
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2005-07-21

Nesting Automated Design Modules In An Interconnected Nesting Automated Design Modules In An Interconnected

Framework Framework

Jared Matthew Young
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Mechanical Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Young, Jared Matthew, "Nesting Automated Design Modules In An Interconnected Framework" (2005).
Theses and Dissertations. 636.
https://scholarsarchive.byu.edu/etd/636

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F636&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F636&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/636?utm_source=scholarsarchive.byu.edu%2Fetd%2F636&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

NESTING AUTOMATED DESIGN MODULES IN AN

INTERCONNECTED FRAMEWORK

By

Jared M. Young

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

Brigham Young University

August 2005

Copyright © 2005 Jared M. Young

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Jared M. Young

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

__________________ _______________________________
Date Jordan J. Cox, Committee Chair

__________________ _______________________________
Date W. Jerry Bowman, Committee Member

__________________ _______________________________
Date Carl D. Sorensen, Committee Member

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the dissertation of Jared M.
Young in its final form and have found that (1) its format, citations, a bibliographical style
are consistent and acceptable and fulfill university and department style requirements; (2)
its illustrative materials including figures, tables, and charts are in place; and (3) the final
manuscript is satisfactory to the graduate committee and is ready for submission to the
university library.

__________________ _______________________________
Date Jordan J. Cox

Chair, Graduate Committee

Accepted for the Department

__________________ _______________________________
Date Matthew R. Jones

Graduate Coordinator

Accepted for the College

__________________ _______________________________
Date Alan R. Parkinson,

Dean, Ira A Fulton College of Engineering and
Technology

ABSTRACT

NESTING PDGs IN AN INTERCONNECTED FRAMEWORK

Jared M. Young

Department of Mechanical Engineering

Master of Science

This thesis seeks to extend the PDG methodology by developing a generalized for-

mal method for nesting PDGs in an interconnected system. A procedure for decomposing

an individual PDG into reusable modules will be defined and a software architecture will

be presented which takes advantage of these reusable modules.

This method breaks the PDG structure into discrete elements known as PDG

objects, PDG modules and PDG services. Each of these elements forms a distinct unit of

reuse and each can be seen as a “little” PDG.

Two different industrial implementations of this method are presented. These

examples show that it is possible to share PDG services amongst multiple PDGs and pro-

vide a mechanism to create a PDG for a complicated system.

ACKNOWLEDGEMENTS

This work would not have been possible without the contributions of faculty, stu-

dents, my loving family, and my Heavenly Father. I am extremely grateful for this help

and the opportunity to study at this wonderful university.

Special thanks to Greg Roach for his willingness to listen and his mentorship.

I appreciate the patience of my loving wife Kim and her constant encouragement

in the completion of this work. I couldn’t have accomplished anything without this help

and the prayers of my children.

vii

TABLE OF CONTENTS

CHAPTER 1 Introduction..1

CHAPTER 2 Literature Review ..5
2.1 Mass Customization...5
2.2 Product Design Generator Methodology ...7
2.3 Web-Enabled Product Development..11
2.4 Commercial Integration Tools ...13
2.5 Object-Oriented Theory...14
2.6 Agent-Based Systems ..18
2.7 Summary..19

CHAPTER 3 Background ..21
3.1 Foundation ...21
3.2 Enabling Technologies...33
3.3 Patterns...48
3.4 Product Architecture ..50
3.5 Fractals...56
3.6 Summary..56

CHAPTER 4 Method ..59
4.1 The PDG ..59
4.2 Units of Reuse and Units of Partition ..62
4.3 PDG Creation Process ...72
4.4 Summary..87

CHAPTER 5 Results ...89
5.1 Architecture of the PDG Framework...89
5.2 Example Implementations ...95

viii

CHAPTER 6 Summary, Conclusions and Recommendations125
6.1 Summary..125
6.2 Conclusions..128
6.3 Recommendations..129

CHAPTER 7 References...131

APPENDIX A Simple Web Service Source Code ..141
7.1 Capacity.java..141
7.2 CapacityVO.java..142
7.3 Capacity_SEI.java..144
7.4 CapacityVO_Deser.java...144
7.5 CapacityVO_Helper.java ...145
7.6 CapacityVO_Ser.java...147
7.7 Capacity.wsdl ...149

ix

LIST OF FIGURES

Figure 2.1 Schematic Representation of the PDG..8
Figure 3.1 Anatomy of the Atmospheric Resistor..22
Figure 3.2 Atmospheric Resistor PDG Architecture..23
Figure 3.3 Agent-Based Architecture for the Atmospheric Resistor PDG24
Figure 3.4 CAD Model of a Typical Turbine Disk ..25
Figure 3.5 Turbine Disk PDG Architecture ...26
Figure 3.6 Constant-Force Compression Spring ..28
Figure 3.7 CAD Model of Fan Disk and Cone ..29
Figure 3.8 CAD Model of Fan Blade...30
Figure 3.9 CAD Model of Fan Stator Assembly..32
Figure 3.10 SOA’s Find-Bind-Execute Paradigm..35
Figure 3.11 Different Layers of Service Oriented Applications37
Figure 3.12 Three types of Modular Architecture..53
Figure 4.1 “Cellular” Representation of an Object [83]...63
Figure 4.2 Message Passing Between Objects [84] ...64
Figure 4.3 Illustration of Fractal Properties ...66
Figure 4.4 PDG Structure as a Fractal..67
Figure 4.5 Recursive Modular Decomposition ..77
Figure 4.6 Recursive Component and Object Aggregation ...79
Figure 5.1 Model-View-Controller Pattern ..90
Figure 5.2 PDG Business Logic Layer...92
Figure 5.3 Generalized Architecture of the PDG framework ..94
Figure 5.4 Atmospheric Resistor..97
Figure 5.5 Modular Decomposition of the Atmospheric Resistor98
Figure 5.6 Recursive Component and Object Aggregation ...99
Figure 5.7 Classification of Pipe Connection Module into its Constituent Sets100
Figure 5.8 Sample WSDL Document from Resistor PDG...104
Figure 5.9 Service Choreography...105
Figure 5.10 Resistor User Interface Storyboard...106
Figure 5.11 Other Products Where Resistor PDG Services Could Be Used..................107
Figure 5.12 The Pratt and Whitney PW4000 Turbofan Engine111
Figure 5.13 Simplified Decomposition of a Turbofan Engine.......................................113
Figure 5.14 Tree Representation of Engine Decomposition ..115
Figure 5.15 Sample Aggregation from Turbofan Engine PDG System.........................118
Figure 5.16 Set Definitions for Turbine Airfoil ...119
Figure 5.17 Storyboard of the Turbine Disk User Interface Design Phase....................121
Figure 5.18 Storyboard of the Turbine Disk User Interface Release Phase...................122

1

CHAPTER 1 INTRODUCTION

This thesis seeks to develop a generalized formal method for nesting automated

design modules in an interconnected system. A procedure for decomposing automated

design modules into reusable elements will be defined and a software architecture will be

presented which takes advantage of these reusable elements.

The proposed method defines a process for decomposing a product into reusable

design modules. This is done by recursively dividing the product into smaller and smaller

chunks and then regrouping these chunks into reusable structures. These reusable struc-

tures use ideas from object oriented design and are realized as web services. These tech-

niques require an extensive knowledge of object oriented design, web programming and

service oriented architectures.

In this era of “faster, cheaper, better”, companies are focusing on improving the

product development process. The global market is becoming more and more competitive

and customer requirements are becoming more and more specific. Production in many

industries is changing from make-to-store and make-to-market to make-to-order. As con-

2

sumers become more educated to market options, the demand for custom products

increases. This increase in the demand for custom products is forcing market shifts

towards mass customization [1].

The broad, visionary concept of mass customization was first coined by Davis [2]

and promotes mass customization as the ability to provide individually designed products

and services to every customer through high process agility, flexibility and integration [3].

Mass customization systems may thus reach customers as in the mass market economy but

treat them individually as in the pre-industrial economies [2].

New flexible design, manufacturing and information technologies give companies

the potential to deliver higher variety at lower cost. Experience has shown, however, that

companies are limited not by the technology but by organizational barriers and the resis-

tance to changing the way things are done. It appears that the largest hurdle lies not in

advancing the technology, but in advancing the product development process itself. Com-

panies are still working with the same basic philosophy for product development that they

were using in the 1960’s regardless of the fact that technologies and tools are so dramati-

cally different [4]. These product development capabilities are the basis for successful

competition. Successful product development, in our globally linked and increasingly

competitive economy, requires fundamentally improved approaches to organizing the

product development process. In order to develop products efficiently, companies must

take advantage of their existing knowledge and work coming from previous engineering,

software code, analyses and parts instead of “reinventing the wheel” each time.

