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Teaching Electromagnetic Field
Theory Using Differential Forms

Karl F. Warnick, Richard H. Selfridge, Member, IEEE, and David V. Arnold

Abstract— The calculus of differential forms has significant
advantages over traditional methods as a tool for teaching electro-
magnetic (EM) field theory: First, forms clarify the relationship
between field intensity and flux density, by providing distinct
mathematical and graphical representations for the two types of
fields. Second, Ampere’s and Faraday’s laws obtain graphical
representations that are as intuitive as the representation of
Gauss’s law. Third, the vector Stokes theorem and the divergence
theorem become special cases of a single relationship that is easier
for the student to remember, apply, and visualize than their
vector formulations. Fourth, computational simplifications result
from the use of forms: derivatives are easier to employ in curvilin-
ear coordinates, integration becomes more straightforward, and
families of vector identities are replaced by algebraic rules. In
this paper, EM theory and the calculus of differential forms are
developed in parallel, from an elementary, conceptually oriented
point of view using simple examples and intuitive motivations. We
conclude that because of the power of the calculus of differential
forms in conveying the fundamental concepts of EM theory, it
provides an attractive and viable alternative to the use of vector
analysis in teaching electromagnetic field theory.

I. INTRODUCTION

CERTAIN questions are often asked by students of elec-
tromagnetic (EM) field theory: Why does one need both

field intensity and flux density to describe a single field? How
does one visualize the curl operation? Is there some way to
make Ampere’s law or Faraday’s law as physically intuitive as
Gauss’s law? The Stokes theorem and the divergence theorem
seem vaguely similar; do they have a deeper connection?
Because of difficulty with concepts related to these questions,
some students leave introductory courses lacking a real under-
standing of the physics of electromagnetics. Interestingly, none
of these concepts are intrinsically more difficult than other
aspects of EM theory; rather, they are unclear because of the
limitations of the mathematical language traditionally used to
teach electromagnetics: vector analysis. In this paper, we show
that the calculus of differential forms clarifies these and other
fundamental principles of electromagnetic field theory.
The use of the calculus of differential forms in electro-

magnetics has been explored in several important papers and
texts, including Misner, Thorne, and Wheeler [1], Deschamps
[2], and Burke [3]. These works note some of the advantages
of the use of differential forms in EM theory. Misner et al.
and Burke treat the graphical representation of forms and
operations on forms, as well as other aspects of the application
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of forms to electromagnetics. Deschamps was among the
first to advocate the use of forms in teaching engineering
electromagnetics.
Existing treatments of differential forms in EM theory

either target an advanced audience or are not intended to
provide a complete exposition of the pedagogical advantages
of differential forms. This paper presents the topic on an
undergraduate level and emphasizes the benefits of differential
forms in teaching introductory electromagnetics, especially
graphical representations of forms and operators. The calculus
of differential forms and principles of EM theory are intro-
duced in parallel, much as would be done in a beginning EM
course. We present concrete visual pictures of the various field
quantities, Maxwell’s laws, and boundary conditions. The aim
of this paper is to demonstrate that differential forms are an
attractive and viable alternative to vector analysis as a tool for
teaching electromagnetic field theory.

A. Development of Differential Forms
Cartan and others developed the calculus of differential

forms in the early 1900’s. A differential form is a quantity
that can be integrated, including differentials. More precisely,
a differential form is a fully covariant, fully antisymmetric
tensor. The calculus of differential forms is a self-contained
subset of tensor analysis.
Since Cartan’s time, the use of forms has spread to many

fields of pure and applied mathematics, from differential
topology to the theory of differential equations. Differential
forms are used by physicists in general relativity [1], quantum
field theory [4], thermodynamics [5], mechanics [6], as well
as electromagnetics. A section on differential forms is com-
monplace in mathematical physics texts [7], [8]. Differential
forms have been applied to control theory by Hermann [9]
and others.

B. Differential Forms in EM Theory
The laws of electromagnetic field theory as expressed by

James Clerk Maxwell in the mid 1800’s required dozens of
equations. Vector analysis offered a more convenient tool for
working with EM theory than earlier methods. Tensor analysis
is in turn more concise and general, but is too abstract to give
students a conceptual understanding of EM theory. Weyl and
Poincaé expressed Maxwell’s laws using differential forms
early this century. Applied to electromagnetics, differential
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forms combine much of the generality of tensors with the
simplicity and concreteness of vectors.
General treatments of differential forms and EM theory

include papers [2], [10]–[14]. Ingarden and Jamiolkowski
[15] is an electrodynamics text using a mix of vectors and
differential forms. Parrott [16] employs differential forms to
treat advanced electrodynamics. Thirring [17] is a classical
field theory text that includes certain applied topics such as
waveguides. Bamberg and Sternberg [5] develop a range of
topics in mathematical physics, including EM theory via a
discussion of discrete forms and circuit theory. Burke [3]
treats a range of physics topics using forms, shows how to
graphically represent forms, and gives a useful discussion
of twisted differential forms. The general relativity text by
Misner, Thorne, and Wheeler [1] has several chapters on
EM theory and differential forms, emphasizing the graphical
representation of forms. Flanders [6] treats the calculus of
forms and various applications, briefly mentioning electromag-
netics.
We note here that many authors, including most of those

referenced above, give the spacetime formulation of Maxwell’s
laws using forms, in which time is included as a differential.
We use only the representation in this paper, since the
spacetime representation is treated in many references and is
not as convenient for various elementary and applied topics.
Other formalisms for EM theory are available, including
bivectors, quaternions, spinors, and higher Clifford algebras.
None of these offer the combination of concrete graphical
representations, ease of presentation, and close relationship
to traditional vector methods that the calculus of differential
forms brings to undergraduate-level electromagnetics.
The tools of applied electromagnetics have begun to be

reformulated using differential forms. The authors have devel-
oped a convenient representation of electromagnetic boundary
conditions [18]. Thirring [17] treats several applications of EM
theory using forms. Reference [19] treats the dyadic Green
function using differential forms. Work is also proceeding on
the use of Green forms for anisotropic media [20].

