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A Unified Green’s Function Analysis
of Complicated DFB Lasers

Jim D. Freeze, Member, IEEE, Michael A. Jensen, Member, IEEE, and Richard H. Selfridge, Member, IEEE

Abstract— An efficient full-wave analysis technique for one-
dimensional optical domains, known as the Recursive Green’s
Function Method (RGFM), is presented for evaluation of dis-
tributed feedback (DFB) laser cavities with arbitrary material
profiles. The method first constructs the Green’s function of an
inhomogeneous domain and subsequently uses Green’s theorem
to determine the laser optical field, lasing wavelength, and thresh-
old gain. The technique is applied to investigate the performance
of three DFB laser structures: a chirped-grating configuration, a
modulated stripe width design, and a reduced duty cycle complex-
coupled device. These structures are evaluated in terms of their
single-mode lasing behavior and the uniformity of the optical
field within the cavity.

Index Terms—Distributed feedback lasers, Green’s functions,
nonhomogenous media, periodic structures, semiconductor lasers.

I. INTRODUCTION

DISTRIBUTED feedback (DFB) plays an increasingly
important role in both analog and digital communications

environments. This is particularly true in semiconductor lasers
and in fiber lasers and amplifiers where DFB preferentially
enhances gain for a single longitudinal mode. The resulting
single-mode behavior alleviates problems associated with mul-
timode dispersion and allows large modulation bandwidths.
However, several challenges exist in designing stable single-
mode oscillators, such as mode degeneracy in index-coupled
structures and nonlinearities due to spatial hole burning (SHB).
In order to examine and compare the performance of different
laser geometries, it is necessary to have analysis tools which
accurately predict the behavior of arbitrary material profiles
in the cavity.
Typical analyses for evaluating DFB laser behavior make

use of a coupled-mode analysis in which approximate dif-
ferential equations are formulated and solved for the optical
fields [1]. Such an approach has proven highly effective for
purely periodic structures and has been used with some success
for nearly periodic configurations such as chirped or tapered
gratings. However, this technique does of necessity rely on
simplifying approximations, and therefore can compromise
computational accuracy, particularly for nonperiodic struc-
tures [2]. Additionally, the coupled-mode analysis requires
reformulation of the governing differential equations and their
solutions each time a different material profile is introduced.
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In this paper, we present a simple, full-wave one-
dimensional (1-D) analysis technique which allows efficient
simulation of laser cavities with virtually any material
distribution. This approach, known as the Recursive Green’s
Function Method (RGFM), is based upon a previously reported
technique [2]–[4]. However, we extend the method to allow
determination of the fields within the optical device as well
as provide a more rigorous presentation of the theory. Unlike
typical full-wave analysis techniques, the RGFM provides
excellent computational and storage efficiency. Additionally,
due to its unique recursive formulation, it is highly suitable
for periodic or nearly periodic structures such as DFB laser
devices. While the method represents a general analysis tool
for arbitrary inhomogeneous optical domains, we present it as
a unified flexible approach for fast and accurate analysis of
different DFB laser configurations.
It is noteworthy that the RGFM formulated here is very

similar in concept to the Transfer Matrix Method (TMM)
[5], [6] which has received considerable attention as a viable
optical device analysis technique. Therefore, the RGFM rep-
resents an alternative scheme with comparable computational
efficiencies, flexibilities, and capabilities. The major difference
between the two approaches is that the TMM provides the laser
response using chain or transfer matrices while the RGFM uses
the Green’s function describing the device. The key advantage
of this latter approach is that, due to the fact that Green’s
functions can be defined and utilized in one, two, or three
dimensions, the simple concepts presented here for a 1-D
analysis can be extended to algorithms in higher dimensions
using straightforward generalizations [7]. This extension and
its application to optical domains will be the subject of a future
correspondence.
The utility and flexibility of the RGFM are demonstrated

by its application to several practical and recently proposed
DFB laser structures which are difficult to analyze with
simple approximate formulations. First, the RGFM is used to
investigate two nonperiodic devices: a chirped-grating (CG)
DFB geometry [8], [9] and a modulated stripe width (MSW)
configuration [10], [11]. The performance of these structures is
compared to that of a quarter-wave-shifted (QWS) laser [12],
[13] in terms of single-mode gain margin—the threshold gain
difference between the main lasing mode and the next most
significant side mode—and the SHB. Additionally, a complex-
coupled DFB configuration is investigated in which the duty
cycle of the grating is altered. The results confirm a recently
published finding [14] that such a scheme can noticeably
enhance the gain margin of complex-coupled devices.

