
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Faculty Publications

1997-05-01

On-line Cartesian trajectory control of mechanisms along On-line Cartesian trajectory control of mechanisms along

complex curves complex curves

Edward Red

Zhaoxue Yang

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

 Part of the Mechanical Engineering Commons

Original Publication Citation Original Publication Citation
Robotica 15.3 (May 1997): 263-274.

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Red, Edward and Yang, Zhaoxue, "On-line Cartesian trajectory control of mechanisms along complex
curves" (1997). Faculty Publications. 667.
https://scholarsarchive.byu.edu/facpub/667

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more
information, please contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/667?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F667&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

 Robotica (1997) volume 15 , pp 263 – 274 . Printed in the United Kingdom ÷ 1997 Cambridge University Press

 On-line Cartesian trajectory control of mechanisms along
 complex curves
 *Zhaoxue Yang and † Edward Red
 (R e c e i v e d i n F i n a l F o r m : J u l y 2 5 , 1 9 9 6)

 SUMMARY
 New methods have been developed to control a
 mechanism’s realtime Cartesian motion along spatially
 complex curves such as Non-Uniform Rational B-splines
 (NURBS) . The methods dynamically map the critical
 trajectory parameters between parameter space , Car-
 tesian space , and joint space . Trajectory models that
 relate Cartesian tool speeds and accelerations to joint
 speeds and accelerations have been generalized so that
 they can be applied to most classes of robots and CNC
 mechanisms .

 A simple and ef ficient predictor-corrector method uses
 finite dif ference theory to predict the parametric changes
 required to generate the desired curvilinear distances
 along the trajectory , and then correct the erorrs arising
 from this prediction . Polynomial approximation methods
 successfully approximate joint speeds and accelerations
 rather than require a closed-form inverse Jacobian
 solution .

 The numerical algorithms prove to be time bounded
 (fixed number of computational steps) , and the
 generated trajectories are smooth and continuous . Both
 simulation and physical experiments using an Open-
 Architecture Controller demonstrate the feasibility and
 usefulness of the developed trajectory generation
 algorithms and methods . The methods can be conducted
 at trajectory rates greater than 100 Hz , depending on
 mechanism complexity .

 KEYWORDS : Parametric paths ; Cartesian trajectory genera-
 tion ; Complex curves .

 INTRODUCTION
 Cartesian trajectory generation using lines and arcs has
 long been considered by researchers such as Paul 1 and
 Taylor . 2 Previously , researchers such as Lin , 3

 Thompson , 4 Chang , 5 and Aken 6 used spline functions to
 construct joint trajectories which approximated complex
 curves specified in Cartesian space . These methods were
 typically applied of f-line . Practical on-line Cartesian
 trajectory generation for complex curves such as NURBS
 (Non-Uniform Rational B-Spline) posed a more dif ficult
 problem .

 Froissart 7 was one of the first researchers to apply a
 realtime complex trajectory algorithm in Cartesian space .

 * CIMETRIX , Inc .
 † Dept . of Manufacturing Engineering and Engineering
 Technology Brigham Young University , Provo , Utah 84602
 (USA) .

 The method decomposed the geometric trajectory into
 two paths , one in position , one in orientation , and then
 distributed the orientation motion in such a way that the
 resulting orientation synchronized with the position . A
 Bezier representation computed a fifth degree polyno-
 mial to fit the prescribed path which guaranteed
 continuous velocity and acceleration . But the method
 developed was limiting to planar curves , and used a
 Newton-Raphson method requiring unpredictable time
 for convergence .

 In practical applications such as gluing , painting , and
 trimming , the initial and terminal poses , and sometimes
 several intermediate poses , are commonly specified .
 These poses are usually connected by straight lines , or
 possibly by a combination of straight lines and circular
 arcs which we call a simple curve . Because the segments
 of the simple curve can be expressed as explicit
 functions , it is easy to calculate the length changes along
 the curve segment , and the time derivatives . For
 example , a circular arc can be expressed as f x (u) 5
 R cos u and f y (u) 5 R sin u , where R is the radius of the
 arc , and u is the parameter which represents the arc
 angle . The first derivatives of the circular arc with respect
 to u are df x (u) / du 5 2 R sin u and df y (u) / du 5 R cos u ,
 and the length of the arc segment is R u .

 A curve which is generated by a parametric spline
 function , such as a NURBS or Bezier curve , is referred
 to as a complex curve . Common practice decomposes ,
 of f-line , the complex curve into simpler shapes such as
 lines and circular arcs – see Beazel’s 8 procedure . It is
 dif ficult to establish the Cartesian trajectory relationships
 from the curve parameters , such as the length changes
 along the curve , or the derivatives and their relationships
 to time , because the length of a B-spline segment
 involves numerical integration . The derivatives are also
 complex as compared with simple curves .

 Of f-line planning is adequate as long as the task
 requirements remain constant , because a trajectory , once
 computed , is generally dif ficult to modify in response to
 changes or realtime sensor information . For example , in
 NC machining tool paths are usually pre-processed ,
 because NC paths , once defined , are generally fixed . But
 pre-processed paths limit the integration of sensor
 information into machine tool control . Yet , unpredic-
 table changes in the required task , such as tool wear ,
 occur commonly in industrial NC applications .

 With the increase in computing speeds and the open
 architectures provided by systems like the Robline
 System , it is now feasible to provide a dynamic trajectory

 264 On - line Cartesian trajectory

 generator that can process motion along complex curves .
 This paper demonstrates how such a trajectory generator
 can be organized , by
 $ developing a model that relates the motion parameters

 in Cartesian , parameter , and joint space for complex
 curves .

 $ developing bounded numerical algorithms to generate
 Cartesian moves along a NURBS path , using a fixed
 number of algorithmic calculations , and thus bounding
 the calculations in time .

 $ transforming the parameters created in Cartesian
 space into joint space where manipulator control is
 performed .

 $ integrating the software into an open-architecture
 simulation and control system called Robline .

 $ demonstrating realtime physical control of the
 trajectory along both 2-D and 3-D Cartesian NURBS
 curves using an actual robot .

 TRAJECTORY METHODS
 Figure 1 introduces the six primary trajectory generation
 steps implemented for simulation and actual control of
 mechanisms :

 1 . initialization of curve length , tool orientation , and
 other parameters .

 2 . Cartesian trajectory prediction for step length and
 trajectory speed and acceleration .

 3 . parameter prediction .
 4 . correction of step length , curve parameter , and step

 time .

 Fig . 1 . Trajectory generation flowchart .

 5 . Cartesian frame interpolation .
 6 . joint space inverse kinematics and joint speed

 estimates .