C. Pedagogical Advantages of Differential Forms
As a language for teaching electromagnetics, differential

forms offer several important advantages over vector analysis.
Vector analysis allows only two types of quantities: scalar
fields and vector fields (ignoring inversion properties). In a
three-dimensional space, differential forms of four different
types are available. This allows flux density and field intensity
to have distinct mathematical expressions and graphical rep-
resentations, providing the student with mental pictures that
clearly reveal the different properties of each type of quantity.
The physical interpretation of a vector field is often implicitly
contained in the choice of operator or integral that acts on it.
With differential forms, these properties are directly evident
in the type of form used to represent the quantity.
The basic derivative operators of vector analysis are the

gradient, curl, and divergence. The gradient and divergence
lend themselves readily to geometric interpretation, but the

curl operation is more difficult to visualize. The gradient, curl,
and divergence become special cases of a single operator, the
exterior derivative, and the curl obtains a graphical represen-
tation that is as clear as that for the divergence. The physical
meanings of the curl operation and the integral expressions
of Faraday’s and Ampere’s laws become so intuitive that the
usual order of development can be reversed by introducing
Faraday’s and Ampere’s laws to students first and using these
to motivate Gauss’s laws.
The Stokes theorem and the divergence theorem have an

obvious connection in that they relate integrals over a bound-
ary to integrals over the region inside the boundary, but in the
language of vector analysis they appear very different. These
theorems are special cases of the generalized Stokes theorem
for differential forms, which also has a simple graphical
interpretation.
Since 1992, we have incorporated short segments on dif-

ferential forms into our beginning, intermediate, and graduate
electromagnetics courses. In the Fall of 1995, we reworked
the entire beginning electromagnetics course, changing em-
phasis from vector analysis to differential forms. Following
the first semester in which the new curriculum was used,
students completed a detailed written evaluation. Out of 44
responses, four were partially negative; the rest were in favor
of the change to differential forms. Certainly, enthusiasm of
students involved in something new increased the likelihood
of positive responses, but one fact was clear: pictures of
differential forms helped students understand the principles
of electromagnetics.

D. Outline
Section II defines differential forms and the degree of a

form. Graphical representations for forms of each degree are
given, and the differential forms representing the various
quantities of electromagnetics are identified. In Section III
we use these differential forms to express Maxwell’s laws in
integral form and give graphical interpretations for each of the
laws. Section IV introduces differential forms in curvilinear
coordinate systems. Section V applies Maxwell’s laws to find
the fields due to sources of basic geometries. In Section VI
we define the exterior derivative, give the generalized Stokes
theorem, and express Maxwell’s laws in point form. Section
VII treats boundary conditions using the interior product.
Section VIII provides a summary of the main points made
in the paper.

II. DIFFERENTIAL FORMS AND THE ELECTROMAGNETIC FIELD
In this section we define differential forms of various

degrees and identify them with field intensity, flux density,
current density, charge density, and scalar potential.
A differential form is a quantity that can be integrated,

including differentials. is a differential form, as are
and . The type of

integral called for by a differential form determines its degree.
The form is integrated under a single integral over a
path and so is a -form. The form is integrated by a
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TABLE I
DIFFERENTIAL FORMS OF EACH DEGREE

TABLE II
THE DIFFERENTIAL FORMS THAT REPRESENT FIELDS AND SOURCES

double integral over a surface, so its degree is two. A -form
is integrated by a triple integral over a volume. -forms are
functions, ‘‘integrated’’ by evaluation at a point. Table I gives
examples of forms of various degrees. The coefficients of the
forms can be functions of position, time, and other variables.

A. Representing the Electromagnetic Field
with Differential Forms
From Maxwell’s laws in integral form, we can readily

determine the degrees of the differential forms that will
represent the various field quantities. In vector notation,

where is a surface bounded by a path is a volume
bounded by a surface is volume charge density, and
the other quantities are defined as usual. The electric field
intensity is integrated over a path, so that it becomes a -
form. The magnetic field intensity is also integrated over a
path, and becomes a -form as well. The electric and magnetic
flux densities are integrated over surfaces, and so are -forms.
The sources are electric current density, which is a -form,
since it falls under a surface integral, and the volume charge
density, which is a -form, as it is integrated over a volume.
Table II summarizes these forms.

B. -Forms: Field Intensity
The usual physical motivation for electric field intensity

is the force experienced by a small test charge placed in
the field. This leads naturally to the vector representation of
the electric field, which might be called the “force picture.”
Another physical viewpoint for the electric field is the change
in potential experienced by a charge as it moves through the

(.a) (b)

(c)

Fig. 1. (a) The �-form ��, with surfaces perpendicular to the �-axis and
infinite in the � and � directions. (b) The �-form � ��, with surfaces
perpendicular to the �-axis and spaced two per unit distance in the � direction.
(c) A general �-form, with curved surfaces and surfaces that end or meet each
other.

