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ABSTRACT

BEHAVIOR OF COMPLIANT ORTHO-PLANAR SPRINGS

UNDER COMPLEX LOADS

Nathan O. Rasmussen

Mechanical Engineering

Master of Science

This thesis presents research on the feasibility of applying compliant-ortho-

planar springs (COPS) to rotational applications. The primary motivation of this

research is the application of COPS to a continuously variable transmission (CVT).

The design space limitations, loading conditions, stresses, stress concentrations, and

limitations of current design tools, such as pseudo-rigid-body models (PRBM) for

COPS, are discussed. A new 3D PRBM is presented along with a discussion on

the possible applications of such to a rotating COPS. Stress stiffening and lateral

stability are two major phenomena occurring in a rotating COPS. Both phenomena

are a direct result of the inertial loads a COPS would be subjected to in a rotational

environment. The results show how stress stiffening and lateral buckling in the legs

are influenced by design parameters. Conclusions and recommendations for further

research are recommended.
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Chapter 1

Introduction

1.1 Thesis Motivation

Research in the area of compliant mechanisms has experienced tremendous

growth in recent years. This growth has been fueled by simplified methods of model-

ing large nonlinear deflections of compliant links using rigid body mechanics. This

simplified model has aided compliant mechanism designers in analysis and synthesis

and has accelerated the derivation of many different classes or types of compliant

mechanisms [1].

Ortho-planar mechanisms are comprised of both compliant and rigid-body

mechanisms. Ortho-planar mechanisms are defined as mechanisms in which all the

links can be located simultaneously in a single plane. In some cases compliant ortho-

planar mechanisms exhibit a force-deflection relationship much like a spring and have

been classified as ortho-planar springs. Traditional ortho-planar springs, such as spi-

der, disc, and volute springs, have been used to provide force-displacement behavior in

compact spaces, but there are inherent disadvantages in these types of springs. Com-

pliant ortho-planar springs (COPS) can potentially eliminate many of the problems

associated with traditional ortho-planar springs. Some of these advantages include

less rotation of the platform, no required clearance, increased displacement, and im-

proved fatigue life [2, 3]. An example of a COPS can be seen in Figure 1.1.

COPS designs may be appropriate for a number of potential applications.

They have successfully been implemented in the control of industrial valves [3]. Other

1



Figure 1.1: Typical compliant ortho-planar springs (COPS).

suggested applications include electrical contacts, keyboards, compact space applica-

tions, positioning and centering, compact camping gear, speakers, circuit boards,

damping devices, precision antennae, and touch probes. COPS may possibly replace

most any type of spring. It is important to note however that the many applications

for COPS, both realized and suggested, function under loads which are static or

quasi-static in nature.

Although there is adequate knowledge for analyzing spring designs utilized

in quasi-static applications, there is still much to be learned from applying COPS to

rotational applications. Some new challenges result which were not present in static

applications. Some of these challenges are the increase in complexity and number of

additional design parameters, the ability to understand the implications of a choice

in design parameters, the need for new simple analysis tools, and a clear method for

understanding how to approach problems given these new load conditions.

The primary motivation for this research is the application of COPS to com-

posite v-belt continuously variable transmissions (CVT). A thorough review of CVT’s

can be found in Appendix A. Figure 1.2 (a) shows a CAD model of a CVT drive clutch

with a coil spring and one with a COPS (b). In a CVT a COPS may be subject to

2
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Figure 1.2: A rendition of the P-90 Polaris drive clutch (a) and a COPS adapted to fit
within the existing design.

three or four types of loads: large orthogonal deflections, fluctuating inertial loads,

and possibly imbalance or a moment applied to the axis of rotation.

A composite v-belt CVT performance is dependent on three elements: the

spring constant, cam profile, and weights. In order to change the spring constant a

new coil spring must be purchased and replaced. In order to fine tune the CVT a

number of different coil springs may be purchased before the correct one is found. The

tunability of a CVT would be greatly enhanced by replacing a box of coil springs with

a stack of COPS as shown in Figure 1.3. There may also be some weight and space

advantages with the redesign of a CVT specifically to accommodate COPS. There

is, however, a lack of knowledge about how COPS behave while subjected to inertial

loads. Two initial investigations of COPS applied to a CVT were made by Anderson

et al. [4] and Christiansen [5]. Both studies concluded that there is not enough under-

standing of COPS behavior while subjected to complex loads.

In order to better design COPS for complex load situations it is critical to bet-

ter understand several of their characteristics such as, lateral stability and stiffness,
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Figure 1.3: COPS can be (a) stacked which is highly advantageous for a (b) CVT
application.

the effects of stress stiffening, and how the various parameters affect COPS perfor-

mance. New knowledge gained from this research will enhance the ability to design

and analyze COPS for greater reliability when subjected to various load conditions.

1.2 Thesis Objectives

Thesis objectives will focus on the following.

• Summarize what has been done to date with COPS.

• Qualitative look at the design space and imposed limitations, spring geometry,

loads, stresses and the applicability of current design tools.

• Investigate a 3D pseudo-rigid-body model for rectangular cross-section can-

tilever beams subjected to simple loads.

• Characterize parameter influence on output force in thin sheet COPS under

static loads.
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• Characterize parameter influence on output force in thin-sheet COPS under

complex loads.

• Characterize limitations on design stability in leg design for rotational applica-

tions.

• Identify and analyze stress stiffening for COPS in rotational applications.

• Present a set of design steps for approaching COPS applications and the design

tradeoffs associated with many of the design parameters.

1.3 Thesis Outline

Chapter 1 discusses the motivation for the research, states research objectives

and a brief summary of each chapter.

Chapter 2 is a literature review of compliant mechanisms, analysis tools for

compliant mechanisms, and a thorough review of what has been done with compliant

ortho-planar springs to date.

Chapter 3 sets forth the limitations of the design space, the experimental setup,

COPS loads and stresses, and finally current analysis tools and their limitations.

Chapter 4 covers the initial foray into deriving a pseudo-rigid-body model

for 3-dimensional applications. Although the boundary conditions researched therein

do not directly match those of a COPS leg segment, it does provide a foundation for

future research on this subject.

Chapter 5 is an investigation of how each parameter in a COPS design af-

fects the spring reaction force. An understanding of these factors will better help

understanding of how the springs are affected by inertial loads.

Chapter 6 characterizes the lateral stability and stiffness of COPS legs. Two

modes of lateral buckling are identified and the design space for lateral buckling is

mapped out for the nominal COPS design. The results of this chapter are used to limit

the design space exploration.

Chapter 7 quantifies stress stiffening for the nominal COPS design. The design

tradeoffs between leg angle and the benefits of stress stiffening are discussed.
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Chapter 8 presents some generalized steps that may be used to design COPS

for a number of situations. A table of design tradeoffs between design parameters and

design elements, such as stress stiffening, is presented with some discussion on those

critical for rotational applications.

And finally, Chapter 9 presents the contributions and conclusions made by this

research and recommendations made for further research.
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Chapter 2

Background

2.1 Compliant Mechanisms

Compliant mechanisms have been around for a long time even though funda-

mental methods for synthesis and analysis have only recently been developed. The

basic theory of compliant mechanisms has been well researched and there are numer-

ous papers and books written on the subject. There is at least one resource book

[1] which gives an in-depth overview of most topics related to compliant mechanisms.

There are also other books which are more specialized in some aspects of compliant

mechanisms [6, 7].

Mechanisms in general derive their usefulness from transferring or transforming

motion, force or energy and have traditionally been composed of rigid links connected

at movable joints. Compliant mechanisms, a sub class of mechanisms, differ from

rigid body mechanisms in that they are composed of flexible members which transfer

or transform motion, force, or energy [1]. Following are basic principles related to

compliant mechanism classification, advantages and disadvantages, general design

considerations, and methods of analysis.

2.1.1 Classification

Midha et. al. [8] separated compliant mechanisms into traditional classes such

as linkages, lever systems, cam followers, gear trains, etc. Howell [1] broke compliant

mechanisms into two main categories: fully and partially compliant. Fully compliant
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Figure 2.1: Characterization of segments and links.

mechanisms obtain all of their motion from compliant members and partially com-

pliant mechanisms obtain only part. Compliant mechanisms can be divided further

into links and segments. Figure 2.1 shows Howell’s classification of links and segments.

Parise [2] combined previous knowledge with his own in order to classify ortho-planar

mechanisms of which ortho-planar springs (OPS) are a part. He also established the

nomenclature for OPS and presented some design tools.

2.1.2 Advantages & Challenges

The advantages and disadvantages of compliant mechanisms in general were

discussed by Sevak and Mclarnan [9] and can be found in many other works [10,

11, 2, 12]. The applicability of each advantage depends on the particular mechanism

and its conditions. Advantages may include location in a single plane, reduced wear,

increased precision, reduced maintenance, reduced weight, reduced size, reduced part

count, and reduced cost in manufacture and assembly. Some of the challenges in

designing and using compliant mechanism are problems with fatigue, creep, and stress

relaxation.

2.1.3 General Design Considerations

Consider Equation 2.1 for the deflection of the rectangular fixed-guided beam

shown in Figure 2.2.
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Figure 2.2: Fixed-guided beam simulating a leg segment in a COPS design.

It is important to note that deflection and force can be affected by both the

material properties and geometry. The bracketed terms show how a designer might

influence flexibility [1].

δmax =
2

3

〈
Sy

E

〉〈
L2

t

〉
(2.1)

Material selection for CM’s is primarily done to maximize flexibility. Deflection

is maximized when the strength-to-modulus ratio is maximized. Picking out a mate-

rial for a particular application should be done with this in mind. In some cases there

will be a fine line between sufficient flexibility, so that the component does not break,

and maximizing the force output. In such cases material selection may not be as sim-

ple as maximizing the strength-to-modulus ratio. Geometric design properties such

as beam length, L, and thickness, t, will also heavily influence deflection and flexibility.

With the addition of inertial loads, material selection will be even more difficult.

2.1.4 Methods of Analysis

As mentioned before, the history of compliant mechanisms began many cen-

turies ago. However, the ability to accurately model and synthesize these mechanisms

has come about only recently. The difficulty in modeling them lies in nonlinearities as-

sociated with large deflections. Foundation work for large deflection analysis of elastic

rods began as early as the 17th century and contributions were made by the Bernoulli

family, Euler, Lagrange and many others [13]. More recent developments include the
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derivation of closed-form methods, numerical methods, topology design methods, and

the pseudo-rigid-body model (PRBM). The later two have recently been developed

and are being used quite successfully. They are both systematic design methods based

on two different approaches. Topology methods are based on structural optimization

whereas the PRBM is based on kinematics [14]. The PRBM has the most potential for quickly

analyzing COPS in static situations but will be less advantageous for COPS in rotational

applications. For a more complete discussion on these analysis methods and references see

Appendix B.

2.2 Pseudo-Rigid-Body Models

The purpose of the pseudo-rigid-body model (PRBM) is to provide a sim-

plified method of analyzing mechanical systems that undergo large, nonlinear de-

flections. Pseudo-rigid-body models have been used with great success in predicting

force-deflection characteristics of compliant mechanisms [1].

A PRBM allows for rigid body replacement of the flexible segments of a compli-

ant mechanism with rigid links, pin joints, and torsional springs. Doing this provides

not only an analytical model, but also a visual representation of the replacement.

These mechanism elements can then readily be analyzed using rigid-body kinematics.

The development of many PRBM’s over the past decade has greatly simplified

the design and analysis of compliant mechanisms. This includes a number of PRBM’s

for many different cases of geometries and load situations such as small length flexural

pivots [15], fixed-pinned or cantilever beams with an end force on the free end [16],

fixed-guided segments [1], beams with end-moment loads [1], initially curved can-

tilever beams [17], pinned-pinned segments [18], and fixed-fixed segments [1]. Small

length flexural pivots and simple cantilever beams were among the first to be modeled

and provided a foundation upon which other PRBM’s were developed.

The key assumption upon which all PRBM’s are based is that a near-circular

path is followed by some part of the geometry on the mechanism-usually the end of a

flexible segment. These PRBM’s assume that the mechanism deflection occurs within

a single plane.

10



There are other challenges associated with the application of the PRBM to

rotational applications which will be discussed qualitatively in the next chapter. One

important consideration is that planar deflections of compliant segments no longer ex-

ist under inertial loads. Deflection about more than one axis of rotation may occur due

to combined orthogonal and inertial loads. The lateral component of the inertial loads

may create instabilities in leg segments causing lateral buckling. Timoshenko [19]

studied torsional and lateral buckling of thin rectangular cross-section beams subject

to moments and loads in the direction of greatest flexural rigidity. He was able to find

critical loads at which they buckled for cross sections of varying flexural rigidity. Tim-

oshenko’s research was done for a force applied only in the direction of greatest flexural

rigidity. A COPS leg segment geometry is similar to the beams studied by Timoshenko but

the loading conditions are different.

2.3 Manufacturing Compliant Mechanisms

The manufacture of macro-compliant mechanisms has not been a widely re-

searched area. Herring et. al. [20, 21] investigated the high production manufacture

of compliant mechanisms with long slender beams. Although his work did not con-

sider the manufacture of ortho-planar mechanisms and COPS in particular, it does

provide a framework for assessing processes which would be suitable for high volume

production of COPS.

Herring noted the key characteristics of the mechanisms investigated. The two

compliant mechanisms considered had geometry of both thick rigid and thin compliant

out-of-plane segments as shown in Figure 2.3. Beam thicknesses of 0.508 mm or 0.02

inches were considered. Key characteristics included beam dimensions and ratios of

each to the thin compliant beams. These key characteristics were useful for assessing

the feasibility of each of the individual process capabilities for the mechanisms of

interest.

There were two general areas of research within the shaping methods identified

for manufacturing compliant mechanisms.
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Figure 2.3: Generic complaint mechanisms used in Herring’s manufacturing study: (a)
with long thin fixed-guided beams and (b) with long thin cantilever beams.

• No assembly or one-piece processes, are those that are individually, or jointly

used with other processes, capable of producing compliant mechanisms with

long thin beams in one piece at high production rates.

• Assembly processes are those which are individually, or jointly used with other

processes, capable of assembling compliant mechanisms.

Since COPS designs will only be made from a single flat sheet of material, assembly

processes will most likely not be applicable.

A go-no go matrix was used as an initial method for excluding processes that

would not be able to meet the two main criteria: ability to create the geometry and be

able to meet high production rates. Because ortho-planar mechanisms were not of

concern in Herring’s work, many processes suitable for their manufacture were not

considered.

Weight [22] considered a similar problem to that of COPS manufacturing with

a multi-layer floating-opposing-arm clutch design. These clutch layers had similar

dimensional characteristics to those of COPS designs and were made of similar ma-

terials. He added both the conventional and fine blanking processes to Herring’s list of
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potential processes. Both of these processes work great for single-piece thin-planar

mechanisms and are capable of high production rates.

Herring collected process capabilities for each of the final processes. In compar-

ing them with needed capabilities based on key characteristics, he found no process to

be feasible for the designs he investigated. Although his approach resulted in no manu-

facturing methods capable of producing the desired geometry in a single process, his

approach would be useful for evaluating the design for and manufacture of COPS. The

planar nature of COPS make them suitable to high volume manufacturing because

there are many rapid manufacturing processes which operate in two dimensions such

as stamping and fine blanking and materials in sheet stock form are readily available.

2.4 Compliant-Ortho-Planar Springs

Compliant ortho-planar springs fall under the class of ortho-planar mecha-

nisms. Parise combined all previous work done on ortho-planar mechanisms. Ortho-

planar mechanisms consist of change-point mechanisms, metamorphic mechanisms,

compliant mechanisms, and microelectromechanical systems or MEMS [2]1.

An ortho-planar mechanism is one in which all of its links can be simultane-

ously located in a single plane with motion out of that plane. When all of its links are

located in that plane the mechanism is said to be in its in-line position [2].

All ortho-planar mechanisms have the advantages of being in a compact state

and can be fabricated from a single work piece. Ortho-planar mechanism configura-

tions are highly scalable making them ideal for a wide range of applications including

MEMS [2]. The disadvantages of most ortho-planar mechanisms are associated with

the change point. For most there needs to be some aid as it moves through the change

point so that it does not change configurations and for other types it is a problem

because there is no force at its in-line position. These disadvantages do not apply to

ortho-planar springs because the mechanism configuration is fixed through its change

point. It may also be desirable for a spring to have an undeflected state.

1The field of metamorphic mechanisms was researched by Carroll [12] while Lusk [23] explored
spherical and spacial mechanisms some of which exhibit ortho-planar characteristics.
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Parise [2] showed that the spring constants of each individual segment could

be added to derive an overall spring constant. Christiansen [5] showed through exper-

imentation that individual COPS spring constants can be added together with a great

deal of accuracy to get an equivalent spring stack constant. This is a great advantage

over traditional springs for any type of mechanism which requires tuning by changing a

spring constant. Spring constants are easily changed by simply adding or subtracting

layers of COPS. This idea is of particular interest in actuating a CVT [4].

2.4.1 Background

One of the major contributions made by Parise [2, 3] was the development of a

new ortho-planar linear-motion spring. An ortho-planar spring is one which can be

either fabricated in or compressed down to a single plane. Traditional ortho-planar

springs include disc, volute, and spider springs. Parise’s new ortho-planar linear-

motion spring, referred to as COPS in this thesis, had several advantages over tradi-

tional ortho-planar springs. Spider and volute springs rotate as they move through

their motion which creates torsion. Parise completed a qualitative analysis of the per-

formance characteristics of COPS and spider springs. The rotation a spider spring ex-

perienced in the platform was considerable compared to that of COPS designs. Spider

springs can also create friction between themselves and the object they are trying to

displace if they are not secured. Disc springs require clearance to make deflection possi-

ble. The COPS design eliminates those disadvantages while maintaining the advantages

of being compact and simple to manufacture [2, 3].

COPS exhibit linear motion output orthogonal to the plane of fabrication.

They may consist of rigid, semi-rigid, and compliant segments or links. In general

they can have as few as two legs and up to as many as is physically possible. The main

parts of a typical COPS can be seen in Figure 2.4.
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Figure 2.4: Main parts of a COPS.

2.4.2 Nomenclature

Parise also set forth the nomenclature of COPS designs. Parise’s classification

system is based on four elements of the design: number of legs, number of flexible

segments per leg, leg style, and in some cases the leg angle.

The first term for a particular design consists of the number of legs used in

the design: bi, tri, quad, pent, etc. A leg is defined as an unbroken connection of all of

the segments between the base and the platform on a given side (i.e. the compliant

segments and the intermediate platform(s)).

The second term tells how many flexible segments there are. First the number

of segments connecting the base and the intermediate platform followed by a dash

and the number of segments between the intermediate platform and the platform. It

is possible to have more than two sets of segments in any one leg and if that is the case

they are named in the same order and separated by dashes. If different leg geometries

are in a single spring then each leg is declared with a full colon separating it from
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Figure 2.5: (a) One and (b) two segments between the base and intermediate platform.

the next. Two typical leg designs with a different number of segments are shown in

Figure 2.5.

The third element is the leg style. An S for side or an R for radial is appended.

If it is a side leg position then it becomes necessary to distinguish them by the angle

made between a radial line from the center of the platform to a line parallel to a leg

segment as shown in Figure 2.6. The angle from which it deviates from the radial

design should be appended to the S.

When combining these four elements a COPS design or class is adequately

described. An example of the naming scheme can be seen in Figure 2.7. The spring

shown in Figure 2.5 (a) is a Tri 1− 1 S135◦ while (b) is a Quad 2− 1 R.

There are a few special cases that require additional nomenclature. If an extra

set of segments is added to a leg then the nomenclature has an extra dash and number

added to it (e.g. Tri 2− 2− 1 R etc). It is also possible to nest one COPS inside of

another. The nomenclature does not change for the individual springs but the two are

joined with a + sign.
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Figure 2.7: Nomenclature for COPS designs.