 1 Initialization
 Length L along a complex curve , specified by parameter
 u , is determined by the integral

 L 5 E u 2

 u 1

 U d P (u)
 du

 U u (1)

 where P (u) 5 (x (u) , y (u) , z (u)) is a complex curve such
 as a NURBS or Bezier curve (see Appendix) . The reader
 is referred to Choi , 9 Farin , 1 0 and Mortenson 1 1 for
 introductions to the basic theory of dif ferential and
 B-spline geometry . A brief review is also included in the
 Appendix to this paper .

 Gaussian quadrature 1 2 is concerned with optimizing
 integral evaluation by reducing the function evaluations
 to yield high accuracy . The procedure selects values
 x 1 , x 2 , . . . , x n in the interval [a , b] , and constants
 w 1 , w 2 , . . . , w n , to minimize the error obtained in
 performing the approximation

 E b

 a
 f(x) dx 5 O n

 i 5 0
 w i f (x i) 1 » (f , n) (2)

 for an arbitrary function f (x) , where » (f , n) represents
 the error term ,

 » (f , n) 5
 f (2 n) (j)
 (2 n)!

 E b

 a
 [w n (x)] 2 w (x) dx 5 c n f (2 n) (j) (3)

 and where j P (a , b) , w n (x) 5 p
 n

 i 5 1
 (x 2 x i) . Constant c n

 can be determined by applying (3) to polynomials of
 degree 2 n .

 We first restrict consideration to the normalized
 interval [2 1 , 1] . For any n $ 1 , our objective is to find n
 sample points x 1 , x 2 , . . . , x n in [2 1 , 1] and n
 corresponding weights w 1 , w 2 , . . . , w n such that the
 n -point Gaussian quadrature formula on [2 1 , 1] , namely

 E 1

 2 1
 f (x) dx < w 1 f (x 1) 1 w 2 f (x 2) 1 ? ? ? 1 w n f (x n) (4)

 approximates the integration of f (x) which is exact for
 polynomials of degree # 2 n 2 1 . We call x i the Gaussian
 sample points of [2 1 , 1] , and w i their Gaussian weights .
 If we make (4) exact for f (x) 5 1 , x , x 2 , . . . , x 2 n 2 1 , we
 generate 2 n equations :

 E 1

 2 1
 x i 2 1 dx 5 w 1 x i 2 1

 1 1 w 2 x i 2 1
 2 1 ? ? ? 1 w n x i 2 1

 n

 (i 5 1 , 2 , . . . , 2 n) (5)

 The system of equations in (5) is nonlinear in the 2 n
 variables x 1 , x 2 , . . . , x n and w 1 , w 2 , . . . , w n . Its solution
 generally requires a numerical procedure , but these

 On - line Cartesian trajectory 265

 Table I . Gaussian quadrature abscissas and weights .

 n Abscissas x n ,i Weights w n ,i Errors » (f , n)

 2 2 0 . 5773502692
 0 . 5773502692

 1 . 0000000000
 1 . 0000000000

 f (4) (j)
 135

 3 Ú 0 . 7745966692
 0 . 000000000

 0 . 5555555556
 0 . 8888888889

 f (6) (j)
 15750

 4 Ú 0 . 8611363116
 Ú 0 . 339810436

 0 . 3478548451
 0 . 6521451549

 f (8) (j)
 3472875

 5 Ú 0 . 9061798459
 Ú 0 . 5384693101

 0 . 0000000000

 0 . 2369268851
 0 . 4786286705
 0 . 5688888889

 f (1 0) (j)
 1237732650

 6 Ú 0 . 9324695142
 Ú 0 . 6612093865
 Ú 0 . 2386191861

 0 . 1713244924
 0 . 360715730
 0 . 4679139346

 f (1 2) (j)2 1 3 (6!) 4

 (12!) 3 13!

 constants have been tabulated and are easily available .
 Table I lists the values up to six points and the error term
 » (f , n) which can be used to determine the accuracy of
 the Gaussian quadrature integration . 1 3

 To integrate f (u) over the arbitrary interval [a , b]
 using Gaussian quadrature , map the x interval [2 1 , 1]
 into the u interval [a , b] using the linear transformation

 u 5 a 1 (x 1 1)(b 2 a) / 2 ; du 5
 (b 2 a)

 2
 dx (6)

 to obtain

 E b

 a
 f (u) du 5

 b 2 a
 2

 E 1

 2 1
 f S a 1

 b 2 a
 2

 (x 1 1) D dx (7)

 If we use a Gaussian formula on [2 1 , 1] to
 approximate integral (7) , we get

 E b

 a
 f (u) du <

 b 2 a
 2

 [w 1 f (u 1) 1 w 2 f (u 2) 1 ? ? ? 1 w n f (u n)]

 (8)

 where w i is the tabulated Gaussian weight associated
 with the tabulated Gaussian sample point x i in [2 1 , 1] ,
 and u i is obtained from x i as follows :

 u i 5 a 1 (x i 1 1)(b 2 a) / 2 , (i 5 1 , . . . , n) (9)

 The general n -point Gaussian quadrature rule is exact
 for polynomials of degree # 2 n 2 1 . To integrate over
 large intervals , we must apply the large point Gaussian
 quadrature formula to achieve the desired accuracy
 according to the error formula (3) . An alternative
 method first divides the large interval into small
 sub-intervals according to the interval and error formula ,
 and then uses the Gaussian quadrature technique to
 integrate each sub-interval . During this process , a table
 of subdivision points , (u i , l i) where l i is the arc length
 from parameter u i 2 1 to u i , is created . After the table is
 built , all subsequent arc length calculations are greatly
 accelerated by using the table to find the region in which
 arc length is to be calculated .

 When calculating the length from parameter u 0 to u ,
 the table is searched to find the region [u i , u i 1 1] such that
 u i , u , u i 1 1 . The arc length from u i to u is then
 calculated quickly by using the Gaussian quadrature
 technique .

 2 Trajectory prediction
 A simple trapezoidal velocity profile uses constant
 accelerations and decelerations to change the desired
 speed . For short moves the attained (peak) speed is less
 than the desired speed and the velocity profile assumes a
 triangular shape . But for most moves , given initial speed ,
 final speed , desired speed , acceleration / deceleration , and
 trajectory step time , the trajectory distance over a
 discrete time step can be predicted by considering three
 motion stages : rise motion , steady motion and fall
 motion . The special cases that complicate the implemen-
 tation of these equations are considered by Yang . 1 4

 Another commonly used trajectory generator uses
 constant jerk to control the velocity profile . Jerk , the
 time derivative of acceleration , can be specified such that
 it creates the desired acceleration and velocity at each
 point of the trajectory . Yang 1 4 describes the implementa-
 tion of this profile .

 3 Parameter prediction
 Because the tool pose motion is dependent on the
 parameter u , and the velocity is related to the arc-length
 L , we must relate u to L for planning the pose and
 velocity motion profiles across complex curves . Since
 numerical procedures like Newton-Raphson are some-
 what unpredictable in their convergence , they can only
 be used for of f-line trajectory generation . The predictor-
 corrector method introduced in this section requires a
 bounded time for the necessary calculations .