3

Roach presents a new “object oriented” product development process called a

Product Design Generator (PDG) [1]. The PDG forms a flexible, new methodology for

product development where product variation is built into the product development pro-

cess and is achieved through scalable and in some instances modular parametric models

[5]. The PDG methodology provides a systematic approach to the creation of automated

design modules. The method allows for the development of reusable design and produc-

tion modules for specific product families and is able to take full advantage of the latest

CAD/CAM/CAE tools and capabilities. The systematic approach used in the PDG will be

extended to provide improved reuse and the ability to connect PDG modules together.

There are, however, some current limitations to the PDG methodology. For exam-

ple, there are no current strategies that allow a PDG to be used as a component in another,

higher level, PDG. The use of a PDG within a higher level system PDG is referred to as

nesting the PDG. The ability to nest a turbine disk PDG, for example, inside a gas-turbine

engine PDG would be invaluable. This would allow the system designer to design the tur-

bine disk in the context of the entire engine system and allow the designer to leverage the

knowledge captured in the entire system. Secondly, up to this point each PDG has been

designed as an integral application. The implemented PDG can not easily be broken down

into components and these components can not be executed independently without signif-

icant modification. Because nearly all PDGs share some of the same functions, these func-

tions have been duplicated in each of the existing PDGs. If the individual PDGs were to be

decomposed into reusable modules, these functions could be shared by many PDGs. This

would eliminate duplication and reduce the time required to construct a new PDG. A mod-

4

ular approach would not only allow for reuse of PDG components but would allow these

components to be used in different systems and contexts. Lastly, there is no standard soft-

ware architecture or framework for rapid PDG development and deployment which could

take advantage of these reusable modules.

A generalized formal method for nesting PDGs in an interconnected system will

be developed. In order to develop this method, it will also be necessary to develop a proce-

dure for decomposing an individual PDG into reusable modules. These methods must

have the same attributes enumerated by Roach in [1] namely they must (1) be engineered

for reuse, (2) be flexible and (3) optimize and integrate the latest tools. These methods will

then be applied in the design of an Atmospheric Resistor and a turbofan engine PDG.

5

CHAPTER 2 LITERATURE REVIEW

As previously stated, the aim of this thesis is to extend the Product Design Genera-

tor methodology by devising a generalized formal method for nesting PDGs in an inter-

connected system. First, the idea of mass customization is presented. Second, a review of

the PDG methodology is presented. Third, a review of some of the latest web-enabled

product development tools are reviewed for comparison. Next, a review is made of the

commercial integration tools for product development. Finally, a review of distributed

agent-based systems is made because of the benefits of autonomous agents and their dis-

tributed architecture.

2.1 Mass Customization

Mass Customization (MC) can be defined either broadly or narrowly. The broad,

visionary concept was first coined by Davis and promotes MC as the ability to provide

individually designed products and services to every customer through high process agil-

ity, flexibility and integration. MC systems may thus reach customers as in the mass mar-

ket economy but treat them individually as in the pre-industrial economies [2]. This is a

6

shift for manufacturing industries from the Fordist paradigm of production, in which econ-

omies of scale are being replaced by economies of scope, competition through price by

competition through innovation, standardization and hardware automation by more pro-

grammable and flexible technologies.

New flexible manufacturing and information technologies enable production sys-

tems to deliver higher variety at lower cost. There is also an increasing demand for prod-

uct variety and customization, even segmented markets are now too broad as they no

longer permit developing niche strategies.

The idea of customizing products on a large scale with prices comparable to stan-

dard products has been around for some time. But due to insufficient technological infra-

structure, implementations of the process were largely unworkable until relatively

recently. With the overwhelming rise and utilization of the internet as an e-commerce and

information transportation mechanism, a viable infrastructure is now in place [7]. These

new internet technologies are seen as the main enabler to mass customization as they

allow for rapid gathering and dissemination of information. Information can be regarded

as the most important factor for the implementation of MC. Mass customization is suc-

cessful only when it can cover this need for information and communication both pur-

posely and efficiently. A distinctive feature of new internet technologies is that they

enable direct communications between customers and suppliers [25]. These customers

may be within the organization itself or external to the organization.

7

DaSilveria et al. identify an opportunity for the design of an effectively decentral-

ized, service based, architecture for MC systems, although they do not express it in exactly

those terms [7].

2.2 Product Design Generator Methodology

The goal of the product design generator methodology is to create a new detailed

development process for mass customization. This new process must provide a more com-

plete definition of the product to include process information and knowledge and alleviate

the rework in the product development process caused by design iterations upstream. It

must also allow for iterative design activities while providing single pass generation of the

product artifacts. The process should be scalable, reusable, consistent and able to take

advantage of the capabilities of new CAD/CAE/CAM and IT technologies.

The PDG developed by Roach provides a method for product development where

product variation is built into the product development process. The PDG is a computer-

based tool that is used to automatically create all of the design artifacts and supporting

information necessary for the design of a product that is customized to meet the needs of a

specific customer [1]. It is an automated process that transforms a set of customer specifi-

cations to product deliverables. The customer specifications are transformed to product

deliverables through a set of intermediate transformations or mappings. These intermedi-

8

ate transformations are made up of behavioral predictions, company rules and best prac-

tices, the generation of design artifacts, vaulting strategies, testing procedures and design

artifact delivery procedures [5].

The transformation of customer requirements into detailed designs is a complex

process and can be represented by the following equation:

(2.1)

where Φ represents the design requirements, F is the design transformation, and Ω is the

set of process outputs. Thus, in order to deal with the great complexity inherent in the

design process, F, Φ, Ω are decomposed into subsets and mappings (see Figure 2.1). Φ is

decomposed into two subsets, customer requirements, C, and company conventions and

Figure 2.1 Schematic Representation of the PDG

F Φ() Ω=

9

rules, K. Ω is decomposed into five subsets, product behavior metrics, B, product artifacts,

A, product deliverables, U, test and validation metrics, T, vaulted artifacts, V, and master

parameter list, M. The dependencies between the different sets are represented by a series

of intermediate transformations or mappings. The design map, D, takes the set C and

transforms it into a subset of M. The rules map, R, transforms the set K to a subset of the

set M. The predictive map, P, represents a set of predictive models transforming a subset

of the set M to the set B. The artifact instantiation map, G, is a set of parametric design

artifacts that transform a subset of the set M to the set A. The test and validation map, I, is

the collection of test procedures that transforms a subset of the set A to the set T. The

archiving map, E, represents the procedure for archiving and vaulting product artifacts

which transforms a subset of the set A to the set V. The product delivery and support map,

S, transforms a subset of the set A to the set the set of final deliverables, U. [1]

2.2.1 PDG Construction

The PDG is constructed by (1) selecting the product concept and embodiment, (2)

developing the product generation schematic (PGS), and (3) constructing the reusable

intermediate functions and integrating them into the automated PDG application [1].

The first step in creating a PDG is to identify the solution context. Many solutions

exist, for example, to reduce the noise produced by venting a gas to the atmosphere.

Silencers, mufflers, and atmospheric resistors all meet this criteria. The creation of a PDG,

therefore, would begin by selecting one of these concepts. In this case, an atmospheric

10

resistor may be chosen to solve this noise problem and an atmospheric resistor PDG cre-

ated.

The second step in the construction of a PDG is the development of the product

generation schematic (PGS). The PGS is a visual representation of the overall transforma-

tion function and serves as an aide in planning PDG construction. In the process of devel-

oping the PGS, the transformation function is defined, the membership of the various sets

are enumerated, and the actual transformations between the sets are defined. The PGS is

constructed in four steps. First, the best-practice process for designing the product is

decomposed into the various sets. Next, parametric models are identified to serve as inter-

mediate transformations between the sets. With these parametric models now identified,

the parametric models are planned and designed. Next, the governing parameters for all of

the intermediate transformations are gathered and reconciled into the master parameter

list. The final step is to formalize the design process sequencing by creating a storyboard.

The last step in PDG construction is the construction of the reusable transforma-

tions and integrating them into an application. First, the intermediate transformations are

implemented as executable models in the specific tools used to produce the various design

artifacts. Second, the storyboard and executable models are integrated into an automated

application. [5]

The PDG provides controlled variation of possible designs and allows for the rapid

creation of custom designs. This significant reduction in design cycle time has been shown

in at least two industrial applications. Because variant designs may be produced so rap-

11

idly, the cost of developing custom designs is significantly reduced. The PDG has been

shown to be flexible enough to utilize the capabilities of the latest CAx tools and has

proven to be repeatable and consistent [1]. It is also interesting to note that the develop-

ment of a PDG often leads to a reorganization of the product development process itself. A

more detailed account of the PDG methodology can be found in [1].