In addition to the straight-leg designs there are curved-leg designs. Curved

flexible segments would have advantages of an even more compact design. Right

angled leg designs were also mentioned although none were made or analyzed.

Unequal lengths in leg segments are possible if and only if the sum of the

deflections in each leg is equal. If this is not the case then nonlinear motion will

result and the platform deflection will not follow a straight line. Unequal length

leg segments produce an uneven stress distribution in the legs. This is inefficient in

that it decreases the maximum deflection while increasing the required force to achieve

it. Recommendations were to stay away from unequal lengths because they are less

efficient than those with equal length leg segments.

Inversions occur if an platform or intermediate platform is grounded to in-

vert the motion. These could become structures depending on how the intermediate

platforms are grounded or on the number of legs or segments.
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The possible configurations of a COPS design are inexhaustible and can include

multiple platforms, multiple flexible segments per leg, straight or curved or right angle

flexible segments, unequal leg segments, various angles of attachment, and inversions.

A method for determining size envelope requirements for side and radial de-

signs was developed by Parise [2] and a set of equations were derived.

2.4.3 Lateral Stability

Stability is defined as the property of a body that causes it, when disturbed

from a condition of equilibrium or steady motion, to develop forces or moments that

restore the original condition. Parise’s [2, 3] definition of stability for a COPS design

is the resistance the platform has to moving out of its prescribed motion. Using

this definition he performed a qualitative stability analysis on various types of COPS

designs. It is assumed his criteria for stability was strictly subjective because there

were no metrics given for its measurement. The following list is a summary of his

findings.

• Stability was shown to be dependent on the number of legs, leg segments/level,

leg style, and leg angle.

• Each individual leg is unstable to rotations about the long axis of its flexible

segments.

• In general, stability is proportional to the number of legs but all things being

equal, the odd leg designs were more stable than the even leg designs. The pent

design was the most stable of those tested but it is possible that designs with

greater numbers of legs could produce as much or even greater stability. Multiple

leg designs are more stable and theoretically have one degree of freedom [24]

although there could still be some rotation of the platform due to compliance.

• Legs equally spaced around the platform produce the most stability in odd leg

designs. Even leg designs have an unstable axis shared between legs opposite

each other on the platform.
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• Bi-leg designs are inherently unstable and are not recommended because they

have more than one degree of freedom. Although side leg designs are unlikely, it

is possible to create a Bi2−2R design which is more stable but still experiences

some rotation in the platform.

• Side leg designs are more compact than radial designs but are subject to more

rotation in the platform. Curved-leg designs are even more compact but are not

as easy to analyze yet. Side leg designs are subject to higher stresses because of

the addition of torque around the intermediate platforms. This leads to possible

torsion of a segment about its length and slight rotation of the platform.

• As the number of legs increases, the possibility of a single leg segment rotating

about its long axis decreases.

• Multiple flexible segment levels per leg (i.e. two intermediate platforms per leg)

and nested springs increase the possible deflection but decrease stability.

2.4.4 Lateral Stiffness

Stiffness is defined as the lack of suppleness or pliability. To this point there

has been no research on the lateral stiffness of COPS. Stiffness will be related to

the location of the platform relative to the base or a leg segment relative to the base.

The leg segments themselves will need to be designed to resist lateral buckling due

to inertial loads. Timoshenko [19] researched the lateral stability of thin rectangular

cantilever beams subject to an end load. He derived equations for calculating the

critical load at which the beam buckles laterally. Although loading conditions for a

COPS leg do not have the same boundary conditions as Timoshenko’s beams, the

characterization of loading conditions still may be possible.

2.4.5 Stress Stiffening

Stress stiffening happens when the stiffness in a structure changes as a load

is applied. An example is when a COPS leg has an orthogonal load, Fz, from platform

displacement and an inertial load, Fi from an applied angular velocity, ωz as shown
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Figure 2.8: The axial component of inertial loads on leg segments increases the
reaction force at a given displacement.

in Figure 2.8. For a given displacement, δz, there is a reaction force opposing that

displacement. The addition of an axial component, Fa of an inertial load increases the

reaction force by trying to pull the base and platform back into a single plane.

Because the stiffness changes as the load is applied, these types of problems are

nonlinear. When solving them it is required to recalculate the stiffness matrix, applied

forces, and moments a number of times while applying the loads.

Howell [1] states that tension should be reduced or eliminated if deflections

are desired. For an application such as a CVT where the restoring force of the

spring is desired, stress stiffening effects would seem to be desirable. It may increase

the supplied spring force and return the sheaves together with greater ease. One would

suppose that this additional force would enable the spring thickness to be reduced,

reducing spring weight.

2.4.6 Applications

Parise [2] stated that COPS is one of the more promising applications of the

developed theory on ortho-planar mechanisms. Recommendations suggest that more

detailed analysis be done on COPS and that potential applications be explored.

One application in which a COPS design was successfully implemented was

in an industrial control valve. Suggested applications include electrical contacts,
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keyboards, compact space applications, positioning and centering, compact camping

gear, speakers, circuit boards, damping devices, precision antennae, and touch probes.

All of these applications are static or quasi-static in nature.
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Chapter 3

Geometries, Loads, and Stresses

The objectives for this chapter are to narrow the research scope in the design

space and discuss qualitatively the issues that arise when COPS are utilized in a

rotational application.

3.1 Design Space Boundaries and Key Characteristics

Because the design space for COPS is quite large and the number of design

parameters so many, it becomes necessary to focus on only the portion of the design

space which is of most interest. The boundaries on the design space have been

set specifically for a CVT application. The boundaries will include designs which are

best suited for handling inertial loads, stress stiffening, are stable, and make the most

economic sense with respect to manufacturing.

The complexity in design space is evident when a list of the possible parameters

for COPS is considered. Material properties, design envelope, platform diameter,

number of legs, leg style and/or angle, number of segments between intermediate

platform and platform, number of segments between intermediate platform and base,

spring thickness, leg segment length, leg segment width, base geometry, transition

geometry, platform geometry, nested springs, multiple intermediate platforms, etc.

all must be taken into consideration when designing COPS. COPS configurations

considered undesirable for rotational applications would include multiple intermediate

platforms and nested springs because of a significant reduction in stability.

The parameters which exhibit the most influence on force output under static

loads are spring thickness, leg width, leg length, number of legs, and the modulus
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of elasticity. With the addition of inertial loads the leg angle, platform diameter,

and material density also become influential on force output. The parameters related

to inertial loads determine the extent of stress stiffening in the leg segments. Stress

stiffening, caused by an axial force applied at the ends of a leg segment, contributes to

spring force.

The four parameters which have been limited to a specific configuration in this

study are the number of legs, number of segments per leg, transition geometry, and

material properties.

First, the number of legs were found to be critical in determining the stability

of the spring [2]. The design space will be limited to COPS with an odd number of legs

because they are more stable than those with an even number. Therefore the tri and

pent leg designs are better candidates for rotational applications. The tri-leg design

has additional advantages over the pent design such as more efficient use of space,

lighter weight, and lower manufacturing costs. For a given design envelope, the greater

the number of legs the more space taken up by leg attachment geometry such as the

platform and base which means less available space for geometry like the leg segments

which provide the spring force. This would lead to a decrease in maximum displace-

ment and would possibly decrease the reaction force. Also, more legs would required a

larger platform which could increase the spring weight. The greater the number of legs the

more complex the COPS shape and the greater the spring perimeter. For a blanking op-

eration, the tooling cost would increase with die complexity and the power consumption

is significantly influenced by the total perimeter to be blanked. A Tri leg design would be

a better parameter choice for number of legs because it can be made more compact, lighter

weight, has a greater maximum displacement, more efficiently uses space, and is more eco-

nomically manufactured than an equivalent pent design.

The number of leg segments per level in a leg can also be selected on the

justification of geometry characterization and manufacturing. The size envelope

required for the 2-1 and 1-2 leg designs is increased substantially when compared

with the 1-1 design. A 1-1 leg design can much more easily be adapted to different

leg angles as well making it ideal for compact situations. Manufacturing a 2-1 or 1-2
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leg design has the same manufacturing cost implications as discussed previously. Mul-

tiple leg segments may add to the stability of the spring but for rotational applications

this slight advantage would not outweigh its disadvantages. Therefore, a 1-1 leg design

would be a better design choice for rotational applications.

The transition geometry also presents an opportunity to simplify the analysis.

The simple arc shown in many of the figures could easily be scaled or replaced by other

geometric configurations. For purposes of understanding operational characteristics

and deriving simple design tools, the transition geometry will be limited to a 180◦

arc. An investigation of stress concentrations due to transition geometry will be

qualitatively discussed later.

The material properties of greatest import in the analysis are Young’s modulus

and material density. The materials most likely to be used in rotating applications,

specifically in CVT’s, are spring steel and titanium. Although both materials are ideal

for COPS designs, only spring steel will be investigated in this research.

In summary, the design space covered in this research will be focused on spring

steel Tri1−1 designs. Although it is being limited to these designs, much of the analy-

sis will be completed using a single leg with base and platform geometry truncated

but retaining the intermediate platform. Doing this makes it possible to apply much

of the analysis work to designs with more than three legs while maintaining a focus

on Tri1−1 designs. Studies in this thesis will not consider platform-leg interference for

more than three legs. With these general limitations in place, a nominal design is

chosen which will be used for showing the effects each parameter has on spring force.

3.2 Nominal COPS Design

The number of design variables which influence the spring force is quite large.

Because there are so many for a COPS design, it becomes necessary to choose a nomi-

nal or baseline design from which to work. This choice of nominal design dimensions

and ranges was heavily influenced by the potential application of a COPS to a rubber

V-belt CVT. Figure 3.1 shows each design parameter and Table 3.1 provides the

nominal dimensions and their ranges for investigating.
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Table 3.1: Baseline COPS nominal dimensions with limits of investigation.

Parameters Nominal (in) Range (in) Nominal (mm) Range (mm)

t 0.02 ±0.012 0.508 ±0.305
wleg 0.50 ±0.125 12.7 ±3.175
L 2.75 ±0.25 69.85 ±6.35

rleg 0.09375 ±0.03125 2.381 ±0.794
rplat 2.0 ±0.50 50.8 ±12.7

ζ 67.5◦ ±67.5◦ 3π
8

rad ±3π
8

rad
δz low → 3% of L high → 30% of L
ωz low → 0 rad

sec
high → 650 rad

sec

Table 3.2: Material properties for spring steel and titanium.

Yield Strength Young Modulus Poisson Ratio Density

Spring Steel 1620Mpa 207Gpa 0.30 7850kg/m3

Titanium 1103Mpa 110Gpa 0.33 4480kg/m3

The width of the intermediate platform,wip, and it’s radius, rip, on the corners

are dependent on leg width, wleg where wip is equal to wleg and the two rip’s are equal

to half wleg. The reason for this is because the outer material on the intermediate

platform has been shown to have very low stress. To increase the wip greater than

wleg would be an inefficient use of space and to make wip less would compromise the

structural integrity of the intermediate platform. For all experiments, parameters will

be at their nominal value unless otherwise specified.

Important material properties for spring steel and titanium were found in

Callister [25] and are summarized in Table 3.2.

The direction of rotation relative to the leg angle is one other parameter to

clarify. Spring rotation, looking from the top of the COPS, will always be in a

counterclockwise direction as shown in Figure 3.1.
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Parameter Description

t Spring Thickness
wleg Leg Segment Width
L Leg Segment Length

rleg Transition Radius
wip Intermediate Platform Width
rip Corner Radii on Intermediate Platform

rplat Platform Radius
ζ Leg Angle
ωz Angular Velocity
δz Orthogonal Displacement
E Modulus of Elasticity
ρ Material Density

Figure 3.1: Design parameters for models and simulations.

Leg angle is one of the more interesting design parameters because of its ability

to influence stress stiffening and stability while under inertial loads. At 0◦ the axial

load in each leg segment is greatest for any given ω and stress stiffening is at its peak.

When the leg angle is between 65◦ and 135◦, depending on the platform diameter and

other leg segment parameters, the lateral loads on leg segments are at a peak. At these

angles, lateral stability may be compromised under certain conditions because of these

lateral inertial loads.
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Figure 3.2: Identified load situations (a) orthogonal load (b) combined inertial and
orthogonal load (c) lateral stationary load and (d) an imbalanced load.

3.3 COPS Loading

COPS design and analysis is dependent on the type of load situation. This

section explores a number of the possible situations describing the loads and possible

applications. The first four are derived from either existing applications or the possible

load situations in a CVT while the rest are potential load situations.

3.3.1 CASE I: Orthogonal Loads

The type of load situation shown in Figure 3.2 (a) is the most fundamental.

It is achieved by constraining the base and applying a load, Fz, to the platform

orthogonal to the plane of fabrication. Applied loads may be either displacement

or force. A COPS reaction force is the force that returns the platform to the in-line

position after it has been displaced. The platform may be displaced to either side of
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the base making a fully reversed loading condition possible. COPS subject only to

orthogonal loads may be referred to as being under a static load.

3.3.2 CASE II: Combined Orthogonal and Inertial Loads

The addition of an angular velocity, ωz, increases the load complexity experi-

enced by a COPS. Refer to Figure 3.2 (b). It is really ω2 which relates to inertial

loads. As a mass rotates, its continual change in direction cause it to accelerate. For

illustration purposes a single point load has been placed on one of the intermediate

platforms. The inertial force can be broken into two components, an axial force, Fa,

which creates tension in the leg segments counteracting Fz and a lateral force, FL,

which pulls the leg away from the platform. Holding the displacement, δz, constant an

increase in angular velocity increases Fz. These components of inertial loading will be

discussed shortly. Angular accelerations will also impact how the spring is loaded.

3.3.3 CASE III: Lateral Stationary Load

Figure 3.2 (c) shows combined loads with the addition of a stationary lateral

load, Fs. This load may be caused by a shaft, through the center of the spring, which

has a moment applied to it. This moment would cause the platform to rotate off axis.

An example of this would be the CVT application where belt tension would create a

load constant in direction but not necessarily constant in magnitude.

3.3.4 CASE IV: Imbalanced Load

Figure 3.2 (d) is similar to CASE II with the exception of an imbalance in the

spring. This imbalance load, Fim, causes the spring platform to move out of its axis of

rotation. An example may be a manufacturing defect or something such as grease

adhering to the spring causing an imbalance.

3.3.5 CASE V: In-Plane Torsional Loads with Platform Rotation

Figure 3.3 shows a spring used for an application such as a drive coupler.

The base is attached to one shaft and the other shaft would go through the center of
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the platform. Both shafts rotate at the same speed but torque, T , would be transferred

from one to the other. As the shafts rotate, the flexibility of the platform would allow

compensation for misalignment. This type of a load situation would most likely use a

different spring configuration than the one shown in the figure.

3.3.6 CASE VI: Six Degrees of Freedom, Platform

Refer to Figure 3.4 (a). This type of load would not fit in with the traditional

applications other than it is quasi-static. Loads would fluctuate for a given region

depending on the position of the platform-attached beam. An example of this type

may be a joystick application. There may be a different spring style maximizing

platform instability which would be ideal for a joystick type application.

3.3.7 CASE VII: Six Degrees of Freedom, Legs

Refer to Figure 3.4 (b). Another non-traditional load situation. Six degrees

of freedom for each leg while the platform is fixed. Possible applications for this type of

load situation are not yet known.
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Figure 3.4: Six degrees of freedom in (a) the platform and (b) in individual legs.

3.4 Inertial Load Components

The major focus in this research is on the interaction between leg angle and the

inertial loads. A brief discussion of inertial loads will clarify why leg angle has such a

significant effect on the performance of COPS.

Any rotating object will have a normal acceleration because of the change in

direction as it rotates. Normal acceleration, an, depends on the square of the angular

velocity, ω2, and the distance from the center of rotation, r. Substituting that into the

well known equation F = ma results in

F = mω2r (3.1)

This shows that there are three ways to influence the inertial load on a rotating

object. First, the mass of the object can be altered by changing the volume or the

material density. For a COPS leg this could entail changing the geometric parameters

to alter the volume or by changing the material. Second, the angular velocity can be

either decreased or increased resulting in a quadratic relationship to the inertial force.

Third, the distance of the mass from the center of rotation may be altered. Figure 3.5

shows how the inertial loads and its components are altered as the leg angle and hence

the distance of the mass to the center of rotation is changed.
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angle, ζ is changed.

For illustrative purposes the loads in Figure 3.5 are shown as point loads but in

reality the load will be distributed throughout the COPS leg and the load magnitude

will depend on the mass, distance from the center of rotation, and the angular velocity.

From this Figure we can also see that for small leg angles, the axial force component is

maximized and is fully utilized at ζ = 0. The lateral force component is maximized

somewhere between 60◦ and 135◦. The axial component will be associated with stress

stiffening of the leg segments and the lateral component will be associated with lateral

buckling of the leg.

3.5 COPS Stresses

Although this research is not focused on understanding the nature of stresses in

COPS, it is important to understand what stresses would occur from each type of load.

Bending stresses in COPS are caused by orthogonal loads, Fz and the lateral

force component of the inertial loads, FL. Bending stress from both loads will be

the greatest at the ends of the leg segments near the base, intermediary platform

or platform. Bending stress in the leg segments in the z direction will increase as
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orthogonal loads increase and in the lateral direction will increase with increased

angular velocity and an increase in leg angle.

Axial stress may be present in leg segments when COPS are subject to inertial

loads. Angular velocities and angular accelerations of COPS would cause either an

increase or decrease in Fz creating tension or compression in the leg segments. The

amount of axial stress will be highly dependent on the angular velocity, angular

acceleration, and the leg angle. Axial stresses in leg segments will increase with an

increase in angular velocity and small leg angles.

Torsional stress is a third type of stress that will be present in leg segments

of COPS. As shown in Figure 3.7 (a), the eccentric nature of the leg design turns

the intermediate platform into a moment arm which creates torsion along the leg

segments. These stresses may be more prevalent in the 1-1 type than in other leg

designs. Torsion may also be present in the intermediate platforms. Torsional stress

in the leg segments will increase as rleg increases. Torsion in the intermediate platform

will increase with the orthogonal load.

Shear stress will be present near the transition geometry due to a tearing

phenomena created by orthogonal loads. See Figure 3.7 (b). This type of stress will
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Figure 3.7: (a) Torsional stresses in leg segments and intermediate platform from
eccentricity of 1-1 leg design (b) shear stresses in intermediate platform.

produce a stress concentration found at the transition radii. Shear stress increases

with a decrease in rleg and an increase in orthogonal loads.

This shear area in the intermediate platform has the highest stress while sub-

ject to only orthogonal loads. This stress concentration, with the tearing phenomena,

will need to be better understood. An in depth study of stress concentrations will be

left for future research. A short qualitative analysis of stress concentrations follows.

3.6 Stress Concentrations

The presence of stress concentrations in COPS will be one of the more chal-

lenging elements in their design. Stress concentrations in COPS have not previously

been examined. The shear or tearing phenomena in the transition geometry may be an

opportunity to create a new stress concentration table. There were no similar loading

situations in any machine design books including Roark’s [26].

In order to understand the stress concentrations like the one shown in Fig-

ure 3.8, it is important to understand what the stress flow looks like around a

transition radii such as rleg. For one side of the leg the stresses in one segment

are highly compressive and in the other are tensile. As these two opposing stresses

flow around the transition geometry they create a shear zone through the intermediate
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platform. This stress flow tends to hug the transition geometry and the outer material

in the intermediate platform is under utilized.

The approach taken to better understand the stress concentrations was to

first see if a minor change in transition geometry would disrupt the stress flow and

decrease the stress. A number of geometries were tried in order to disrupt the stress

flow through the intermediate platform in an attempt to decrease stress. FEA was

used to evaluate each type of geometry. All experimental design parameters were held

constant while the transition geometry was changed. Only two geometry changes had

a slight decrease in stress but it was not significant enough to separate it from model

noise. The geometries which were experimented with can be seen in Figure 3.9.

