq. (5) is w/wg
=1.06249647—i0.04260304. This quasi-mode is also indi-
cated by the stars in Figs. 1 and 2. (In Sec. III of Corngold’s
paper the frequency of this mode 1is given as
®0=0.94+i0.046, but this is also a misprint. The approxi-
mate procedure outlined in Sec. II of Corngold’s paper actu-
ally gives w=1.06—i0.04.) Other comparisons of Eq. (5)
with matrix shooting along a complex r-contour for other
choices of m and p give similar accuracy, indicating that the
numerical method works quite well.
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Complex w-—plane
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FIG. 2. A contour in the complex w-plane which uncovers the damped
quasi-mode for a parabolic density profile is shown. This contour is the
deformed position of the branch line mwy(r) corresponding to the
r-contour shown in Fig. 1. The arrowheads indicate the direction of increas-
ing contour parameter s, with the arrowheads equally spaced in s. The star
shows the place in the complex w-plane where the quasi-mode lies. The
dashed line shows the position of the branch line (continuum) before the
r-contour was deformed.

V. TRANSITION FROM STEP TO PARABOLIC

Briggs et al. discuss the case of a density profile which
is a sharp step with constant density n, for r<r, and zero
density for r,<r=<r,,. In this case there is no continuum and
a single undamped mode with frequency,

w=wy[m—1 +(rp/rw)2’"]. (8)

They then show that as the sharp edge of this density profile
is smoothed, putting a small amount of density at the radius
where the frequency of Eq. (8) is the same as mw(r), the
undamped mode becomes a damped quasi-mode. Their ap-
proximate procedure is not powerful enough, however, to
investigate what happens to the quasi-mode when the density
profile is smoothed enough that the density at the resonant
radius is no longer small.

To study this problem a form for the density profile must
be chosen. A simple choice would be the power-law profile
studied by Corngold [Eq. (2)], for as p approaches infinity
these profiles approach a sharp step. However, if the density
goes to zero at the wall, as it does in the profile given in Eq.
(2), then we are restricted to cases where there is no vacuum
region outside the plasma. And if we modify these profiles so
that there is a vacuum region (Corngold’s “‘gap’” profiles®)
then the density profile is not analytic across the entire radius
and we would have to modify our numerical method. It could
be done, but it is awkward, so we consider instead the fol-
lowing analytic form for the equilibrium density »,(r):

[tanh k(72— C)—tanh k(+>—C)]
[tanh k(72— C)+tanh kC] °

)

no(r)=ngy

or (equivalently)

R. L. Spencer and S. N. Rasband 55



Single—Step Density Profiles
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FIG. 3. Three density profiles that interpolate between a sharp step and a
parabola are shown. The values of k72 used in Eq. (11) to give these profiles
are indicated just above each profile.

[1—exp(—2k(r:—r?))][1+exp(—2kC)]

") =00 T exp(2k(r2 — O[T~ oxpl(—2kr)]
(10)
where
kC= l ln(% -1 )
2 €
and
=22k

1—2exp(— 2k(r —rz))+exp( Zkr)
l—exp( Zkr) exp(—2kr2 ) Texp(— 2k(r +r ))

(11)
The form of the density function given in Eq. (9) is chosen to
represent either sharp steps or broad transitions, depending
on the value chosen for k. The equivalent form in Eq. (10)
and the formula for € in Eq. (11) are built to avoid the nu-
merical overflow problems that arise when using the
tanh-function directly. The density at the plasma radius 7, is
always nyy/2 and the parameter £ governs the sharpness of
the density step. The density is constrained to be zero at
. When £ is large the step is sharp and as k is reduced
the step becomes broadened. The only choice of 7, that al-
lows k to become arbitrarily small is 7, /r,,= 1/ \5 all other
choices for r, have a minimum value of k below which
kC becomes imaginary and the functional form no longer
works.

Figure 3 shows what these density profiles look like for
three different values of k72 , all with rylr,=1/ V2. For this
special choice of r,, as k—0 the density profile becomes
parabolic. Because tanhz is analytic, except at isolated
points along the imaginary axis, the density function of Eq.
(9) can be continued into the complex plane to search for the
quasi-mode associated with the undamped mode that is
found when the step is infinitely sharp.