2.3 Web-Enabled Product Development

Web technology is playing an increasingly important role in product development

and is rapidly changing the way engineering is done. Implementation of product design

systems on the internet allows designers to gain worldwide access to valuable design

information and design algorithms that they can easily incorporate into their day-to-day

design activities. These web-based systems allow engineers to control complex engineer-

ing programs through a simple and familiar interface. Over the last several years, more

and more efforts have been put into web-based product development applications as many

industries have distributed their product development to geographically dispersed loca-

tions.

Siddique and others developed a web based template used in creating variants of a

family of coffee makers [14]. This work is based on the Product Family Architecture and

is limited to the automatic creation of CAD models using ProEngineer. He extended the

work in [15] to a product family FEA module to analyze components of lawn trimmers

and edgers. Ninan and Siddique also created a CAD/FEA template for web-based bicycle

design using Active Server Pages (ASP) technology. This example uses Pro/E to generate

12

the solid model and ANSYS as the FEA software. Flores et al [18] developed an auto-

mated web application for the creation of a sheave used in an elevator assembly. The

architecture was similar to that of the coffee maker template but was complicated by add-

ing an optimization loop to the application using the iSight optimization package. The

main focus in this work is the development of a “CAD Services” specification which

would integrate CAx applications using a component architecture. This specification

would then be used to eliminate some of the limits found in the existing CAx application

programming interface (API). Wong [13], developed an automated system for designing

and optimizing industrial silencers. The silencer application uses Pro/Toolkit and an opti-

mizer to produce variant silencer designs. One of the most complete of the examples

found in the literature is a web-based support system for gear design [8]. This application

allows the user to design different gear types and configure them into a simple gearbox

assembly. The application then selects materials and bearing information from a database,

runs a finite element model and specifies manufacturing process information. A prototype

application architecture is proposed by Karne for the future development of manufactur-

ing tools [11]. In this case, manufacturing objects are modeled with object data models

and are stored in an object-oriented database management system. Tumkor [35], presents a

web-based design catalog for shaft and bearings, which provides some information to the

remote designer and aids in designing a shaft and in selecting the rolling element bearing

simply and correctly. The user can download the CAD or FEM models to carry out further

investigations. Wang et al. [39], presents a web-based tool for custom cell phone design

where users can select a phone style and customize its appearance by interacting with a

Java applet which manipulates a VRML model of the mobile phone. Mulberger et al [52]

13

describe interactive web-based platform customization as an extension of product family

design. In their work, a web-based framework is presented and applied to the design of

new refiner plates used in pulp and paper processing. They then add optimization to the

framework and create a web-based application for general aviation aircraft design. This

framework, however, is not scalable nor is it extensible.

It is apparent in the literature that web technologies have successfully been applied

to specific product development applications. While these may appear outwardly to be

similar to a completed PDG implementation, it is clear from this survey that the above

applications lack the formal framework of the PDG and thus the ability to be reused. They

also lack an extensible framework. Each of these web based product development applica-

tions was designed as a stand alone application. They were not designed as scalable web

applications and many of them can not even support more than one simultaneous user

which quickly erases the advantages of a web based product design environment. They

were not designed to be extended nor were they designed with the idea of reuse in a higher

level system framework.

2.4 Commercial Integration Tools

Several commercial software applications have been developed to aid in the inte-

gration of engineering tools. FIPER, is a four year project sponsored by the National Insti-

tute of Standards and Technology designed to create an environment that allows an

engineer to easily integrate various pieces of software to form a simulation environment.

Kao et al. describe the use of FIPER for real-time business-to-business (B2B) collabora-

14

tion through the internet. In this case FIPER is used for virtual collaboration of aircraft

engine combustor design between GE Aircraft Engines - a jet engine manufacturer, and

Parker Hannifin - a gas turbine fuel nozzle supplier. In this case the steps to design a func-

tional nozzle are shared between GE and Parker. The combustor design at GE specified

interfaces for the fuel nozzles, this information was then passed to Parker where the noz-

zles were designed and analyzed for vibration. When this analysis was completed, the nec-

essary information was passed back to GE for aerodynamic analysis. The process was

structured in such a way as to allow iteration between the two companies to occur. This

case study shows the potential for real time collaboration across the internet [26]. Another

similar commercial software package is ModelCenter by Phoenix Integration. The Model-

Center technology is very similar to that of FIPER. Similar case studies exist for the Mod-

elCenter technology.

Each of these tools is geared toward the integration of simulation code and lack a

formal strategy for their use. Although these tools provide the capability to create a com-

ponent based analysis model, they provide no strategy as to how to decompose a system

into reusable entities.

2.5 Object-Oriented Theory

Some of the first ideas for object-oriented programming and theory come from a

biological analogy. It was postulated that the ideal computer would function like a living

organism; each “cell” would behave in accord with others to accomplish an end goal but

would also be able to function autonomously. The “cells” could also regroup themselves

15

in order to attack another problem or handle another function. The human body is divided

into trillions of cells, each performing a specialized task. Like objects in software pro-

duced with-object oriented programming, human cells do not know what goes on inside

one another, but they can communicate, working together to perform complex tasks. A

developer can focus on one simple module at a time, making sure it works properly, and

move on to the next. Not only is building a system this way easier, but the system will be

much more reliable. And when it does break down, it is simpler to fix, because problems

are typically contained within individual modules, which can be repaired and replaced

quickly [21].

2.5.1 Objects

An object represents either an abstract concept or a physical entity in the world,

both real and perceived [22]. An object can be a person, place, thing, or attribute -- any-

thing tangible or intangible that exists or is perceived to exist.

Abstraction allows for easier management of complex ideas. A description of a

real-world object, situation or process can be simplified in an abstracted model to empha-

size aspects that are important to a user of a model. Other details not needed for under-

standing are suppressed and displayed only in more detailed models. The idea of

abstraction in object-oriented development models is to distill the essence of a problem to

understand it better. In building systems of objects, an abstract model emphasizes the

external view of an object, with the implementation details hidden inside the boundaries of

the object [23].

16

Classification is the process of identifying sets of objects that belong together

because they share a particular concept, such as a feature or function [22]. Object classes

are generic representations of any object that is a member of that class. These groups are

identified by a specific characteristic that makes logical sense.

Encapsulation follows directly from the idea of abstraction. Only the minimal

details required in the understanding of an object should be used to represent that object in

the abstract model. Encapsulation, also known as information hiding, provides a concep-

tual barrier around an object, preventing users of the object from viewing its internal

details.

Generalizations/Specializations begin with concepts in the most general sense that

become further and further refined. A generalization/specialization is commonly referred

to as a “type-of” relationship. For example green is a type of color or mustang is a type of

automobile. Using generalization, object types can be organized into hierarchies, which

form increasingly general types [22]. More general object classes are sometimes referred

to as parents, while the specialized classes are referred to as children. The general objects

encompass the more specialized objects.

Aggregation relationships depict “part-of” hierarchies. Aggregates are assemblies

composed of other objects, or components. For example, an engine, transmission, wheel

and body are part of a car. The engine in turn is composed of fuel, cooling and ignition

systems. An aggregation can be thought of as a complex object that is composed of other

17

objects. Conceptually an aggregation is an extended object, viewed as a unit by some

operations, but actually composed of multiple objects.

When objects have been encapsulated to insulate the outside world from the details

of the object structures and behaviors, there needs to be a way to interact with these struc-

tures and behaviors. Messages provide this mechanism. The total set of messages that an

object can respond to comprises the behavior of that object.

Polymorphism is the ability of two or more object classes to respond to the same

message, but in different ways. The meaning of the commands that are passed between

objects is packaged with the objects, so a client object does not need to be aware of which

server object the message is being sent to. Polymorphism allows the similarities between

different object classes to be exploited. Since it is possible to have different responses to

the same message, the sender of the message can simply transmit it without regard to the

class of the message receiver [23].

Inheritance allows a class to inherit features from a parent class. Multiple inherit-

ance extends this concept to allow a class to have more than one parent class and to inherit

features from all parents. A more complicated kind of generalization -- multiple inherit-

ance -- does not restrict a class hierarchy to a tree structure. Generally the child class

assumes all of the properties of the parent classes and adds new responsibilities of its own.

18

2.6 Agent-Based Systems

DaSilveira et al. [7] identify a void in the literature on how to implement the infor-

mation management processes required for mass customization and identify the potential

use of decentralized autonomous agents. Its implementation could potentially reduce the

complexity and increase the flexibility of the PDG.

Agent based systems represent one of the most promising computing paradigms

for the development of distributed, open and intelligent software systems. Agent technol-

ogy has been widely applied in the engineering design fields since the early 1990s [53].

An extensive survey of Multi-Agent systems in intelligent design and manufacturing as

well as conceptual design can be found in [54] and [55].