field. This leads naturally to the equipotential representation
of the field, or the “energy picture.” The energy picture shifts
emphasis from the local concept of force experienced by a
test charge to the global behavior of the field as manifested
by change in energy of a test charge as it moves along a
path.
Differential forms lead to the “energy picture” of field

intensity. A -form is represented graphically as surfaces
in space [1], [3]. For a conservative field, the surfaces of
the associated -form are equipotentials. The differential
produces surfaces perpendicular to the -axis, as shown in
Fig. 1(a). Likewise, has surfaces perpendicular to the -
axis and the surfaces of are perpendicular to the -axis.
A linear combination of these differentials has surfaces that
are skew to the coordinate axes. The coefficients of a -
form determine the spacing of the surfaces per unit length;
the greater the magnitude of the coefficients, the more closely
spaced are the surfaces. The -form , shown in Fig. 1(b),
has surfaces spaced twice as closely as those of in Fig. 1(a).
In general, the surfaces of a -form can curve, end, or

meet each other, depending on the behavior of the coefficients
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Fig. 2. A path piercing four surfaces of a 1-form. The integral of the 1-form
over the path is four.

of the form. If surfaces of a -form do not meet or end,
the field represented by the form is conservative. The field
corresponding to the -form in Fig. 1(a) is conservative; the
field in Fig. 1(c) is nonconservative.
Just as a line representing the magnitude of a vector has two

possible orientations, the surfaces of a -form are oriented
as well. This is done by specifying one of the two normal
directions to the surfaces of the form. The surfaces of
are oriented in the direction, and those of in the

direction. The orientation of a form is usually clear from
context and is omitted from figures.
Differential forms are by definition the quantities that can

be integrated, so it is natural that the surfaces of a -form are
a graphical representation of path integration. The integral of
a -form along a path is the number of surfaces pierced by
the path (Fig. 2), taking into account the relative orientations
of the surfaces and the path. This simple picture of path
integration will provide in the next section a means for
visualizing Ampere’s and Faraday’s laws.
The -form is said to be dual to the

vector field . The field intensity -forms
and are dual to the vectors and .
Following Deschamps, we take the units of the electric and

magnetic field intensity -forms to be volts and amperes, as
shown in Table II. The differentials are considered to have
units of length. Other field and source quantities are assigned
units according to this same convention. A disadvantage of
Deschamps’ system is that it implies in a sense that the
metric of space carries units. Alternative conventions are
available; Bamberg and Sternberg [5] and others take the
units of the electric and magnetic field intensity -forms to
be volts per meter and amperes per meter, the same as their
vector counterparts, so that the differentials carry no units
and the integration process itself is considered to provide
a factor of length. If this convention is chosen, the basis
differentials of curvilinear coordinate systems (see Section IV)
must also be taken to carry no units. This leads to confusion
for students, since these basis differentials can include factors
of distance. The advantages of this alternative convention are
that it is more consistent with the mathematical point of view,
in which basis vectors and forms are abstract objects not
associated with a particular system of units, and that a field
quantity has the same units whether represented by a vector
or a differential form. Furthermore, a general differential form
may include differentials of functions that do not represent

(a) (b)

Fig. 3. (a) The �-form �� ��, with tubes in the � direction. (b) Four tubes
of a �-form pass through a surface, so that the integral of the �-form over
the surface is four.

position and so cannot be assigned units of length. The
possibility of confusion when using curvilinear coordinates
seems to outweigh these considerations, and so we have chosen
Deschamps’ convention.
With this convention, the electric field intensity -form can

be taken to have units of energy per charge, or joules per
coulomb. This supports the “energy picture,” in which the
electric field represents the change in energy experienced by a
charge as it moves through the field. One might argue that
this motivation of field intensity is less intuitive than the
concept of force experienced by a test charge at a point. While
this may be true, the graphical representations of Ampere’s
and Faraday’s laws that will be outlined in Section III favor
the differential form point of view. Furthermore, the simple
correspondence between vectors and forms allows both to be
introduced with little additional effort, providing students a
more solid understanding of field intensity than they could
obtain from one representation alone.

C. -Forms: Flux Density and Current Density
Flux density or flow of current can be thought of as tubes

that connect sources of flux or current. This is the natural
graphical representation of a -form, which is drawn as sets
of surfaces that intersect to form tubes. The differential
is represented by the surfaces of and superimposed.
The surfaces of perpendicular to the -axis and those of
perpendicular to the -axis intersect to produce tubes in the
direction, as illustrated by Fig. 3(a). (To be precise, the tubes
of a -form have no definite shape: tubes of have the
same density those of .) The coefficients of a -
form give the spacing of the tubes. The greater the coefficients,
the more dense the tubes. An arbitrary -form has tubes that
may curve or converge at a point.
The direction of flow or flux along the tubes of a -form is

given by the right-hand rule applied to the orientations of the
surfaces making up the walls of a tube. The orientation of
is in the direction, and in the direction, so the flux
due to is in the direction.
As with -forms, the graphical representation of a -form is

fundamentally related to the integration process. The integral
of a -form over a surface is the number of tubes passing
through the surface, where each tube is weighted positively if
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Fig. 4. The �-form �� �� ��, with cubes of side equal to one. The cubes
fill all space.

its orientation is in the direction of the surface’s oriention, and
negatively if opposite. This is illustrated in Fig. 3(b).
As with -forms, -forms correspond to vector fields in

a simple way. An arbitrary -form
is dual to the vector field , so that

the flux density -forms and are dual to the usual flux
density vectors and .

D. -Forms: Charge Density
Some scalar physical quantities are densities, and can be

integrated over a volume. For other scalar quantities, such
as electric potential, a volume integral makes no sense. The
calculus of forms distinguishes between these two types of
quantities by representing densities as -forms. Volume charge
density, for example, becomes

(1)

where is the usual scalar charge density in the notation of [2].
A -form is represented by three sets of surfaces in space

that intersect to form boxes. The density of the boxes is
proportional to the coefficient of the -form; the greater the
coefficient, the smaller and more closely spaced are the boxes.
A point charge is represented by an infinitesimal box at the
location of the charge. The -form is the union of
three families of planes perpendicular to each of the
and axes. The planes along each of the axes are spaced
one unit apart, forming cubes of unit side distributed evenly
throughout space, as in Fig. 4. The orientation of a -form
is given by specifying the sign of its boxes. As with other
differential forms, the orientation is usually clear from context
and is omitted from figures.