Although some geometry configurations may have appeared to compromise other

aspects of COPS designs such as the force output, they were ignored.

Because no simple change in geometry decreased the stress concentration the

only other option was to increase rleg. One thing to note about making rleg larger

is that this will increase the mass of the intermediate platform. Inertial loads will

then have a greater affect on the leg which may increase the stresses at the base and

platform transition radii and make lateral buckling more probable.

While stresses are very important in designing a COPS for adequate fatigue

life, especially for rotational applications, they have been left for future research

when simplified methods for predicting forces are better understood. The final word

on stress concentrations is that they should be considered by the designer.
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Figure 3.9: Transition geometry changes investigated to decrease stress.

3.7 Analysis Tools

Parise’s [3] discussion and analysis was centered on understanding some of

the fundamental relationships between spring parameters for static applications and

to qualitatively evaluate issues such as stability. His prototype COPS were made of

polypropylene and were fabricated with the use of a milling machine. Doing this al-

lowed him to maintain rigid ends for each segment by leaving the platform, intermedi-

ate platform, and base as thick as the original stock. By building the boundary condi-

tions into the prototypes, the ability to accurately model them with a PRBM for fixed-

guided segments was maintained. While a non-uniform thick spring design was useful

for a qualitative study it would not be the best applicant for high volume manufactur-

ing. This notion is confirmed by the case study presented in [3] where a COPS was de-

signed and manufactured from a single thin sheet of metal for an industrial valve control.

A thin sheet COPS design has the advantages of being easily manufactured and can eas-

ily be stacked while a non-uniform thick COPS design forfeits these advantages.

Traditionally, research on ortho-planar springs has used the PRBM for fixed-

guided segments as a simple design tool for predicting force and stress under orthogo-

nal loads. The problem in applying the PRBM to fixed-guided leg segments in thin
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sheet COPS is that the boundary conditions are not met. These boundary conditions

are semi-rigid end end effects on leg segment ends, high axial loads, and distributed

inertial loads.

First, the semi-rigid effects in the base, platform, and intermediate platform

add additional flexibility to the ends of a leg segment. This challenges the assumption

of infinite rigidity attachment at the ends.

The other fundamental assumption of the PRBM for fixed-guided segments is

that the segment remains in a single plane. As inertial loads are applied to a COPS

design, lateral loads on legs may cause bending to occur out of that plane.

In the case of a radial design, lateral loads will be minimal but the amount

of stress stiffening seen in the legs may be large enough to cause a problem if there

are high negative load factors where n < 0. This load factor is inversely proportional

to the inertial loads which cause stress stiffening or negative load factors. As the

inertial forces increase the constraint on Θmax decreases. Accuracy becomes an issue

for pseudo-rigid-body angles greater than Θmax.

One other condition which will have to be researched is a PRBM for distributed

loads. The inertial loads for a COPS cannot easily be reduced to point loads on the

ends of the segments or into convenient lumps of mass for simplified analysis.

Even though there are many obstacles for developing a PRBM suitable for ana-

lyzing a rotating COPS, an initial foray investigating the feasibility of a 3-dimensional

PRBM will be done. Until new PRBM’s are developed, finite element analysis will be

the best way to analyze loads, stresses, and behavior of COPS designs under complex

load situation.
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Chapter 4

3D Pseudo-Rigid-Body Model

4.1 Introduction to 3D PRBM

Because the PRBM has been a very effective analysis tool for compliant mech-

anisms, an investigation of a 3D PRBM for analyzing the complex loads a COPS

leg segment might be subject to is a natural compliment to understanding COPS

for rotational applications. As discussed previously, a COPS leg may experience

deflections in multiple directions.

The key assumption upon which all PRBM’s are based is that a near-circular

path is followed by some part of the geometry on the mechanism - usually the end of a

flexible segment. These PRBM’s assume that the mechanism deflection is constrained

within a single plane and that all axis of rotation are parallel to one another and

orthogonal to the plane in which motion occurs. This motion will be referred to as 2D.

A 3D PRBM models deflections of beams that occur in 3D space where the two

principle axes of rotation are orthogonal to one another and motion does not occur in

a single plane. Flexible segments in COPS generally have cross-sections with large as-

pect ratios, (AR). An aspect ratio is the cross-section width divided by the thickness.

As a starting point, a beam with a circular cross section deflected in 3D could easily be

transformed into a 2D PRBM through a transformation of the coordinate system. A

circular cross-section would then be a trivial case where there is no variation in the

flexural rigidity between the y and z axes. In addition, the free end of the beam would
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always follow a near-circular path. This being the case, its clear that a circular cross-

section beam tip would follow a spherical shell within some specified limit. The inves-

tigation of interest then becomes that of non-circular cross-section beams. How closely do

they follow a spherical shell when deflected in more than a single direction? What are the

limits for each aspect ratio (AR)?

This chapter explores the possibility of deriving a 3D PRBM for non-follower,

end loaded, rectangular cross-section cantilever beams. Building on what has previ-

ously been done in the field, a 3D PRBM will be based on the hypothesis that a beam

end deflected about two orthogonal principle axes will follow a near-spherical shell.

4.2 Model Setup

Table 4.1: Nomenclature for 3D PRBM investigation.

Parameter Description

L Compliant beam length.
tz Beam width.
ty Beam thickness.

AR Aspect ratio tz
ty

of the beam cross-section
γ Characteristic length factor.
Θ Angle deflection around the w axis.
Φ Angle deflection around the v′ axis.
Ψ Torsional angle about the beam.

(xi, yi, zi) ANSYS beam tip data
(x, y, z) Theoretical spherical shell.

(xc, yc, zc) Characteristic pivot location.
δy nondimensional Y displacement.
δz nondimensional Z displacement.

Figure 4.1 (a) shows a schematic for a rectangular compliant beam used in

the FEA model. The beam is setup in a Cartesian coordinate system. The beam

cross-section orientation is chosen such that the beam thickness is in the y direction
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Figure 4.1: (a) Compliant cantilever beam setup (b) deflected beam (c) and 3D
pseudo-rigid-body model replacement of beam with a spherical joint.

and the beam width is in the z. The aspect ratio of the beam is a significant factor and

will be one of the key nondimensional parameters upon which the model is based.

Figure 4.1 (b) shows the beam deflected due to an applied vertical and hori-

zontal end load. A cartesian coordinate system is used for specifying the displacement

loads to create radial deflection paths. The load conditions are such that a displace-

ment is placed orthogonal to the beam tip in both the y and z directions. The free end

of the beam moves as if there were a spherical joint on the beam tip to which the loads

are applied yet allows the beam tip to rotate freely. There are no applied moments

or follower loads to the beam tip but as the beam is deflected about multiple axes, the

end twists due to the aspect ratio and there is a resultant moment. The location of the
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deflected beam tip is specified as (xi, yi, zi). Inputs into the FEA model are yi and zi

whereas xi is an output.

Figure 4.1 (c) shows a replacement of the compliant beam in (b) with rigid-

body components such as links, joints, and springs. Because the model is based

on the beam tip following a near-spherical shell, spherical coordinates will be used.

The characteristic length factor, γ, will heavily influence sizing of the rigid-body

components. The characteristic pivot, located at (xc, yc, zc) is the center of the

spherical shell. The angles Θ and Φ are associated with the displacement of the

beam tip in the y and z directions and originate from the characteristic pivot. Ψ

accounts for the rotation in the beam tip as it is deflected. Analysis of the key

components for this model will be discussed in the next sections.

Because the path of the beam tip is a near-spherical shell, all that is needed to

describe it is a radius and the location of the sphere center. Gamma is an impor-

tant nondimensional parameter used to determine the rigid link length, γL, and the

location of the characteristic pivot, L(1 − γ). The determination of γ is the key to

developing the 3D PRBM.

Once γ has been selected for a particular model, the PRBM components can be

developed and used for analysis. The characteristic pivot is located on the x-axis and

in order for it to lie at the center of the beam cross section, yc and zc are set to zero. It

is at this location that joints and torsional springs will be located.

There are several options for setting up the three degrees of freedom for this

particular model. The use of a single spherical joint or three revolute joints were eval-

uated. The revolute joints make the most sense for a model predicting both deflection

and force because torsional spring constants are more easily equated to a respective

joint. A spherical joint provides another solution although it is not as simple to

equate three torsional springs to a single joint. There may yet be a spring element

developed which would resist in all three directions. This spring might be called a

global or spherical spring. A spherical joint does however provide a simple solution

to deflection alone because spherical coordinates can be used with it. Because this

research is mainly focused on predicting displacements, a spherical joint will be used.
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The reason accurately modeling the three DOF’s is important is because they

will play a key role in calculating the forces. Although force prediction is not the main

focus of this portion of the research, recommendations for research on predicting the

force will be presented later.

4.2.1 FEA Setup

The FEA model used 20 node solid elements for all experiments. Inputs into

the model were beam dimensions and the displacement load in the y and z directions.

Model outputs were deflection in the x direction and forces in the y and z directions.

An ANSYS script file for this model is in Appendix C.1. ANSYS was driven by

MatLab to facilitate large batches of runs. A typical MatLab script for these design

simulations can be found in Appendix D.2.

Mesh density was analyzed and an adequate density for these types of ex-

periments was established. Beam elements with a cross-section type were also tested

but were found to show discrepancies in the force output compared with the solid

elements. These simulations also showed that deflection remained within 0.25%

accuracy between all element types and mesh densities but the force varied by as

much as 35%. Solid elements were used so output could be reused in a study to

derive the force prediction equations.

4.3 Model Derivation

The derivation of γ begins by selecting beam geometry and the limits of de-

flection. These limits are δy and δz and are non-dimensionalized through division by

the beam length, L. For an acceptable magnitude of error in the deflection, bending

in the direction of greater flexural rigidity will have a smaller deflection limit while the

direction of lesser flexural rigidity will have a larger deflection limit. In the following

section two sets of boundaries are presented; first, the nondimensional deflection limits

for the y and z directions are set equal to each other and second, the limit in the z

direction is set to equal half the limit in the y direction.
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Because of symmetry, the model only needs to be evaluated for a quarter of

the quadrant in the yz plane. The quadrant is divided up into a number of vectors

separated by equal angles. Their respective lengths, li, are established as a function of

the angle and the nondimensional deflection limits. Vector length is determined by

li(θ, δy, δz) =

√√√√
[(

cosθ

δy

)2

+

(
sinθ

δz

)2
]−1

(4.1)

This allows the deflection limits to be specified by either a circle or ellipse. An

elliptical section of the spherical shell will be advantageous because it is possible to

get a larger area of deflection for the same amount of error. This will be more apparent

after reading the next section.

The FEA model evaluates a specified number of points along each vector and

records the output for each distinct set of inputs. From the radial contours shown

in Figure 4.2 a regression model was setup to determine a γ which minimizes the

error between the collected beam end location and a theoretical spherical shell. The

following regression model parallels that found in Wittwer etal. [27]. Figure 4.2 shows

a visual representation of the beam end location and the spherical shell.

Figure 4.2: The theoretical spherical shell (surface) and beam end locations (points).
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The theoretical spherical shell and the actual shell traced by the beam end

locations are represented by

rt
2 = (x− xc)

2 + (y − yc)
2 + (z − zc)

2 (4.2)

ra
2 = (xi − xc)

2 + (yi − yc)
2 + (zi − zc)

2 (4.3)

where rt is the radius of the theoretical shell and ra is the distance from the character-

istic pivot location to the actual beam tip location found through FEA. If the right side

of each equation is set equal to one another and if we desire the characteristic pivot to

lie at the center of the beam cross section, where yc and zc both equal zero, the result is

x2 − x2
i + y2 − y2

i + z2 − z2
i

2
= xc(x− xi) (4.4)

In this form, xc, or the distance from the origin to the characteristic pivot can easily be

solved using polynomial regression where xc is the regression coefficient. Equation 4.4

is represented as

v = bu (4.5)

where

v =
x2 − x2

i + y2 − y2
i + z2 − z2

i

2

u = (x− xi)
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b = xc (4.6)

and can be solved using the following approach

b = (uTu)−1uTv (4.7)

With xc known, the characteristic length factor, γ, can be found by

γ = 1− xc

L
(4.8)

The radius of the theoretical shell is equal to γL and will be such that the

error between the beam tip data and the fitted shell is minimized. The equation for the

theoretical shell then becomes

(γL)2 = (δx)2 + (δy)2 + (δz)2 (4.9)

where rt = γL.

The deflection prediction is a simple calculation when γ is known. Rearranging

Equation 4.9 and adding xc gives the theoretical x coordinate for any given y and z

displacement and is represented by

x =
√

(γL)2 − (δy)2 − (δz)2 + xc (4.10)
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Figure 4.3: Graph (a) shows the error between the two sets of data in the x direction
and (b) shows that deflections mostly in the direction of greatest flexural rigidity, z,

are instable.

Nondimensionalized parameters in Tables 4.2 and 4.3 should be used for spe-

cific beam geometries.

The error between the PRBM and beam end location data then becomes

εi = 100 · x− xi

xi

(4.11)

This error could be plotted against deflections in the y and z directions for a

visual representation of the deviations between the theoretical shell and the deflected

beam end locations. Figure 4.3 (a) shows the percent error, εi, in the x direction

between the two surfaces. Note that contours along the outer edge result in the

largest errors.

A more accurate method for quantifying the error would be the difference

normal to the surfaces. Although this would be more accurate, the outlined method

is a simpler and more conservative method for representing the deflection error.
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One other thing to notice in Figure 4.3 is that there is a degree of instability

when the beam is deflected in the plane of greatest flexural rigidity. As the deflection

increases, the beam cross-section twists in order to compensate for the difference in

flexural rigidity between the two directions. Twisting in the beam allows it to reach an

equilibrium state [19]. Figure 4.4 shows a typical beam from an FEA simulation as an

example of how the beam end rotates an angle, Ψ to find equilibrium.

Z

Y
X

y

Figure 4.4: The beam end rotates as it is deflected around two orthogonal cross-section
axis with different flexural rigidity.

Beam end rotation is caused by the difference in flexural rigidity between the

two planes of symmetry in the cross-section. Beam twisting increases proportional to

AR and does not significantly effect the ability to predict beam tip location but it does

present challenges for accurately predicting the forces at the beam tip.

4.4 Model Limits

The deflection limits influence the value of γ and are uniquely associated to

a specific aspect ratio (AR). As the aspect ratio becomes larger so does the deflection

error for a given set of limits. Because of the interdependency between the AR and

48



Choose
Geometry

Run
Model

Specify
Limits

YesSpecified
%Error?

No

Figure 4.5: Model for calculating nondimensional parameters in Tables 4.2 and 4.3.

deflection limits, it is necessary to choose deflection limits for a specific AR that result

in a specified percent error. This process is iterative as shown in Figure 4.5.

To some extent, the deflection error is dependent on the product of inertia.

The product of inertia is a result of uneven flexural rigidity in the two directions. This

difference in flexural rigidity is better described by the square of the aspect ratio, AR2,

which results from dividing Iz by Iy. Both deflection limits and γ are represented as

functions of AR2. Each set of limits for any given AR will have a unique solution

for fitting a spherical shell. This unique solution will have its own particular γ which in

turn will influence the rest of the model.

Figure 4.6: %Error contours for AR = 5. Note that 0.5% is the maximum.
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Each AR produces a unique error field because of the variation in flexural

rigidity. Any effort to maximize the deflection limits for an AR based soley upon a

fixed error would not be effective because there are multiple solutions. For example,

both sets of results in Tables 4.2 and 4.3 are for an approximate error of 0.5% yet

the limit boundaries are different for any given AR. Figure 4.6 shows the % error in

deflection for a beam with an AR = 5 and L = 100 mm, and deflection limits described

by Table 4.3. Note that the maximum error in the figure is 0.5%.

Two sets of data were generated: one where δy

L
= δz

L
and the other where

δy

L
= 2 δz

L
. Both sets had a target error of 0.5%. An optimization routine was set

up and each AR was used to determine the deflection limits that would achieve the

desired accuracy. Figure 4.7 shows a graphical representation of the nondimensional

parameters as a function of AR2. Table 4.2 shows a list of AR’s with their nondi-

mensional parameters. AR as opposed to AR2 is used in the tables for convenience.

Figure 4.8 and Table 4.3 provide the second set of limits.
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One thing to note in Figures 4.7 and 4.8 is that for an AR2 of 1, γ is approxi-

mately 0.85 which corresponds well with the γ’s of 2D pseudo-rigid-body models. As

the AR2 increases both γ and the deflection limits decrease.

In order to test the results of this study several ARs (with their respective

parameters) were simulated to validate the resulting error of 0.5%. Table 4.4 and 4.5

show the results as recorded. All calculated γ’s and εmax were reasonably close to those

calculated previously.

Another analysis was performed to check the accuracy based on the length

of the beam and the non-dimensional limits. Table 4.6 contains the results. The

error, εmax, was somewhat dependent on beam length but is still fairly accurate. The

calculated γ was also fairly accurate for all beam lengths tested. Although this test is

just a snapshot of the error associated with changing the beam length for a single set of

geometry, it does provide insight on the accuracy of the model.
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Table 4.2: Nondimensional parameters for δy

L
= δz

L
and 0.5% error.

AR δ
L Θmax, Φmax γ

1.00 0.677 0.934 0.842
1.25 0.667 0.917 0.842
1.50 0.644 0.874 0.839
1.75 0.604 0.809 0.836
2.00 0.549 0.722 0.830
2.24 0.473 0.610 0.826
2.50 0.407 0.519 0.821
2.75 0.356 0.451 0.816
3.16 0.295 0.375 0.804
3.87 0.221 0.290 0.776
4.47 0.177 0.235 0.762
5.00 0.154 0.225 0.691
5.48 0.134 0.197 0.685
5.92 0.129 0.215 0.604
6.32 0.113 0.185 0.612
6.71 0.106 0.185 0.578

4.5 Conclusions

This investigation proves that a rectangular cross-section beam tip does follow

a near-spherical path for the specified load conditions and within the specified limits.

The key parameter of the 3D PRBM, γ, is dependent upon the deflection limits and

the aspect ratio of the cross-section of the beam. For a given aspect ratio, a γ was

recommended along with the deflection limits for a position prediction with an error of

approximately 0.5%. 3D path prediction of a rectangular cross-sectioned beam end is

possible with the use of this 3D PRBM under the specified load conditions.

Although a 3D PRBM was derived, the direct applicability of this model to

the movements in a COPS leg is rather limited for several reasons. First, the geometric

boundary conditions for the 3D PRBM model and a COPS leg segment are incom-

patible as shown in Figure 4.9. In a COPS leg, deflection from an orthogonal load,

Fz, induces a fixed guided motion while deflection from inertial loads, FL, produces

motion like that of a cantilever beam. This research investigated only the motion that
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Table 4.3: Nondimensional parameters for δy

L
= 2 δz

L
and 0.5% error.

AR
δy

L
δz
L Θmax Φmax γ

1.00 0.643 0.322 0.874 0.394 0.839
1.25 0.642 0.321 0.872 0.393 0.838
1.50 0.637 0.318 0.864 0.390 0.838
1.75 0.627 0.314 0.848 0.384 0.837
2.00 0.616 0.308 0.830 0.378 0.835
2.24 0.598 0.299 0.801 0.367 0.833
2.50 0.572 0.286 0.761 0.352 0.830
2.75 0.547 0.274 0.723 0.337 0.827
3.16 0.492 0.246 0.644 0.305 0.820
3.87 0.391 0.196 0.508 0.246 0.804
4.47 0.334 0.167 0.430 0.210 0.801
5.00 0.274 0.137 0.367 0.180 0.764
5.48 0.245 0.123 0.324 0.160 0.771
5.92 0.221 0.110 0.312 0.154 0.720
6.32 0.202 0.101 0.278 0.138 0.737
6.71 0.178 0.095 0.254 0.134 0.708

a simple cantilever beam would experience. A COPS leg is not a simple beam but has

two attached beams, leg segments, in parallel which further complicates the analysis.