Figure 4 shows the result of matrix shooting to deter-
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Step Profile to Parabola
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FIG. 4. (a) The path of the m=2 quasi-mode frequency is shown as the
density profile is changed from a sharp step (the star at w/wyy=1.25) to a
parabola (the asterisk at w=1.06—:0.043). The three symbols along the
curve correspond to the three density profiles shown in Fig. 3. The numeri-
cal values (2,5,10) associated with the symbols correspond to the
krﬁ,-values indicated in Fig. 3. (b) The approximate path of the m =2 quasi-
mode frequency is shown for the same profile variation as in curve (a).
Along this curve w, was obtained from the b, =5b_ condition on the con-
tinuum eigenfunction and w; was obtained from the approximate Briggs
formula [their Eq. (50)].

mine o with r, fixed at r,/r, =1/\2 and for values of
krw ranging from 20 (sharp step) down to 0.03 (nearly a
parabolic density profile). The solid curve gives the variation
of the quasi-mode frequency as it changes from the sharp-
edge value (the star on the right end of the curve) to the
parabolic value (the * on the left end). Note that many dif-
ferent density profiles were used to make this curve in Fig. 4,

not just the three profiles shown in Fig. 3.

VI. ESTIMATING THE QUASI-MODE FREQUENCY
FROM THE CONTINUUM

One of the mysteries of the damped quasi-mode is what
determines its frequency, w,. In an earlier study of these
quasi-modes deGrassie and Malmberg used a numerical
technique to ignore the resonance in Eq. (1)” and got good
quantitative agreement with experimentally observed quasi-
mode frequencies, but it seems qualitatively that this fre-
quency should somehow be connected to the continuum
modes. But of all the frequencies in the continuum, what is
special about the frequency of the quasi-mode? To see the
connection of the quasi-mode frequency with the continuum
we must first recall what the continuum eigenmodes look
like. They are singular solutions of Eq. (1) with w belonging
to the range of real frequencies that make the resonant de-
nominator in the equation vanish. At the singular radius r;
the perturbed potential has a finite value, but its derivatives
are singular. Near the singular point the leading terms in the
expansion of ¢ obtained from the usual Frobenius analysis
are

gny(rs)

- x In|x| | +bx, (12)
wO(rs)

=~ p(ry)

EoBrs

R. L. Spencer and S. N. Rasband



where x=r—r,. The coefficient . of the regular part of the
solution actually represents two coefficients, b, for the so-
lution when x is positive and »_ when x is negative. In
general these two coefficients are not equal, but they might
be. And, in fact, the continuum frequency at which they are
equal gives a good estimate of the quasi-mode frequency.

To see why, consider the limit in which n(r,) becomes
vanishingly small. In this limit the logarithmic singularity in
Eq. (12) becomes quite insignificant, so the continuum
eigenfunctions are mostly characterized by the mismatch be-
tween b, and b_. Since the damped quasi-mode is very
close to a real undamped mode in this limit, and since the
real mode has continuous derivatives, the only continuum
eigenmode which can become the real eigenmode of the
point spectrum is the special one with b, =5b_.

These coefficients are found by numerically computing
the continuum eigenfunctions and comparing the solutions
near the singular point with the approximation in Eq. (12) to
determine b . . This approximation technique has been com-
pared with exact results from Corngold’s calculation® for
many combinations of m and p, and it is found that the
relative error in the determination of w, is of order w;/w, .
When w; is large, however, this continuum approximation
becomes increasingly poor, then fails altogether. The reason
is that modes with large imaginary part may not be resonant
in the plasma at all, as pointed out by Corngold.*

It is also possible to estimate the damping rate by com-
bining the estimate of w, given above with the approximate
formula for w; given by Briggs et al. [their Eq. (50)]:

w; ern(’)(rs) (r_p)Zn1—3[l_(r_S)2mr 0

oo 2mng s Ty

where 7, is the resonant radius, i.e., mwy(7,) = w, . In doing
this calculation the resonant radius was taken to be the reso-
nant radius of the continuum eigenfunction approximation to
the quasi-mode (the one for which b, =5b_). Once r, was
determined in this way the actual value of ny(r,) for the
diffuse density profile was used. The dashed curve in Fig. 4
shows the result of this approximate calculation on the same
equilibrium sequence used for the solid curve. Note that for
small w; the approximate calculation works very well. But
for very broad profiles this is a rather crude estimate since
Eq. (13) is based on a step-like density profile. Indeed, as can
be seen from Fig. 4, it only predicts w; within about a factor
of 2 for such profiles.

More elaborate approximation methods based on the
continuum eigenfunctions have also been tried, but these
have always turned out to be quite poor and even more dif-
ficult to carry out than the correct numerical calculation
along the complex r-contour.