Agent-based architecture enables a truly cooperative coordinated computing style

wherein members of the agent community work together to perform computation, retrieve

information, and serve user interaction tasks. An autonomous agent (1) is not controlled or

managed by any other software agents or human beings; (2) it can communicate and inter-

act directly with any other agents in the system and also with other external systems; (3) it

has minimally sufficient knowledge about other agents and its environment; and (4) it has

its own goals and associated motivations [10]. In an agent-based system of more than one

agent, each agent is usually modeled after a natural subdivision of the application for

which the system is built. This natural division can be represented by function (e.g. Pro-

cess Planning), or by physical entities of the system (e.g. CNC machine).

19

Baker [6] explores the use of autonomous agents for use in a manufacturing pro-

cess planning and scheduling application. Here the agents are used as the tools for effi-

ciently reconfiguring available production resources. In this case an agent architecture

decomposes the system sufficiently to address both information modularity and the physi-

cal realities of manufacturing. Shen [10], uses agents to create a web-based collaborative

design system. Xue [17] uses a similar architecture to create a distributed database for

concurrent design where the tasks of collaboration are distributed among the agents. These

agents are accessed at a specified internet node and are accessed by its address and port

number.

Emerging standards from the Foundation for Intelligent Physical Agents (FIPA)

are playing an increasingly important role in developing intelligent, distributed and collab-

orative applications. These standards are helping with the innate difficulties of inter opera-

tion between heterogeneous agent communities and rapid construction of multi-agent

systems using platforms and toolkits that implement FIPA specifications [53].

2.7 Summary

The literature reviewed here provides insight into possible architectures for a

nested PDG framework.

20

21

CHAPTER 3 BACKGROUND

This chapter provides the background necessary for the development of a system

of interconnected PDG components. The foundation is laid by looking at the existing PDG

applications. Secondly, we look at various enabling technologies such as distributed com-

puting, service oriented architectures and web services. Next, we look at product modular-

ity, design patterns and product architectures. Lastly, we look at the concept of fractals.

3.1 Foundation

As in any architectural endeavor, the system of PDGs must be built on a solid

foundation of component PDGs. In order to build this foundation, a review of the imple-

mented PDGs will be made to determine a logical approach for splitting the PDG into its

constituent building blocks. It will then be possible to use and share these modules in mul-

tiple PDG applications. This, in turn, will form the basis for a generalized modular

approach to the construction of a product design generator.

22

3.1.1 Atmospheric Resistor PDG

3.1.1.1 Introduction

The first PDG built using the formal PDG methodology was the atmospheric resis-

tor PDG and was developed for a manufacturer of custom valves. An atmospheric resistor

is a fixed orifice fluid device used where any gas or steam needs to be released to the

atmosphere (Figure 3.1). Resistors are designed to prevent noise generation instead of

simply muffling noise at the outlet. These products are typically used in power plants, oil

and gas production facilities, pulp and paper mills, and other process plants where safety

considerations prohibit prolonged exposure to high levels of noise. OSHA standards

require noise levels in these plants to be kept below a threshold value for worker safety.

Noise control is achieved by controlling the expansion rate of the fluid thereby controlling

Figure 3.1 Anatomy of the Atmospheric Resistor

23

the fluid velocity. Because the process plants requiring resistors are so varied, each resistor

is custom designed to the specific application.

3.1.1.2 Architecture

The atmospheric resistor was designed as a stand-alone visual basic application

(Figure 3.2). This stand alone architecture is simple because it is self contained and easy to

install. This simple architecture does, however, have some drawbacks. First, the applica-

tion and all supporting software (e.g. MS Access, SolidWorks etc.) must be installed on

the user’s local machine. This means that each user must have a software license for each

of these programs. Second, visual basic is relatively slow computationally when compared

to other programming languages. Third, visual basic programs only run on the Windows

platform, they are not portable to linux or any other unix variant. Forth, MS Access does

not scale well to large databases with many simultaneous users. The greatest drawback

from this architecture, however, is that the internal mappings may not be shared or reused

without significant modifications and recompiling of the code itself.

Figure 3.2 Atmospheric Resistor PDG Architecture

24

Figure 3.3 shows how the architecture would change for a service oriented atmo-

spheric resistor PDG. Here the G mappings have been modularized into the SolidWorks

service and the MS Word service. The P mappings have been divided into logical modules

to give the most flexible and reusable architecture. The valve manufacturing company, for

example, uses the same disk stack in a different control valve application, uses the same

bolting rules across many different valves and uses the same rules for designing welded

and flanged pipe connections as contained in the bottom plate service. If a PDG were to be

constructed for a different control valve application, these elements would not be re-cre-

ated and using these components becomes a simple connection to the relevant component.

This greatly improves the maintainability of the overall system and provides a mechanism

for reuse.

Figure 3.3 Agent-Based Architecture for the Atmospheric Resistor PDG

25

3.1.2 Turbine Disk PDG

3.1.2.1 Introduction

The turbine disk PDG was developed for a commercial aerospace company. The

basic function of a turbine is to transform a portion of the kinetic energy and heat energy

in the exhaust gases to mechanical work, thereby driving the compressor and other acces-

sories [20]. The solution context for this particular PDG is that of an axial flow turbine. A

typical axial flow turbine is made up of a number of rotating airfoils that are inserted into

slots in an otherwise solid disk (Figure 3.4). The disk functions to maintain the circular

motion of the airfoils and couples them to one of the rotating engine shafts. For simplicity,

the airfoils were considered only as loads on the turbine disk.

Figure 3.4 CAD Model of a Typical Turbine Disk

26

The turbine section of an aircraft engine is located immediately after the combus-

tor section and absorbs most of the energy created in the combustion process. Conse-

quently, the turbine is the most highly stressed component in the engine [20]. The stresses

on the turbine disk come from the extremely high temperatures of the combustion gases,

the enormous inertial loads due to rotation at tens of thousands of rpm, and thermal

cycling during the mission. The problem becomes even more difficult when space require-

ments, weight and cost are considered. The difficult objective is to design a disk to with-

stand the stresses, fit within a specified spatial envelope, weigh as little as possible, and

meet the specified life requirements. These conflicting objectives make turbine disk

design an inherently iterative process, sometimes taking months to execute.

Figure 3.5 Turbine Disk PDG Architecture

27

3.1.2.2 Architecture

The architecture of the existing turbine disk PDG is slightly more complicated

than the resistor PDG because it is web-based (Figure 3.5). A web-based application does,

however, provide some significant advantages for product development. First, the applica-

tion need only be installed on a single machine. This allows a company to run the applica-

tion on a higher-powered computer while users of the application access it from smaller

and cheaper computers. A server-based architecture also lessens the burden of upgrades

and configuration management because any changes need only be made once on the

server. Second, the user does not need the CAD/CAE software installed locally on his/her

computer. The models can be accessed using free VRML viewers. Third, the web is easily

accessible from virtually anywhere in the world. This permits a company to share tools

between all of their globally dispersed locations. Notwithstanding these advantages, the

turbine disk is subject to the same constraints regarding the reusability and sharing of

models and mappings within the PDG. That is to say, the mappings can not be reused with-

out modifying and recompiling the code.

3.1.3 The Compliant Constant-Force Spring PDG

3.1.3.1 Introduction

A constant-force compression spring is a device that exerts a constant or near con-

stant force for a given displacement. These types of springs have application in robot end-

effectors, electrical contacts, grinding operations, etc. The solution context for this partic-

ular PDG is that of a compliant constant-force mechanism. A compliant mechanism is a

28

mechanism that gains some or all of its force and motion from the deflection of flexible

segments [1]. The configuration chosen for the PDG is shown in Figure 3.6.

3.1.3.2 Architecture

The constant force spring PDG was implemented as a visual basic application. The

storyboard was implemented in Visual Basic and the workflow was tightly integrated into

the user interface itself. The underlying behavioral models are also tightly coupled to the

PDG implementation as are the artifact models in Excel and Word. This architecture

makes it difficult to insert process steps into the design process and impedes the reuse of

individual behavioral and artifact models and mappings.

3.1.4 Class Projects - Turbofan Engine Components

The same aerospace company that sponsored the axial turbine disk PDG also spon-

sored the projects for a graduate level course. The projects were divided into four compo-

Figure 3.6 Constant-Force Compression Spring

29

nent groups; the fan disk and cone, a fan blade, a fan stator, and a turbine nozzle for an

industrial turbofan engine.

3.1.4.1 Fan Disk and Cone PDG

Five students were asked to develop a PDG for the fan disk and cone of the engine.

The fan disk is the axial disk that supports the fan blades. The nose cone of the engine is

attached to the disk. This represents a simple assembly of two components. Also, the fan

Figure 3.7 CAD Model of Fan Disk and Cone

30

disk and cone team had to collaborate with the fan blade team to ensure that the parametric

relationships between the disk and the fan blades would always be maintained [1].