Second, the derived 3D PRBM is for point loads applied at the end of a

cantilever beam. A COPS leg has a mix of loading conditions. Deflections from

orthogonal loads are essentially applied at a point or at the ends of the leg segments.

However, lateral deflections are a result from the lateral component of the inertial load

which is a distributed load condition as shown in Figure 4.10. Distributed loads on the

COPS legs cannot easily be transformed into point loads at the end of the intermediate

platform because of the many parameters which effect the load distribution.

Third, because of its simple load condition, this 3D PRBM makes no con-

cession for stress stiffening and relaxing like many of the 2D PRBM’s do. The axial

component of the distributed inertial loads must be accounted for concurrent with the

lateral component of which the 3D PRBM is attempting to analyze.
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Table 4.4: Results from testing select AR’s and their limits for δy

L
= δz

L
.

AR δ
L Calculated γ εmax

1.00 0.677 0.842 0.533%
2.00 0.549 0.830 0.508%
2.75 0.356 0.817 0.450%
5.00 0.154 0.710 0.529%
6.32 0.113 0.592 0.474%

Table 4.5: Results from testing select AR’s and their limits for δy

L
= 2 δz

L
.

AR
δy

L
δz
L Calculated γ εmax

1.00 0.643 0.322 0.839 0.454%
2.00 0.616 0.308 0.836 0.441%
2.50 0.572 0.286 0.832 0.417%
3.16 0.492 0.246 0.824 0.492%
5.00 0.274 0.137 0.792 0.513%

Fourth, a thin-sheet COPS subject to an angular velocity will have the chal-

lenge of semi-rigid attachments at the leg segment ends. This semi-rigidness of the

leg segment ends does not comply with the boundary condition of infinitely-rigid ends

assumed by the 3D pseudo-rigid-body model.

This particular 3D pseudo-rigid-body model may also be used for the analysis

of other compliant mechanisms which do comply with the boundary conditions. Even

though there is little applicability to analyzing COPS for rotational systems with this

3D PRBM, this research provides a starting point for the derivation of many more

3D PRBM’s, some of which may be more applicable to this type of problem in the

future.
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Table 4.6: Sensitivity to L for ty = 2, AR = 5, δ
L

= 0.15394, and γ = 0.710.

L γ εmax

70 0.713 0.490%
100 0.710 0.529%
130 0.706 0.537%
150 0.705 0.539%
200 0.704 0.543%
250 0.703 0.544%
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Figure 4.9: The geometric boundary conditions of the 3D pseudo-rigid-body model
and a COPS leg are incompatible.
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Figure 4.10: The distributed loading condition from an inertial load is different from
the point load condition of the 3D pseudo-rigid-body model.
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Chapter 5

Thin Sheet COPS - Orthogonal Loads

The objective of this chapter is to present the effects of semi-rigid ends on the

force output of a COPS in an orthogonal loading condition. The two main parameters

which may affect how the intermediate platform behaves are the transition radius, rleg,

and the intermediate platform width, wip. Both of these parameters may influence the

rigidity of the intermediate platform. A better understanding of how each parameter

affects the reaction force in an orthogonal loading condition may provide a foundation

for understanding how to predict the reaction force for a COPS subjected to inertial

loads.

Because the 3D pseudo-rigid-body model cannot be directly applied to the

analysis of COPS subject to rotation and because there are no other simple analysis

tools to use we turn to more complicated methods of analysis. Finite element analysis

will be used to better understand how the reaction force due to orthogonal loads is

effected by the design parameters. The finite element model setup will be discussed

followed by a study on the effects of two design parameters on semi-rigidity in the in-

termediate platform and then a more general study of the relationship and sensitivity

of the reaction force to each parameter.

5.1 FEA Model Setup

A parametric model of a COPS leg was created using ANSYS parametric

design language (APDL). Doing this allowed for quickly changing COPS configura-

tions within the specified model boundaries outlined in Chapter 3. For convenience
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Figure 5.1: (a) Static loading conditions (b) and the two parameters which influence
the semi-rigid effects.

Table 3.1 and Figure 3.1 describing model parameters are reproduced here. All deter-

ministic computer simulations of a COPS leg using FEA were accomplished with the

same parametric model.

All nodes on the free end (base) farthest from the center of rotation are con-

strained in all degrees of freedom. The nodes on the other free end (platform) are also

constrained to zero displacement in the x and y directions and zero rotation about x

and y, however it is allowed to rotate about the z axis. This end also has a point in the

center which is used for applying displacement loads in the z direction. It is from this

same point that the reaction force in the z direction is recorded.

The two element types investigated for the FEA model were SOLID186 and

SHELL181. ANSYS literature recommended 18x elements for nonlinear large deflec-

tion analysis. A comparison of the two elements was performed to check accuracy. Al-

though there was a large disparity, of approximately 35% between the stress levels for

the two different types of elements, the difference in force in the z direction was within

.26%. The run time difference between the solid and shell elements was significant

with the solid element model taking approximately two hours while the shell element
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Table 5.1: Baseline COPS nominal dimensions and ranges defining the design space.

Parameters Nominal (in) Range (in) Nominal (mm) Range (mm)

t 0.02 ±0.012 0.508 ±0.305
wleg 0.50 ±0.125 12.7 ±3.175
L 2.75 ±0.25 69.85 ±6.35

rleg 0.09375 ±0.03125 2.381 ±0.794
rplat 2.0 ±0.50 50.8 ±12.7

ζ 67.5◦ ±67.5◦ 3π
8

rad ±3π
8

rad
δz low → 3% of L high → 30% of L
ωz low → 0 rad

sec
high → 650 rad

sec

model took around 40 seconds. With the very minor discrepancy in resulting force be-

tween the two elements, the large gap in run time, and because stresses are not a major

focus of this thesis, shell elements were chosen over solid elements for all simulations.

When using SHELL181 elements there are a few recommendations by ANSYS.

First, degenerate elements are not recommended for non-linear analysis therefor the

element type control, or ETCONTROL, was turned to off. Second, the equation

predictor, or PRED, in the solution control panel was also turned off or set to 0

as recommended. Third, for analysis with a single thin layer of elements it was

recommended that full integration with incompatible modes, KEYOPT(3)=2, be

used for nonlinear problems involving large rotations and in-plane bending.

Mesh density for all COPS legs was driven by the leg width, wleg. The area

around the transition radii had a much denser mesh than the legs for accuracy. A

typical meshed leg can be seen in Figure 5.3

Appendix C.2 shows the parametric ANSYS script used for most simulations.

Only minor variations were made for some of the experiments in order to collect

different data. Matlab was used for its ability to automate ANSYS. Figure 5.4 shows

a schematic of how MatLab and ANSYS were set up to communicate with each other.

The heart of the communication is in the EVAL file, Appendix D.1, which was created
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Figure 5.2: Design parameters for experiments.

by Jon Wittwer and modified for this research. Matlab script files were created for

each simulation and can be found in Appendix D.

5.2 Analysis of rleg and wip Under Orthogonal Loads

For an orthogonal load situation not all design parameters influence the reac-

tion force. Leg angle, ζ, material density, ρ, and platform radius, rplat will not

significantly impact the force output in static load situations. For a full COPS,

Figure 5.3: Typical meshed COPS leg used in simulations.
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Figure 5.4: Communication between MatLab and ANSYS.

ζ and ρ will have no impact on the reaction force for orthogonal situations but rplat

may because of its contribution to semi-rigid effects. Because the base and platform

geometry have been truncated for these simulations these affects will be ignored.

The addition of both will cause a decrease in spring force similar to that caused by

the intermediate platform because of their semi-rigid nature. All other parameters will

have some effect on the spring force.

There is a good understanding of how leg thickness, leg width, leg length,

and modulus of elasticity affect the force and displacement through PRBM analysis

on a single leg segment even though PRBM boundary conditions are not entirely met.

The understanding now needed is how significant the transition radius, rleg, and the

intermediate platform width, wip, affect the reaction force for a single leg.

While holding spring thickness constant, rleg and δz were divided into 10 inter-

vals each. Refer to Figure 5.2. MatLab was used to create a design matrix as a simple

way of organizing the simulations. Each set of inputs was fed into ANSYS and the

results recorded back into MatLab for analysis. The results of rleg on the reaction force

can be seen in Figure 5.5. First it is important to note that the relationship between δz

and Fz is very linear for any given rleg. The force is inversely proportional to rleg. For
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Transition Radius: Effect on Reaction Force
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Figure 5.5: Relationship of rleg to force/deflection.

any given displacement of the nominal COPS there is an approximate 9% increase in

the reaction force, Fz from the largest radii to the smallest over the specified range.

The effects of the wip on the reaction force are shown in Figure 5.6. This

parameter proved to have a lesser effect on the force than rleg. The width of the in-

termediate platform for the nominal design was held equal to the width of the leg seg-

ments. To see if the semi-rigidity of the intermediate platform could be influenced by

wip, increments of 1/12th its width were added until it was 1.5 times wider than the leg

segment. Increasing the intermediate platform width by 50% produced a meager 1%

increase in reaction force. In reference to the inset in Figure 5.6 the increasing line den-

sity shows that as wip increases it will eventually have no effect on the reaction force.

Decreasing wip to less than wleg, which results are not shown in Figure 5.6, would re-

sult in a significant drop in the reaction force. There would be an increase in torsion in

the intermediate platform, allowing the leg segments to rotate more before they actually

start bending.

In summary of these two parameters, rleg should be held to the upper limit

of its range because the drop in reaction force with a larger value of rleg is not

that significant and there will be a reduction in the stress concentration around the
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Figure 5.6: Relationship of wip to deflection/force.

transition radius. For wip, if its value were less than wleg its structural integrity would

be compromised and increasing wip to greater than wleg has no significant effect on the

output force. Because of this it is recommended that wip be held constant to wleg.

5.3 Parameter Trends Under Orthogonal Loads

With the effects of these two design parameters better understood, we now shift

the focus of the rest of the chapter to understanding the relationships and sensitivities

of each of the individual design parameters to static loads. One way to show the

relationship each design parameter has to reaction force is to change one parameter

at a time over its respective range and compare the results with the nominal reaction

force. Figure 5.7 shows a spider graph representing the relationship each parameter

has to the reaction force over its respective range. The x-axis represents the range in

limits with the lower limit indicated by a negative one, the nominal by a zero, and the

upper limit indicated by a positive one.

Spring thickness has a cubic relationship to the force output. Modulus, width,

and displacement have a near proportional linear relationship to the output force
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while transition radius and leg length are inversely proportional. Leg segment length’s

relationship to the reaction force appears to be non-linear as well as inverse. Notice

that platform diameter and leg angle have no relationship to the reaction force while

ω = 0 and if density were included it would also have no effect on the reaction force.

A full factorial design was performed to understand the relative sensitivity the

reaction force has to each of the design parameters and their two-way interactions.

Each parameter was changed by 5% of its range, both above and below the nominal

dimension, in order to show the relative effect each had on the reaction force. The

results help us understand how a change in a design parameter will affect the reaction

force and its relative significance. Figure 5.8 shows the results of the sensitivity
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analysis. The reaction force is most sensitive to COPS thickness, then platform

displacement, etc. The proportional or inverse relationship can also be seen in the

sensitivity analysis as shown by the leg segment length. Interactions of significance

occur between leg segment dimensions and platform displacement.

In summary, there are many ways to change the reaction force for a COPS

subjected to orthogonal loads. For example, the reaction force can be increased

by either decreasing the leg length or increasing spring thickness. There are however

tradeoffs in using each approach. A decrease in leg length, would decrease the design

envelope and make it incompatible for stacking with the original design. Increasing

the thickness slightly would not create incompatibility with the original spring design

yet would achieve the same results in increasing the reaction force. Once a final
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design is settled on, COPS of varying thicknesses can be used to customize the spring

constant.
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Chapter 6

Lateral Stability & Stiffness

While Parise described stability as the resistance a COPS platform has to

moving outside its path or prescribed motion while subject to orthogonal loads, the

addition of angular velocity and inertial loads will affect the stability of the legs and

not so much the platform. If the lateral inertial loads on the legs are significant enough

to cause lateral buckling the COPS will fail. What design parameters influence lateral

buckling of the legs and what parameter settings will ensure a COPS design free from

this type of failure?

The objective of this chapter is to introduce the issues of lateral stability and

stiffness as they relate to COPS for rotational applications. The motivating factor for

this chapter is the inertial loads which a side leg design would see while subject to

angular velocities as shown in Figure 6.1. There may also be some concern for lateral

loads pushing or pulling on the platform of a rotating COPS. These loads may have a

constant direction but not constant in magnitude like the CVT application.

6.1 Lateral Stability in COPS Legs

A new definition of lateral stability would be the ability of a COPS to maintain

proper function and structural integrity when subjected to angular velocities. Lateral

stiffness on the other hand would be the ability of a COPS to resist lateral loads placed

on the platform. It is important to design for both of these to make sure the COPS

design will avoid buckling. By carefully choosing the parameters for a COPS design,

lateral buckling in the legs may be avoided. This issue of buckling will be more critical

for applications involving high rpm such as would occur using a COPS in a CVT.

67



F
z

wz

F
a F

L
F
i

F
z

F
z

F
L

(a) (b)

Figure 6.1: (a) Inertial loading conditions (b) and loads associated with lateral
buckling.

So the question then is what design features, parameters and their respective

settings will cause instability in a COPS design? Many design features have been qual-

itatively identified in previous chapters such as even leg designs, multiple intermediate

platforms and nested springs. The individual parameters which are most likely to con-

tribute to COPS instability are very thin springs, long leg lengths, and large leg angles,

all of which require the presence of a critical angular velocity. Of particular interest

is the interaction or relationship between leg angle, spring thickness, and angular

velocity.

The same model of a single COPS leg discussed previously will be used to

analyze the design space to find which parameter settings are most likely to contribute

to COPS instability. The interactions of most concern are between spring thickness,

leg length, leg angle, displacement, and angular velocity. Many of the findings are

presented in terms of ω2 because of the relationship this term has to inertial loads.

Leg angle will contribute heavily to COPS stability. When the leg is at an angle

of 0◦, stress stiffening will be at its peak and will actually enhance stability. For leg

angles between 60◦ and 135◦, the lateral loads on spring legs will be at their peak

dependent on the dimensions of the platform radius and leg length. At these angles the
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Figure 6.2: Deformation characteristic in small t & δ with large ζ and ω.

lateral inertial loads will pull the leg segments away from the platform causing them to

buckle out of plane.

6.2 Two Modes of Lateral Buckling in COPS Legs

Two modes of lateral buckling were identified in a preliminary analysis. Mode I

occurs when there is a small displacement in the platform, leg angles are high, and the

spring is subjected to large angular velocities. As the leg spins, a lateral inertial load

on the leg pulls the intermediate platform out of plane and causes the leg segments to

buckle. This type of buckling occurs only when displacements are small. An FEA

model depicting this type of buckling mode can be seen in Figure 6.2.

Mode II occurs when there is a large displacement and the lateral inertial load

is sufficient enough to begin pulling the intermediate platform away from the center
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Figure 6.3: Deformation characteristic in medium to large t & δ for large ω and ζ.

of the COPS. As this motion occurs a portion of both leg segments begins to buckle as

the leading edges are forced away from the the intermediate platform plane as shown

in Figure 6.3. This mode occurs under the conditions of large displacements, large leg

angles, and high angular velocities.

Both Modes I & II were more dependent on the platform displacement, δz, than

on spring thickness. Under transient loads like in a CVT, the occurrence of Mode I

would require a small platform displacement with a high angular velocity. This is not

that likely because platform displacement be larger for high angular velocities and

small for lower angular velocities. Mode II is more likely to occur in an application like

the CVT because the COPS platform should be fully displaced by the time the CVT

reaches peak rpm.

As a check on the FEA model, a physical test involving an actual COPS leg

close to the nominal design was used to recreate both failure modes. The test leg
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Figure 6.4: (a) Mode I and (b) Mode II buckling experiments.

was constrained to a small displacement and a simulated lateral load was placed near

the intermediate platform using a small cable. The test for small displacements proved

that Mode I buckling does occur if the lateral load is significant enough. The same test

was performed for larger displacements and the results were also positive in confirming

the buckling mode. Figure 6.4 shows the COPS leg in Mode I buckling (a) and Mode II

buckling (b). Both modes match those found through FEA analysis.

6.3 Lateral Buckling Metrics for COPS Legs

There are two possible metrics for quantifying lateral buckling. The first comes

from monitoring the spring geometry enabling a pinpointing of when buckling will

occur. Because displacements are used to supply the load, the platform distance

from the base is known. If Mode I occurs then the maximum displacement will occur

in the intermediate platform which can then be compared to the input displacement to

check for buckling. Likewise, Mode II can be monitored by tracking the maximum

displacement along the leg segments and again comparing it to the input displacement.
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Figure 6.5: Metric monitoring the distance between the base (1) and either the input
displacement (2) or the maximum displacement (3) for (a) Mode I and (b) Mode II.

By finding a predetermined percent change between the input and maximum displace-

ments, buckling failure can be pinpointed. An illustration of this can be seen for both

modes in Figure 6.5. The input displacement is the distance from the base (1) to the

platform (2) and the maximum displacement is from the base (1) to some extremity (3)

of the geometry caused by lateral buckling. The only difference between the two Modes

is that for Mode I the buckling will occur in the intermediate platform, which is located at

half the platform displacement. Mode II buckling, on the other hand, will occur on the lead-

ing edges of the leg segments, one of which is located at the displacement of the platform.

This means that for Mode I half the input displacement (2) should be compared with the

maximum displacement (3) to show when it buckles.

The second possible metric to identify lateral buckling is the change that occurs

in reaction force as the angular velocity is increased. Because displacement is used as

the input for loading the platform, it will be held at a constant state while inertial

loads are applied. Under normal operating conditions, when the loads are removed

the spring should have a positive force which will return the platform to its undeflected

state and its structural integrity will be maintained. If there is any type of buckling

present in the spring, the buckling forces will cause the legs to move apart opposing the

reaction force because of the fixed displacement. The force should have a positive
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rate of change with the increase of inertial loads because of stress stiffening. If the rate

of change in reaction force is equal to zero then the lateral inertial loads have induced a

negative reaction force in the leg equal in magnitude to the positive reaction force from or-

thogonal loads. It is at this point that the COPS leg will buckle laterally.

Several cases of each buckling mode, using a thick and thin COPS leg, were

simulated and the % change in displacement and the reaction force were recorded as

the angular velocity was increased. In Figure 6.6 one can see that for both buckling

modes the reaction force does have a local maximum. For the four examples in

Figure 6.6 in the two lower graphs, lateral buckling does not occur at the same %

change in reaction force. The % change in displacement metric is not as clear cut

as the force metric because a global critical % change in displacement would need

to be established in order for it to be useful. Although these two methods do not agree

exactly on the critical angular velocity, ω2
cr, every time, they are in the ballpark with

each other.

Using the reaction force to identify lateral buckling was chosen because it

avoids establishing a subjective criteria for lateral buckling. The point at which

lateral loads begin to overcome orthogonal loads is a very distinct point and is unique

to each spring geometry.

6.4 Lateral Stability Boundaries for Nominal COPS Model

The following simulations are an exploration of the design space involving

spring thickness, leg angle, displacements, angular velocities, and leg lengths. An ini-

tial study was set up to investigate 20 spring thicknesses, 20 angular velocities, and 10

displacements over each parameters design space. This simulation was run for ζ = 0,

45, 67.5, 90, and 135 degrees. Each simulation required 4000 individual runs which

were set up in a design matrix inside of MatLab. Each thickness and displacement

had a respective curve created by changing the angular velocity. A reaction force curve

for a given spring thickness and displacement was produced by changing the angular

velocity. A 5th order polynomial was fit to each curve, then by taking the derivative,
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Figure 6.6: The relationships buckling has to displacement and reaction force.

setting it equal to zero and solving for the roots, an ω2
cr could then be characterized for

each combination of δz and t at a specific leg angle, ζ.