VII. DENSITY PROFILES WITH MULTIPLE STEPS

Briggs, Daugherty, and Levy' also discuss the problem
of multiple steps in the density profile. In the case of several
sharp steps, Rayleigh® showed that there is a discrete mode
associated with each step. Briggs ef al. showed that as each
step is smoothed slightly each of these modes becomes a
damped quasi-mode. In this section the question of what
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Smoothing and Removing The Inner Step

0.0 0.2 0.4 0.6 0.8 1.0
/0y

FIG. 5. A sequence of density profiles is shown which modifies a double-
step profile (@) into a single-step profile (e). Both steps of the profile are
made by using the hyperbolic tangent form of a smooth step discussed in
Sec. V. The transition from (a) to (¢) is made by reducing k for the inner
step while keeping the size of the step constant. The final transition from
(¢) to (e) is made by keeping the inner k& constant while reducing the size
of the step to zero.

happens to these quasi-modes as changes are made to the
density profile will be addressed. First to be discussed is the
case of a double-step profile in which the outer step is kept
sharp while the inner one is first smoothed, then reduced in
size to approach a single-step profile. Discussed in the sec-
ond part of this section is the case in which a double-step
profile is smoothed so that the end result is a parabolic pro-
file. In both cases the double-step profile is made by com-
bining two of the hyperbolic-tangent profiles discussed in
Sec. V. Finally, the problem of power-law profiles with
vacuum gaps discussed by Corngold* will be discussed and it
will be shown that for most gap widths there is an additional
undamped mode present in addition to the damped quasi-
mode discussed in Ref. 4.

A. Double-step to single-step

Consider the sequence of density profiles shown in Fig.
5. The sequence a—c involves smoothing the inner step by
reducing its k-value while increasing the radius at which the
step occurs. Figure 6 shows what happens to the frequency
of the quasi-mode associated with the inner step as this trans-
formation is made. As expected from the analysis of Briggs
et al., it acquires a negative imaginary part. (The quasi-mode
associated with the outer step remains resonant and essen-
tially undamped in the space between the plasma and the
wall during all of these changes. This rather uninteresting
behavior is not shown.)

The second sequence c—e is made by keeping the
k-value of the inner step constant while reducing its size.
This sequence is interesting because the final profile (curve
e in Fig. 5) is a single step, which is expected to have only a
single quasi-mode, resonant between the plasma and the
wall; so what is to become of the inner quasi-mode?

The answer for this case is shown by the dashed path in
Fig. 6. Its damping rate goes to zero and its real frequency
approaches mw,, indicating at first glance that this mode

R. L. Spencer and S. N. Rasband 57



Smoothing and Removing the Inner Step
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FIG. 6. The behavior of the m =2 quasi-mode frequency associated with the
inner step of the double-step profile (a) in Fig. 5 is shown. At e the damp-
ing rate is nearly 0 while w,~mwg,. Even though w; is small (about
3X107%) and w,~mw,,, however, the resonant radius in the complex
r-plane is r/r,=0.62+i0.023.

should be resonant at »=0. This is not the case, however.
The numerical calculation gives a resonant radius for the
entire sequence from ¢ to e that varies between 0.66r,, and
0.62r,,, while the imaginary part of the complex resonant
r is nearly constant at »;=0.023r,,. This apparent discrep-
ancy between the sizes of w; and r; is resolved by noticing
that for small r; they are related by

wi%mriawo(r). (14)

Hence, if the w,-profile is nearly constant, as it is inside the
plasma for profile e in Fig. 5, the damping rate can be very
small even though r; is finite. (The eigenfunction along the
real-r axis for this quasi-mode would have a rather large
discontinuity because of the logarithmic branch cut extend-
ing down to the real axis from r/r,,=0.62+i0.023, as illus-
trated in Fig. 8 of Briggs et al.)!

So density profiles that look very much like a single-step
might actually have several quasi-modes: the usual one reso-
nant outside the the plasma, as discussed by Briggs ef al.,
and one or more quasi-modes resonant inside the plasma
corresponding to small wrinkles in the density profile. Cal-
culations of this kind have also been done for triple-step
profiles where it is found that there can be two interior quasi-
modes as a single-step profile is approached, provided that
the triple-step profile structure is still present, albeit with
vanishingly small size. These quasi-modes are the remnants
of Rayleigh’s discrete modes, but because they all have very
small damping rates and frequencies very near mwg(0), it is
not clear that they have any dynamical importance.