 For a complex curve , we first create a table of
 parameter / length pairs (u i , l i) using the trajectory
 profiles discussed earlier , where l i is the arc-length
 corresponding to curve parameter u i . We then build a
 piecewise polynomial interpolation function u 5 f (l) ,
 where f is the polynomial function . From this function ,
 we can predict the initial changes of the parameter (du)
 corresponding to changes in the arc-length (dl) using a
 cubic spline interpolant . 1 2

 After we predict the first three step changes of the
 parameter u for predicted arc-length changes , we can use
 quadratic or cubic extrapolation methods to predict the
 next parameter change for a given length change . For
 each step prediction , we update the prediction model by

 266 On - line Cartesian trajectory

 using the current value and the past two or three step
 values .

 Suppose that the function u 5 f (l) is known at the
 three points (l 0 , u 0) , (l 1 , u 1) , (l 2 , u 2) , where the values l i
 satisfy l 0 , l 1 , l 2 and u i 5 f (l i) . A quadratic polynomial
 P (l) of degree 2 can be constructed which passes through
 these 3 points . When l 0 , l , l 2 the approximation P (l) is
 called an interpolated value . If either l , l 0 or l 2 , l , then
 P (l) is an extrapolated value . The quadratic curve
 u 5 P (l) that passes through the three points (l 0 , u 0) ,
 (l 1 , u 1) , and (l 2 , u 2) where l 0 , l 1 , l 2 are distinct , has the
 form

 P (l) 5 u 0
 (l 2 l 1)(l 2 l 2)

 (l 0 2 l 1)(l 0 2 l 2)
 1 u 0

 (l 2 l 0)(l 2 l 2)
 (l 1 2 l 0)(l 1 2 l 2)

 1 u 2
 (l 2 l 0)(l 2 l 1)

 (l 2 2 l 0)(l 2 2 l 1)
 (10)

 We assume that f (l) is continuous on an interval [a , b]
 containing the distinct values l i (i 5 0 , 1 , 2) . Thus
 f (l) 5 P (l) 1 E (l) , where E (l) represents the approxima-
 tion error term . Because the l i represent the moving
 length , they are distinct automatically . If the derivatives
 up to order 3 are continuous , then there exists a value
 j P (a , b) such that

 E (l) 5 (l 2 l 0)(l 2 l 1)(l 2 l 2)
 f (3) (j)

 3!
 (11)

 The cubic curve u 5 P (l) that passes through the four
 points (l 0 , u 0) , (l 1 , u 1) , (l 2 , u 2) and (l 3 , u 3) where
 l 0 , l 1 , l 2 , l 3 are distinct , has the form

 P (l) 5 u 0
 (l 2 l 1)(l 2 l 2)(l 2 l 3)

 (l 0 2 l 1)(l 0 2 l 2)(l 0 2 l 3)

 1 u 1
 (l 2 l 0)(l 2 l 2)(l 2 l 3)

 (l 1 2 l 0)(l 1 2 l 2)(l 1 2 l 3)

 1 u 2
 (l 2 l 0)(l 2 l 1) l 2 l 3)

 (l 2 2 l 0)(l 2 2 l 1)(l 2 2 l 3)

 1 u 3
 (l 2 l 0)(l 2 l 1)(l 2 l 2)

 (l 3 2 l 0)(l 3 2 l 1)(l 3 2 l 2)
 (12)

 Fig . 2 . Predictor-corrector diagram .

 The error term in the cubic approximation is

 E (l) 5 (l 2 l 0)(l 2 l 1)(l 2 l 2)(l 2 l 3)
 f (4) (j)

 4!
 (13)

 where j P (a , b) .

 4 Correction
 There are two prediction methods used in curve
 trajectory generation procedures : arc-length prediction
 and parameter prediction . In the arc-length prediction
 method , if the speeds or accelerations calculated through
 the prediction are greater than the maximum values , we
 modify the predicted values by either reducing the
 arc-length step or increasing the trajectory time to meet
 the robot requirements . Reducing the arc-length step
 greatly increases the calculation time , thus the preferred
 method is to increase the trajectory time , Figure 2 .

 In the arc-length prediction procedure , if the pose or
 speed calculated by the predicted parameter exceeds the
 expected values , we correct by increasing the time above
 t m i n , the minimum trajectory time specified by the user .
 Increasing trajectory time corresponds to slowing the
 trajectory speed while keeping the arc-length unchanged .

 The Jacobian J , constant for a fixed set of joint values ,
 relates the tool speed vector V to the corresponding joint
 speed vector q ~ by the equation V 5 Jq ~ . By increasing the
 trajectory time t . t m i n , while keeping the arc-length
 unchanged , we decrease the tool speed and joint speed
 proportionally at a given robot configuration . Newer
 servocards permit a varying trajectory time which makes
 this correction method possible .

 For correcting parameter prediction errors , we built a
 correction model according to the previous length errors
 and parameter errors . Given the previous step length L 0 ,
 and the previous step parameter U 0 , we can predict the
 moving distance l through the spline curve model which
 corresponds to the predicted parameter u . The length
 error corresponding to the predicted parameter error is
 » l 5 L 2 l .

 Suppose that the function U 5 f (L) represents the
 exact relationship between parameter U and arc-length
 L , then according to Taylor series theory ,

 f (L) 5 f (l 1 » l) 5 f (l) 1 f 9 (l) » l

 1
 1
 2!

 f 0 (l) » 2
 l 1 ? ? ? 1

 1
 n !

 f (n) (l) » n
 l 1 E n (l) (14)

 where the error term is

 E n (l) 5
 1

 (n 1 1)!
 f (n 1 1) (j) » n 1 1

 l (15)

 and j is a variable that lies between l and L .
 Because the length error » l is a small number , we

 ignore the second and higher order terms of the equation
 (14) , and obtain a first order estimate of the parameter
 » u :

 » u 5 U 2 u 5 f (L) 2 f (l) 5 f 9 (l) » l (16)

 If we approximate f 9 (l) by

 f 9 (l) 5
 f (l) 2 f (l 2 D l)

 D l
 5

 D u

 D l
 , (17)

 On - line Cartesian trajectory 267

 where D l 5 l 2 L 0 , and D u 5 u 2 U 0 , we obtain the first
 order correction model

 » u 5
 D u

 D l
 » l (18)

 To obtain a more accurate estimate of the parameter
 error » u , we apply a second order correction model by
 ignoring the third and higher order terms of (14) .