3.1.4.2 Fan Blade PDG

In this project, five students were asked to develop a PDG for the engine fan blade

that is attached to the fan disk. The fan blade is composed of four sections: the airfoil, the

Figure 3.8 CAD Model of Fan Blade

31

platform, the attachment, and the shank. The fan blade required a parametric definition of

the airfoil cross section in order to design the blade because of the cross section changes

that were required. This same parametric definition was also used by the fan stator project

team and the turbine nozzle team. Thus, a parametric, generic blade cross section model

was developed for all three blade project teams to use [1].

3.1.4.3 Fan Stator PDG

In this project, four students developed a PDG for the engine fan stator. The fan

stator is located directly behind the fan in the engine. The stator is a fixed ring of blades

that act as diffusers to decrease the air velocity and increase the pressure. The fan can be

considered to be the first compression stage of the engine. The fan stator assembly is com-

posed of a number of stator sections which contain one to several vanes. The fan stator

required the parametric vane cross section model in order to design the vanes in the stator.

3.1.4.4 Class Project Architecture

Because each of these projects was implemented in a class setting, the implemen-

tation architecture was kept simple. User interfaces were implemented using MSExcel,

MSAccess, and Visual Basic and their functionality was relatively basic as compared to

the PDGs discussed previously. These projects do, however, illustrate the need to reuse

models in more than one PDG and show the necessity for a framework that provides com-

munication between the various PDGs. Without this framework it will be difficult to cre-

ate a maintainable system level PDG derived from the component PDGs. The fan disk and

fan blade teams, for example, coordinated the model elements pertaining to the attachment

32

features on the blade and the disk. In doing so, work was duplicated as each team had to

have knowledge of attachment design practices in order to calculate the attachment geom-

etry. Any iteration between the two PDGs required a manual export of the relevant param-

eters. In this case, it would have made much more sense to share a common model that

could be used to design the attachment regions of the disk and blade. Furthermore, this

approach would provide improved maintainability of the system because changes and

Figure 3.9 CAD Model of Fan Stator Assembly

33

updates could be made to a single component within the system. Otherwise, changes made

to one model would cause the second model to be “out of synch” with the first, creating a

fragile, hard to maintain software environment. The same could be said about the paramet-

ric airfoil model that was used by both the fan blade and fan stator teams. In this case, each

team used the same parametric model for the airfoil definition but a separate copy of that

model was used by each of the groups. This practice acts in contrary to the idea of reuse

that is so important to the PDG methodology. Benefits of scale, and speed of PDG creation

can not be realized without the reuse of PDG components and a structure to allow compo-

nents to be assembled on an ad hoc basis into a higher level system.

3.2 Enabling Technologies

Technologies such as distributed computing, service oriented architectures, web

services, design patterns, J2EE, and Microsoft dot Net have recently provided the neces-

sary capabilities to successfully create a system of interconnected PDGs and PDG compo-

nents. These technologies along with emerging standards for inter connectivity provide

industry accepted methods for connecting disparate systems.

3.2.1 Distributed Computing

CORBA, DCOM, and Java/RMI are distributed object technologies, while web

services, are based on a messaging architecture, in which methods are invoked and data

passed via messages. Traditional object-based approaches tend to be tightly coupled. In a

tightly coupled system, the changes in the interface definition of one component require

the rest of the system to be updated. Service or message based architectures tend to be

34

loosely coupled meaning changes in one component can be tolerated as long as the under-

lying data and component definitions don’t change.

3.2.2 Service Oriented Architecture

Service Oriented Architecture (SOA) is an architectural style for building software

applications that use services made available over a network such as the web. It promotes

loose coupling between software components so that they can be reused. Applications in

SOA are built based on services. A service is an implementation of a well-defined busi-

ness functionality, and such services can then be consumed by clients in different applica-

tions or business processes.

SOA allows for the reuse of existing assets where new services can be created

from an existing infrastructure of systems and components. In other words, it enables

businesses to leverage existing investments by allowing them to reuse existing applica-

tions or pieces of applications, and promises inter operability between heterogeneous

applications and technologies. SOA provides a level of flexibility that wasn't possible

before in the sense that:

• Services are software components with well-defined interfaces that are

implementation-independent. An important aspect of SOA is the separation

of the service interface (the what) from its implementation (the how). Such

services are consumed by clients that are not concerned with how these ser-

vices will execute their requests.

35

• Services are self-contained (perform predetermined task), modular and

loosely coupled (for independence)

• Services can be dynamically discovered

• Composite services can be built from aggregates of other services

• Services stress inter operability

• Services have a network-addressable interface

• Services have course-grained interfaces

• Services are location transparent

SOA uses the find-bind-execute paradigm as shown in Figure 3.10. In this para-

digm, service providers register their service in a public registry. This registry is used by

consumers to find services that match certain criteria. If the registry has such a service, it

provides the consumer with a contract and an endpoint address for that service.

Figure 3.10 SOA’s Find-Bind-Execute Paradigm

36

SOA promotes application assembly because services can be reused by numerous

consumers. For example, in order to create a service that calculates the attachment geome-

try, we build and deploy only one instance of such a service; then we can consume this ser-

vice from any number of applications including the fan disk PDG and the fan blade PDG.

The main theme behind SOA is to find the appropriate modularity and achieve loose cou-

pling between modules.

The other key advantage of SOA is that it lets you automate business-process man-

agement. Business processes may consume and orchestrate these services to achieve the

desired functionality. Thus, new business processes can be constructed by using existing

services. For example, the design of fan disk can be represented by a business process that

can asynchronously interact with the requisite services.

Like any distributed application, service-oriented applications are multi-tier appli-

cations and have presentation, business logic, and persistence layers. Figure 3.11 provides

a typical architecture for a service-oriented application.

Another promise of SOA is that you can build a new application from existing ser-

vices. An additional benefit that SOA brings is the standardization of business process

modeling, often referred to as service orchestration or service choreography. The nesting

of services can be arbitrarily complex and at the topmost level the entire business process

ultimately can be viewed as a service. You can build a web-service-based layer of abstrac-

tion over legacy systems and subsequently leverage them to assemble business processes.

37

In addition, SOA platform vendors are providing tools and servers to design and execute

these business processes. This effort has been standardized by an OASIS standard named

Business Process Execution Language (BPEL); most platform vendors are adhering to this

standard. BPEL is essentially an XML based programming language used to define a busi-

ness processes.

3.2.3 Web Services

Although the original intent of the Internet was to send and receive pure textual

information, the Internet gave birth to a new computation paradigm driven by “the net-

work is the computer” and the “anywhere, anytime computation” metaphor. Central to this

idea is the emerging technology of web services. The past couple of years have seen the

beginning of a remarkable transformation in the business landscape. Connectivity, collab-

oration, and communication are all being revolutionized by the Internet and web services.

Figure 3.11 Different Layers of Service Oriented Applications

38

Web service technology is an important emerging paradigm for distributed com-

puting that differs from existing approaches such as COM, CORBA, and Java RMI in its

focus on simple internet-based standards such as XML, to address heterogeneous distrib-

uted computing. The web service model includes three parties in the general sense:

1. Service Provider: hosts the computational service or resource. This service can

be of any kind ranging from a simple random number generator to a complex

sequence of computations or optimizations.

2. Service Requester: the counterpart that invokes the service from the provider.

Thanks to well defined standards for communication and description of the

service, it is possible to universally connect service requesters to providers in a

peer-to-peer fashion.

3. Service Directory: or broker. This is a service itself where the provider can

publish services and the requester can search and discover services suiting the

purpose.

Web services allow applications residing on the Internet and intranets to work

together in an integrated fashion. They make it possible to integrate systems that would

otherwise require extensive development efforts and proprietary solutions. Web services

provide a simple and streamlined mechanism for applications to communicate over the

Internet/intranet without human intervention, and without the need to know the environ-

ment at each end point. This virtualization of service endpoints provides a flexible archi-

tecture that can be assembled in an ad hoc fashion at runtime. Web services standards such

39

as XML, Simple Object Access Protocol (SOAP) and Web Services Description Language

(WSDL) enable a new level of plug-and-play functionality in software. These technolo-

gies allow web services to be platform independent.

3.2.4 Web Service Basics

The most significant aspect of web services is that every software and hardware

company in the world has positioned itself around these technologies for inter operability.

No single technological advancement will have as great an impact on the way systems are

developed as Web Services.

Web services use Internet technology for system interoperability. The advantage

that web services have over previous interoperability attempts, such as CORBA, is that

they build on the existing infrastructure of the Internet and are supported by virtually

every technology vendor in existence. As a result of the ubiquitousness of the technologies

they use, Web Services are platform-independent.

The computer software industry is moving towards a service-based model of

implementation and delivery of software functionality for a wide range of applications.