E. -Forms: Scalar Potential
-forms are functions. The scalar potential , for example,

is a -form. Any scalar physical quantity that is not a volume
density is represented by a -form.

F. Summary
The use of differential forms helps students to understand

electromagnetics by giving them distinct mental pictures that

they can associate with the various fields and sources. As
vectors, field intensity and flux density are mathematically
and graphically indistinguishable as far as the type of physical
quantity they represent. As differential forms, the two types of
quantities have graphical representations that clearly express
the physical meaning of the field. The surfaces of a field
intensity -form assign potential change to a path. The tubes
of a flux density -form give the total flux or flow through a
surface. Charge density is also distinguished from other types
of scalar quantities by its representation as a -form.

III. MAXWELL’S LAWS IN INTEGRAL FORM
In this section, we discuss Maxwell’s laws in integral

form in light of the graphical representations given in the
previous section. Using the differential forms defined in Table
II, Maxwell’s laws can be written

(2)

The first pair of laws is often more difficult for students to
grasp than the second, because the vector picture of curl is
not as intuitive as that for divergence. With differential forms,
Ampere’s and Faraday’s laws are graphically very similar to
Gauss’s laws for the electric and magnetic fields. The close
relationship between the two sets of laws becomes clearer.

A. Ampere’s and Faraday’s Laws
Faraday’s and Ampere’s laws equate the number of surfaces

of a -form pierced by a closed path to the number of tubes
of a -form passing through the path. Each tube of , for
example, must have a surface of extending away from it, so
that any path around the tube pierces the surface of . Thus
Ampere’s law states that tubes of displacement current and
electric current are sources for surfaces of . This is illustrated
in Fig. 5(a). Likewise, tubes of time-varying magnetic flux
density are sources for surfaces of .
The illustration of Ampere’s law in Fig. 5(a) is arguably

the most important pedagogical advantage of the calculus of
differential forms over vector analysis. Ampere’s and Fara-
day’s laws are usually considered the more difficult pair of
Maxwell’s laws, because vector analysis provides no simple
picture that makes the physical meaning of these laws intuitive.
Compare Fig. 5(a) to the vector representation of the same
field in Fig. 5(b). The vector field appears to “curl” everywhere
in space. Students must be convinced that indeed the field
has no curl except at the location of the current, using some
pedagogical device such as an imaginary paddle wheel in a
rotating fluid. The surfaces of , on the other hand, end
only along the tubes of current; where they do not end, the
field has no curl. This is the fundamental concept underlying
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(a) (b)

Fig. 5. (a) A graphical representation of Ampere’s law: tubes of current
produce surfaces of magnetic field intensity. Any loop around the three tubes
of � must pierce three surfaces of� . (b) A cross section of the same magnetic
field using vectors. The vector field appears to “curl” everywhere, even though
the field has nonzero curl only at the location of the current.

Fig. 6. A graphical representation of Gauss’s law for the electric flux density:
boxes of � produce tubes of �.

Ampere’s and Faraday’s laws: tubes of time-varying flux or
current produce field intensity surfaces.

B. Gauss’s Laws
Gauss’s law for the electric field states that the number of

tubes of flowing out through a closed surface must be equal
to the number of boxes of inside the surface. The boxes of
are sources for the tubes of , as shown in Fig. 6. Gauss’s

law for the magnetic flux density states that tubes of the -
form can never end—they must either form closed loops
or go off to infinity.
Comparing Figs. 5(a) and 6 shows the close relationship

between the two sets of Maxwell’s laws. In the same way
that flux density tubes are produced by boxes of electric
charge, field intensity surfaces are produced by tubes of the
sources on the right-hand sides of Faraday’s and Ampere’s
laws. Conceptually, the laws only differ in the degrees of the
forms involved and the dimensions of their pictures.

C. Constitutive Relations and the Star Operator
The usual vector expressions of the constitutive relations

for an isotropic medium,

Fig. 7. The star operator relates �-form surfaces to perpendicular �-form
tubes.

involve scalar multiplication. With differential forms, we can-
not use these same relationships, because and are
-forms, while and are -forms. An operator that relates
forms of different degrees must be introduced.
The Hodge star operator [5], [17] naturally fills this role. As

vector spaces, the spaces of -forms and -forms are both one-
dimensional, and the spaces of -forms and -forms are both
three-dimensional. The star operator is a set of isomorphisms
between these pairs of vector spaces.
For -forms and -forms, the star operator satisfies

-forms and -forms are related by

In , the star operator is its own inverse, so that .
A -form is dual to the same vector as the -form .
Graphically, the star operator replaces the surfaces of a form

with orthogonal surfaces, as in Fig. 7. The -form , for
example, has planes perpendicular to the -axis. It becomes

under the star operation. This -form has planes
perpendicular to the and the axes.
Using the star operator, the constitutive relations are

(3)
(4)

where and are the permittivity and permeability of the
medium. The surfaces of are perpendicular to the tubes of
, and the surfaces of are perpendicular to the tubes of .

The following example illustrates the use of these relations.
Example 1 (Finding Due to an Electric Field Inten-

sity): Let volts be the electric field
in free space. We wish to find the flux density due to this
field. Using the constitutive relationship between and

(C)
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While we restrict our attention to isotropic media in this
paper, the star operator applies equally well to anisotropic
media. As discussed in [5] and elsewhere, the star operator
depends on a metric. If the metric is related to the permittivity
or the permeability tensor, anisotropic star operators are ob-
tained, and the constitutive relations become and

[20]. Graphically, an anisotropic star operator acts
on -form surfaces to produce -form tubes that intersect the
surfaces obliquely rather than orthogonally.