 » u 5 U 2 u 5 f (L) 2 f (l) 5 f 9 (l) » l 1
 1
 2

 f 0 (l) » 2
 l (19)

 If we let D u 0 and D l 0 represent changes of parameter
 and arc-length at the last step , we can use D u 0 , D l 0 , D u ,
 and D l to approximate f 0 (l) by

 f 0 (l) 5
 f 9 (l) 2 f 9 (l 2 D l)

 D l
 5

 D u D l 0 2 D u 0 D l

 D 2
 l D l 0

 (20)

 The second order correction model then becomes

 » u 5
 D

 D l
 » l 1

 D u D l 0 2 D u 0 D l

 2 D 2
 l D l 0

 » 2
 l (21)

 5 Frame interpolation
 Once a value of u is found , it can then be substituted
 back into the original NURBS or other parametric
 equations (equations (33) – (48) in Appendix) to find the
 Cartesian coordinates of the point along the curve . The
 trajectory planning procedures must generate not only
 the position of the tool frame , but the orientation of that
 frame as well .

 The orientation is obtained by interpolating between
 the initial and final frames of the curve as a function of
 the arc-length . One way to define the frame axes is to
 assume the x axis coincident with the curve’s tangent
 vector , and the z axis coincident with the normal vector
 of the curve (if 3-D curve , the normal vector will be
 coincident with the tool direction) , while the third axis (y
 axis) is determined as the cross product of the x and z
 axes . If the curve lies on a surface , the x axis is defined as
 the tangent vector of the surface , the z axis normal to the
 surface , and the y axis is defined as the cross product of x
 and z axes – see equations (29) – (30) in the Appendix .
 This definition is useful for machining a space curve or
 sculptured surface which requires the cutter tool
 direction normal to the surface .

 Consider the tool motion path segment in Figure 3

 Fig . 3 . Frames interpolated along curve segment .

 with initial frame F 0 , final frame F , and F i , an
 intermediate interpolated frame . Described as homogen-
 eous transformations , these frames are characterized by a
 3 3 3 rotational submatrix R and a 3 3 1 translation
 vector P which contains the position components of the
 frame origin with respect to a reference frame . Using R ,
 any orientation can be described by a screw angle θ
 about screw vector k .

 Several tool TCF (Tool Control Frame) interpolation
 types have been implemented (see Yang 1 4 for more
 detail) :

 FIXED – ORIENT – assumes that the TCF orientation is
 to be held constant during motion of the robot ; thus ,
 θ 5 0 . The preferred tool motion type for gantry X-Y-Z
 robots and machine tools that have no orientation joints .

 Z – POSE – assumes that the frames are arranged relative
 to the mechanisms such that the mechanism tool Z axis
 can be aligned with a target Z axis . The interpolation
 between two poses is made in two steps : 1) first ,
 determine a vector normal to the TCF and target Z axes
 and then rotate about this vector from the initial TCF Z
 axis orientation to the target Z axis orientation ; 2) next ,
 rotate about the tool Z axis to align the tool frame X-Y
 axes with the target frame X-Y axes .

 Z – POSE – NO – SPIN – same as Z – POSE , except that the
 spin about the tool Z axis is overriden . This would be the
 correct setting if the robot is used in surface polishing for
 example where the tools are oriented in a normal
 orientation relative to the surface .

 FULL – POSE - requires the mechanism to place the tool
 frame at the same position and orientation of a target
 frame and should only be used when the mechanism has
 three orientation joints . Interpolation between two poses
 uses a screw vector and a translation to interpolate a tool
 frame from its initial orientation to its final target
 orientation by determining the orientation of the final
 frame relative to the initial frame . Using this frame the
 screw vector and screw angle are determined . Then the
 interpolated rotational frame is determined by first
 calculating a screw matrix determined by a rotation
 proportional to the distance moved along the curve
 R i 5 Rot (k , θ i) , where θ i 5 θ * l / L .

 Next , we determine the translational matrix T i which
 locates the interpolated frame origin . Multiplying , we
 determine the interpolated frame F i as

 F i 5 F 0 R i T i (22)

 X – TANGENT – POSE - similar to FULL – POSE by re-
 quiring the mechanism to place the tool frame at the
 pose of a target frame , but , in addition , X – TANGENT –
 POSE requires that the x -axis of each target frame
 coincide with the path tangent axis , and the z -axis be
 normal to the surface containing the curve . The process
 of determining intermediate frames along the tool path is
 to rotate the initial frame X axis into coincidence with x i .
 Axis k is determined normal to X and x i , and the θ 1 is
 the angle between X and x i . The next step is to roll by

 268 On - line Cartesian trajectory

 angle θ 1 about axis x i to align the z axes by an
 intermediate roll angle θ 2 .

 The intermediate frame F i , constructed from these two
 rotational operations , the origin translation , and initial
 frame F 0 is

 F i 5 F 0 R 1 (k , θ 1) R 2 (x i , θ 2) T i (23)

 6 In y erse kinematics
 Given the interpolated frame in Cartesian space , inverse
 kinematics are used to determine the joint values ,
 speeds , and accelerations . However , the inverse of the
 Jacobian matrix is dif ficult to obtain , and the
 formulations vary for dif ferent kinds of robots . The
 simplest method of estimating joint speeds and
 accelerations is to divide the dif ferences between two
 successive joint displacements and speeds by the
 trajectory time . This method is simple , and a fairly good
 approximation of the joint speeds and accelerations when
 the trajectory step is very small , but performs poorly for
 changes in joint direction .

 An alternative method uses three trajectory steps to
 use a quadratic polynomial to approximate the joints
 speeds and accelerations . In this method we assume the
 joint accelerations constant , and let joint displacement q
 be a quadratic function of trajectory time :

 q 5 b 1 c (t 2 t i) 1 e (t 2 t i)
 2 (24)

 where b , c , and e are coef ficients , and t is the current
 time . Joint speeds and accelerations are obtained from
 the first and second time derivatives of (24) . It is
 assumed that q i 2 1 , q i , and q i 1 1 are the displacements of
 the joint for the three most current trajectory steps , and
 t i 2 1 , t i , and t i 1 1 are the corresponding trajectory times .
 Then we can obtain

 b 5 q i (25a)

 e 5 (q i 1 1 t l 1 q i 2 1 t c 2 q i (t l 1 t c)) / (t l t c (t l 1 t c)) (25b)

 c 5 (q i 1 1 2 q i 2 et 2
 c) / t c (25c)

 where t l 5 t i 2 t i 2 1 represents the last trajectory step , and
 t c 5 t i 1 1 2 t i is the current trajectory step .

 The joint speed and acceleration corresponding to the
 joint displacement q i 1 1 are then q ~ i 1 1 5 c 1 2 et c and
 q ̈ i 1 1 5 2 e . The newer servocards use high-order polyno-
 mials to blend position-velocity-time (PVT) moves in
 joint space . For these servocards , the quadratic
 approximation is generally suf ficient . Yang 1 4 also
 considers a cubic approximation for acceleration
 continuity .