For ζ = 0◦ there was no lateral buckling for any combinations of δz and t. This

result was expected as there is no lateral inertial load on a leg at ζ = 0. Each of the

other four angles showed some type of buckling occurring mostly in thinner springs.

Figure 6.7 shows the results of the other four angles tested. After each simulation the

data was examined. Some of the data for very thin springs, large angular velocities,

large leg angles, and small displacements resulted in ANSYS having some problems

with convergence. One possible reason for this is the proximity the platform has to

the change point or in-line position of the spring (very small displacements) and the
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Figure 6.7: ω2
cr for various δz and spring thicknesses.

combination of the other three variables. All data that showed signs of convergence

problems has been removed from the results.

The data in Figure 6.7 was useful for understanding the relationship between

spring thickness and displacement. A preliminary graph with lines of stability was

created by taking the thinnest spring which did not cross to the right of a given

ω2. Three ω2 were used to create the lateral stability lines shown in Figure 6.8. The

coarseness of the resulting graph inhibited the ability to see what was happening for

thinner springs between 0 and 45 degrees.
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Returning to the data in Figure 6.7 we can see that as a spring’s displacement

increases so does its ω2
cr for buckling. With the knowledge that a spring will buckle

first at a smaller displacement, displacement can then be fixed in order to investigate

the effects of other design variables. The boundary for displacement was chosen to

be at δz = 6 mm because it seemed to be the threshold for which the model is well be-

haved. A new study was completed which involved studying the relationship between

leg angle and spring thickness with the new fixed displacement. This study involved

the entire range of ζ and ω but narrowed the range for t to an upper limit of 0.508 mm

or the nominal design. Each parameter was divided into 20 intervals and combinations

of each were simulated for a total of 8000 runs. The same technique for finding a criti-

cal angular velocity, ω2
cr, from a reaction force curve generated by changing ω was used for

each unique set of a ζ and t. Leg angle and spring thickness were plotted against each other

with ω2
cr as contour levels.

76



50000100000

150000

20
00

00

250000

30
00

00

35
00

00

40
00

00

Nominal COPS

Leg Angle, ζ (deg)

S
pr

in
g 

T
hi

ck
ne

ss
, t

 (
m

m
)

0 20 40 60 80 100 120 140

0.25

0.3

0.35

0.4

0.45

0.5

50000100000
150000

20
00

00

25
00

00

300000

35
00

00

40
00

00

L = 64.85 mm

Leg Angle, ζ (deg)

S
pr

in
g 

T
hi

ck
ne

ss
, t

 (
m

m
)

0 20 40 60 80 100 120 140

0.25

0.3

0.35

0.4

0.45

0.5

(a) (b)

50000

100000

15
00

00

20
00

00
25

00
00

30
00

00

35
00

00

40
00

00

L = 74.85 mm

Leg Angle, ζ (deg)

S
pr

in
g 

T
hi

ck
ne

ss
, t

 (
m

m
)

0 20 40 60 80 100 120

0.25

0.3

0.35

0.4

0.45

0.5

(c)

Figure 6.9: ω2
cr contours for lateral buckling (a) of the nominal case leg (b) of a slightly

shorter leg and (c) of a slightly longer leg.

Figure 6.9 (a) is a contour plot of the nominal COPS design with the exception

of the variables being changed. It is in good agreement with the curves shown in Fig-

ure 6.8 but in finer resolution. Note that there is a specific leg angle in which the spring

thickness is no longer a factor in lateral buckling. To give some idea of how these

curves might shift with a parameter change, leg length, L, was changed in both di-

rections. Figure 6.9 (b) shows lateral buckling contours for a COPS leg with a slightly

shorter length while (c) shows lateral buckling contours for a COPS leg with a slightly
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Figure 6.10: ω2
cr contours for lateral buckling (a) of the nominal with a narrower leg

and (b) of a wider leg.

longer length. Note the lower left corner of each of the three graphs. For all three leg

lengths there was some instability in the data for very thin springs with large leg angles

signifying locations in the design space to be avoided. Also, one can see that the longer

a leg is the easier it will be to buckle.

Two more sets of simulations involving a change in the leg width were per-

formed. Figure 6.10 shows the ω2
cr contours for (a) a slightly narrower leg and (b)

a slightly wider leg. As the leg segment width is decreased the leg will buckle at a lower

ω2
cr and as it is increased the ω2

cr will increase.

For an example take the location where ζ = 80◦ and t = 0.35 mm. For the

nominal design ω2
cr ≈ 250, 000(rad/sec)2. By changing the length of the COPS leg by

5 mm in either direction, ω2
cr changes by approximately 50, 000 (rad/sec)2.

6.5 Conclusions on Lateral Stability

Although much of what has been done in this chapter is for a specific COPS

design, it does give an understanding of how design parameters affect lateral stability

of COPS legs. A number of inferences can be drawn from this research on lateral
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stability. First it is possible to create lateral buckling curves for individual COPS

geometry based on spring thickness, angular velocity, and leg angle. Creating prelim-

inary design graphs such as the ones in Figure 6.9 will help a designer determine which

areas in the design space to avoid.

It is hard to say exactly how the curves in Figure 6.9 would shift with a change

in each of the other design parameters not already involved. Parameters which would

be interesting to research with regards to lateral buckling include the platform radius,

material density and the leg width.

Leg length has an inverse relationship to lateral buckling. As the leg length

is decreased the ω2
cr is increased and vice versa. This is because the mass of the leg will

increase as well as the distance of the mass from the center of rotation. Both will

increase the lateral inertial loads on the spring leg.

One of the most profound conclusions drawn from this chapter is the fact

that the leg angle, ζ, has the most significant influence on the lateral stability of a

COPS. The five graphs in Figures 6.9 and 6.10 show that for that particular COPS

design there is no chance of lateral buckling for leg angles of approximately 20◦ and

lower independent of spring thickness. If the design is to avoid all possibilities of

lateral buckling then the COPS design should have a very small leg angle. This same

approach could be used to understand safe design space for other COPS designs.

Two things should be considered when doing future research on this subject.

First, consider the effects angular acceleration and deceleration may have on the

spring. The rate of change in angular velocity may have a more significant impact on

lateral stability than angular velocity alone. Second, the results of this simulation

will change with the addition of base and platform geometry. The addition of both

will tend to increase flexibility which will decrease stability. For the given spring

geometry analyzed, base and platform geometry will increase the effective length of

the leg segments and a similar trend to that seen in Figure 6.9 would possibly result.

There are a few things which can be done to increase lateral stability of COPS

legs. The smaller the ζ and the thicker the COPS the less likely it is to buckle laterally.

Shortening the leg segments as much as possible and keeping the platform radius to a
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minimum will also increase lateral stability. Lateral stability may also be enhanced by

stacking springs together. Placing thicker springs on the outside faces of a COPS stack

may keep thinner springs in the middle from buckling laterally.

Lateral stability will be crucial to the proper operation of a rotating COPS. For

this purpose it may be wise to test the design space for lateral buckling before moving

on to the finer details. Doing this first would put the designer in a safe design space as

far as lateral buckling is concerned. This refined design space could be refined further

to eliminate high stresses and fatigue.

One more issue which has not been addressed is the overall lateral stiffness

of a COPS design. Thoughts on testing this are to create a parametric model of a

COPS and put a lateral displacement load on the platform at various angles through

120 degrees (for a Tri leg design) and record the reaction force opposing the lateral

displacement. In this way both the amplitude and the mean of this reaction force

could be used to categorize the lateral stiffness of COPS with various leg angles,

thicknesses, etc. Doing this would show which combinations of parameters produce

the stiffest COPS design. For the drive coupler and possibly the CVT mentioned in

Section 3.3, this would be a necessary step to make sure the legs would not buckle

under a load placed on the platform.
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Chapter 7

Thin Sheet COPS - Axial Inertial Loads

The primary motivation for this chapter is to present the effects that stress

stiffening has on the reaction force in a COPS subjected to inertial loads. The main

advantage of stress stiffening is that it increases the reaction force of a COPS. This

means that a COPS may be thinner if subjected to angular velocities and yet still

provide an adequate restoring force. The implications of this would lead to lighter and

more compact designs not only in COPS but also the mechanisms that utilize them.

With regard to the CVT application, not only could a thin sheet COPS provide

superior tunability but also a reduced overall weight and space, and an enhanced

reaction force through stress stiffening. Figure 7.1 shows the axial component of the

inertial loads, Fa, which causes stress stiffening.

The relationship and sensitivity of the reaction force to each of the design

parameters of a COPS subjected to inertial loads will first be discussed followed by

an investigation of stress stiffening.

7.1 Parameter Trends Under Combined Loads

The same model discussed in Chapter 3 is used for all simulations in this

Chapter. The last Chapter took an in depth look at lateral buckling caused mainly

by the lateral inertial loads, FL. The loads of interest to us in this Chapter are axial in-

ertial loads, Fa. Under combined loads, what relationship does each design parameter

have to the reaction force? How sensitive, relative to each other, is the reaction force

to each of these design parameters and are there any important interactions a designer
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Figure 7.1: (a) Inertial loading conditions (b) and loads associated with stress
stiffening.

must be aware of when designing COPS for rotational applications? How does stress

stiffening affect the spring reaction force?

Figure 7.2 is a spider plot much like the one in Figure 5.7 but shows the

relationship each parameter has to the reaction force with the addition of inertial

loads. The nominal design, located at the center of the plot shows the reaction

force at that point. All other points on the plot show the reaction force as a result of

changing a particular parameter over its range. Spring thickness continues to have the

greatest impact on the reaction force.

Parameters found in both the orthogonal and combined loading spider plots

maintain their relationships to the reaction force with the exception of leg angle, ζ,

density, ρ, and platform radius, rplat.

The relationship that leg angle, ζ, has to the reaction force is dependent on

the presence of an angular velocity, ω. The spider plot covers the range from 0◦ to 135◦

and has an inverse ”s-shape” relationship with the reaction force. As ζ gets larger the

axial component of the inertial load decreases and the stress stiffening effects drop off.

The platform radius, rplat, has a positive relationship with the reaction force although

it is much more subtle. As it increases so does the reaction force slightly. This is

because mass is being moved farther away from the center of rotation which increases

82



−1 −0.5 0 0.5 1
2

3

4

5

6

7

8

9

10
Parameters: Rotational Trends

F
or

ce
 (

N
)

Normalized Range for Each Parameter

t
w

leg

L
r
plat

ζ
r
leg

δ
z

ω
E
ρ
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its acceleration as it rotates. Density, ρ, also has a positive relationship to the reaction

force. An increase in density, increases the mass of the leg upon which the acceleration

acts.

Another sensitivity analysis was done with the inclusion of all the design pa-

rameters. Parameter settings for the full factorial design study were small enough

that the assumption of linearity would hold true, again set to 5% of each parameters

range. Material properties were changed only to show the relationships and sensitiv-

ities each has on the reaction force. All other simulations were done using spring steel

properties. Figure 7.3 shows similar results to those found in the orthogonal load case

with the exception that there are now many more parameters which are significant
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and many more significant interactions. The reaction force is still the most sensitive

to thickness, width, the thickness-width interaction, displacement, and now angular

velocity.

Because there was some lateral buckling between smaller springs and high

angular velocities in the last chapter it was necessary to make sure that any studies

in this chapter were not influenced by lateral buckling. For this reason all springs

under t = 0.5 mm are not included in the remainder of the studies involving inertial

loads. The previous simulations are ok because the nominal spring was t = 0.508 mm.

7.2 Stress Stiffening Analysis of Nominal COPS

In order to better understand stress stiffening, a simulation involving leg angle,

ζ, angular velocity, ωz, and displacement, δz was performed. Leg angle was divided
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Figure 7.4: Reaction force curves over range of ω2 for several different leg angles. Each
contour line in a given graph is a different platform displacement.

into 12 intervals over its range while the other two were divided into 20 intervals over

their ranges and all other parameters were held at their nominal values. A set of 4800

simulations was run and analyzed. Each set of simulations required approximately

three days to run.

First we look at the reaction force and its relationship to ω2 for various dis-

placements. Figure 7.4 shows that when ζ = 0◦ the relationship between the reaction

force and ω2 is fairly linear. Looking at a an angle of ζ = 98◦ the relationship is no

longer linear. As ζ increases, the axial component of the inertial loads decreases and

likewise the effects of stress stiffening decrease.
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Figure 7.5: Maximum displacement curve for each of the 12 studied leg angles.

Figure 7.5 is a compilation of curves for each leg angle, ζ, at the largest

displacement, δz. Doing this shows how the relationship is linear for small angles

and as ζ gets larger the reaction force decreases along with the decrease of the axial

component of the inertial loads. Also note that they all converge to the orthogonal

load condition as would all curves for a given displacement.

Note that the contours for each leg angle are similar in shape and that the very

left data point for each contour is at ω2 = 0◦ representing the orthogonal load condi-

tion. This point may be used for characterizing the contribution of stress stiffening by

the equation

%Increase In Fz = 100 · Fω2 − F(ω2=0)

F(ω2=0)

(7.1)
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Figure 7.6: % increase in force over orthogonal load is independent of displacement.

By choosing an ω2 and using Equation 7.1 for each of the displacement contours

for a given angle, an average % increase in the reaction force can be determined. An

example of this can be seen in Figure ?? for ζ = 0. Note that for the largest ω2 the

average increase in reaction force is around 220%. This shows that the % increase in

reaction force due to stress stiffening is independent of the displacement for a given ω2

and ζ. Doing this over the range for each shows how stress stiffening’s contribution to

reaction force is affected by the leg angle.

Use the legend in Figure 7.7 for interpreting the contours found in Figures 7.8

to 7.12.

Figure 7.8 (a) shows the average % increase in the reaction force due to stress

stiffening for the nominal COPS. The % increase in force due to stress stiffening

is relatively independent of displacement and can be averaged for a given leg angle

and angular velocity. All points in the remainder of the graphs are average values.
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Figure 7.8: The % increase in reaction force over orthogonal loading between ω2 and
leg angle, ζ for (a) the nominal COPS and (b) for a thicker COPS.

The % increase is greatest for small values of ζ and larger ω2 with the full effects of

stress stiffening occurring at ζ = 0◦. Figure 7.8 can be useful in deciding what the

right balance is between keeping a compact design and the amount of stress stiffening a

COPS design utilizes.

Figure 7.8 (b) shows the average % increase in the reaction force for a slightly

thicker COPS leg. A noticeable drop in the % increase can be seen. This is due to the

sensitive nature the reaction force has to the spring thickness. A small increase in

COPS thickness has a greater affect on increasing the orthogonal reaction force than it

has on the contribution to reaction force made by an increase in stress stiffening due to

a larger leg mass.
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Figure 7.9: The % increase in reaction force in (a) a narrower leg and (b) a wider leg.

Figure 7.9 results from (a) increasing the leg width and (b) decreasing the leg

width. It is interesting to note that while the magnitude in reaction force changes,

the % increase in force over the static load seems to be independent of leg width. One

plausible explanation for this is that the intermediate platform width, wip, and the

intermediate platform radii, rip, were constrained to change with wleg. If wip were

increased alone the leg would see an increase in stress stiffening without an increase in

reaction force due to the orthogonal load.

Figure 7.10 (a) shows the effects of stress stiffening on the reaction force by

decreasing the platform radius, rplat. Decreasing the platform radius has opposite

effects for small and large leg angles. For small leg angles the effect on the % increase

in stress stiffening over the nominal COPS design is decreased, but when leg angles are

large it actually has a positive impact on stress stiffening. If the semi-rigid effects

of the platform were present in this study, shortening rplat would also increase the

orthogonal reaction force and further decrease the contribution of stress stiffening to

the reaction force.
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Figure 7.10: Depending on the leg angle, ζ, (a) decreasing and (b) increasing rplat have
opposite effects on the % increase in reaction force due to stress stiffening.

Figure 7.10 (b) shows the effects of stress stiffening on the reaction force by

increasing the platform radius, rplat.a Increasing the platform radius increases the

stress stiffening effects for small leg angles but for large leg angles it decreases stress

stiffening while increasing the possibility of lateral buckling. This can be seen in

Figure 7.11 where contours of greater ω2 appear to have a % decrease in reaction

force over the orthogonal load case for larger leg angles. Note that the two largest ω2

contours dip below some of the others. This is most likely caused by lateral buckling of

the legs.

Figure 7.12 shows the effect of changing the leg length on the contribution

of stress stiffening to the reaction force. A shorter leg length, shown in (a), results

in a decrease in stress stiffening for smaller leg angles. A longer leg length results

in an increase in stress stiffening. Neither decreasing or increasing the leg length

significantly affects stress stiffening for larger leg angles.
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Figure 7.11: Decreasing rplat, decreases the % increase in reaction force over the
nominal COPS design.

7.3 Conclusions on Stress Stiffening

There are four important conclusions from the research in this chapter. First,

the orthogonal load for any COPS can be used to quantify the % increase in reaction

force due to stress stiffening. Second, the % increase in reaction force due to stress

stiffening for a particular design is relatively independent of the platform displace-

ment. This allows for a more concise way of interpreting the effect leg angle has on the

reaction force of a COPS subject to an angular velocity. Third, the % increase in re-

action force is greatest when leg angles are small and is fully utilized when ζ = 0. The

opposite is true, that larger leg angles are not as desirable if the effect of stress stiffen-

ing is to be utilized. Fourth, the reaction force for a COPS can be more than tripled by

stress stiffening depending on the COPS configuration. This is an attractive charac-

teristic of the radial leg design that may be advantageously used.
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Figure 7.12: Depending on the leg angle, ζ, increasing rplat has different effects on the
% increase in reaction force due to stress stiffening.
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Chapter 8

COPS Application Design Steps and Important Tradeoffs

8.1 COPS Design Steps

The following design steps are merely a suggestion for approaching the design

of COPS. These design steps are intended to be useful for the design of both orthogo-

nal and inertial loaded COPS so not all steps may apply to any one application.

1. Understand Design Constraints

(a) Physical constraints - space, weight, and shape

(b) Loading constraints - forces, deflections, angular velocities and accelera-

tions

(c) Material constraints - types, stresses, and characteristics

(d) Miscellaneous constraints - adverse conditions such as corrosion, applica-

tion, and stackability

2. Investigate Initial Design Space

(a) Choose number of legs

(b) Choose leg segment parameters of t, w, and L based on design constraints

(c) Use fixed-guided PRBM to analyze forces and stresses

(d) Remember that these will change due to:

i. Semi-rigid effects of base, platform and intermediate platform

ii. ω and α if COPS are subject to rotation
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3. Create CAD Models

(a) Watch leg angle, number of legs, plat radius, etc. for interference

(b) Consider manufacturing issues (i.e. complexity and intricate detail will be

more expensive)

(c) Choose other geometric parameters to fit within the design constraints

4. Finite Element Analysis

(a) Choose material

(b) Check for lateral buckling in legs for rotational applications

(c) Check stress levels especially around tight radii

(d) Fine tune the model

(e) Alter the reaction force for the final design by changing thickness, thus

maintaining stackability

5. Testing

(a) Validate the design

(b) Simulate run environment to test for fatigue, stress relaxation etc.

8.2 Design Tradeoffs for COPS

When designing COPS there are a number of design tradeoff decisions to make.