D. The Exterior Product and the Poynting -form
Between the differentials of -forms and -forms is an

implied exterior product, denoted by a wedge . The wedge
is nearly always omitted from the differentials of a form,
especially when the form appears under an integral sign.
The exterior product of -forms is anticommutative, so that

. As a consequence, the exterior product
is in general supercommutative, so that

(5)

where and are the degrees of and , respectively. One
usually converts the differentials of a form to right-cyclic order
using (5).
As a consequence of (5), any differential form with a re-

peated differential vanishes. In a three-dimensional space each
term of a -form will always contain a repeated differential if

, so there are no nonzero -forms for .
The exterior product of two -forms is analogous to the

vector cross product. With vector analysis, it is not obvious
that the cross product of vectors is a different type of quantity
than the factors. Under coordinate inversion, changes
sign relative to a vector with the same components, so that

is a pseudovector. With forms, the distinction between
and or individually is clear.

The exterior product of a -form and a -form corresponds
to the dot product. The coefficient of the resulting -form is
equal to the dot product of the vector fields dual to the -form
and -form in the Euclidean metric.
Combinations of cross and dot products are somewhat

difficult to manipulate algebraically, often requiring the use
of tabulated identities. Using the supercommutativity of the
exterior product, the student can easily manipulate arbitrary
products of forms. For example, the identities

are special cases of

where and are forms of arbitrary degrees. The factors
can be interchanged easily using (5).

Fig. 8. The Poynting power flow �-form � � � � � . Surfaces of the
�-forms � and � are the sides of the tubes of �.

Consider the exterior product of the 1-forms and

This is the Poynting -form . For complex fields,
. For time-varying fields, the tubes of this -form

represent flow of electromagnetic power, as shown in Fig. 8.
The sides of the tubes are the surfaces of and . This gives a
clear geometrical interpretation to the fact that the direction of
power flow is orthogonal to the orientations of both and .

Example 2 (The Poynting -Form Due to a Plane Wave):
Consider a plane wave propagating in free space in the
direction, with the time-harmonic electric field
volts in the direction. The Poynting -form is

(W)

where is the wave impedance of free space.

E. Energy Density
The exterior products and are -forms that

represent the density of electromagnetic energy. The energy
density -form is defined to be

(6)

The volume integral of gives the total energy stored in a
region of space by the fields present in the region.
Fig. 9 shows the energy density -form between the plates

of a capacitor, where the upper and lower plates are equally
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Fig. 9. The �-form �� due to fields inside a parallel-plate capacitor with
oppositely charged plates. The surfaces of � are parallel to the top and bottom
plates. The tubes of � extend vertically from charges on one plate to opposite
charges on the other. The tubes and surfaces intersect to form cubes of ��,
one of which is outlined in the figure.

and oppositely charged. The boxes of are the intersection
of the surfaces of , which are parallel to the plates, with the
tubes of , which extend vertically from one plate to the other.

IV. CURVILINEAR COORDINATE SYSTEMS
In this section, we give the basis differentials, the star op-

erator, and the correspondence between vectors and forms for
cylindrical, spherical, and generalized orthogonal coordinates.

A. Cylindrical Coordinates
The differentials of the cylindrical coordinate system are
, , and . Each of the basis differentials is considered

to have units of length. The general -form

(7)

is dual to the vector

(8)

The general -form

(9)

is dual to the same vector. The -form , for example,
is dual to the vector .
Differentials must be converted to basis elements before

the star operator is applied. The star operator in cylindrical
coordinates acts as follows:

Also, . As with the rectangular coordinate
system, . The star operator applied to , for
example, yields .
Fig. 10 shows the pictures of the differentials of the cylin-

drical coordinate system. The -forms can be obtained by
superimposing these surfaces. Tubes of , for example,
are square rings formed by the union of Figs. 10(a) and 10(c).

(a) (b)

(c)

Fig. 10. Surfaces of (a) ��, (b) �� scaled by ��	, and (c) �
.

B. Spherical Coordinates
The basis differentials of the spherical coordinate system

are and , each having units of length. The
-form

(10)

and the -form

(11)

are both dual to the vector

(12)

so that , for example, is dual to the vector .
As in the cylindrical coordinate system, differentials must be

converted to basis elements before the star operator is applied.
The star operator acts on -forms and -forms as follows:

Again, . The star operator applied to one is

Fig. 11 shows the pictures of the differentials of the spherical
coordinate system; pictures of -forms can be obtained by
superimposing these surfaces.
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(a) (b)

(c)

Fig. 11. Surfaces of (a) ��, (b) �� scaled by ����, and (c) �� scaled by
���.

C. Generalized Orthogonal Coordinates
Let the location of a point be given by such that the

tangents to each of the coordinates are mutually orthogonal.
Define a function such that the integral of along any
path with and constant gives the length of the path. Define
and similarly. Then the basis differentials are

(13)

The -form and the -form
are both

dual to the vector . The star operator on -forms
and -forms satisfies

(14)

For -forms and -forms, .

V. ELECTROSTATICS AND MAGNETOSTATICS
In this section we treat several of the usual elementary

applications of Maxwell’s laws in integral form. We find the
electric flux due to a point charge and a line charge using
Gauss’s law for the electric field. Ampere’s law is used to
find the magnetic fields produced by a line current.

A. Point Charge
By symmetry, the tubes of flux from a point charge must

extend out radially from the charge (Fig. 12), so that

(15)

Fig. 12. Electric flux density due to a point charge. Tubes of � extend
away from the charge.