 ERROR ANALYSIS AND TIME BOUNDING
 On-line Cartesian trajectory control requires that all
 algorithmic calculations must be completed in a certain
 time , and that all errors be bounded by some specified
 tolerance . What is also important is the computational
 requirements above that required for normal trajectory
 control of motion along lines and circular arcs .

 1 Error analysis
 To analyze the trajectory errors , we introduce the
 following theorem . The proof can be found in Crampin . 1 5

 Theorem – Let r (u) be a twice continuously
 dif ferentiable curve with a maximum curvature k m a x #
 1 / d , where d . 0 . P 1 , P 2 are two points on the curve r (u) .
 If the curve length L r from P 1 to P 2 along the curve r (u)
 satisfies

 L r # π / k m a x (26)

 i P 2 2 P 1 i # 2 F d S 2
 k m a x

 2 d D G 1/2

 , (27)

 then the error » in replacing r (u) by the straight line P 1 P 2

 cannot exceed d , Figure 4 .
 The path tolerance , measured by the maximum

 perpendicular distance between the path segment and
 the line connecting the two end points , is transformed
 into two simple inequalities in (26) and (27) . It is clear
 that to interpolate a spatial curve accurately , more via
 points should be given in vicinities of large curvature
 segments .

 By maintaining these inequalities , the errors generated
 by the methods will be within the error bound d . We can
 either reduce the trajectory step length L r for the large
 curvature segments , or modify the curve by reducing the
 maximum curvature k m a x . For a complex curve and
 tolerance d , we first estimate the maximum curvature
 k m a x for every estimated path segment using equation
 (32) in the Appendix . If the path length of a path
 segment satisfies the condition L r # π / k m a x and the
 inequality in equation (27) holds , the position errors of
 this estimated path segment are within the desired error
 bound ; otherwise , we have to reduce the curve length
 steps , enlarge the specified tolerance or inform the user
 that the curvature is too large . From a motion viewpoint ,
 we must either reduce the path speed or trajectory time .

 For example , if we specify 150 mm / s as the tool speed ,
 75 Hz as the trajectory rate , and 0 . 05 mm as the specified
 tolerance , then the maximum curvature along the curve
 must be less than 0 . 0998 (radius of curvature
 5 10 . 0251 mm) . If we use 50 mm / s as the tool speed for
 NC machine tool , 100 Hz as the trajectory rate , and
 0 . 02 mm as the specified tolerance , then the maximum
 curvature along the curve must be less than 0 . 6359
 (radius of curvature 5 1 . 5725 mm) . Since this is a
 conservative estimate , the actual error is less than the
 specified tolerance .

 Fig . 4 . Complex curve with error bound .

 On - line Cartesian trajectory 269

 2 Time analysis
 The on-line Cartesian trajectory algorithms outlined
 previously use , at most , one correction iteration and thus
 are bounded in time . The initialization stage applies a
 Gaussian quadrature method using tabulated data to
 approximate the integral . If we choose n -point Gaussian
 quadrature method to approximate the arc-length , the
 algorithm includes n function evaluations , n
 multiplications and n 2 1 additions .

 The length prediction procedures calculate the speed ,
 acceleration time , and distance which are normal
 computations expected for trajectory generators . The
 relationship of the length change to the parameter
 change are additional computations which use the three
 point Gaussian quadrature method . This includes three
 function evaluations , three multiplications , and two
 additions .

 The parameter prediction procedure uses quadratic or
 cubic extrapolation method to predict the parameter
 changes corresponding to the arc-length changes . If we
 use the quadratic extrapolation method (10) , there are 12
 multiplications / divisions and 14 additions / subtractions . If
 we use the cubic extrapolation method , there are 32
 multiplications / divisions and 27 additions / subtractions .

 The correction procedure uses simple first order
 models to correct the prediction errors . The first order
 model (18) includes two multiplications or divisions and
 two subtractions . The second order model (21) includes
 10 multiplications or divisions and 6 additions or
 subtractions .

 The frame interpolation procedure is more complex
 than the above procedures which includes matrix
 multiplication , vector dot and cross product operations ,
 and multiplications , divisions , additions , and subtrac-
 tions . However , all these operations are normal to
 trajectory generators . Similarly , inverse kinematics
 implement normal procedures .

 As Table II demonstrates , only three stages require
 additional calculations as compared with the current
 Robline trajectory generator (typical of the generators
 found in many modern mechanism controllers) . There-
 fore , the algorithms and procedures are time bounded .

 SIMULATION AND EXPERIMENTAL RESULTS
 The models , methods and algorithms developed in this
 research have been implemented in the C language
 and integrated with the Robline system . Because the

 Table II . Additional calculation steps compared with
 Robline .

 Procedures Additional steps

 Initialization Normal
 Length prediction 3 function evaluations , 3

 multiplications and 2 additions
 Parameter prediction 32 multiplications and 27 additions
 Correction 2 multiplications and 2 subtractions
 Frame interpolation
 Inverse kinematics

 Normal
 Normal

 Robline system is an open system , it allows users to
 implement their own trajectory generation functions to
 generate the trajectories . To test the developed methods
 and algorithms the Robline system was used to build the
 robot models and NURBS curves . Robpac processes
 were then used to specify motion parameters such as tool
 velocity and trajectory rates for moving along the
 trajectories . Simulation and physical experiments were
 conducted on several NURBS models . Only a few of the
 test cases are presented here . Again , refer to Yang 1 4 for
 details .

 The first example moves the robot at a constant speed
 of 40 mm / s along a quadratic NURBS representation of
 a circle . The second example moves the robot along
 cubic NURBS curves which are a cross-section of a Blisk
 fan turbine blade . This example also illustrates the
 details of the trajectory procedures through three
 trajectory steps . Finally , to demonstrate these methods
 when applied to a physical robot , we move a 6-axis
 GE-P60 robot along a complex cubic NURBS curve .

 Simulation example 1 – The first example uses a
 quadratic NURBS curve to represent a circle with radius
 200 mm as shown in Figure 5 . The knots , weights , and
 control points of the curve are shown in Table III . The
 desired path speed is 40 mm / s and the accel / decel is set
 to 100 mm / s 2 . The robot’s maximum tool speed is about
 100 mm / s and its maximum acceleration / deceleration
 capability is about 1500 mm / s 2 .

 The real length of the circle is 2 π R 5 1256 . 63706144 ,
 where R 5 200 is the radius . The calculated length of the
 quadratic NURBS circle by using the 10 point Gaussian
 quadrature algorithm is 1256 . 63706140 , an error of
 0 . 00000004 mm .

 In the example the minimum trajectory time is
 specified as 0 . 03 s . The tool speed errors from Figure 6
 are less than 0 . 0025% (0 . 0010 mm / s) .