0018–9197/97$10.00 © 1997 IEEE
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Fig. 1. 1-D domain with inhomogeneous relative permittivity divided into
� unit sections.

II. THEORY

A. RGFM Derivation
The RGFM is a fast full-wave solution method for com-

puting the fields in a 1-D domain with arbitrary material
inhomogeneity. Consider a domain characterized by the
complex relative permittivity . The field intensity
inside this domain obeys the scalar Helmholtz equation given
as

(1)

where is the free-space wavenumber. To solve (1) for ,
consider that the domain is divided into subdomains, as
implied in Fig. 1. For simplicity, we will limit the discussion
to two subdomains and generalize to more sections later. We
assume that the Green’s functions and for (1) are known
on the subdomains and , where and the
interface occurs at the point . By definition,
these Green’s functions satisfy the equation

(2)

for 1, 2, where represents the Dirac delta function.
At the endpoints of the domain , the function can in
general satisfy any boundary condition, although in this work
homogeneous Neumann conditions are chosen to simplify the
RGFM implementation. Methods for obtaining these Green’s
functions are discussed in Section II-B.
The objective of the RGFM is to combine and into

a composite Green’s function valid for the domain . Let
be defined such that

(3)

With this representation, we first observe that satisfies the
same differential equation as , , but must satisfy
different boundary conditions at (since the homogeneous
Neumann condition at is clearly invalid for ). This fact
allows us to form from by adding to it a homogeneous
solution of (2) which allows proper manipulation of the bound-
ary conditions. Similarly, , , must be a homogeneous
solution of (2) in its first argument. As discussed in the
Appendix, these homogeneous solutions can be constructed
from the , resulting in the forms

(4)
(5)

(6)
(7)

where represents an unknown function.
To complete the solution for , we must apply appropriate

continuity conditions for and solve for the unknown .
These conditions assume the form [15]

(8)

(9)

(10)

(11)

where . When using these boundary conditions on
(4)–(7), however, care must be exercised when evaluating the
required derivatives. For example, consider (9) which results
in the expression

(12)

Application of the homogeneous Neumann boundary condition
causes the first term of (12) to vanish. The other derivatives
must be determined using the jump condition for (2), namely
[15]

(13)

If we let and again use the homogeneous Neumann
boundary condition, we obtain

(14)

(15)

which, when placed into (12), results in the condition
. Using this result in conjunction with

(8) results in the expression

(16)

where

(17)

A similar analysis reveals that

(18)

Finally, substitution of (16) and (18) into (4)–(7) results in the
equations

(19)
(20)
(21)
(22)
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Equations (19)–(22) are similar to those given in [2].
However, these results are more general in that they allow
and to assume any value within the region rather than being
restricted to the domain boundaries. This additional flexibility
allows determination of the fields within the inhomogeneous
domain and, therefore, provides information on the degree of
SHB encountered in the device under investigation.
The recursive equations derived above imply a method

for systematically constructing the Green’s function for an
arbitrary domain. Let the function represent the composite
Green’s function formed from Sections 1 through (see
Fig. 1). The Green’s function may then be constructed from
the unit sections using the algorithm

(23)

for , where “ ” denotes using (19)–(22) to combine
two Green’s functions. This simple procedure begins at the left
and recursively computes the composite Green’s function for
the entire domain.

B. Unit Section Green’s Function
Computation of the unit section Green’s functions

requires solution of (2) subject to homogeneous Neumann
boundary conditions on the endpoints of the domain . For
a constant permittivity for , this
Green’s function is expressed as

(24)

where and is defined in Fig. 1. Given this
Green’s function representation, the computation of can
proceed in two manners. First, if it is assumed that each section
is small, then the permittivity within section can

be assumed to be constant and (24) can be used directly.
If larger unit sections are chosen, then (24) must be used
in conjunction with Dyson’s equation and a suitable integral
equation solution technique to obtain the Green’s function for
the domain [2]. While this latter case requires additional
computational overhead, it allows more accurate representation
of continuously varying permittivity profiles. However, for
most cases, the simpler constant permittivity assumption is
adequate and is, therefore, the technique used in the results
presented here.