To apply Gauss’s law

we choose to be a sphere enclosing the charge. The right-
hand side of Gauss’s law is equal to , and the left-hand side
is

Solving for and substituting into (15)

(C) (16)

for the electric flux density due to the point charge. This can
also be written

(C) (17)

Since is the total amount of solid angle for a sphere
and is the differential element of solid angle, this
expression matches Fig. 12 in showing that the amount of flux
per solid angle is constant.

B. Line Charge
For a line charge with charge density coulombs per meter,

by symmetry tubes of flux extend out radially from the line,
as shown in Fig. 13. The tubes are bounded by the surfaces
of and , so that has the form

(18)

Let be a cylinder of height with the line charge along its
axis. The right-hand side of Gauss’s law is

The left-hand side is
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Fig. 13. Electric flux density due to a line charge. Tubes of� extend radially
away from the vertical line of charge.

Fig. 14. Magnetic field intensity � due to a line current.

Solving for and substituting into (18), we obtain

(C) (19)

for the electric flux density due to the line charge.

C. Line Current
If a current amperes flows along the -axis, sheets of the
-form will extend out radially from the current, as shown

in Fig. 14. These are the surfaces of , so that by symmetry

(20)

where is a constant we need to find using Ampere’s law.
We choose the path in Ampere’s law

to be a loop around the -axis. Assuming that , the
right-hand side of Ampere’s law is equal to . The left-hand
side is the integral of over the loop

The magnetic field intensity is then

(A) (21)

for the line current source.

VI. THE EXTERIOR DERIVATIVE AND MAXWELL’S LAWS
IN POINT FORM

In this section we introduce the exterior derivative and
the generalized Stokes theorem and use these to express
Maxwell’s laws in point form. The exterior derivative is a
single operator which has the gradient, curl, and divergence as
special cases, depending on the degree of the differential form
on which the exterior derivative acts. The exterior derivative
has the symbol , and can be written formally as

(22)

The exterior derivative can be thought of as implicit differen-
tiation with new differentials introduced from the left.

A. Exterior Derivative of -Forms
Consider the -form . If we implicitly differentiate
with respect to each of the coordinates, we obtain

(23)

which is a -form, the exterior derivative of . Note that the
differentials and are the exterior derivatives of
the coordinate functions and . The -form is dual
to the gradient of .
If represents a scalar electric potential, the negative of its

exterior derivative is electric field intensity

As noted earlier, the surfaces of the 1-form are equipo-
tentials, or level sets of the function , so that the exterior
derivative of a 0-form has a simple graphical interpretation.

B. Exterior Derivative of -Forms
The exterior derivative of a -form is analogous to the vector

curl operation. If is an arbitrary -form
, then the exterior derivative of is

Using the antisymmetry of the exterior product, this becomes

(24)

which is a -form dual to the curl of the vector field
.

Any -form for which is called closed and
represents a conservative field. Surfaces representing different
potential values can never meet. If , the field is non-
conservative, and surfaces meet or end wherever the exterior
derivative is nonzero.
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C. Exterior Derivative of -Forms
The exterior derivative of a -form is computed by the same

rule as for -forms and -forms: take partial derivatives by
each coordinate variable and add the corresponding differential
on the left. For an arbitrary -form

where six of the terms vanish due to repeated differentials.
The coefficient of the resulting -form is the divergence of the
vector field dual to .

D. Properties of the Exterior Derivative
Because the exterior derivative unifies the gradient, curl, and

divergence operators, many common vector identities become
special cases of simple properties of the exterior derivative.
The equality of mixed partial derivatives leads to the identity

(25)

so that the exterior derivative applied twice yields zero.
This relationship is equivalent to the vector relationships

and . The exterior derivative
also obeys the product rule

(26)

where is the degree of . A special case of (26) is

These and other vector identities are often placed in reference
tables; by contrast, (25) and (26) are easily remembered.
The exterior derivative in cylindrical coordinates is

(27)

which is the same as for rectangular coordinates but with the
coordinates in the place of . Note that the exterior
derivative does not require the factor of that is involved in
converting forms to vectors and applying the star operator. In
spherical coordinates

(28)

where the factors and are not found in the exterior
derivative operator. The exterior derivative is

(29)

in general orthogonal coordinates. The exterior derivative is
much easier to apply in curvilinear coordinates than the vector
derivatives; there is no need for reference tables of derivative
formulas in various coordinate systems.

(a) (b)

Fig. 15. The Stokes theorem for � a �-form. (a) The loop ��� pierces
three of the surfaces of �. (b) Three tubes of �� pass through any surface
� bounded by the loop ��� .

(a) (b)

Fig. 16. Stokes theorem for � a �-form. (a) Four tubes of the �-form �

pass through a surface. (b) The same number of boxes of the �-form �� lie
inside the surface.

E. The Generalized Stokes Theorem
The exterior derivative satisfies the generalized Stokes the-

orem, which states that for any -form

(30)

where is a -dimensional region of space and
is its boundary. If is a -form, then the Stokes theorem
becomes

This is the fundamental theorem of calculus.
If is a -form, then is a closed loop and is a

surface that has the path as its boundary. This case is analogous
to the vector Stokes theorem. Graphically, the number of
surfaces of pierced by the loop equals the number of tubes
of the -form that pass through the loop (Fig. 15).
If is a -form, then is a closed surface and

is the volume inside it. The Stokes theorem requires that the
number of tubes of that cross the surface equal the number
of boxes of inside the surface, as shown in Fig. 16. This
is equivalent to the vector divergence theorem.
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Compared to the usual formulations of these theorems,

the generalized Stokes theorem is simpler in form and hence
easier to remember. It also makes clear that the vector Stokes
theorem and the divergence theorem are higher dimensional
statements of the fundamental theorem of calculus.