The reaction force, stresses, stress stiffening effects, lateral buckling, and a number

of other important elements to design can be influenced in multiple ways. Table 8.1

is useful for understanding how to influence design elements through design parameter

changes. An ↑, ↓, or l indicates what would happen to the element in the left column if

the parameter is increased. The converse would happen if the parameter were to be

decreased. A − or ? indicates that it is either not applicable or it is not certain how it

would affect the design element. Those with double arrows indicate that the design

element change may be dependent on other parameter settings.
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Table 8.1: Parameter influence on design elements.

t wleg L wip rleg rplat ζ δz ωz E ρ

Fstatic ↑ ↑ ↓ ↑ ↓ ↓ − ↑ − ↑ −
σstatic ↑ ↑ ↓ ↑ ↓ − − ↑ − ↑ −
Fdynamic ↑ ↑ ↓ − ↓ ↑ ↓ ↑ ↑ ↑ ↑
σdynamic ↑ ↑ ↓ − ↓ ↑ l ↑ ↑ ↑ ↑
Leg Stability l l l l l l ↓ ↓ ↑ l l
Stress Stiffening ↓ − l ↑ ↑ l ↓ − ↑ ? ↑
Semi-Rigid Ends ↓ ↑ ↓ ↓ ↑ ↑ − − ? ↓ ?
Compactness − ↓ ↓ ↓ ↓ ↓ ↑ − − − −

Among the many design tradeoffs, the one parameter in this research that

seems to be at the heart of most of them is the leg angle, ζ. A radial design is the

best candidate for minimizing the possibility of lateral buckling and maximizing the

effects of stress stiffening. However, the design tradeoff is lack of compactness which,

for the CVT application, would be important. It would be unattractive and dangerous

to have thin objects protruding out of a high rpm rotating mass. At the same time

though, a radial leg design may be a rather attractive option if the CVT were to be

redesigned specifically for accommodating COPS.
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Chapter 9

Conclusions & Recommendations

9.1 Conclusions and Contributions

The purpose of this thesis has been to investigate the behavior of compliant

ortho-planar springs subjected to complex loads, specifically their behavior for lateral

stability, the effects of stress stiffening, and the effects of inertial loading for potential

use in a CVT. While investigating COPS, the possibilities of a new type of pseudo-

rigid-body model for 3-dimensional applications was also investigated. A parametric

FEA model was developed for understanding COPS behavior under different load

situations. This same approach was used for investigating the possibility of a 3D

PRBM.

Qualitative Analysis

General observations and issues related to COPS designs were discussed in

Chapter 3. The design space was narrowed to a spring steel Tri 1− 1 design because

it has a good combination of stability, compactness, efficient use of space, and is less

costly to manufacture than other COPS designs. Each parameter was given a specific

range most likely to be used in a CVT application. Four load conditions a COPS in

a CVT might see were identified. Other load conditions for COPS, some of which may

be promising, were also identified.

A brief analysis of stresses and stress concentrations was also discussed. Stresses

were found to be highest in and around the transition geometry in the intermediate
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platform for static loads and at the base and platform for high inertial loads. Geo-

metric modifications to the transition radii were found to have little to no effect on

stress levels. It was found that the most effective way to bring down the stress in the

transition geometry was to increase the transition radius.

For non-uniform thick COPS under orhtogonal loads it is possible to use the

fixed-guided PRBM with some degree of accuracy. For thin sheet COPS however,

there is a need to develop analysis tools which would allow a designer to quickly

iterate COPS configurations. The 3D PRBM was an investigation of such a tool.

3D Pseudo-Rigid-Body Model

The research in Chapter 4 proved that a rectangular cross-section beam end

does follow a near-spherical path for the specified load conditions when deflected in 3-

dimensions. The key parameter in the 3D PRBM is the characteristic length factor, γ,

which is dependent upon the deflection limits, δy and δz, and the aspect ratio, AR, of

the rectangular beam cross-section. For a given AR, a γ was recommended along with

the deflection limits for a maximum x position prediction error of approximately 0.5%.

When finding a γ for a 3D PRBM of a rectangular beam with an aspect ratio,

AR, there are multiple solutions for finding nondimensional limits with a specific

maximum % error in deflection. Limits can be found using optimization by choosing

a desired % error in deflection and a ratio of the limits (i.e. δy

L
= 2 δz

L
) as objective

functions. Once the limits are established, the resulting γ can be used to predict

deflections within the approximate maximum % error.

Force prediction at the deflected beam end proved to be more complicated than

predicting the path of the beam end. The complications arose because the reaction

of a rectangular beam deflected in two directions of differing flexural rigidity was to

twist. This twisting brought the beam to an equilibrium state but also complicated

predicting the forces through use of a 3D PRBM.

Even though force prediction is not yet possible, it was proved that path

prediction of a rectangular cross-sectioned beam end, while under the specified load

conditions, is possible with the use of this 3D PRBM.
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Orthogonal Loaded Thin Sheet COPS

The reaction force for orthogonal load conditions was researched in Chapter 5.

The two design parameters, rleg, and wip, were studied and found to have very little

effect on the reaction force within their specified ranges. It is recommended that future

studies consider holding them constant in order to better understand the more im-

portant design parameters. Parameters of more significance to the reaction force from

static loads are leg segment dimensions and platform displacement. Relationships of

parameters to the reaction force were qualitatively characterized.

Lateral Stability

The effects that inertial loads had on COPS stability were studied in Chapter 6.

Using FEA on COPS was not feasible for certain cases inside the design space. When

a COPS is close to its in-line position, meaning the displacements of the platform

are very small, the COPS is subjected to a high angular velocity, and its leg angles

are relatively large, ANSYS has convergence problems. This problem was evident in

Figure 6.9 where the lower right portion of the design space was not well behaved.

For COPS stability in the legs, two modes of lateral buckling were identified.

Mode I occurred while there were small platform displacements and Mode II occurred

for moderate to large platform displacements. For both Modes to occur, a design must

have larger leg angles and large inertial loads. Lateral buckling was more likely to

occur in thinner legs and was highly dependent on ω2. It was found that lateral

buckling in the legs could be pinpointed, as to when it occurs, by monitoring change

in the reaction force. This approach was used in several studies on lateral buckling.

One study involved looking at displacement, leg angle, and angular velocity.

From this it was evident that for a given set of design parameters there is a specific

critical angular velocity, ω2
cr, at which point the leg will buckle. As displacement

increased, so did ω2
cr. So for any given COPS design, lateral buckling will occur at

smaller displacements before it will at larger ones. Knowing this, the displacement

could be fixed while the effects of other variables on leg stability were observed.

Critical lateral buckling curves were created for spring thickness and leg angle. In
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reference to Figure 6.9 the design area to the right of the 400, 000( rad
s

)2 is safe design

space for that particular COPS design. It is possible to understand thresholds for

lateral buckling by creating such graphs for specific designs.

Stress Stiffening

Stress stiffening was the topic of Chapter 7. Stress stiffening has often been

looked at as a less desirable phenomena, however, for a COPS it can be positive when

the objective is to have greater spring force. The effects of stress stiffening for the

nominal COPS design had the potential to increase the orthogonal reaction force by as

much as 220%. Such increases in stress stiffening may allow for thinner and lighter

COPS designs. The effects of stress stiffening were maximum for small leg angles

and minimum with larger leg angles due to a decrease in magnitude of the axial force

component of the inertial loads. There are also many design tradeoffs between stress

stiffening and the leg angle. While the full effects of stress stiffening may be utilized

for ζ = 0, the radial leg design is not as compact as a side leg design. Radial leg designs

may require that the mechanism have a larger profile to enclose it.

The % increase in reaction force for a given leg angle and angular velocity was

found to be relatively independent of the displacement. Finding other relationships

and experimenting with non-dimensional parameters may lead to useful design tools.

Implications for CVT Application

Although many of the findings are generalizations and to date there is a lack of

useful design tools for designing a specific COPS, much of the work contained herein is

useful for laying the foundation for others to follow. This research provides a step

closer to solving the design of a COPS for a CVT application.

Results of this research clearly lean toward a redesign of the CVT system

to accommodate a radial leg design. A radial COPS configuration would be a great

candidate for a CVT because of the avoidance of lateral buckling and the advantages of

stress stiffening.
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Even though we are closer to designing a COPS adequate for a CVT ap-

plication, there are still some key issues which must be investigated and better

understood. Stresses comprise a great deal of concern because of their complexity

in rotating COPS. Stresses can currently be understood only through finite element

analysis and full spring models may take a great deal of time and computing power to

better understand. Fatigue is another issue which may only be better understood after

studying actual COPS prototypes subjected to physical testing.

We are several steps closer to solving this but there is yet much to be researched

and understood.

9.2 Recommendations for Further Research

3D PRBM Force Prediction

Force prediction for 3D PRBM’s will be possible with a better understanding of

how the flexural rigidity in the two directions relates to the induced torsion in the

beam. Also an understanding of how much the beam end rotates and what the true

beam end angles are relative to its undeflected state may also be necessary and helpful

in predicting the forces.

Applicability of 3D PRBM to COPS Design

In order to directly apply 3D PRBM’s to COPS for rotational applications, four

boundary conditions must be satisfied. First, orthogonal loads induce a fixed-guided

motion in the leg segments while lateral inertial loads induce bending like that of a

cantilever beam. The current 3D PRBM only accounts for a cantilever beam bending

about two orthogonal axes. Second, a COPS leg acts as two parallel beams rigidly

fixed at one end with motion parallel to the plane of fabrication. Concessions for this

odd boundary condition must be made. Third, the complex loads acting on a rotating

COPS leg segment are a mix of point loading (displacement loads) and distributed

loading (lateral inertial loads). Currently there does not exist even a 2D PRBM con-

sidering a distributed loading condition. Finally, the effects of stress stiffening would
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need to be accounted for in a 3D PRBM because of the presence of an axial component from

the inertial loads.

Semi-Rigid Effects and the Fixed-Guided PRBM

The semi-rigid effects in thin sheet COPS under orthogonal loading presents

an opportunity for research. Several attempts to create an empirical model of the

outlined COPS design space yielded some encouragement. The semi-rigid effects

may be quantified by using an angle associated with the torsion of the intermediate

platform or by developing an effective leg length. Both methods allowed for accurate

orthogonal force prediction within 10%. With more research it may be possible to

derive a design equation which more accurately predicts the force for orthogonal load

situations.

Stress Concentration Table

One other opportunity for research is the unique stress concentration cre-

ated by the eccentric loading of the 1− 1 leg design. A literature review revealed no

documentation concerning this type of stress concentration. This stress concentration

is different from all others in that loading does not occur in the same plane as the stress

concentration but orthogonal to it. In other stress concentrations, the thickness of

the work piece is nondimensionalized or not given whereas with a COPS stress concen-

tration, the workpiece thickness may have a great deal of influence on it. The creation

of this table would be a valuable design tool for estimating the true stress at the stress

concentration from knowing the spring thickness, and the width and length of the leg

segments. A study of this may be of benefit to more than COPS as this type of stress

concentration is common in other compliant mechanisms.

Base and Platform Geometry

The truncation of base and platform geometry was done to simplify the analy-

sis. It may be beneficial in the future to include both geometries in order to better

understand how they affect performance characteristics of COPS such as the reaction
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force, lateral stability, and stress stiffening. The addition of both will likely increase

the semi-rigid effects decrease both the force and the stress levels and may also lower

the ω2
cr for any given spring.

COPS Overall Lateral Stiffness

Lateral stiffness was defined as a COPS resistance to lateral loads on the

platform. It may be possible to quantify lateral stiffness in COPS by laterally dis-

placing the platform a specified amount over the range of 0◦ through a 120◦ (for

a Tri leg design) and recording the reaction force. By plotting this vs the angle at

which the displacement was applied, a mean and amplitude reaction force may be used

to characterize lateral stability. Doing so and changing only a single parameter such

as the leg angle, will provide more insight into the relationship between overall lateral

stiffness and each design parameter.

Non-dimensional COPS Design Parameters

Non-dimensional parameters for modeling the behavior of COPS legs under

complex loads was researched and their proved to be to many parameters to create a

simple design tool. By narrowing the number to only those parameters which have the

most effect on spring force, and using some of the trends noted in this research, it may

be possible to come up with some simple analysis tools for helping a designer get an

initial design much quicker.
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Appendix A

Continuously Variable Transmissions (CVT)

A CVT has been shown to be more efficient than traditional transmissions.

Stieg et. al. [28] showed that a rubber v-belt CVT for a front wheel drive car was

17.7% more efficient mechanically and 15.5% more efficient in fuel economy than a 3

speed automatic transmission in the same vehicle. Some of the other advantages of

CVT’s are a smooth speed change, lower cost, less maintenance, and in many cases

they are a simpler mechanism.

A.1 Types

A CVT is a device that can take on any speed ratio that is found within its

operational limits [29]. Beachley et. al. [30] stated that a CVT also implies that torque

may be controlled independent of the speed ratio. The speed ratio is defined as the

maximum to minimum output speeds possible for a given fixed input speed.

Beachley [30] discussed 5 principles upon which CVT’s may operate: hydro-

static, friction, variable geometry, electric, and gearbox with slip clutch. All have

their own mechanisms to transfer a variable amount of torque and speed. Any one of

the five can be an infinitely variable transmission as well if it has the ability to produce

zero output. Mortensen [29] created a sixth class by breaking the friction drives into

two separate categories: friction drives and traction drives. Friction drives would

include those whose relative motion between the transfer medium is static (i.e. a belt

in contact with a sheave has no relative motion). A traction drive transmits power

through hardened metallic rolling bodies and elastohydrodynamic fluid films.
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A.2 V-Belt CVT’s

The type of most interest to this work is a friction drive utilizing a composite

v-belt and two pulleys. The pulleys consist of two sheaves each, one mobile and one

stationary, which move together or apart according to a supplied axial force. These

pulleys are also referred to as a driver or primary clutch and the driven or secondary

clutch. The most common system consists of a velocity sensing driver and a torque

sensing driven as shown in Figure A.1. This type of system is common in recreational

vehicles, mopeds, agricultural equipment, machine tools, and some automobiles.

Composite Belt

Drive ClutchDriven Clutch

Figure A.1: Composite v-belt continuously variable transmission schematic.

Worley [31] was one of the first to publish literature on the design of adjustable-

speed v-belt drives. Worley proposed belt standards along with information on how to

design belts to those standards. He also stated that the sheave diameter is derived

from the speed ratio.

Oliver [32] discussed the advantages of a torque sensing v-belt drive and made

general recommendations for designing new ones. He also discussed the benefits
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of torque actuated tensioning. Later Oliver [33] developed design equations which

model the behavior of a speed and torque controlled variable ratio v-belt transmission.

These fundamental equations allow a designer to analyze the axial forces present in a

speed sensing driver and a torque sensing driven. The equations were based on the

assumption of a constant friction angle between the sheaves and the belt. The effects

of friction between the mobile sheave and shaft under belt tension were neglected.

Gerbert [34] investigated both manually and automatically regulated adjustable

v-belt drives. Simple relationships were established and system drive characteriza-

tions were obtained for various combinations of axial loading equipment. Gerbert [35]

later added to his original work.

Chen [36] described two types of losses in a rubber v-belt CVT: speed and

torque. Three loss models were mentioned along with their characteristics. Chen

proposed a method for modeling the belt system operating under four separate states.

Power loss mechanisms were broken down and their relative significance to overall

power loss quantified. The effects of belt parameters on efficiency were also studied.

Bents [37] stated that the most important part of designing a variable speed

drive is the control system that actuates the mobile sheave. This system controls both

the speed ratio and the belt tension. The key to a workable control system is the char-

acterization of the drive parameters and their interactions. Bents also discussed the

relationship between centerline and axial forces with the power transmitting efficiency.

Stieg [28] discussed three criteria that must be met by the axial forces supplied by the

control mechanism in a driver/driven system.

1. The belt should not slip under any load condition.

2. The axial forces should be as low as possible to maximize belt life.

3. The CVT speed ratio should be controlled to obtain the desired engine operating

line.

117



A.3 Velocity Sensing Clutch

The velocity sensing clutch has evolved into a highly tunable part of a v-belt

CVT system. The analysis of the axial forces generated in this clutch and how the

main components interact with each other are critical to performance.

Low
Gear
Position

High
Gear
Position

Stationary Half

Moveable Half
Belt

Clutch Weight

Spider Tower

Return Spring

Pressure Plate

Cam Roller

Figure A.2: A typical velocity sensing driver clutch at high and low gear ratios.

A basic driver clutch in a v-belt CVT utilizes a system of cams, weights,

and springs to change its ratio. The weights pivot on the mobile sheave and have a

cam profile which contacts cam rollers attached to the spider tower structure. The

centrifugal forces cause the weights to extend which in turn push the mobile sheave

toward the fixed sheave. This motion is resisted by the return spring pushing on the

pressure plate. As the angular velocity in the engine increases the centrifugal forces

on the weights overpower the return spring. As the velocity decreases the spring force

becomes greater than the centrifugal forces and the sheaves are moved back apart.
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There is a complex relationship between the angular velocity, weight, cam profile, and

properties of the spring. Understanding the axial forces is critical to proper design.

There have been numerous models proposed for understanding the axial forces

in a velocity sensing clutch. Ferrando [38] summarized and compared the various

models used for predicting axial forces with a new empirical model developed therein.

Ferrando showed that Gerbert’s model [35] of the velocity-sensing driver was the most

accurate for predicting axial forces when compared with experimental data.

A.4 CVT’s & COPS’s

Anderson et. al [4] articulated the possible benefits of applying COPS to a

velocity sensing CVT. A CVT utilizing COPS would be more tunable to the novice

recreational vehicle driver through adding or removing a COPS vs. purchasing a new

coil spring for each desired setting. Additionally, the design would also provide ben-

efits such as simplified part count, lower costs through manufacture and assembly, and

decreased weight and space requirements. A prototype compliant ortho-planer spring

was developed at Brigham Young University for use in a CVT with the objective of

testing its feasibility under dynamic loads.

A number of configurations were designed to fit within the constraints of the

existing P-90 Polaris driver clutch. Figure A.3 shows a CAD model of the P-90 and the

modifications one might do to adapt a COPS to it. CAD models of COPS were devel-

oped and finite element analysis was used to confirm the calculated stresses. The N8S

COPS design, shown in Figure 2.4, was selected as the prototype. Calculated stresses

in the leg-platform, leg-base, and intermediary platform transition areas would lead

to premature failure. Other problems were encountered in removing the pressure plate

used by the pressure spring. One of its purposes is to provide a second bearing surface

along the shaft for supporting the mobile sheave under the large moment created by

belt tension.

Christiansen [5] experimentally determined the fatigue life of the N8S de-

sign subjected to simple quasi-static loads. At full deflection to one side it’s fatigue

life was found to be under 50,000 cycles. Adding centrifugal loads, vibrations, and
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Figure A.3: A rendition of the P-90 Polaris Drive Clutch (a) and a COPS adapted to
fit within the existing design.

other dynamic loads will decrease fatigue life further. A three factorial design using

the spring constant, lubrication between layers, and hysteresis was performed under

controlled conditions. Hysteresis and lubrication were insignificant while stacking was

significant. Christiansen confirmed that COPS spring constants have a near linear

relationship and can be added with a fair amount of accuracy to increase the total

stiffness or K value of the COPS pack.
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Appendix B

Compliant Mechanisms Analysis Methods Overview

B.1 Closed Form Methods

These methods employ the Bernoulli-Euler equation and elliptic integrals to

derive closed form solutions which describe the beam path under certain loads. How-

ell [1] gives a brief history of key findings for closed form solutions of these types.

Bisshopp & Drucker [39] were some of the first ones to employ the use of elliptic

integrals of the first and second kind to this particular problem. Others contributed

to the knowledge tables and summaries [40, 41].

Howell [10] reviewed the assumptions used for linearized beam equations and

the reasons they are inadequate for large deflection analysis. When using the Bernoulli-

Euler beam equation for small deflections the key assumption is that the slope of the

transverse deflection is small which is not the case under large deflections.