This architecture is more broadly known as a Service Oriented Architecture (SOA). While

over-hyped marketing may dilute the precise definition of a web service, in general they

possess such attributes as reusability, loose coupling, discrete functionality, programatic

access, and internet accessibility.

40

There are several reasons for this trend towards “software as a service” for certain

commercial and in-house applications, including:

1. The systems are easier to manage and the IT support can be centralized.

2. With standard service descriptions it is possible to assemble “best in class”

solutions

3. Enforces corporate standards by defining data and the services that operate on

that data

4. Legacy code can be incorporated into the information processing workflow

5. Services and clients are platform agnostic, and the links between them are

loosely coupled

3.2.5 Existing and Emerging Standards

3.2.5.1 Extensible Markup Language

The eXtensible Markup Language (XML) is a standards-based data structure for-

mat for representing information; XML is “human readable” and computer platform inde-

pendent.

3.2.5.2 Simple Object Access Protocol

Simple Object Access Protocol (SOAP) is an XML syntax for exchanging mes-

sages between applications or services on the internet; it supports communicating with,

launching, and querying web services. Since it is based on XML, SOAP is also platform

independent.

41

3.2.5.3 Universal Description, Discovery, and Integration

Universal Description, Discovery, and Integration (UDDI) is an XML protocol that

enables automated storage and lookup of web services. It allows a service to describe its

functions and supports the discovery of other services that perform a desired function.

3.2.5.4 Web Services Description Language

Web Services Description Language (WSDL) is an XML protocol that describes

what a web service can do, where it resides, and how to invoke it.

3.2.6 Benefits of Web Services

3.2.6.1 Reusability

The promise of reusable legacy applications, databases, objects, and components

have been largely unrealized. Web services can play a significant role in improving soft-

ware reusability within organizations. The likelihood of reusability depends on several

factors that Web services improve on: interoperability, modularity, central registry, and

reduced compile time dependencies. Web services are built on open, interoperable, and

ubiquitous standards, which maximizes their potential for reuse. Developers have two

options to create functionality. They can either develop the functionality as part of the

application that needs it or as a separate service. A function developed as a separate com-

ponent and used as a service is more likely to outlive the original application.

42

3.2.6.2 Location Transparency

A service environment achieves location transparency, because the location is

stored in a registry. A client finds and binds to a service and does not care where the ser-

vice is located. Therefore, an organization has the flexibility to move services to different

machines or to move a service to an external provider. The way a service is implemented

is irrelevant. Therefore, if it becomes necessary to move a service from a J2EE platform to

a .Net platform, no changes to the clients should be necessary.

3.2.6.3 Composition

Developers assemble applications from a preexisting catalog of reusable services.

Services do not depend on the applications into which they are composed. Because ser-

vices are independent, developers will logically reuse these services in many applications.

The interface design process promotes the design of interfaces that are modular and inde-

pendent from the application for which they are designed. Developers by nature want to

reuse software unless it is more difficult to reuse than to build from scratch. One of the

greatest impediments to reuse is determining the software available for reuse. The registry

in a service-oriented architecture provides this single place to store service descriptions.

3.2.6.4 Scalability and Availability

A system is scalable if the overhead required to add more computing power is less

than the benefit the additional computing power will provide. Because service clients

know only about the service interface and not its implementation, changing the implemen-

tation to be more scalable and available requires little overhead.

43

3.2.7 Modularity of Services

3.2.7.1 Modular Decomposability

Modular decomposability of a service refers to the breaking of an application into

many smaller modules. Each module is responsible for a single, distinct function within an

application. This is sometimes referred to as “top-down design”, in which the bigger prob-

lems are iteratively decomposed into smaller problems. The main goal for service design

is to identify the smallest unit of software that can be reused in different contexts.

3.2.7.2 Modular Composability

The modular composability of a service refers to the production of software ser-

vices that may be freely combined as a whole with other services to produce new systems.

Service designers should create services sufficiently independent to reuse in entirely dif-

ferent applications from the ones for which they were originally intended. This is some-

times referred to as bottom-up design. Sometimes, the composability and decomposability

approaches to service design can create two different designs. The bottom-up approach is

more focused on the application functions. The top-down design tends to be more focused

on the business problem. It is important to use both methods to find the right interface for

the service. The typical design begins as a decomposition exercise. When the designers

get to a point at which they have exhausted the top-down design, performing a bottom-up

analysis should validate the design. The bottom up design begins by defining the signifi-

cant scenarios that the modules need to support. The significant scenarios will cover the

important functional aspects of the modular design.

44

3.2.7.3 Modular Understandability

The modular understandability of a service is the ability of a person to understand

the function of the service without having any knowledge of other services. The modular

understandability of a service can also be limited if the service supports more than one dis-

tinct business concept.

3.2.7.4 Modular Continuity

The modular continuity of a service refers to the impact of a change in one service

requiring a change in other services or in the consumers of the service. An interface that

does not sufficiently hide the implementation details of the service creates a domino effect

when changes are needed.

3.2.7.5 Modular Protection

The modular protection of the service is sufficient if an abnormal condition in the

service does not cascade to other services or consumers. Faults must not cascade from the

service to other services or consumers.

3.2.7.6 Direct Mapping

A service should map to a distinct problem domain function. The designer should

create boundaries around service interfaces that map to a distinct area of the problem

domain. This is important so the designer creates a self-contained and independent mod-

ule. It is easy to pollute service interfaces with functions that: logically belong in another

existing service, belong in a new service, span multiple services and require a new com-

45

posite service, are really internal knowledge that should not be exposed through an inter-

face. To directly map a services’s interfaces to a distinct business concept in the problem

domain, the service designer needs a good understanding of the problem domain.

3.2.7.7 Information Hiding

The service should never expose its internal data structures. Even the smallest

amount of internal information known outside the service will cause unnecessary depen-

dencies between the service and its consumers.

3.2.7.8 Loose Coupling

Coupling refers to the number of dependencies between modules. There are two

types of coupling: loose and tight. Loosely coupled modules have a few well known

dependencies. Tightly coupled modules have many unknown dependencies. Service ori-

ented architectures promote loose coupling between service consumers and service pro-

viders and the idea of a few well known dependencies. A system’s degree of coupling

directly affects its modifiability. The more tightly coupled a system is, the more a change

in a service will require changes in the service consumers. Coupling is increased when ser-

vice consumers require a large amount of information about the service provider to use the

service. SOA accomplishes loose coupling through the use of contracts and bindings.

Since a service may be both a consumer and a provider of some services, the dependency

on only the contract enforces the notion of loose coupling in service-oriented architecture.

46

3.2.7.9 Network-Addressable Interface

The role of the network is central to the concept of SOA. A service must have a

network-addressable interface. A consumer on a network must be able to invoke a service

across the network. The network allows services to be reused by any consumer at any

time. The ability for an application to assemble a set of reusable services on different

machines is possible only if the services support a network interface. Because of this

requirement, service interface design is focused to a large extent on performance. Perfor-

mance can degrade when objects are distributed across a network because of the chatter

that occurs between fine-grained objects.

3.2.7.10 Coarse-Grained Interfaces

The appropriate level of granularity for a service and its methods is relatively

coarse. A service generally supports a single distinct business concept or process. A ser-

vice may still be implemented as a set of fine-grained objects, but the objects themselves

are not accessible over a network connection. A service implemented as objects has one or

more coarse-grained objects that act as distributed facades. These objects are accessible

over the network and provide access to the internal object state from external consumers

of the service. However, objects internal to the service communicate directly with each

other within a single machine, not across a network connection.

3.2.8 Web Services and Service Oriented Architectures

What web services bring to the concept of an SOA is well accepted standards,

something missing from previous approaches. In an SOA, we are now able to represent

47

our assets as services - described using WSDL. This gives a standard way of describing

these assets that is independent of language and platform. This means that we can now

start to think of these services as building blocks that can be reused and assembled into

larger structures - again independent of language and platform. This gives us the flexibil-

ity to respond to new business demands, and allows a significant degree of integration and

communication both inside an enterprise, and between enterprises.

3.2.9 Engineering Web Services

In the commercial software market, this trend towards “software as a service” has

been primarily in the business processes sector, including accounting, purchasing, human

resources, supplier management, etc. Recently, engineering software vendors have begun

implementing web-based versions of their applications. Such an implementation of soft-

ware, while web-based, is technically not a web-service in the current sense of the term

since the applications do not truly offer programmatic access, or they may require human

interaction to complete a particular job.

The past decade has witnessed an obvious proliferation of software tools available

for the various activities involved in engineering analysis and design...The mere existence

of and improvements in these individual analysis tools does not mean they are improving

the productivity of the engineer in fact, the opposite may very well be true. The reason for

this is that there is usually no single entry point to these tools or a common way to interact

with them, making it difficult for them to be used in a coordinated fashion. Moreover,

once an ultimate design is arrived at, it is often very difficult, if not impossible, to deter-

48

mine what specific tools were used, in what combination, and what were the sources of the

data supplied to them. The solution, therefore, is not more or even better design tools- the

solution is a framework that provides a solid foundation for overcoming these prob-

lems[27].