F. Faraday’s and Ampere’s Laws in Point Form
Faraday’s law in integral form is

(31)

Using the Stokes theorem, taking to be the surface , we
can relate the path integral of to the surface integral of the
exterior derivative of

(32)

By Faraday’s law

(33)

For sufficiently regular forms and , we have that

(34)

since (33) is valid for all surfaces . This is Faraday’s law in
point form. This law states that new surfaces of are produced
by tubes of time-varying magnetic flux.
Using the same argument, Ampere’s law becomes

(35)

Ampere’s law shows that new surfaces of are produced by
tubes of time-varying electric flux or electric current.

G. Gauss’s Laws in Point Form
Gauss’s law for the electric flux density is

(36)

The Stokes theorem with as the volume and as
the surface shows that

(37)

Using Gauss’s law in integral form (36)

(38)

We can then write

(39)

This is Gauss’s law for the electric field in point form.
Graphically, this law shows that tubes of electric flux density
can end only on electric charges. Similarly, Gauss’s law for
the magnetic field is

(40)

This law requires that tubes of magnetic flux density never
end; they must form closed loops or extend to infinity.

H. Poynting’s Theorem
Using Maxwell’s laws, we can derive a conservation law

for electromagnetic energy. The exterior derivative of is

Using Ampere’s and Faraday’s laws, this can be written

(41)

Finally, using the definition (6) of , this becomes

(42)

At a point where no sources exist, a change in stored elec-
tromagnetic energy must be accompanied by tubes of that
represent flow of energy toward or away from the point.

I. Integrating Forms by Pullback
We have seen in previous sections that differential forms

give integration a clear graphical interpretation. The use of
differential forms also results in several simplifications of the
integration process itself. Integrals of vector fields require a
metric; integrals of differential forms do not. The method of
pullback replaces the computation of differential length and
surface elements that is required before a vector field can be
integrated.
Consider the path integral

(43)

The dot product of with produces a -form with a
single differential in the parameter of the path , allowing
the integral to be evaluated. The integral of the -form
dual to over the same path is computed by the method
of pullback, as change of variables for differential forms is
commonly termed. Let the path be parameterized by

for . The pullback of to the path is denoted
, and is defined to be
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Using the pullback of , we convert the integral over to an
integral in over the interval

(44)

Components of the Jacobian matrix of the coordinate transform
from the original coordinate system to the parameterization
of the region of integration enter naturally when the exterior
derivatives are performed. Pullback works similarly for -
forms and -forms, allowing evaluation of surface and volume
integrals by the same method. The following example illus-
trates the use of pullback.

Example 3 (Work Required to Move a Charge through
an Electric Field): Let the electric field intensity be given
by . A charge of is
transported over the path given by

from to . The work required is given by

(45)

which by (44) is equal to

where is the pullback of the field -form to the path

Integrating this new -form in over , we obtain

as the total work required to move the charge along .

J. Existence of Graphical Representations
With the exterior derivative, a condition can be given for the

existence of the graphical representations of Section II. These
representations do not correspond to the usual “tangent space”
picture of a vector field, but rather are analogous to the integral
curves of a vector field. Obtaining the graphical representation
of a differential form as a family of surfaces is the general
nontrivial, and is essentially equivalent to Pfaff’s problem. By
the solution of Pfaff’s problem, each differential form may be
represented graphically in two dimensions as families of lines.
In three dimensions, a -form can be represented as surfaces
if the rotation is zero. If , then there exist
local coordinates for which has the form , so that
it is the sum of two -forms, both of which can be graphically
represented as surfaces. An arbitrary, smooth -form in
can be written locally in the form , so that the -form
consists of tubes of scaled by .

K. Summary
Throughout this section, we have noted various aspects of

the calculus of differential forms that simplify manipulations
and provide insight into the principles of electromagnetics. The
exterior derivative behaves differently depending on the degree
of the form it operates on, so that physical properties of a field
are encoded in the type of form used to represent it, rather
than in the type of operator used to take its derivative. The
generalized Stokes theorem gives the vector Stokes theorem
and the divergence theorem intuitive graphical interpretations
that illuminate the relationship between the two theorems.
While of lesser pedagogical importance, the algebraic and
computational advantages of forms cited in this section also
aid students by reducing the need for reference tables or
memorization of identities.

VII. THE INTERIOR PRODUCT AND BOUNDARY CONDITIONS
Boundary conditions can be expressed using a combination

of the exterior and interior products. The same operator is
used to express boundary conditions for field intensities and
flux densities, and in both cases the boundary conditions have
simple graphical interpretations.

A. The Interior Product
The interior product has the symbol . Graphically, the

interior product removes the surfaces of the first form from
those of the second. The interior product , since
there are no surfaces to remove. The interior product of
with itself is one. The interior product of and is

. To compute the interior product ,
the differential must be moved to the left of before
it can be removed, so that

The interior product of arbitrary 1-forms can be found by
linearity from the relationships

(46)

The interior product of a 1-form and a 2-form can be found
using

(47)

The following examples illustrate the use of the interior
product.
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Example 4 (The Interior Product of Two 1-Forms): The
interior product of and is

which is the dot product of the vectors dual to the
-forms and .
Example 5 (The Interior Product of a -Form and a

-Form): The interior product of and
is

which is the -form dual to , where and are dual
to and .
The interior product can be related to the exterior product

using the star operator. The interior product of arbitrary forms
and is

(48)

which can be used to compute the interior product in curvi-
linear coordinate systems. (This formula shows the metric
dependence of the interior product as we have defined it; the
interior product is usually defined to be the contraction of a
vector with a form, which is independent of any metric.) The
interior and exterior products satisfy the identity

(49)

where is an arbitrary form.
The Lorentz force law can be expressed using the interior

product. The force -form is

(50)

where is the velocity of a charge , and the interior product
can be computed by finding the -form dual to and using
the rules given above. is dual to the usual force vector .
The force -form has units of energy, and does not have as
clear a physical interpretation as the usual force vector. In this
case we prefer to work with the vector dual to , rather than
itself. Force, like displacement and velocity, is naturally a

vector quantity.