The closed form solution for the deflection of a cantilever beam with combined

end loads was derived by solving the Bernoulli-Euler equation for an initially curved

beam for both follower and nonfollower loads [10]. The results were nondimensional-

ized and put in a form such that elliptic integrals of the first and second kind [42] could

be used to solve them. The simple load case of a moment applied to the free end of a

cantilever beam was presented.

Limitations of this type of derivation for both follower and nonfollower loads

are due to the square roots and inverse trigonometric functions used in the elliptic

integral solution. Nondimensionalized beam tip deflections were presented as func-

tions of nondimensional parameters in graphical form [10]. They can be used to find
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beam end coordinates for various loads, moments, modula, and beam dimensions for

this particular load case given that the input stays within the specified limitations

of the model. Although the resultant closed form solutions minimize the required

computation time they are still by no means simple. Besides not having a physical

representation of what is going on, this method can only be used on a limited number

of geometries and load cases.

B.2 Numerical Methods

Numerical methods are good for determining both displacements and stresses

in compliant mechanisms. There are a few instances when this type of method may

have an advantage over others. First, when mechanism geometry already exists and

the model needs either validation or further refinement. Second, these methods also

become extremely valuable when the geometry of the mechanism does not lend itself

well to other methods of analysis. In other words the geometry is too complex to be

analyzed by simple models. This section will be limited to chain algorithms and finite

element analysis. Nahvi [43] compared the behavior of finite element methods with the

chain algorithm and found that the chain algorithm is more efficient in its computa-

tion. Finite element methods are powerful for complex geometry but inefficient for

solving simpler models. They will briefly be discussed but there are other numerical meth-

ods which may be used such as the finite difference methods [44, 45] and boundary element

methods [46].

Chain Algorithm The chain algorithm has been used by many to solve nonlinear

problems [47, 48, 49]. Her [50] was the first to use the algorithm to analyze compli-

ant mechanisms. It was subsequently improved upon by others [51, 43]. The chain

algorithm has been verified against closed form solutions [50, 10].

The chain algorithm works by breaking the model up into a number of beam

elements. Each element is analyzed in succession and then its results are used as

inputs to the next element. Each element will have its own translations and rotations,

which will be added to the deflections of the previous element. Thus each element is
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analyzed as a deflected beam at the end of the previous one. See [10] for a detailed

explanation on the chain algorithm.

The chain algorithm is a tool for solving nonlinear problems. Nonlinearities

occur as the system changes, over the application of the load, and it becomes necessary

to recalculate the moment arms and the matrices used for calculating displacements.

Solution accuracy is proportional to both the number of load increments or steps

used during the analysis and on the number of elements. Howell [10] has some useful

graphs relating the absolute error associated with the number of load increments and

the number of elements.

Finite Element Methods Boronkay & Mei [52] were the first to use this method

for analyzing compliant mechanisms. They used finite element methods for analyzing

a mechanical adder in which the pivot points were replaced with flexible members. A

basic overview of how the method works was also presented.

Ghandi & Thompson [53] used FEA on a flexible connecting rod and found the

results to be very similar to those obtained by others [54] applying a different method

for the same geometry.

There are two types of finite element methods, the stiffness and flexibility

methods. The stiffness method relates forces to corresponding displacements and

the flexibility method is vice versa. Finite element methods are particularly useful

when simple analytical models may no longer be applied with ease to a problem.

It is the most widely used method of structural analysis for complex structures.

A number of centuries ago the method was time consuming because of the lack of

adequate computing power. Modern computers now have the capacity, in both time

and memory, to evaluate extremely complicated problems [55].

Howell [1] gave some advice on using finite element methods for nonlinear

analysis of compliant mechanisms.

• Ensure that the program you are using supports non-linear analysis and that

this analysis capability is activated before solving. Also make sure that output

graphics are shown to scale and not disproportioned.
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• Simplify the model as much as possible. The nonlinearities associated with large

displacements will add complexity to the computation as well as increase the

required time. A simplified model will increase the possibility of converging to a

solution.

• Use displacement loads for the inputs instead of force for large deflections in

compliant mechanisms. This is emphasized for complex nonlinear analysis.

The details of this method can be found in a number of books and articles, so no

further discussion is felt to be necessary for this thesis.

B.3 Structural Optimization & Homogenization Theory

Structural optimization and homogenization theory is a systematic design

method which utilizes a series of tools and techniques to synthesize and analyze

compliant mechanisms.

Sevak et. al. [9] used this method to successfully analyze a four bar linkage

with compliant input and output linkages and a flexible coupler mechanism. Sevak’s

work validated the capability this design methodology has to successfully analyze and

synthesize flexible link mechanisms.

Frecker et. al. [14] used this type of method for designing compliant stroke

amplifiers. Tai et. al [56] used this method for synthesis of path generating compliant

mechanisms. Others have used this methodology for creating compliant mechanisms

on the micro level [57].

Unlike the PRBM, topology optimization uses continuum solid mechanics in-

stead of rigid-body kinematics for mechanisms analysis and synthesis [58]. Tai et.

al. [56] stated that there is also a ground structure approach which is used for designing

frame or truss like structures. Both of these methods are aimed at creating distributed

compliance in mechanisms as opposed to lumped compliance. Distributed compliance

is the practice of having a large portion of the mechanism deform to get its motion.

The general inputs for structural optimization are an objective function, a

design domain, prescribed force-deflection characteristics of the mechanism, and the
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material properties. The design domain is the physical space that the resulting mecha-

nism could occupy. Creating a mechanism from this empty space does not limit the

possible configurations to known geometries that work. As mentioned before a series

of design methodologies are used to process the inputs and obtain the results. Frecker

& Ananthasuresh [58] list the methods and techniques they have identified as useful

tools in optimal synthesis with continuum models.

Ananthasuresh et. al. [11] gives a simplified overview of structural optimiza-

tion and suggests that future work should seek to create a hybrid method which

incorporates kinematics with the continuum approach.

B.4 Pseudo-Rigid-Body Model

The purpose of the pseudo-rigid-body model (PRBM) is to provide a simplified

method of analyzing systems that undergo large, nonlinear deflections. It is used to

model compliant members using rigid-body components that have equivalent force-

deflection characteristics. Its use allows rigid-body theory to be directly applied to

compliant mechanisms. One advantage the PRBM has over other types of analysis is

that it has a graphical model depicting its geometry.

This model was first researched and documented by Howell [10, 59]. Since

that time there have been numerous models created for different types of compliant

segments, deflection characteristics, and load cases. Howell [1] cites a number of

PRBM’s for many of these cases: small length flexural pivots [15], fixed-pinned or

cantilever beams with an end force on the free end [16], fixed-guided segments [1],

beams with end-moment loads [1], initially curved cantilever beams [17], pinned-

pinned segments [18], and fixed-fixed segments [1]. There are also several papers on

modeling combined end force and moment loads on fixed-pinned beams [60, 61, 62]

Dado [63] parameterized the load, P , and joint stiffness, K, with respect to

the characteristic length factor, γ, and the pseudo-rigid-body angle, Θ, for a large

deflection beam with end loads. His findings for the beam end path were comparable

to those found in [59]. Dado’s equations proved to be more accurate than using simple

constant values for, γ, and k.
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Derderian [64] explored the PRBM and its application to MEMS. In his work

he studied parallel motion mechanisms in depth of which some use fixed-guided seg-

ments to achieve their motion. Fixed-guided segments are of particular interest to this

study because a leg in a COPS design will be comprised of segments. The PRBM will

be the first step in analyzing COPS designs and a basic overview of a cantilever beam

and a fixed-guided beam will follow.

An important thing to note about the fixed-guided beam is that the inflection

point somewhere along the beam has no curvature and therefore has no moment.

If both beam ends are held at a 0 deg angle then the inflection point will occur in

the middle of the beam. The segment can be split into two beams at the inflection

point, and each can be modeled as a single cantilever beam with half the vertical

displacement load as the fixed-guided segment. A diagram of such a cantilever beam,

it’s pseudo-rigid-body model, and key parameters can be seen in Figure B.1.

The only load situations in a COPS that can be analyzed using the PRBM

are orthogonal loads. Even though a segment in a leg, like the one shown in Figure B.2,

can be analyzed with the PRBM, there are still differences in beam end constraints

which make it less useful in this situation.

PRBM for a Cantilever Beam The derivation of the PRBM for a cantilever beam

with a load on the free end is discussed in detail in [10, 16]. Here is given a quick

summary of the method used to derive it and the resulting equations pertinent to this

thesis. Because there are few differences between the PRBM for a cantilever beam and

a fixed-guided segment, only the differences will be pointed out.

The model assumptions included linearly elastic, inextensible, rigid in shear,

and of constant cross section beams. Howell [10, 16] derives the equations describing

the free-end coordinates (a, b) of the cantilever beam subject to a vertical force of P

and a horizontal force of nP , where n is the axial load factor, as shown in Figure B.1.

The PRBM is a result of manipulating closed form solutions found using the

Bernoulli-Euler equation and elliptic integrals. The data derived from these solutions

was nondimensionalized by division of the beam length and plotted against each
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Figure B.1: (a) A cantilever beam with an end load (b) and it’s pseudo-rigid-body
model.

other. There were two significant results which form the basis of the parametric

approximations for the PRBM. First, the deflection paths were similar over the load

conditions n = −5 . . . 10. Second, the paths were nearly circular in shape until

the beam tip angle, θo, approached the equivalent applied load angle, φ, where φ =

tan−1( 1
−n

) and n is the axial load factor.

The center of the nearly circular path of the beam end lies at a point somewhere

on the beam. At this point the model is divided into two rigid links connected by

a pin joint. A torsional spring is also placed at the pivot to model the beams resistance
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Fixed-Guided Segment

F
A

Figure B.2: COPS legs consist of segments which are easily analyzed under static load
cases.

to deflection. The characteristic radius factor, γ, determines the length or radius, γl of

the pseudo-rigid-body link and the location of the characteristic pivot on the cantilever

beam.

The beam end point locations, beam end angle, and the load-deflection re-

lationship were all parameterized with respect to the pseudo-rigid-body angle, Θ.

The pseudo-rigid-body angle was maximized by solving for a γ which kept the error

between the closed form solution and the PRBM prediction below 0.5%. The resulting

piecewise functional relationship for γ as a function of the axial force coefficient, n, is

γ =





0.841655− 0.0067807 · n + 0.000438 · n2 (0.5 < n < 10.0)

0.852144− 0.0182867 · n (−1.8316 < n < 0.5)

0.912364 + 0.0145928 · n (−5 < n < −1.8316)

(B.1)

Discrete values of γ can be found in Table B.1. The coordinates at the free end of the

beam are described by

a = l(1− γ(1− cos Θ)) (B.2)
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b = γl sin Θ (B.3)

The beam end angle, θo, can be found using the parametric angle coefficient, cθ and is

described by

θo = cθΘ (B.4)

The torsional spring constant is

K = γKΘ
EI

l
(B.5)

where KΘ is the stiffness coefficient. Values for KΘ are also a function of the axial load

coefficient and can be found using the following piecewise equation.

KΘ =





3.024112 + 0.121290 · n
+0.003169 · n2 (−5.0 < n < −2.5)

1.967647− 2.616021 · n
−3.738166 · n2 − 2.649437 · n3

−0.891906 · n4 − 0.113063 · n5 (−2.5 < n < −1.0)

2.654855− 0.0509896 · n
−0.0126749 · n2 − 0.00142039 · n3

+0.584525 · 10−4 · n4 (−1.0 < n < 10)

(B.6)

Table B.1 shows specific values of γ, Θ, and KΘ for calculating the beam

end coordinates and the torsional spring constant for different values of the axial

load coefficient, n. In order to get an accurate position prediction the pseudo-rigid-

body angle must stay under Θmax(γ) and for an accurate force prediction Θmax <

Θmax(KΘ).

The vertical force is a function of the load angle, φ, the stiffness coefficient, and other

parameters.
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Table B.1: Data for γ, cθ, and KΘ as a function of angles and force.

n φ γ Θmax(γ) cθ KΘ Θmax(KΘ)

0 90.0 0.8517 64.3 1.2385 2.67617 58.5
0.5 116.0 0.8430 81.8 1.2430 2.63744 64.1
1.0 135.0 0.8360 94.8 1.2467 2.61259 67.5
1.5 146.3 0.8311 103.8 1.2492 2.59289 65.8
2.0 153.4 0.8276 108.9 1.2511 2.59707 69.0
3.0 161.6 0.8232 115.4 1.2534 2.56737 64.6
4.0 166.0 0.8207 119.1 1.2548 2.56506 66.4
5.0 168.7 0.8192 121.4 1.2557 2.56251 67.5
7.5 172.4 0.8168 124.5 1.2570 2.55984 69.0
10 174.3 0.8156 126.1 1.2578 2.56597 69.7
-0.5 63.4 0.8612 47.7 1.2348 2.69320 44.4
-1.0 45.0 0.8707 36.3 1.2323 2.72816 31.5
-1.5 33.7 0.8796 28.7 1.2322 2.78081 23.6
-2.0 26.6 0.8813 23.2 1.2293 2.80162 18.6
-3.0 18.4 0.8669 16.0 1.2119 2.68893 12.9
-4.0 14.0 0.8522 11.9 1.1971 2.58991 9.8
-5.0 11.3 0.8391 9.7 1.1788 2.49874 7.9
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P =
KΘΘ

ηγls sin (φ−Θ)
(B.7)

where

η =
√

1 + n2 (B.8)

The static stress at the bottom and top of the beam can be found by

σ = ±−(Pa + nPb)c

I
− nP

A
(B.9)

where c is the distance from the neutral axis to the outer fibers.

PRBM for a Fixed-Guided Segment Figure B.3 depicts a fixed-guided segment

with its PRBM model. There are several differences between the analysis of this type

and that of the cantilever beam. First, the division of the beam occurs in two places

now creating two characteristic pivots equally spaced from the ends. Equation B.5 for

the torsional spring constant, K, changes to

K = 2KΘγ
EI

l
(B.10)

Note that there are now two characteristic pivots with torsional springs and the

stiffness of a fixed-guided beam is four times greater than a cantilever beam of the

same length.

Because there is no horizontal force component in a fixed-guided beam for a

COPS under static loads, the fundamental equations become simple derivations of the

131



a

l

P
Mo

b

(a)

(1-g)l

P
Mogl

(1-g)l

Q

2

2

(b)

Figure B.3: (a) A fixed-guided segment with an end load (b) and it’s
pseudo-rigid-body model.

cantilever beam equations. Values of γ and Kθ become discrete at 0.8517 and 2.67617

respectively and the beam end has an applied moment now so that θo = 0.

For a given vertical displacement, b, of a fixed-guided segment, the pseudo-

rigid-body angle can be found by

Θ = arcsin

(
b

γl

)
(B.11)
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This can then be used to find the horizontal displacement, a of the beam end

with the following

a = l (1− γ(1− cos Θ) (B.12)

The vertical force, P , for both springs is four times as stiff as that of the

cantilever beam and is

P =
4KΘΘEI

L2 cos (Θ)
(B.13)

An estimation of the total axial force a COPS can produce is found by multiply-

ing P by the number of legs. With the vertical load force and the moment arm known

the stress at both ends of the beam can be found with

σmax =
2KΘEc(1− γ(1− cos Θ))Θ

L cos Θ
(B.14)

where c is the distance to the outer fibers. Check that Θ < Θmax(KΘ) to make sure the

results are accurate.
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Appendix C

ANSYS Batch Files

C.1 3D PRBM Beam Batch File

!===============================================================

! Created by Nathan Rasmussen, 02/18/2004

! This batch file uses 3D Elements to deflect a

! beam in two dimensions.

! RECTANGULAR CROSS-SECTION

! /|

! /|--------------------------

! /|

!===============================================================

FINISH

/CLEAR

/TITLE,Analysis of a 3D-Cantilever Beam

/PREP7

!===============================================================

! INPUT PARAMETERS

!===============================================================

!tz = 8 !*** Width of beam

!ty = 2 !*** Thickness of beam

!L = 130 !*** Length of beam

!

!Ey = 207000000

!Pr = 0.28

!
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!rSteps=30 !*** Number of load steps

!nonlinear=1 !*** 1 = nonlinear, 0 = linear

!

!size=5 !*** 1 to 10 for fine to coarse meshing

!

!dz = .2 !*** Limit in z direction

!dy = .5 !*** Limit in y direction

!contours = 20

!contournumber = 11 !0 TO (CONTOURS) 0 IS ONLY Y AND 19 IS Z

!pi = 3.1415926

!theta = ((pi/2)/contours)*contournumber

!

!r = SQRT(((COS(theta)**2)/(dy**2)+(SIN(theta)**2)/(dz**2))**(-1))

!

!

!*** coordinates to end at

!dY = r*cos(theta)*L

!dZ = r*sin(theta)*L

!

! === Read from input file ===

/INPUT,ANSYS_3Dcant_inputs,txt

!===============================================================

! MODEL SETUP

!===============================================================

!*** Base Face

K,1,0,0,0

K,2,0,-ty/2,0

K,3,0,ty/2,0

!*** Beam Tip

K,4,-L,ty/2,0

K,5,-L,-ty/2,0

!*** Beam Lines
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L,1,2

L,1,3

L,3,4

L,2,5

L,4,5

!*** Beam Areas

AL,ALL

VEXT,1,1,1,0,0,tz/2,0,0

VEXT,1,1,1,0,0,-tz/2,0,0

VADD,1,2

!***Element Type: 3-D Structural Solid (20-Node)***

ET,1,SOLID186

MP,EX,1,Ey !*** Youngs Modulus ***

MP,PRXY,1,Pr !*** Poisson Ratio ***

VATT,1,,1,0

!SMRT,ON

SMRT,5 !*** Size, 1--fine, 10--course

MSHAPE,1,3D !*** Shape, 0--hexahedral, 1--tetrahedral

MSHKEY,0 !*** Key, 0--free, 1--mapped, 2--mapped if possible

!ESIZE,ty/3,0,

VMESH,ALL

!***Get Node Number at KeyPoint 1***

KSEL,s,kp,,1

NSLK,s

*GET,nkp1,node,0,num,max

NSEL,all

KSEL,all

FINISH
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!===============================================================

! SOLUTION STEPS

!===============================================================

/SOLU

!**** Set to Nonlinear Deflection Analysis ****

*IF,nonlinear,EQ,1,THEN

SOLCONTROL,ON !*** Steps optimized for nonlin probs

DELTIM !*** Use default substeps

NLGEOM,1 !*** For large deflection analysis

CNVTOL,U,,0.0001,,0.01 !*** Convergence for Displacement

CNVTOL,F,,0.0001,,0.01 !*** Convergence for Force

*ENDIF

ANTYPE,0 !*** Analysis Type is Static (0)

!*** Constraint Support

DA,5,ALL,0

DA,11,ALL,0

!---------------------- Apply a Displacement ------------------

*DO,mm,1,rSteps,1

DK,1, ,mm*dY/rSteps, ,0,UY, , , , , , !*** take out first UY

DK,1, ,mm*dZ/rSteps, ,0,UZ, , , , , , !*** take out first UZ

lswrite,mm

*ENDDO

lssolve,1,rSteps

FINISH

!===============================================================

! OUTPUT for GUI MODE

!===============================================================

/POST1
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*DIM,Xdis,TABLE,rSteps

*DIM,Ydis,TABLE,rSteps

*DIM,Zdis,TABLE,rSteps

*DIM,Yforce,TABLE,rSteps

*DIM,Zforce,TABLE,rSteps

mm = 0

*DO,mm,1,rSteps,1

SET,mm

*GET,disX,NODE,nkp1,U,X

*SET,Xdis(mm),disX

*GET,disY,NODE,nkp1,U,Y

*SET,Ydis(mm),disY

*GET,disZ,NODE,nkp1,U,Z

*SET,Zdis(mm),disZ

*GET,forceY,NODE,nkp1,RF,FY

*SET,Yforce(mm),forceY

*GET,forceZ,NODE,nkp1,RF,FZ

*SET,Zforce(mm),forceZ

*ENDDO

! ************* The results file will be named

*VPLOT,Xdis(1,1),Ydis(1,1)

/output,ANSYS_3Dcant_results.txt

*VWRITE

Xdis Ydis Zdis

Yforce Zforce

*VWRITE,Xdis(1),Ydis(1),Zdis(1),Yforce(1),Zforce(1)

%20e %20e %20e %20e %20e

/output

FINISH

/eof
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C.2 COPS Leg Batch File

!===============================================================

! ANSYS Batch File

! Created by Nathan Rasmussen, 14 January 2005

!===============================================================

!