C. Laser Threshold and Field Evaluation
The preceding developments illustrate the construction of

the Green’s function given a material configuration. However,
in the analysis of devices such as DFB lasers, it is necessary
to determine the proper gain and wavelength at which lasing
occurs. Within the RGFM framework, this is accomplished
through proper implementation of Green’s theorem. To see
this, consider the fields external to the 1-D domain , as shown

Fig. 2. A general inhomogeneous laser cavity with output fields �� and ��.

in Fig. 2, which may be expressed as

(25)
(26)

where , , . Given the fact that the fields
must be continuous at the laser boundaries , , the use
of Green’s second identity [16] in conjunction with (1) and
(2) provides the equation

(27)

where the homogeneous Neumann conditions have been ap-
plied at the domain boundaries.
The next step in the development requires evaluation of (27)

at the domain boundaries . Proper arrangement of the
resulting equations results in the system

(28)

which may be expressed as . This system has a
nontrivial solution only if det , or

(29)

Therefore, determination of laser threshold is equivalent to
finding the gain and wavelength which produce a Green’s
function which satisfies (29). Once the gain/wavelength
pair has been determined, one of the two output field values

or must be specified. The remaining output field may
be computed using one of the two equations represented in
(28). Computation of the fields internal to the laser can then
be performed using (27).

III. EFFICIENT COMPUTER IMPLEMENTATION
The RGFM as developed provides an efficient mecha-

nism for analyzing the behavior of optical fields in complex
domains. However, in many cases, the computational effi-
ciency can be improved by exploiting certain geometrical
and algorithmic features. The following techniques illustrate
implementation details which can be used for this purpose.
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A. Storage Reduction
Examination of (27) reveals that evaluation of the fields

for most laser structures requires knowledge only of the
Green’s functions for the source point at 0 and . Careful
examination of the expressions in (19)–(22) shows that to com-
pute these Green’s function values, the contributing Green’s
functions and must be known only for source points
on their respective domain boundaries. This key observation
allows considerable reduction of the computational and storage
requirements of the RGFM. It is noteworthy that if only the
fields external to the domain are desired, then the Green’s
functions must be computed only for the observation point
at 0 and as well.

B. Recursive Doubling
Despite the simplicity and generality of the RGFM algo-

rithm proposed in (23), implementation of the algorithm in
such a fashion is not optimal. A better approach is to divide the
unit sections into nearest-neighbor pairs and combine each

pair to form new Green’s functions. This section-doubling
procedure is then repeated recursively until the composite
Green’s function for the entire domain has been constructed. If
the unit sections are computed using the constant-permittivity
assumption as outlined in Section II-B and the observations
in Section III-A are exploited, the storage and computational
complexities of RGFM are given, respectively, as and

, where is the total number of points in the
domain. If only the fields external to the domain are required,
then the Green’s function must be evaluated only at the points

, resulting in a computational complexity of
.

C. Periodic Domains
It is noteworthy that for periodic domains where the unit

sections are chosen to correspond to the permittivity profile
period, the Green’s functions for the sections are identical.
In this case, the computation can be efficiently performed by
first constructing a Green’s function representing one period
of the geometry. With this as a fundamental building block,
the technique can be used to recursively double the block by
combining it with itself. In the notation of (23), we can write

(30)

This simple algorithm requires a computational complexity
of for computation of internal fields and
for external fields. For many DFB structures, this periodic
doubling procedure can be used to efficiently compute the
laser behavior.