B. Double-step to parabola

Consider now the sequence of density profiles shown in
Fig. 7. In this case the final parabolic profile is one for which
we know there is only one quasi-mode, raising the question
of how the transition is made from the two quasi-modes of
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FIG. 7. A sequence of density profiles is shown which modifies a double-
step profile (a) into a parabola (f). Both steps of the profile are made by
using the hyperbolic tangent form of a smooth step discussed in Sec. V.
Profiles ¢ and d, though very nearly the same, have quite different quasi-
mode frequencies for the quasi-mode associated with the inner step (see Fig.
3).

profile a to the single one of profile f. The answer is shown
in Fig. 8. The dashed curve shows what happens to the quasi-
mode which is resonant in the space between the plasma and
the conducting wall. As the profile changes from a double-
step to a parabola, it simply makes its way toward the
quasi-mode frequency of a parabolic profile w/wy
=1.0625—1i0.0426.

The solid curve shows what happens to the inner quasi-
mode. As expected, it becomes more damped as the profile is
smoothed, but in the neighborhood of profiles ¢ and d in Fig.

Smoothing Both Steps To A Parabola
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FIG. 8. The behavior of both of the m =2 quasi-mode frequencies associ-
ated with the two steps of the double-step profile (a) in Fig. 7 is shown. The
solid curve shows the behavior of the quasi-mode associated with the inner
step. Notice that the slight profile change between ¢ and d (see Fig. 7)
corresponds to a large change in w; for this mode. Indeed, the quasi-mode
cannot be tracked further because it has rushed downward to join the
deformed branch line. The dashed curve shows the behavior of the
quasi-mode associated with the outer step. Its frequency varies smoothly
between the double-step value (a) and the parabolic value (f) where
o/ wy=1.0625—1i0.0426.
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7 the imaginary part rapidly becomes larger in magnitude. It
becomes so large, in fact, that it is not possible to move the
deformed branch line contour ahead of it without encounter-
ing wild places in the complex w-plane, and it joins the
branch line. This is the reason that no points beyond d are
indicated on its path. So in this case one of the quasi-modes
is eliminated by having it join the (deformed) branch line.

C. Parabola with a gap to a single-step

The reviewer of this paper asked a question and made an
interesting observation, both of which will be addressed
here. The question does not involve density profiles with
multiple steps, but it is related to the question of what hap-
pens to two quasi-modes when the profile is changed to one
that has only one, so it seems best to discuss it here. The
question is whether it is not also possible to approach a
single-step by increasing p in Corngold’s profiles [see Eq.
(2)]. Tt is, of course, possible to do it this way, but if the
density vanishes at the conducting wall then the single-step
just fills the entire region, which is not very interesting. And
if the density goes to zero at a radius less than r,,, then there
is a vacuum gap (as discussed by Corngold), but the density
profile is non-analytic which is awkward to study using the
numerical methods discussed here. But thinking about ap-
proaching a single-step in this way leads to the interesting
observation made by the reviewer.

The observation is that there is a qualitative discrepancy
between Corngold’s discussion of the spectrum when a gap
is present and the results presented here. In Corngold’s gap
calculation® there is a single quasimode whose frequency
approaches the mode frequency of the single-step as p is
increased without bound. But in the case of profile ¢ in Fig.
5 there are two quasi-modes: the first is the one described by
the curve in Fig. 6 and the second is one that is resonant out
in the exponentially small density tail so that it is practically
undamped. This second one is the one whose frequency ap-
proaches the mode frequency of the single-step as the density
profile goes through the sequence ¢ to d to e in Fig. 5. But
profile ¢ in Fig. 5 does not look much different from a
power-law profile with a vacuum gap, so why do we find two
quasi-modes while Corngold only finds one?

The answer to this question is that there is a subtle point
in the power-law profile calculation that was missed in Ref.
4. This point is illustrated by Fig. 9. The solid circles in
frame (a) of Fig. 9 show the variation of quasimode fre-
quency with gap width using Corngold’s dispersion function,
but instead of setting it to zero it is required to satisfy the gap
boundary condition, Corngold’s Eq. (23):

1—(”_17)2m 9 _
7y,

dz
where (z) is the function given on the left-hand side of Eq.
(5). The solid circles were obtained by using the secant
method and a standard hypergeometric function subroutine
to solve Eq. (15), and they agree very well with the data
given in Fig. 7 of Ref. 4. Note, however, that our Fig. 9
covers a larger range of gaps than does the figure in Corn-
gold’s paper (his data correspond to w,/wqy > 0.8 in Fig. 9).

v

p 0, (15)
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FIG. 9. (a) Shown here is the behavior of the quasi-mode and mode fre-
quencies of a parabolic density profile as the vacuum gap is increased. Fifty
different equally spaced gaps ranging from r,/r,=0.99 down to
r,/r,=0.01 were used. The solid circles show the 50 damped quasi-mode
frequencies corresponding to the analytically continued sheet of Corngold.
The open circles show the undamped mode frequencies that correspond to
the original sheet. There are no such modes until r,/r,,<0.97. (b) The
behavior of the quasi-mode and undamped mode for r,/r,,=0.707 as p is
increased is shown. As the density profile approaches a single-step profile
(p—°) both converge to the undamped mode frequency of a the single step
at w/wyy=1.25 (indicated by the symbol X).