3.3 Patterns

In the 1970’s, Christopher Alexander wrote a number of books documenting pat-

terns in civil engineering and architecture [56]. Alexander defined the term ‘design pat-

tern’ in the following way: “Each pattern describes a problem which occurs over and over

again in our environment, and describes the core of the solution to that problem, in such a

way that you can use this solution a million times over, without ever doing it the same way

twice.” On a general level, the principle of design patterns is well known in many engi-

neering domains. They can be seen in the form of design catalogs and handbooks for

mechanical, electrical, and software engineering. Patterns can be seen as a form of intel-

lectual reuse.

Patterns are about communicating problems and solutions. Simply put, patterns

enable us to document a known recurring problem and its solution in a particular context,

and to communicate this knowledge to others. Each pattern expresses a relation between a

certain context, a problem, and a solution.

49

Some of the common characteristics of patterns are as follows:

• Patterns are observed through experience

• Patterns are typically written in a structured format

• Patterns prevent reinventing the wheel

• Patterns exist at different levels of abstraction

• Patterns undergo continuous improvement

• Patterns are reusable artifacts

• Patterns communicate designs and best practices

• Patterns can be used together to solve a larger problem

In short, no pattern is an isolated entity. Each pattern can exist in the world, only to

the extent that is supported by other patterns: the larger patterns in which it is embedded,

the patterns of the same size that surround it, and the smaller patterns which are embedded

in it [56].

An example of the use of patterns in engineering can be seen at Toyota, where

many describe the widespread use of lessons-learned books. Books that provide the engi-

neers with guidelines for designing different parts of a car, including company specific

information on capabilities and feasibility ranges ensuring the manufacturability.

50

3.4 Product Architecture

Product architecture is one of the development decisions that most impacts a

firms’s ability to efficiently deliver high product variety. Products built around modular

product architectures can be more easily varied. Ullrich and Eppinger state that a product

can be thought of in both functional and physical terms. The functional elements of a

product are the individual operations and transformations that contribute to the overall

product performance. The physical elements of a product are the parts, components, and

sub-assemblies that ultimately implement the product’s functions. The physical elements

of a product are typically organized into several major building blocks. Each physical ele-

ment is then made up of a collection of components that implement the functions of the

product, which we will call chunks. The architecture of a product is the scheme by which

the functional elements of the product are arranged into physical chunks and by which the

chunks interact [19]. The most important characteristic of a product’s architecture is its

modularity. A modular architecture has the following two properties: (1) chunks imple-

ment one or a few functional elements in their entirety and (2) the interactions between

chunks are well defined and are generally fundamental to the primary functions of the

product [19].

The most modular architecture is one in which each functional element of the

product is implemented by exactly one chunk and in which there are a few well-defined

interactions between the chunks. Such a modular architecture allows a design change to be

made to one chunk without requiring a change to other chunks for the product to function

correctly. The chunks may also be designed independently of one another. The opposite of

51

a modular architecture is an integral architecture. An integral architecture exhibits the fol-

lowing properties: (1) functional elements of the product are implemented using more

than one chunk, (2) a single chunk implements many functional elements, and (3) the

interactions between chunks are ill defined and may be incidental to the primary functions

of the products [19].

Decisions about how to divide the product into chunks and about how much mod-

ularity to impose on the architecture are tightly linked to several issues of importance to

the entire enterprise: product change, product variety, component standardization, product

performance, manufacturability, and product development management. The architecture

of the product therefore is closely linked to decisions about how the product may be varied

and changed.

Chunks are the physical building blocks of the product, but the architecture of the

product defines how these blocks relate to the function of the product. The architecture

therefore also defines how the product can be changed. Modular chunks allow changes to

be made to a few isolated functional elements of the product without necessarily affecting

the design of other chunks. These changes to the product allow the product to be adapted

to a rapidly changing market. Some of the motives for product change are:

1. Upgrade: As technological capabilities or user needs evolve, some products

can accommodate this evolution through upgrades.

2. Add-Ons: Many products are sold by a manufacturer as a basic unit, to which

the user adds components, often produced by third parties, as needed.

52

3. Adaptation: Some long lived products may be used in several different use

environments, requiring adaptation.

4. Wear: Physical elements of a product may deteriorate with use, necessitating

replacement of the worn components to extend the useful life of the product.

5. Consumption: Some products consume materials, which can then be easily

replenished.

6. Flexibility in use: Some products can be configured by the user to provide dif-

ferent capabilities.

7. Reuse: In creating subsequent products, the firm may wish to change only a

few functional elements while retaining the rest of the product intact.

Modularity increases the range of product models the firm can produce within a

particular time period in response to market demand. Products built around modular prod-

uct architectures can be more easily varied without adding tremendous complexity to the

manufacturing system.

3.4.1 Types of Modularity

Modular architectures typically comprise three types: slot, bus, and sectional. Each

type embodies a one-to-one mapping from functional elements to chunks, and have well-

defined interfaces.

53

3.4.1.1 Slot-Modular Architecture

Each of the interfaces between chunks in a slot-modular architecture is of a differ-

ent type from the others, so that the various chunks in the product cannot be interchanged.

An automobile radio is an example of a chunk in a slot-modular architecture. The radio

implements exactly one function, but its interface is different from any of the other com-

ponents in the vehicle (Figure 3.12a).

a) Slot-Modular Architecture

b) Bus-Modular Architecture c) Sectional-Modular Architecture

Figure 3.12 Three types of Modular Architecture

54

3.4.1.2 Bus-Modular Architecture

In a bus-modular architecture, there is a common bus to which the other chunks

connect via the same type of interface. A common example of a chunk in a bus-modular

architecture would be an expansion card for a personal computer (Figure 3.12b).

3.4.1.3 Sectional-Modular architecture

In a sectional-modular architecture, all interfaces are of the same type, but there is

no single element to which all the other chunks attach. The assembly is built up by con-

necting the chunks to each other via identical interfaces. Many piping systems and office

partitions adhere to a sectional-modular architecture (Figure 3.12c).

While a module refers to a physical or conceptual grouping of components that

share some characteristics, modularity tries to separate a system into independent parts or

modules that can be treated as logical units. Therefore, decomposition is a major concern

in modularity analysis. In addition, to capture and represent product structures across the

entire product development process, modularity is achieved from multiple viewpoints,

including functionality, solution technologies, and physical structures; functional modu-

larity, technical modularity, and physical modularity.

What is important in characterizing modularity is the interaction between modules.

Modules are identified in such a way that between-module interactions are minimized

whereas within-module interactions may be high.

55

3.4.1.4 Product Platforms and Product Families

Product platform and product family strategies take advantage of modularity

through a shared set of modules. In this type of strategy, the modules form a set of sub-

systems and interfaces developed to form a common structure from which a stream of

derivative products can be efficiently developed and produced. The typical Product Fam-

ily Architecture (PFA) consists of three elements, namely the common base, the differenti-

ation enabler, and the configuration mechanism.

Common bases refer to certain shared elements within a product family. The com-

mon base allows for economies of scale in the manufacturing and production processes.

Differentiation enablers are basic elements making products different from one

another. They are the source of variety for a product family.

Configuration Mechanisms define the rules for and means of product variant deri-

vation. Variety generation refers to the way in which the a distinct form of the product can

be created. Such variety fulfillment is related to each differentiation enabler and is

achieved through attaching, removing, swapping and scaling elements of the product.

These Product Family constructs are usually selected based on (a) current and

future customer needs; (b) commonality in design and fulfillment; (c) ease of configura-

tion, and (d) appropriate level of aggregation. If the construct is at too low a level of

aggregation, such as at the nuts and bolts level, then the number of constructs may be too

many and the configuration becomes too difficult. On the other hand, if the aggregation is

56

at a very high level, such as complete modules or products, then the commonality may not

be sufficient.

3.5 Fractals

It was the Polish mathematician Benoit B. Mandelbrot who first introduced the

term ‘fractal’ in 1975 to characterize spatial or temporal phenomena that are continuous

but not differentiable. The word fractal comes from a Latin word ‘fractus’, which means

broken or fragmented. Unlike more familiar Euclidean constructs, splitting a fractal into

smaller pieces results in the resolution of more structures. Each of these fragments or

rather, fractals contains the basic characteristics of the whole structure [42].