 To illustrate the shape of the joint motion curves ,
 Figure 7 shows the joint angles , speeds and accelerations
 for joint 3 only . The other joint motion curves are
 similar . All values fall well within expected speed and
 acceleration limits .

 Simulation example 2 – The second example considers
 a set of four cubic NURBS curves which are obtained

 Fig . 5 . Quadratic NURBS curve which represents a circle .

 270 On - line Cartesian trajectory

 Table III . Quadratic NURBS curve parameters .

 Knot vector Weights Control points

 0 . 0
 0 . 0
 0 . 25
 0 . 5
 0 . 5
 0 . 75
 1 . 0
 1 . 0

 1 . 0
 0 . 5
 0 . 5
 1 . 0
 0 . 5
 0 . 5
 1 . 0

 P 1 (200 , 0 , 0)
 P 2 (200 , 200 , 0)
 P 3 (2 200 , 200 , 0)
 P 4 (2 200 , 0 , 0)
 P 5 (2 200 , 2 200 , 0)
 P 6 (200 , 2 200 , 0)
 P 7 (200 , 0 , 0)

 from a cross section of a turbine blade . The curve
 parameters for curve 2 are listed in Table IV . To
 demonstrate path following by the S100 robot the curves
 have been scaled up by a factor of 20 .

 We move the robot along all four curves in this
 simulation , but choose the second curve to illustrate the
 trajectory procedures . Table V lists three trajectory step
 results for the predictor-corrector method , where L and l
 represent the actual and predicted arc-length , u and U
 represent the predicted and corrected parameters , and » l

 and » u are the arc-length and parameter errors ,
 respectively . We first calculate the trajectory length L
 through the velocity and acceleration profile and
 trajectory rates , then predict the parameter u using the
 predictor model , and find the corresponding arc-length l .
 The value » 1 5 L 2 l is easy to obtain , and » u can be
 obtained through the corrector model . The corrected
 parameter U is finally found by U 5 u 1 » u . In this
 example , we specify 0 . 05 mm as the maximum tolerance
 of the curve , the three step maximum curvatures
 approximated are 0 . 1039 , 0 . 1146 , and 0 . 1244 respectively .
 The error check function passes the criteria set by the
 equations of (26) and (27) . The maximum tool speed
 error is found to be 0 . 0287% (0 . 014 mm / s) .

 Experimental example 3 – To demonstrate these
 methods when applied to a physical robot , we move a
 6-axis GE-P60 robot along the cubic NURBS curve
 shown in Figure 8 . The speed and acceleration
 capabilities of this robot are similar to that of the S100
 robot . The actual 2-D NURBS curve is shown in Figure
 9 .

 One of the advantages of the Robline system is that

 Fig . 6 . Tool speed errors .

 Fig . 7 . Joint 3 angle , speed , and acceleration versus time .

 it can drive both a simulated robot and an actual robot
 using the same control program . We first built the
 GE-P60 robot workcell model and the NURBS curve
 using a HP 735 workstation . We then wrote a simple
 Robpac process program to specify the necessary control
 parameters to simulate the motion control along the
 curve , thereby avoiding any possible collision of the
 robot .

 The robot motion begins at rest and in the
 configuration represented by (2 60 , 0 , 0 , 2 20 , 60 , 0)
 degrees . The motion accelerates to the desired constant
 speed , and then comes to a full stop at the end of the
 trajectory . Again we use a simple trapezoidal velocity
 profile with a maximum tool tip speed of 100 mm / s and a
 constant acceleration / deceleration of 200 mm / s 2 to guide
 the tool speed changes . The quadratic interpolation

 Table IV . Cubic NURBS curve 2 parameters .

 Knot
 vector

 Weights Control points

 0 . 0
 0 . 0
 0 . 0
 0 . 0244
 0 . 0492
 0 . 0492
 0 . 0492

 1 . 0
 1 . 0
 1 . 0
 1 . 0
 1 . 0

 P 1 (1 . 3975 , 2 0 . 1914 , 4 . 6586)
 P 2 (1 . 4054 , 2 0 . 1904 , 4 . 6620)
 P 3 (1 . 4156 , 2 0 . 1727 , 4 . 6678)
 P 4 (1 . 4051 , 2 0 . 1582 , 4 . 6623)
 P 5 (1 . 3961 , 2 0 . 1576 , 4 . 6585)

 On - line Cartesian trajectory 271

 Table V . Three trajectory step results for predictor-corrector .

 Step l L » 1 u U » u

 1
 2
 3

 11 . 4892
 12 . 9607
 14 . 4114

 11 . 5200
 12 . 9991
 14 . 4413

 0 . 0308
 0 . 0384
 0 . 0299

 0 . 022052
 0 . 024976
 0 . 027920

 0 . 022112
 0 . 025053
 0 . 027980

 0 . 000060
 0 . 000077
 0 . 000060

 method is applied to approximate the joint speeds and
 accelerations .

 To drive the physical robot , we transferred the same
 robot models and control routines to the CIMETRIX
 OAC controller to move the GE-P60 along the curve .
 The controller CPU is an Intel / 486-based PC computer
 operating at 50 MHz . The operating system is a realtime ,
 multi-tasking Lynx system . CPU time is shared by
 several tasks : supervisor , trajectory planning , servo
 control (which has the highest priority) , and the
 X-window manager . A 25 Hz trajectory rate was
 specified . The motions of the robot are smooth and
 continuous along the pre-defined curve geometry .

 To compare the actual joint response , we wrote a
 simple program to gather actuator joint displacements
 from the PMAC servocard used in the controller . The
 dif ferences between the calculated joint displacements
 and the actuator joint displacements which are fed back
 from the actual encoder are shown in Figure 10 for joint
 3 (other joints perform similarly) .

 The maximum error between the specified joint
 displacements and actuator joint displacements through
 the controller is about 1 degree . These errors result from
 the robot following errors which are consistent with
 those obtained when driving the robot along linear and
 circular paths . Properly tuning the robot will dramatically
 reduce the robot following errors .

 We also used the GE-P60 robot to verify the actual

 Fig . 8 . GE-P60 Robot and NURBS curve .

 motion of the first and second simulation examples
 introduced in last section . Successful control of the robot
 demonstrated the capabilities of this research for physical
 control of the trajectory along a variety of Cartesian
 NURBS curves . A new CIMETRIX OAC controller
 based on a Pentium CPU will increase the trajectory rate
 to about 100 Hz . The algorithms will be able to achieve
 trajectory rates in excess of 100 Hz on NC machines since
 their inverse kinematics computations are simpler .

 CONCLUSIONS
 The algorithms and procedures developed in this
 research are time bounded (fixed number of calculation
 steps) , and the trajectory errors meet certain tolerances
 as long as the maximum curvature of complex curve is
 less than a limiting value or the tool speed is less than a
 limiting value . Error analysis has demonstrated that the
 methods satisfy the typical tolerances required in robot
 motion and in NC machining .

