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Analysis of the Interpolation Error Between Multiresolution Images 

Bryan S. Morse 
Department of Computer Science, Brigham Young University 

3361 TMCB, Provo, UT 84602 
morse @cs.byu.edu 

Abstract 
Many rendering or image-analysis systems require cal- 

culation of versions of an image at lesser resolutions than 
the original. Because the$ltering required to perform such 
calculations accurately cannot typically be done in real 
time, many systems use interpolation between images at 
precalculated resolutions. This discrete sampling of the 
scale component of multiresolution image spaces is anal- 
ogous to spatial sampling in discrete images. This paper 
quantijies and bounds the error that can be introduced dur- 
ing such interpolation as afunction of the scale-space sam- 
pling rate used. A method is presented that uses the d i f i -  
sion equation to relate spatial derivatives to scale deriva- 
tives and from there to an error bound. 

1. Introduction 

Many graphics and image-processing systems require 
that an initial high-resolution image be calculated (ren- 
dered) at some arbitrary lesser resolution. For example, 
when interactively viewing large, high resolution images 
one often needs to view the entire image at some reduced 
resolution while still being able to, when needed, view parts 
of the image at higher resolution. For example, in an in- 
teractive graphical environment where one can effectively 
move nearer or farther from an image, movement away 
from the image corresponds to a decrease in resolution (and 
corresponding increase in field of view) while movement 
towards the image corresponds to increasing resolution 
(and correspondingly decreasing the field of view). Alter- 
natively, one may map an image onto the surface of an ob- 
ject that is visible at varying distances from the viewer (e.g., 
a receding surface where nearer parts of the object are visi- 
ble at higher resolution and farther parts are visible at lower 
resolution). 

To avoid aliasing artifacts, such multiresolution render- 
ing obviously requires pre-filtering [ I]. However, for many 
applications, on-the-fly filtering for arbitrary resolutions 
may not be feasible. The most commonly-used approach 
to this problem is to precompute versions of the image at 
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a large number of pre-defined resolutions and to interpolate 
between them when asked to render the image (or some por- 
tion) at some arbitrary resolution, thus trading off precom- 
putation and storage for increased interactive performance. 
When used for graphical texture mapping, this technique is 
known as MZP mapping [2] and is almost universally avail- 
able in current graphics hardware and software systems. 

Similar approaches are also used in multiscale analysis 
of images, in which a hierarchy of reduced-resolution ver- 
sions of an image is generated [3, 4, 5,  61. In many of 
these techniques, however, one may precompute versions 
of the image at specified resolutions but may find that de- 
sired properties exhibit themselves between these sampled 
resolutions-thus introducing a scale-space sampling ques- 
tion yet unanswered or even agreed upon in the image- 
processing community. 

While interpolation between multiresolution images has 
advantages of simplicity and speed, it does not always ap- 
proximate well the actual change in the value of a pixel un- 
der continuous change in resolution. Hybrid methods us- 
ing filtering of precomputed resolutions instead of interpo- 
lation have been proposed [7],  but although this approach 
avoids the inaccuracy of interpolation and is much faster 
than directly filtering the original image, it still requires fur- 
ther filtering of one of the precomputed images at interac- 
tive speeds. 

While the limitations of interpolating between multiple 
resolutions (e.g., MIP mapping) are well known [7],  little 
work has been published that quantifies or bounds the error 
in such methods. An example of such errors is illustrated 
in Figures land 2. Clearly, this error can also be made less 
by more finely sampling the scales used to precompute mul- 
tiresolution versions of the image. But this leads to an im- 
portant, fundamental, and yet unanswered question: what 
constitutes sufficient sampling of multiple resolutions when 
interpolating between multiresolution images? 

This paper presents a method for bounding the error in 
such multiresolution interpolation, thus allowing us to ei- 
ther estimate the resulting error or to find desired sampling 
rates that limit the error to a desired bound. 
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Original Image 

Half-Resolution Image 

Three-Quarter Resolution Image 

Interpolated Image 

Absolute Difference Image (range 0 to 81) 

Figure 1: Example of errors that occur when interpolating between multiresolution images. LEFT COLUMN: original image 
(top) and half-resolution version (bottom). RIGHT COLUMN: three-quarter resolution (top), interpolated approximation of 
three-quarter resolution (middle), and absolute difference (bottom). Notice the artificial contrast enhancement and sharpening 
introduced in the interpolated image and reflected in the difference image. The difference image is normalized for display and 
has a maximum value of 81 (nearly one-third of the range of the original image). 
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tween thetwo curves in (a). 