IV. STUDY OF DFB LASER DEVICES
Perhaps the single most important feature of the RGFM out-

lined here is its flexibility in modeling virtually any laser cavity
configuration, including nonperiodic structures. To demon-
strate this flexibility, we apply the method in this section to

the analysis of three DFB configurations: a chirped-grating
geometry, a modulated stripe width laser, and a reduced duty
cycle complex-coupled device. For simplicity, it is assumed
that all geometries are coated with a perfect antireflection coat-
ing on both device ends. These examples represent geometries
which are difficult to model using approximate formulations
such as coupled-wave theory. This analysis focuses on such
issues as the single-mode gain margin and the degree of SHB
encountered in the device.
Before applying the RGFM to representative practical DFB

laser structures, it was necessary to ensure the computational
accuracy of the method. This was tested in two manners.
First, the RGFM was applied to a simple two-layer dielectric
slab configuration where one of the layers was lossless while
the other contained either a loss or gain term. In each case,
it was found that the RGFM solution matched the results
from the analytic solution to within computational precision.
Second, the scheme was used to determine the threshold gain
and wavelength for a simple Fabry–Perot laser cavity formed
from a cleaved homogeneous gain medium. Again, the RGFM
results matched those obtained using a closed-form analysis to
within the precision of the root-finding algorithm used to solve
(29). These simple tests provided confidence that the method
should work well for other more complicated geometries.

A. Chirped-Grating Index-Coupled DFB
As a first testbed configuration, we chose a chirped-grating

(CG) DFB configuration. This particular geometry has been
suggested in the literature as one which removes the mode
degeneracy characteristic of index-coupled DFB structures
and, therefore, is much like the commonly used quarter-wave-
shifted (QWS) structures. However, it has been suggested that
the CG topology can be designed for reduced spatial variation
of the optical field intensity within the cavity and is therefore
less likely to suffer from nonlinearities induced by SHB [8],
[9].
For this computation, we chose a 310- m-long DFB

structure whose grating pitch was tapered linearly over the
length of the cavity as

(31)

The refractive index grating profile is modeled as

(32)

where is the material intensity gain. In this computational
model, we have chosen 3.5977 and 0.2154 m
which produce a Bragg wavelength (for 0) of
1.55 m. We will use the common parameter

(33)

to characterize the grating depth.
As a first study, consider the threshold gain difference

between the mode with the lowest threshold gain and the
most significant side mode. Fig. 3 plots this value versus
the chirping parameter for three different values of .
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Fig. 3. Single-mode gain margin ���� versus the chirping parameter � for
the CG DFB cavity at three different values of ��.

TABLE I
COMPARISON OF ���� AND CF FOR THE CG, MSW, AND QWS
DFB STRUCTURES FOR THREE DIFFERENT VALUES OF ��

As can be seen, there is clearly an optimal choice of the
chirping parameter for maximization of the threshold gain
difference. Table I compares the values of for the CG
structure with those for the QWS cavity with the same physical
parameters. Also included are the results for the modulated
stripe width (MSW) laser considered in Section IV-B. These
results indicate that while the CG configuration provides good
single-mode gain margin, for this particular configuration it
does not perform as well as the simple QWS structure.
In contrast, it is interesting to consider the degree of SHB

encountered within the CG DFB cavity. As a quantitative
measure of the SHB, the term CF is used to denote the ratio
of the minimum to maximum optical field intensity along the
length of the cavity. To compare with similar studies which
have been performed, the optical field is first processed with
a moving average filter with a window length equal to the
period of the field standing wave to remove the standing
wave variations. The comparison of the CF values in Table
I illustrates that for weak coupling (small ), the QWS
structure suffers from less hole burning. However, as is
increased, the CG geometry appears to outperform the QWS
laser for these parameters. Perhaps more important is the fact
that if a lower value of can be tolerated, then the hole
burning can be reduced even further for the CG configuration.
This is illustrated in Fig. 4, which plots the CF value as a
function of for the three values of . Here, it can be seen
that for higher values of choosing a lower value of than
that which provides optimal gain margin results in an increased
value of CF. Fig. 5 illustrates the field variation in the cavity
at for three different values of and for the QWS
structure. This plot illustrates the peaked nature of the field

Fig. 4. CF number versus the chirping parameter � for the CG DFB cavity
at three different values of ��.

Fig. 5. Optical field strength versus position in the CG laser structure for
three different values of � compared with the field for the QWS structure. All
computations use �� � �.

in the QWS structure which results in pronounced SHB for
strongly coupled configurations.