 To simulate the feasibility of the methods , several
 examples were considered . The first example used a
 NURBS curve to represent an exact circle . Moving along
 the curve at 40 mm / s , the maximum error of the
 calculated tool speeds was only 0 . 0025% , and the
 maximum joint acceleration of any joint experienced in
 the motion processes was less than 25 degrees / s 2 , far
 below the maximum allowable joint acceleration .

 Successful physical control of a GE-P60 robot along a
 Cartesian NURBS curve showed that the motion control
 system developed in this research could control
 mechanisms running in real-time . Multiple tests demon-
 strated that the 486 based PC controller could control a
 6-axis GE-P60 robot (all revolute joints) moving along a
 3-D NURBS curve at a trajectory rate of 30 Hz or less . A
 new CIMETRIX OAC controller based on a Pentium
 CPU will increase the trajectory rate to 100 Hz . The
 algorithms will achieve trajectory rates in excess of

 Fig . 9 . 2-D cubic NURBS curve .

 272 On - line Cartesian trajectory

 Fig . 10 . Dif ference between actuator and joint 3 displacements .

 100 Hz on NC machines since their inverse kinematics
 computations are simpler . The concepts and methodol-
 ogies developed in this research are independent of the
 mechanisms being controlled .

 The procedures are distinguished from most curve
 trajectory generation algorithms which transform a
 sequence of points into sets of joint displacements and
 approximate the Cartesian trajectory at the joint level .
 These new trajectory methods work directly in Cartesian
 space .

 References
 1 . R . Paul , ‘‘Manipulator Cartesian Path Control’’ IEEE

 Transactions on Systems , Man , and Cybernetics SMC-9 ,
 No . 11 , 702 – 711 (Nov ., 1979 .)

 2 . R . H . Taylor , ‘‘Planning and Execution of Straight Line
 Manipulator Trajectories’’ IBM Journal of Research and
 De y elopment 23 , No . 4 , 424 – 436 (July , 1979) .

 3 . C . S . Lin and C . Po-Rong , ‘‘Joint Trajectories of
 Mechanical Manipulators for Cartesian Path Approxima-
 tion’’ IEEE Transactions on Systems , Man , and Cybernetics
 SMC-13 , No . 6 , 1094 – 1102 (Nov . / Dec ., 1983) .

 4 . S . E . Thompson and V . P . Rajnikant , ‘‘Formulation of Joint
 Trajectories for Industrial Robots Using B-Spline’’ IEEE
 Transactions on Industrial Electronics 1E-34 , No . 2 ,
 192 – 199 (May , 1987) .

 5 . Y . H . Chang , T . T . Lee and C . H . Liu , ‘‘On-Line
 Approximate Cartesian Path Trajectory Planning for
 Robotic Manipulators’’ IEEE Transactions on Systems ,
 Man , and Cybernetics 22 , No . 3 , 542 – 547 (1992) .

 6 . L . V . Aken and H . Van Brussel , ‘‘On-Line Robot
 Trajectory Control in Joint Coordinates by Means of
 Imposed Acceleration Profiles’’ Proceedings of the 1 5 th
 International Symposium on Industrial Robots (September ,
 1985) pp . 1003 – 1008 .

 7 . C . Froissart and P . Mechler , ‘‘On-line Polynomial Path
 Planning in Cartesian Space for Robot Manipulators’’
 Robotica 11 , part 3 , 245 – 251 (1993) .

 8 . V . Beazel and E . Red , ‘‘Inaccuracy Compensation and
 Piecewise Circular Approximation of Parametric Paths’’
 Robotica 11 , part 5 , 413 – 425 (1993) .

 9 . B . K . Choi , Surface Modeling for CAD / CAM (Elsevier
 Science Publishers , Amsterdam , 1991) .

 10 . G . Farin , Cur y es and Surfaces for Computer Aided
 Geometric Design (Academic Press , New York , 1990) .

 11 . M . E . Mortenson , Geometric Modeling (John Wiley & Sons ,
 New York , 1985) .

 12 . J . H . Mathews , Numerical Methods (Prentice-Hall , Engle-
 wood Clif fs , 1987) .

 13 . A . H . Stroud and D . Secrest , Gaussian Quadrature Formula
 (Prentice-Hall , Englewood Clif fs , 1966) .

 14 . Z . Yang , ‘‘On-Line Cartesian Trajectory Control of
 Mechanisms along Complex Curves’’ PhD Dissertation
 (Brigham Young University , September , 1995) .

 15 . M . Crampin , R . Guifo and G . A . Read , ‘‘Linear
 Approximation of Curve with Bounded Curvature and a
 Data Reduction Algorithm’’ Computer - Aided Design 17 ,
 No . 6 , 257 – 261 (1985) .

 APPENDIX – REVIEW OF COMPLEX CURVES

 1 . Cur y e geometry
 A space curve is conveniently represented by a
 parametric vector equation of the form r (u) 5
 [x (u) , y (u) , z (u)] . The derivative of r (u) becomes
 r 9 (u) 5 d r (u) / du 5 [dx / du , dy / du , dz / du] . Higher order
 derivatives are defined similarly .

 Let s represent the arc length along curve r (u) , then

 s 5 E u 1

 u 0

 U d r (u)
 du

 U du (28)

 Referencing Figure 11 , the unit tangent vector for curve
 r (u) is defined as

 T 5
 d r
 ds

 5
 r 9 (u)
 u r 9 (u) u

 (29)

 By dif ferentiating T with respect to u (T 9 5 d T / du) and
 normalizing , we obtain the principal normal vector N of
 curve r (u) , which is orthogonal to T :

 n 5
 T 9 (u)

 u T 9 (u) u
 (30)

 A third vector perpendicular to both T and N , called
 the binormal vector , is given by B 5 T 3 N . Frame
 h T , N , B j is called the Frenet frame .

 The curvature k of r (u) is defined as

 k 5 U d T
 ds
 U (31)

 By applying the chain rule , the curvature is obtained as

 k 5
 u r 9 3 r 0 u

 u r 9 u 3
 (32)

 where r 9 5 d r / du and r 0 5 d r 9 / du .

 Fig . 11 . Parametric curve with Frenet frame .

 On - line Cartesian trajectory 273

 2 . Bezier cur y e
 A degree n Bezier curve with n 1 1 control points h P i :
 i 5 0 , 1 , . . . , n j is defined as

 P (u) 5 O n
 i 5 0

 B n
 i (u) P i (0 # u # 1) (33)

 where u is the parameter , and B n
 i (u) is the blending

 function called the Bernstein polynomial :

 B n
 i (u) 5 S n

 i
 D (1 2 u) n 2 i u i (i 5 0 , 1 , . . . , n) (34)

 where S n

 i
 D 5

 n !
 (n 2 i)! i !