B. Boundary Conditions
A boundary can be specified as the set of points satisfying

for some suitable function . The surface nor-
mal -form is defined to be the normalized exterior derivative
of

(51)

The surfaces of are parallel to the boundary. Using a
subscript to denote the region where , and a subscript

(a) (b)

(c)

Fig. 17. (a) The �-form �����. (b) The �-form �� �������. (c) The
�-form ��, represented by lines on the boundary. Current flows along the lines.

for , the four electromagnetic boundary conditions can
be written [18]

where is the surface current density -form and is the
surface charge density -form. The operator projects
an arbitrary form to its component that has nonzero integral
along the boundary.

C. Surface Current
The action of the operator can be interpreted graphi-

cally, leading to a simple picture of the field intensity boundary
conditions. Consider the field discontinuity shown
in Fig. 17(a). The exterior product of and is
a -form with tubes that run parallel to the boundary, as
shown in Fig. 17(b). The component of with surfaces
parallel to the boundary is removed. The interior product

removes the surfaces parallel to the
boundary, leaving only surfaces perpendicular to the boundary,
as in Fig. 17(c). Current flows along the lines where the
surfaces intersect the boundary. The direction of flow along
the lines of the -form can be found using the right-hand rule
on the direction of in region above the boundary.
The field intensity boundary conditions state that surfaces

of the -form end along lines of the surface current
density -form . Surfaces of cannot intersect a
boundary at all.
Unlike other electromagnetic quantities, is not dual to

the vector . The direction of is parallel to the lines
of in the boundary, as shown in Fig. 17(c). ( is a
twisted differential form, so that under coordinate inversion
it transforms with a minus sign relative to a nontwisted
-form. This property is discussed in detail in [3], [18],
[21]. Operationally, the distinction can be ignored as long
as one remains in right-handed coordinates.) is natural
both mathematically and geometrically as a representation of
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surface current density. The expression for current through a
path using the vector surface current density is

(52)

where is a surface normal. This simplifies to

(53)

using the -form . Note that changes sign depending
on the labeling of regions one and two; this ambiguity is
equivalent to the existence of two choices for in (52).
The following example illustrates the boundary condition

on the magnetic field intensity.
Example 6 (Surface Current on a Sinusoidal Surface): A
sinusoidal boundary given by has magnetic
field intensity A above and zero below. The
surface normal -form is

By the boundary conditions given above

(A)

The usual surface current density vector is
, which clearly is not dual to .

The direction of the vector is parallel to the lines of
on the boundary.

D. Surface Charge
The flux density boundary conditions can also be interpreted

graphically. Fig. 18(a) shows the -form . The exterior
product yields boxes that have sides parallel
to the boundary, as shown in Fig. 18(b). The component of

with tubes parallel to the boundary is removed by
the exterior product. The interior product with removes the
surfaces parallel to the boundary, leaving tubes perpendicular
to the boundary. These tubes intersect the boundary to form
boxes of charge (Fig. 18(c)). This is the -form

.
The flux density boundary conditions have as clear a graph-

ical interpretation as those for field intensity: tubes of the
difference in electric flux densities on either side
of a boundary intersect the boundary to form boxes of surface
charge density. Tubes of the discontinuity in magnetic flux
density cannot intersect the boundary.
The sign of the charge on the boundary can be obtained from

the direction of in region above the boundary, which
must point away from positive charge and toward negative
charge. The integral of over a surface

(54)

(a) (b)

(c)

Fig. 18. (a) The �-form �� ���. (b) The �-form � � ��� ����, with
sides perpendicular to the boundary. (c) The �-form ��, represented by boxes
on the boundary.

yields the total charge on the surface. Note that changes
sign depending on the labeling of regions one and two. This
ambiguity is equivalent to the existence of two choices for
the area element and orientation of the area in the
integral , where is the usual scalar surface charge
density. Often, the sign of the value of the integral is known
beforehand, and this subtlety goes unnoticed.

VIII. CONCLUSION
The primary pedagogical advantages of differential forms

are the distinct representations of field intensity and flux den-
sity, intuitive graphical representations of each of Maxwell’s
laws, and a simple picture of electromagnetic boundary con-
ditions. Differential forms provide visual models that can
help students remember and apply the principles of electro-
magnetics. Computational simplifications also result from the
use of forms: derivatives are easier to employ in curvilinear
coordinates, integration becomes more straightforward, and
families of related vector identities are replaced by algebraic
rules. These advantages over traditional methods make the
calculus of differential forms ideal as a language for teaching
electromagnetic field theory.
The reader will note that we have omitted important aspects

of forms. In particular, we have not discussed forms as linear
operators on vectors, or covectors, focusing instead on the
integral point of view. Other aspects of electromagnetics,
including vector potentials, Green functions, and wave propa-
gation also benefit from the use of differential forms.
Ideally, the electromagnetics curriculum set forth in this

paper would be taught in conjunction with calculus courses
employing differential forms. A unified curriculum, although
desirable, is not necessary in order for students to profit from
the use of differential forms. We have found that because
of the simple correspondence between vectors and forms,
the transition from vector analysis to differential forms is
generally quite easy for students to make. Familiarity with
vector analysis also helps students to recognize and appreciate
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the advantages of the calculus of differential forms over other
methods.
We hope that this attempt at making differential forms

accessible at the undergraduate level helps to fulfill the vision
expressed by Deschamps [2] and others, that students obtain
the power, insight, and clarity that differential forms offer to
electromagnetic field theory and its applications.
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