But in addition to the quasi-mode solution of Eq. (15)
discussed in Ref. 4, there is also an undamped mode for most
gap widths. This mode may be obtained simply by not per-
forming the analytic continuation that gives the extra term
containing 2 i in Eq. (5), working instead with the original
function ¥(z)=F(a,b;a+ b+ 1;z). When there is no gap no
modes are obtained from this sheet of i(z), as noted by
Corngold. But as the gap is widened, at about r,,/r,,=0.97 a
mode appears. This undamped mode is resonant in the
vacuum gap and its variation with gap width is shown by the
open circles in frame (a) of Fig. 9. Similar calcultions with
other values of mode number m and profile parameter p
show that as p increases the critical value of r,/r, ap-
proaches 1 [for m=2 and p=(1,2,3) the critical values are
r,/r,=(0.97,0.98,0.99)] and as m increases the critical
value decreases, but not by much. For example, for p=1 and
m=38 an undamped mode exists for r,/r,,<0.9. Hence, for
most power-law profiles with gaps (and particularly for pro-
files with gaps as big as the one in Fig. 5) there are both a
damped quasi-mode and an undamped mode.

Now we may explore what happens to the quasi-mode
and the undamped mode as p is increased, approaching a
single-step profile. The answer to this question is shown in
frame (b) of Fig. 9 where, once again, the quasi-mode is
indicated by solid circles and the undamped mode is indi-
cated by open circles. Note that both frequencies converge to
the single undamped mode of the single-step profile (indi-
cated by the symbol X in the figure). This is yet another
scenario for what happens when a profile that has two quasi-
modes is changed to one that only has one: both may con-
verge to the same location.

So here are three scenarios for what happens when a
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profile that has two quasi-modes is changed into one that has
only one: (1) one can disappear by joining the deformed
branch line (Figs. 7 and 8), (2) one can disappear by ap-
proaching m w, while being resonant at a finite radius (Figs.
5 and 6), or (3) the two can both converge to the one quasi-
mode of the final profile (Fig. 9b). The numerical experi-
ments we have performed indicate that these three possibili-
ties are common, but we are now sufficiently humbled by the
complexity of these problems that we would not be surprised
if something else were also possible.

VIIl. CONCLUSION

Damped diocotron quasi-modes have been computed by
using standard shooting techniques along contours in the
complex r-plane, implementing a suggestion made by
Briggs, Daugherty, and Levy.' This numerical technique
agrees with the analytic dispersion relation found by
Corngold,* but can handle a much wider variety of density
profiles. We also find an answer to the question, ‘“Of all the
frequencies in the continuum, what is special about the fre-
quency of the damped quasi-mode?’” We find that the fre-
quency of the quasi-mode matches the frequency of the con-
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tinuum eigenfunction whose regular part has a continuous
first derivative across the singularity. Finally, these compu-
tations have been used to learn what happens to quasi-modes
as density profiles are changed from one form into another.
The ability to compute these quasi-modes and understand
their behavior as density profiles are modified should be
helpful in understanding their significance in the dynamics of
non-neutral plasmas and inviscid fluids.

ACKNOWLEDGMENTS

The authors are grateful for useful discussions with Noel
Corngold and with Ann Cass.

R. J. Briggs, J. D. Daugherty, and R. H. Levy, Phys. Fluids 13, 421
(1970).

2K. M. Case, Phys. Fluids 3, 143 (1960).

3N. S. Pillai and R. W. Gould, Phys. Rev. Lett. 73, 2849 (1994).

“N. R. Corngold, Phys. Plasmas 2, 620 (1995).

3]. P. Freidberg and D. W. Hewett, J. Plasma Phys. 26, 177 (1981).

®N. R. Corngold (private communication, 1996).

1. S. deGrassie and J. H. Malmberg, Phys. Rev. Lett. 39, 1077 (1977);
Phys. Fluids 23, 63 (1980).

87. W. S. Rayleigh, Proc. London Math. Soc. 11, 57 (1880).

R. L. Spencer and S. N. Rasband



	Damped diocotron quasi-modes of non-neutral plasmas and inviscid fluids
	Original Publication Citation
	BYU ScholarsArchive Citation

	C:\Documents and Settings\1gi...0ao.default\Cache\90BB0138d01