 .

 The first derivative of the Bernstein polynomial (34) is
 evaluated as

 d

 du
 B n

 i (u) 5
 d

 du
 S n !

 (n 2 i)! i !
 u i (1 2 u) n 2 i D

 5 n (B n 2 1
 i 2 1 (u) 2 B n 2 1

 i (u)) (35)

 Thus , the derivative of a Bezier curve of degree n is
 obtained as follows :

 d

 du
 P (u) 5

 d

 du
 S O n

 i 5 0
 B n

 i (u) P i) D
 5 O n

 i 5 0
 n (B n 2 1

 i 2 1 (u) 2 B n 2 1
 i (u)) P i

 5 n O n 2 1

 i 5 0
 B n 2 1

 i (u)(P i 1 1 2 P i) (36)

 The second derivative of a Bezier curve is also easily
 obtained as

 d 2

 du 2 P (u) 5
 d

 du
 S d

 du
 P (u) D

 5 n O n 2 1

 i 5 0
 (P i 1 1 2 P i)

 d

 du
 B n 2 1

 i (u)

 5 n (n 2 1) O n 2 2

 i 5 0
 (P i 1 2 2 2 P i 1 1 1 P i) B n 2 2

 i (u) (37)

 3 . Rational Bezier cur y e
 A degree n rational Bezier curve is defined as

 R (u) 5

 o
 n

 i 5 0
 P i w i B

 n
 i (u)

 o
 n

 i 5 0
 w i B

 n
 i (u)

 (0 # u # 1) (38)

 where h P i : i 5 0 , 1 , . . . , n j are control vertices , h w i :
 i 5 0 , 1 , . . . , n j are weights , and B n

 i (u) is the Bernstein
 polynomial .

 A rational curve model provides more degrees of
 freedom in defining curve shape . If we increase one
 weight w i , the Bezier curve is pulled toward the
 corresponding vertex P i . If all weights h w i j are equal to 1 ,

 the rational Bezier curve becomes the ordinary Bezier
 curve . The rational Bezier curve can be expressed as

 R (u) 5

 o
 n

 i 5 0
 P i w i B

 n
 i (u)

 o
 n

 i 5 0
 w i B

 n
 i (u)

 5
 P (u)
 w (u)

 (0 # u # 1) (39)

 The derivative of a rational Bezier curve is obtained by
 dif ferentiating (39) with respect to u :

 d
 du

 R (u) 5

 w (u)
 d

 du
 P (u) 2 P (u)

 d
 du

 w (u)

 w 2 (u)
 (40)

 By dif ferentiating (40) , the second derivative of a
 rational Bezier curve becomes

 d 2

 du 2 R (u) 5

 w (u)
 d 2

 du 2 P (u) 2 P (u)
 d 2

 du 2 w (u)

 w 2 (u)

 2

 2
 d

 du
 w (u)

 w (u)
 d

 du
 R (u) (41)

 From the previous equations and (36) and (37) , we
 evaluate the first and second derivatives at the initial
 point of a rational Bezier curve :

 d
 du

 R (0) 5 n
 w 1

 w 0
 (P 1 2 P 0) (42)

 d 2

 du 2 R (0) 5 n (n 2 1)
 w 2

 w 0
 (P 2 2 P 0)

 1 2 S 1 2 n
 w 1

 w 0
 D d

 du
 R (0) (43)

 4 . B - spline cur y e
 For a given sequence of 3D control points h P i j
 i 5 0 , 1 , . . . , n , and a non-decreasing knot sequence
 (t 0 , t 1 , . . . , t n 1 k 2 2) , a B-spline curve of degree k 2 1 is
 defined as

 P (u) 5 O i 5 n

 i 5 0
 P i N i ,k (u) (44)

 where u is the parameter , and N i ,k (u) is the B-spline
 basis function . The B-spline basis functions are defined
 recursively by the following expressions :

 (45)
 N i , 1 (u) 5 1 , if u P [t i , t i 1 1]

 0 , otherwise

 N i ,k (u) 5
 (u 2 t i) N i ,k 2 1 (u)

 t i 1 k 2 1 2 t i

 1
 (t i 1 k 2 u) N i 1 1 ,k 2 1 (u)

 t i 1 k 2 t i 1 1
 (46)

 for i 5 0 , 1 , . . . , n , where k controls the degree (k 2 1) of
 the resulting polynomials in u and thus controls the
 continuity of the curve . This function is known as the
 Cox-de Boor recursive function .

 274 On - line Cartesian trajectory

 5 . Non - Uniform Rational B - Spline (NURBS)
 To define a rational B-spline , we make use of the
 homogeneous coordinate . If P 5 (x , y , z) is a point in
 3-D Euclidean space , we denote a corresponding point in
 4-D homogeneous space by H 5 [wx , wy , wz , w] , where
 w . 0 . We call w the homogeneous coordinate .

 We define a polynomial B-spline curve in homogen-
 eous space by the vector equation

 P h (u) 5 (x (u) , y (u) , z (u) , w (u))

 5 O i 5 n

 i 5 0
 H i N i ,k (u) (47)

 where the N i ,k (u) are the usual k th-order polynomial
 B-spline basis functions , H i 5 (w i x i , w i y i , w i z i , w i) are the
 control points in homogeneous space , and the knot
 vector h t i : i 5 0 , 1 , . . . , n 1 k 2 2 j is the same as defined
 previously .

 P h (u) forms a set of points in 4-D homogeneous space .
 The B-spline P (u) projection in 3-D space is obtained by
 dividing the first three coordinates of each point by its

 homogeneous coordinate . P (u) is called the rational
 B-spline curve and is defined by

 P (u) 5

 o
 i 5 n

 i 5 0
 w i P i N i ,k (u)

 o
 i 5 n

 i 5 0
 w i N i ,k (u)

 (48)

 where h w i : i 5 0 , 1 , . . . , n j are the weights .
 To evaluate a rational B-spline curve at a parameter

 value u , we may apply the de Boor algorithm or the
 matrix form 9 to both the numerator and denominator of
 (48) , and finally divide through . This corresponds to the
 evaluation of a 4-D non-rational curve with control
 vertices h w i x i , w i y i , w i z i , w i j T and to projecting the result
 into 3-D space . To evaluate the derivatives of NURBS
 curve , convert the NURBS curve into a rational Bezier
 curve to calculate the derivatives as shown previously in
 the Appendix . The NURBS curve can represent almost
 all curves if we properly plan the control points , knot
 vectors , and weights .

	On-line Cartesian trajectory control of mechanisms along complex curves
	Original Publication Citation
	BYU ScholarsArchive Citation

	On-line Cartesian trajectory control of mechanisms along
complex curves