B. MSW Index-Coupled DFB
An alternative structure which can remove the mode de-

generacy suffered by index-coupled DFB lasers is the MSW
geometry [10], [11]. In this configuration, a short section in
the middle of the cavity has a slightly higher refractive index
than the remainder of the cavity. The same basic cavity

parameters as given in Section IV-A were again used, with
the exception that a 43- m-long section in the center of the
cavity was assigned a refractive index of 3.6067. For this
configuration, the gain difference and the SHB parameter
CF are listed in Table I for three values of . As can be
seen, the MSW laser has a slightly higher threshold gain
difference than the CG configuration but slightly lower
value than the QWS structure. Much like the CG geometry, the
MSW offers improved SHB performance for higher coupling
strengths as compared with the QWS topology. The spatial
field profiles for the three values of for the MSW and QWS
structures are compared in Fig. 6. Once again, we see that the
MSW field profile is less peaked than the QWS structure which
implies a reduced effect of SHB on the laser performance.
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Fig. 6. Optical field strength versus position in the MSW and QWS laser
structures for three different values of ��.

Fig. 7. Complex grating profile with high gain/high index region length ��.

C. Reduced Duty Cycle Complex-Coupled DFB
As a final example, we consider a recently proposed

complex-coupled structure designed for improved single-mode
gain margin [14]. In this structure, we will let the index and
gain modulations assume a square rather than sinusoidal wave
shape for simplicity. The unique feature of this geometry is
the fact that the length of the high gain/high index grating
region is less than half the grating period , as implied in
Fig. 7. We will use the model that the spatially varying field
gain is related to the intensity gain of the material using

(34)

where represents the confinement factor of the wave-
guide. In the following computations, we will use a normalized
confinement factor such that in the high gain region,

, and in the low gain region . Fig. 8 plots
the gain margin versus for two different values
of and two different values of the duty cycle . As can
be seen, use of the model in (34) coupled with the reduction
of the duty cycle results in a noticeable increase in the gain
margin, particularly for deep gratings, a result which confirms
the findings of [14]. It should be emphasized here that the
analysis of configurations like that shown in Fig. 7 are difficult
if not impossible to perform using simple techniques such as
coupled-mode theory.

V. CONCLUSION
In this paper, we have generalized the RGFM to allow full-

wave analysis of fields internal and external to an inhomoge-
neous DFB laser cavity. A detailed mathematical development
of the approach as well as comments concerning its practical
implementation have been provided. The key strength of the

Fig. 8. Single-mode gain margin versus gain grating depth for the com-
plex-coupled DFB structure with different values of gain length �� and
index grating depth ��.

method is the fact that virtually any device can be modeled
using the same algorithm by simply changing the functional
form of the material complex permittivity. This advantage is
particularly important for devices such as the reduced duty
cycle configuration considered, where simplified theories such
as coupled-mode analysis are not readily applicable. This
flexibility has been demonstrated through application of the
method to several representative DFB laser configurations.
This analysis revealed the high single-mode gain margin and
increased immunity to difficulties associated with SHB from
the chirped-grating and MSW geometries. It also illustrated
the increase in single-mode gain margin obtained by reducing
the duty cycle of the high gain region in complex-coupled
DFB devices.
It is anticipated that this generalized RGFM will not only

serve as a powerful simulation methodology for sophisticated
geometries, but will also serve as a stepping stone for the
development of recursive formulations in higher dimensions.
Such an extension would allow improved modeling capabili-
ties for many interesting and complex DFB geometries. This
work will be the subject of a future publication.

APPENDIX
Consider finding a homogeneous solution to (2) in the

domain which satisfies a homogeneous Neumann boundary
condition at its left end but not at its right end

. We must first recognize that each of the two
forms given in (24) are homogeneous solutions to the wave
equation by themselves and must be combined in the manner
implied in (24) in order to provide a particular solution to
(2). Additionally, the top expression in (24) only satisfies the
homogeneous Neumann boundary condition at ,
while the bottom expression only satisfies it at . As
a result, if we choose , which means that

, then clearly we have a homogeneous solution to
the differential equation which only satisfies the boundary
condition at the left end. In the domain ,
provides a homogeneous solution which satisfies the Neumann
condition only at the right end as desired.
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