FINISH

/CLEAR

/TITLE, Angle Study on Ortho-Planar Spring Leg

/PREP7

!

!===============================================================

! INPUT PARAMETERS

!===============================================================

!pi=ACOS(-1)

!== Geometry ===================================================

!st = .000508 !thickness of spring

!lw = .01.7 !leg length

!ll = .07239 !leg width

!lrad = .003175 !gap width

!ip = .0127 !intermediate platform depth

!ipf = .5*ip !intermediate platform fillet

!platrad = .00381 !platform radius

!legang = 135 !leg angle 0-135

!

!==-Material====================================================

!Ey = 207000000000 !modulus of elasticity

!Pr = .30 !poissons ratio

!De = 7850 !density for inertial loads

!

!== Mesh Parameters=============================================

!gelsize =.00254 !global element size

!radsegs = 30 !# of divisions for meshing

!legsegs = 20 !# of divisions-lines close to ip rad

!legskew = .1 !skew of legseg lines
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!

!== DOF Constraints=============================================

!zdisp = .0254 !othogonal displacement-m

!angvelz = 0 !angular velocity $(rad/s)$

!angaccz = 0 !angular acceleration-$(rad/s^2$

!

!== Number of Steps ============================================

!rSteps = 10

!nonlinear = 1 \ !1=true

!

!===============================================================

! Read from input file

!===============================================================

/INPUT,ANSYS_anglestudy_inputs,txt

!== Set ElementType ============================================

ET,1,SHELL181

!== Set Options for Element ====================================

KEYOPT,1,1,0

KEYOPT,1,3,2

KEYOPT,1,8,2

KEYOPT,1,9,0

KEYOPT,1,10,0

ETCONTROL,SUGG,OFF

!== Set the Real Constants =====================================

R,1,st, , , , , ,

!== Set Material Properties=====================================

MP,EX,1,Ey

MP,PRXY,1,Pr

MP,DENS,1,De

!== Turn Degenerate Elements Off ===============================

ETCONTROL,SUGG,OFF
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!===============================================================

! Create Geometry

!===============================================================

!== Keypoints ==================================================

K,1,lw/2,,,

K,2,-lw/2,,,

K,3,-(lw/2+2*lrad),,,

K,4,-(lw/2+2*lrad+lw),,,

K,5,-(lw/2+2*lrad+lw),ll,,

K,6,-(lw/2+2*lrad),ll,,

K,7,-lw/2,ll,,

K,8,lw/2,ll,,

K,9,lw/2,(ll+ip+lrad),,

K,10,-(lw/2+2*lrad+lw),(ll+ip+lrad),,

K,11,-(lw/2+lrad),(ll+lrad-.0001),,

K,12,-lw/2,(ll-lw),,

K,13,-(lw/2+2*lrad),(ll-lw),,

K,14,-(lw+2*lrad),,, !*This will be the key point

!== Lines ======================================================

LSTR,1,2

LSTR,3,14

LSTR,14,4

LSTR,4,5

LSTR,5,6

LSTR,13,3

LSTR,12,2

LSTR,8,7

LSTR,8,1

LSTR,8,9

LSTR,9,10

LSTR,5,10

LSTR,12,7

LSTR,13,6

!== Create Arc =================================================

LARC,7,6,11
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!== Create Fillets =============================================

LFILLT,11,10,ipf, ,

LFILLT,12,11,ipf, ,

!== Create Areas ===============================================

AL,1,7,13,8,9

AL,2,3,4,5,6,14

AL,5,8,10,11,12,15,16,17

!== Move Geometry and change angle==============================

*AFUN,DEG !sets angle types used in functions

AGEN, ,ALL, , ,platrad*sin(-legang),platrad*cos(legang), , , ,1

!== Global Element Mesh Size ===================================

ESIZE,gelsize,0,

!== Break up important lines for meshing =======================

!== Short Lines on Leg Segments ================================

LESIZE,13, , ,legsegs,legskew, , , ,1

LESIZE,14, , ,legsegs,legskew, , , ,1

’\

!== Intermediate Platform Radius ===============================

LESIZE,15, , ,radsegs,1, , , ,1

!== Lines across legs ==========================================

LESIZE,5, , ,legsegs,legskew, , , ,1

LESIZE,8, , ,legsegs,legskew, , , ,1

!== InterPlat Radii ============================================

LESIZE,16, , ,7,1, , , ,1

LESIZE,17, , ,7,1, , , ,1

!== IP Line ====================================================

LESIZE,11, , ,14,1, , , ,1
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!== Sides of IP ================================================

LESIZE,10, , ,6,1, , , ,1

LESIZE,12, , ,6,1, , , ,1

!== Mesh Areas =================================================

MSHAPE,0,2D

MSHKEY,0

AMESH,ALL,,

!== Get Node Number at KeyPoint 14==============================

KSEL,s,kp,,14

NSLK,s

*GET,nkp1,node,0,num,max

NSEL,all

KSEL,all

FINISH

!===============================================================

! Solution or Solver

!===============================================================

/SOL

!== Set Analysis Type ============================================

! Set to nonlinear Deflection Analysis

*IF,nonlinear,EQ,1,THEN

SOLCONTROL,ON !Steps optimal values for nonlinear problems

PRED,0 !predictor off for 181SHELL elements

DELTIM !Use default substeps

NLGEOM,1 !For large deflection analysis

CNVTOL,U,,0.0001,,0.01 !Convergence for Displacement

CNVTOL,F,,0.0001,,0.01 !Convergence for Force

*ENDIF

ANTYPE,0 !Analysis Type is Static (0)

!=== Apply DOF Constraints======================================

DL,1,,ALL,0,1
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DL,3,,UX,0,1

DL,3,,UY,0,1

DL,3,,ROTX,0,1

DL,3,,ROTY,0,1

DL,2,,UX,0,1

DL,2,,UY,0,1

DL,2,,ROTX,0,1

DL,2,,ROTY,0,1

!== Apply Angular Loads ========================================

*DO,mm,1,rSteps,1

OMEGA,0,0,angvelz, !*Angular Velocity

!*DOMEGA,0,0,angaccz, !*Angular Acceleration

DK,14, ,zdisp, ,0,UZ, , , , , ,

lswrite,mm

*ENDDO

lssolve,1,rSteps

FINISH

!===============================================================

! Post Processor

!===============================================================

/POST1

*DIM,Smax,TABLE,rSteps

*DIM,Xdis,TABLE,rSteps

*DIM,Ydis,TABLE,rSteps

*DIM,Zdis,TABLE,rSteps

*DIM,Xforce,TABLE,rSteps

*DIM,Yforce,TABLE,rSteps

*DIM,Zforce,TABLE,rSteps

*DO,mm,1,rSteps,1

SET,mm

ETABLE,svonm,S,EQV

ESORT,ETAB,svonm,0,1
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*GET,stress,SORT,0,MAX

*SET,Smax(mm),stress

*GET,disX,NODE,nkp1,U,X

*SET,Xdis(mm),disX

*GET,disY,NODE,nkp1,U,Y

*SET,Ydis(mm),disY

*GET,disZ,NODE,nkp1,U,Z

*SET,Zdis(mm),disZ

*GET,forceX,NODE,nkp1,RF,FX

*SET,Xforce(mm),forceX

*GET,forceY,NODE,nkp1,RF,FY

*SET,Yforce(mm),forceY

*GET,forceZ,NODE,nkp1,RF,FZ

*SET,Zforce(mm),forceZ

*ENDDO

!== The results file will be named =============================

ANSYS_anglestudy_results.txt

*VPLOT,Xdis(1,1),Ydis(1,1)

/output,ANSYS_anglestudy_results.txt

*VWRITE

Xdis Ydis Zdis

Xforce Yforce Zforce Smax

*VWRITE,Xdis(1),Ydis(1),Zdis(1),Xforce(1),Yforce(1),Zforce(1),Smax(1)

\%20e \%20e \%20e \%20e \%20e \%20e \%20e

/output

FINISH

/eof
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Appendix D

MatLab Files

D.1 MatLab Example EVAL File

function [disp,force,stress]=eval_anglestudy_lateral...

(geom,mat,loads,ansys,params)

% -----------------------------------------------------------------------

% Study involving leg angles, angular velocity, and other geom parameters

% -----------------------------------------------------------------------

%

% IMPORTANT: The names of the fields in the structure need to

% match the variable names used in the ANSYS batch file.

%

% geom.st = spring thickness

% geom.lw = leg width

% geom.ll = leg segment length

% geom.lrad = leg radius

% geom.ip = intermediate platform depth

% geom.ipf = intermediate platform corner radii

% geom.platrad = radius of the platform

% geom.legang = leg angle in degrees

%

% mat.Ey = Young’s modulus

% mat.Pr = Poisson’s ratio

% mat.De = Density

%

% loads.zdisp = Maximum displacement in z-direction

% loads.angvelz = Angular velocity about the z-axis
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% loads.angaccz = Angular acceleration about the z-axis

%

% - ANSYS Parameters

% ansys.rSteps = Number of load steps to displace to dZ

% ansys.nonlinear = Logical (1=true) : Nonlinear deflection analysis

% ansys.gelsize = global element size

% ansys.radsegs = number of divisions for meshing radius

% ansys.legsegs = number of segments on legs

% ansys.legskew = skew for meshing legs

% - MATLAB ANALYSIS Parameters (Not passed to ANSYS)

% ** no params currently used (placeholder) **

%

% OUTPUTS:

% disp - matrix of Xdis, Ydis, and Zdis

% force - matrix of Yforce and Zforce for each displacement

% stress - vector of maximum stress at each displacement

%

% ANSYS setup:

% ANSYS is run using the run_ANSYS.bat file, which contains the

% full path to the ANSYS executable. ANSYS creates files begin-

% ning with the job name, or ANSYSJOB_*.* (these files may be

% deleted). When changing computers or installing a new version

% of ANSYS, you’ll need to change the path in the batch file.

%

% =======================================================================

% Initialize

% =======================================================================

strWinBatchFile = ’run_ansys_anglestudy_lateral.bat’;

strJobName = ’ANSYSJOB_anglestudy_lateral’; % Must match .bat batch file

% You can modify strWorkDir to use a temporary working directory

% where you can delete all the files later.

strAnsysDir = ’C:\ansystemp\’;

strWorkDir = ’.\’;

inputFile = sprintf(’%s%s’,strAnsysDir,’ANSYS_anglestudy_inputs.txt’);

batchFile = sprintf(’%s%s’,strWorkDir,’eval_ansys_anglestudy_lateral.inp’);
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outputFile = sprintf(’%s%s’,strAnsysDir,’ANSYS_anglestudy_results.txt’);

errorFile = sprintf(’%s%s%s’,strAnsysDir,strJobName,’.err’);

% Delete previous input/output/error files

fid = fopen(inputFile,’r’);

if fid~=-1

fclose(fid);

syscommand = sprintf(’del

[eCode,retText]=system(syscommand);

end

%fid = fopen(outputFile,’r’);

%if fid~=-1

% fclose(fid);

% syscommand = sprintf(’del

% [eCode,retText]=system(syscommand);

%end

fid = fopen(errorFile,’r’);

if fid~=-1

fclose(fid);

syscommand = sprintf(’del

[eCode,retText]=system(syscommand);

end

% =======================================================================

% Create the Input Parameter File

% =======================================================================

% When debugging, check to make sure input file is created correctly.

fid = fopen(inputFile,’w’);

if fid==-1

errordlg(’ANSYS input parameter file open error’,’Error!’,’modal’);

error(’ANSYS file open error.’);

end

% Using the names within the structures

fprintf(fid,’\r\n’);
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paramNames = fieldnames(geom);

paramValues = struct2cell(geom);

for I = 1:length(paramNames)

fprintf(fid,’%s = %f\r\n’,paramNames{I},paramValues{I});

end

fprintf(fid,’\r\n’);

paramNames = fieldnames(mat);

paramValues = struct2cell(mat);

for I = 1:length(paramNames)

fprintf(fid,’%s = %f\r\n’,paramNames{I},paramValues{I});

end

fprintf(fid,’\r\n’);

paramNames = fieldnames(loads);

paramValues = struct2cell(loads);

for I = 1:length(paramNames)

fprintf(fid,’%s = %f\r\n’,paramNames{I},paramValues{I});

end

fprintf(fid,’\r\n’);

paramNames = fieldnames(ansys);

paramValues = struct2cell(ansys);

for I = 1:length(paramNames)

fprintf(fid,’%s = %f\r\n’,paramNames{I},paramValues{I});

end

status=fclose(fid);

if status~=0

errordlg(’ANSYS input parameter file close error’,’Error!’,’modal’);

error(’ANSYS file close error.’);

end

% =======================================================================

% RUN ANSYS

% =======================================================================
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errCode=system(strWinBatchFile);

% errCodes: 8 - normal. 7 - no license file. 1 - no convergence

if errCode==1

%errordlg(’ANSYS failed to converge’,’Error!’,’modal’);

%error(’ANSYS failed to converge.’);

disp=[];

force=[];

stress=[];

return

end

if errCode==7

%errordlg(’ANSYS license unavailable’,’Error!’,’modal’);

%error(’ANSYS license unavailable.’);

disp=[];

force=[];

stress=[];

return

end

% =======================================================================

% READ the RESULTS

% =======================================================================

% Read results file. Columns are displacement, force, stress

% rows are for each point in the force/displacement curve.

% Check if results file exists

fid=fopen(outputFile,’r’);

if fid==-1

%errordlg(’Unable to open ANSYS results file.’,’Error!’,’modal’);

%error(’Unable to open ANSYS results file. Check ANSYS .err file.’);

disp=[];

force=[];

stress=[];

return

else

fclose(fid);
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end

% Read results

[Dmax Ydis Zdis Xforce Yforce Zforce Smax] = ...

textread()outputFile,’%f %f %f %f %f %f %f’,’headerlines’,1);

% ========================= Save/Return Results =========================

disp = [Dmax Ydis Zdis];

force = [Xforce Yforce Zforce];

stress = Smax;

D.2 MatLab 3D PRBM Script File

format short g

clear all

clc

% ========================================================================

% BEGINNING of INPUT Section

% ========================================================================

geom.AR = 5; % geom.AR = tz/ty;

geom.ty = 2; % beam thickness (mm)

geom.tz = geom.ty*geom.AR; % beam width (mm)

geom.L = 100; % beam length (mm)

geom.dy = .7; % nondimensional limit in y

geom.dz = .2; % nondimensional limit in z

mat.Ey = 207000000; % modulus of elasticity (MPa) - mMKSV

mat.Pr = 0.28; % poissons ratio

loads.dY = geom.dy*geom.L; % limit in y

loads.dZ = geom.dz*geom.L; % limit in z

ansys.rSteps = 50; % number of points on each contour

ansys.nonlinear = 1; % turns nonlinear solver on

% -------------------------- Used for analysis later ---------------------

geom.Iy = (geom.ty*geom.tz^3)/12; % moment of inertia about y axis

geom.Iz = (geom.tz*geom.ty^3)/12; % moment of inertia about z axis
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% --- Define input displacements in polar coordinates using an ellipse ---

cont = 20; % number of contours

rZ = loads.dZ; % limit steps

rY = loads.dY; % limit steps

theta = linspace(0,pi/2,cont)’; % angles dividing quadrant

dZmax = rZ*sin(theta); % vector of z limits

dYmax = rY*cos(theta); % vector of y limits

% To verify ellipse: plot(dZmax,dYmax); axis equal;

% ========================================================================

% RUN the MODEL

% ========================================================================

dXdata = [];

dYdata = [];

dZdata = [];

FYdata = [];

FZdata = [];

for n = 1:cont

loads.dZ = dZmax(n);

loads.dY = dYmax(n);

% ---------------------------- Run Ansys -----------------------------

[disp,force,stress]=eval_3Dcant(geom,mat,loads,ansys,params);

fprintf(’Completed ANSYS run #%d of %d \n’,n,cont);

dXdata(:,n) = disp(:,1);

dYdata(:,n) = disp(:,2);

dZdata(:,n) = disp(:,3);

Xdata = geom.L + dXdata;

Ydata = dYdata;

Zdata = dZdata;

FYdata(:,n) = force(:,1);

FZdata(:,n) = force(:,2);
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% --------------------- Real time update of plot ---------------------

figure(1); clf;

plot(Xdata,Ydata,’-x’);

axis equal;

xlabel(’X position’);

ylabel(’Y position’);

% -------------------------- Update surface plot ---------------------

if n > 1

gscale = linspace(0.2,0.8,50)’;

gmap = [gscale, gscale, gscale];

figure(2); clf;

surface(Xdata,Ydata,Zdata);

axis equal;

view(30,20);

grid;

shading interp;

colormap(gmap);

alpha(0.6);

hold on;

line(Xdata,Ydata,Zdata,’LineStyle’,’-’,’Marker’,’o’,’MarkerSize’,3);

hold off;

xlabel(’X position’);

ylabel(’Y position’);

zlabel(’Z position’);

end

end

% ========================================================================

% SAVE RESULTS

% ========================================================================

save saved_3Dcant Xdata Ydata Zdata dXdata dYdata dZdata FYdata FZdata;

save saved_inputs geom mat loads ansys params cont theta dZmax dYmax;
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D.3 MatLab COPS Leg Script File

format short g

clear all

clc

% ========================================================================

% Individual Runs

% ========================================================================

% ---------------------- BEGINNING of INPUT Section ----------------------

geom.st = .000508; % units in m ***spring thickness

geom.lw = .012700; % units in m ***leg width

geom.ll = .069850; % units in m ***leg length

geom.lrad = .002381; % units in m ****gap radius

geom.ip = geom.lw; % units in m ***intermediate platform width

geom.ipf = .5*geom.lw; % units in m ***radius on ip corners

geom.platrad = .050800; % units in m ***platform radius

geom.legang = 67.5; % units in m ***leg angle in degrees

mat.Ey = 207000000000; % units in N/m^2

mat.Pr = 0.3; % Poisson ratio

mat.De = 7850; % units in kg/m^3

loads.zdisp = .0127; % max displacement in the z direction

loads.angvelz = 325; % angular velocity about the z axis rad/sec

loads.angaccz = 0; % angular acceleration about the z axis

ansys.rSteps = 1; % number of steps to move through z disp

ansys.nonlinear = 1; % 1 = true

ansys.gelsize = geom.lw/.0127*.00254; % global element size (m)

ansys.radsegs = 30; % number of divisions for meshing radius

ansys.legsegs = 20; % number of segments on legs

ansys.legskew = .1; % skew for meshing legs

% ------------------------ END of INPUT Section --------------------------
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% ========================================================================

% RUN the MODEL

% ========================================================================

Zmax = [];

Zdata = [];

FZdata = [];

for n = 1:ansys.rSteps

% ------------------------------- Run Ansys ------------------------------

[disp,force,stress]=eval_anglestudy_lateral...

(geom,mat,loads,ansys,params);

fprintf’Completed ANSYS run #%d of %d \n’,n,ansys.rSteps);

Zmax = disp(:,1)

Zdata = disp(:,3)

FZdata(:,n) = force(:,3)

end

% ----------------------------- SAVE RESULTS -----------------------------

save saved_anglestudy Zmax Zdata FZdata;

save saved_inputs geom mat loads ansys params;
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