Difference between the actual and approximated p.s.f. 

Figure 2: Errors that can occur in interpolation of one- 
dimensional Gaussian point-spread functions. The interpo- 
lated function is sharper and higher-contrast than the correct 
function. Interpolation of two-dimensional point-spread 
functions behave similarly. 

2. Scale Spaces 

A useful tool for mathematically representing multires- 
olution spaces is the concept of a scale space (e.g., [4],[5], 
and many others): the set of all images of the same scene 
at varying resolutions. If we assume that the multiresolu- 
tion images are “acquired” (generated) from some base im- 
age using a scaled, weighted measurement aperture applied 
uniformly over the image, such a scale space may be written 
as the convolution of the basis image with scaled versions 
of the measurement aperture: 

L ( F ,  a) = L(Z7 0 )  c G ( Z ,  U) 

where L(Z,  0) denotes the underlying scene (original image 
or “zero-scale” basis for the space), * denotes convolution, 
and G ( Z ,  a) denotes a measurement aperture with size 0. 

It can be shown that in order to avoid artifacts from 
spurious resolution (temporary increases in sharpness as 
resolution decreases), the unique selection of aperture 
weights is the Gaussian [SI: 

For this reason, scale spaces are most commonly generated 
using Gaussian blurring where the blurring parameter a is 
the “scale” of the image. Measurement scale (defined in this 
way) and resolution are inversely related. 

An important property of Gaussian-generated scale 
spaces is that Gaussian blurring with scale a is equivalent 
to running the diffusion equation for time t: 

d -L = V 2 L  at 
where t = a2/2. This property is key as we attempt to 
determine the error in linear interpolation in the resolution 
(scale) dimension of these spaces. 

3. Error in Interpolation Between Resolutions 

The approximation error E in linear interpolation of a 
function f between two known values separated by h is 

where x’ is the intermediate point at which the magnitude 
of the second derivative of f is greatest [9]. Thus, if we 
can bound the second derivative of the multiresolution im- 
age with respect to scale, we can bound the error in such 
interpolation. 

The key to bounding these derivatives with respect to 
scale is the diffusion equation. Using Eq. 1 and substitut- 
ing t = a2/2 and d t  = o da ,  

d l  -L = -V2L 
d a  a 

Extending this to second-order derivatives, 

The implication of this is that if we can bound the fourth 
derivatives with respect to our spatial variables, we can 
likewise bound the second derivative with respect to scale 
(resolution). 

Substituting this into Eq. 2, 
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where x’ is now the intermediate point at which the magni- 
tude of the second derivative with respect to scale (fourth 
derivative with respect to space) is greatest. 

If we sample scale exponentially, as is usually the case 
in scale-space implementations [5] and multiresolution dis- 
plays [2], the scale c% at step i of the resolution is D~ = c@ 
for some exponential base b (the multiplying factor from 
scale to scale). The difference between one sampled scale 
D and the next is thus h = a(b - 1). Substituting this into 
Eq. 3 gives 

This implies that to ensure an error bound of a single inten- 
sity level, one can reduce the height and width of the im- 
age by no more than 8.8% at a time, far less than succes- 
sive halving of each dimension and much closer to the 1.1 
or a scale multipliers reportedly used in recent multi- 
scale research [6]. 

4. Conclusion 

Using the diffusion equation as a way to tie second- 
order spatial derivatives to first-order scale derivatives in 
scale spaces, we have turned bounds on fourth-order spa- 
tial derivatives into a bound on the error in linear interpo- 
lation across resolutions. Although the potential for error 
in the interpolation of resolution has been appreciated for 
several years [7], the methods presented here provide a ba- 
sis for quantitative analysis of this error. Similar techniques 
could also be used for higher-order interpolation functions. 

If we bound IV2V2Ll by some value B, this becomes 
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