Fractal properties include scale independence, self-similarity. complexity, and infi-

nite length/detail. A fractal is a geometric object which can be divided into parts, each of

which is similar to the original object. One of the implications of self-similarity is that

each fractal must itself be a little fractal [31]. A normal Euclidean shape, such as a circle,

looks flatter and flatter as it is magnified. At infinite magnification it would be impossible

to tell the difference between a circle and a straight line. Fractals are not like this. Instead,

with a fractal, increasing the magnification reveals more detail that was previously invisi-

ble [60].

3.6 Summary

This chapter explains the technologies and ideas necessary to understand the

method that follows.

57

A foundation of existing PDG applications was presented to provide insight into

the work that has been done. The internal structure was examined and was found to be

incompatible with the idea of a reusable system.

The technologies critical to enabling a network of interconnected PDGs were

explained. The idea of a Service Oriented Architecture and its corresponding benifits were

introduced. We were acquainted with Web Services as an implementation technology for

the SOA paradigm.

Patterns were presented as a form of intellectual reuse. A pattern is a documented

and tested solution to a problem that is repeatedly seen.

Important concepts relating to product architecture were discussed including mod-

ularity and product family approaches to product design. These approaches are important

to the idea of a PDG framework.

Fractals exhibit important properties that will be used in the following chapters as

the method for breaking a PDG into reusable components is presented.

58

59

CHAPTER 4 METHOD

A formal method will be developed to provide direction for the building of a sys-

tem level PDG. This method will provide a step by step process for building a system from

components and sub-systems.

4.1 The PDG

The PDG methodology has shown tremendous promise both in academia and as it

has been applied in industry. It has been shown to reduce design cycle time, enabling the

engineer to focus on value added activities rather than repetitive tasks. It allows engineers

to study more potential solutions and implement optimization techniques that were not

previously possible. Issues formerly dealt with in the detailed design phases of product

development can now be addressed in preliminary design because of the restructuring of

the design process that the PDG supports. Manufacturing standards have been included in

the various PDG implementations to help insure that a particular design may be fabricated.

The PDG has also been shown to reduce the opportunity to introduce errors in the devel-

opment process. The PDG allows the engineer to walk through a standardized, structured

60

process for product design. This process represents the entire body of company knowledge

and gives the engineer the ability to leverage that knowledge independently from individ-

ual experience. Each designer, therefore, has access to the collective knowledge of the

group instead of being forced to re-learn problems that have been previously solved. Not-

withstanding these advantages, the development of a PDG can be a significant investment.

This investment is rapidly recovered, often in a single product development effort. A need

has been shown, however, for a standardized framework for PDG development and

deployment. This framework must reduce the development expense for new PDGs.

The PDGs that have been developed up to this point have aided in the design of a

single part or simple system or subsystem. A typical product, however, is typically made

up of many interacting parts and subsystems. A gas turbine engine for example, is made

up of thousands of parts composing many interconnected sub-systems. Many specialized

tools have been developed for the design of these parts and sub-systems. These tools do

not communicate with each other, causing many manual transfers of information. Ridding

the development process of these manual data transfers can significantly reduce design

cycle time but there is a much larger problem caused by these isolated tools. It is the prob-

lem of system design. It is very difficult to create a detailed, system-level model because

the tools used in the design are completely isolated from one another. They can not be exe-

cuted in an organized system-level fashion. This difficulty shows a need for PDGs to be

part of an interconnected design system. Not only does this aid in the creation of better

system level models, but it also facilitates the rapid development of individual PDGs

because certain functions can be shared and reused amongst the PDGs.

61

This work aims to provide strategies for the creation of a PDG framework which

facilitates the rapid development and deployment of PDG applications as well as provide

the ability to aggregate PDG components into a higher level system PDG.

The PDG methodology defines a transformation function for transforming cus-

tomer requirements to a member of the product family. The PDG is an automated imple-

mentation of the transformation function for a product development process for creating

all of the design artifacts and supporting information necessary for the design of a particu-

lar product. The complex transformation function is decomposed to intermediate transfor-

mations to deal with the complexity of the process. The intermediate transformations

account for behavior predictions, company rules and best practices, the generation of

design artifacts, data and artifact vaulting strategies, testing procedures and design artifact

delivery procedures. The construction of the PDG as defined by Roach is constructed in

three major steps: (1) selection of the product concept and embodiment, (2) development

of the product transformation schematic, and (3) construction of the reusable intermediate

functions and integration of them into the automated PDG application [1],[5].

This work will provide additional steps to the PDG construction process which aid

in the creation of reusable PDG components. We will begin by introducing some new

PDG concepts.

62

4.2 Units of Reuse and Units of Partition

In order to create reusable PDG components, we must first define reuse. For the

purposes of this work, we will define reuse as the degree to which a software module,

physical module or other work product can be used in more than one context. For a soft-

ware module, reuse is the degree to which the module may be reused in a different com-

puting program or software system. A physical module can be reused in a different

product or application according to the principles of modularity as described previously.

In order to build a completely flexible virtual product development environment, we must

simultaneously consider the software and physical module reuse.

There are different levels of reuse and each level is equally important to the con-

struction of a PDG. A flexible product development environment requires software, prod-

uct, and process reuse. These different levels of reuse must be matched to see their full

benefit. These different levels allow us to manage the complexity of the product develop-

ment process and allows the decomposition of that process into manageable chunks.

4.2.1 The Object

The first unit of reuse that we will discuss is the object. An object can be consid-

ered to be a software bundle of variables and related methods. Everything that the soft-

ware object knows (state) and can do (behavior) is expressed by the variables and the

methods within that object. Figure 4.1 shows a “cellular” representation of an object

where the object's variables make up the center, or nucleus, of the object. Methods sur-

round and hide the object's nucleus from other objects in the program. This is referred to

63

as encapsulation or information hiding. Encapsulation promotes the idea of an object

being self contained and the methods define a standard interface through which other

objects can access the objects internal data. An object usually appears as a component of a

larger software system that contains many objects. It is through the interaction of these

objects that a system can achieve higher order functionality and more complex behavior.

Objects interact with one another by sending messages to each other to request a service or

piece of data (Figure 4.2). While objects promote reusability, they do have some disadvan-

tages when it comes to a distributed PDG architecture. Objects exist and run on a single

computer and the functionality that they produce can not easily be accessed from other

machines or address spaces. Neither can they be easily accessed from objects written in

another programming language. This poses a limitation because it is infeasible to execute

an entire product development process on a single machine and it may be necessary to

integrate applications written in different languages. CORBA and other technologies

address these issues but require a tight coupling between the objects. For more informa-

Figure 4.1 “Cellular” Representation of an Object [83]

64

tion on CORBA see [85]. The object will be the most granular element of reuse in this

PDG framework.

4.2.2 The Service

The second unit of reuse that will be used for the PDG framework is the service.

Services offer significant advantages over simple objects. As stated previously, services

are software components with well-defined interfaces that are implementation-indepen-

dent. They separate the service interface (the what) from its implementation (the how).

These services are consumed by clients that are not concerned with how these services

will execute their requests. Services are self-contained and perform predetermined task,

they by nature are modular and loosely coupled to the service requester. One of the powers

of services and service oriented architectures is that services can be dynamically discov-

Figure 4.2 Message Passing Between Objects [84]

65

ered without the service requester having any prior knowledge of the service or its loca-

tion. Web services stress interoperability and provide a standard for the communication

between applications written in different programming languages. Web services are acces-

sible via standard network protocols such as HTTP which allow them to execute virtually

anywhere in the world. The service will be the main unit of reuse for the PDG framework.

In other words, the PDGs will be partitioned into various services. A single PDG will be

an aggregation of these base services and a system PDG will be an aggregation of the

underlying PDGs.

To help explain this partitioning of the PDG, we will explore the concept of the

PDG as a fractal.

4.2.3 The PDG as a Fractal

As previously discussed, a fractal is a geometric object which can be divided into

parts, each of which is similar to the original object. One of the implications of self-simi-

larity is that each fractal must itself be a little fractal. A normal Euclidean shape, such as a

circle, looks flatter and flatter as it is magnified. At infinite magnification it would be

impossible to tell the difference between a circle and a straight line. Fractals are not like

this. Instead, with a fractal, increasing the magnification reveals more detail that was pre-

viously invisible [60] (Figure 4.3).

The architecture of the PDG system can conceptually be thought of as a fractal.

The system level PDG has the same conceptual structure as was laid out by Roach in [1].

66

Each of the sub-system PDGs would also have the same structure as do the components

that make up the sub-system. This means that the primitive structure for the system is the

PDG structure itself as defined by Roach. The system level PDG, therefore, has the C, M,

K, B, A, V, T, and U sets, as well as the mappings between the sets. The subsystem PDGs

are made up of those same sets. Figure 4.4 illustrates this principle. An example will help

illuminate this concept. If we imagine a system level PDG for a turbofan engine family,

we might find the set C to include: thrust, specific fuel consumption, weight, length and

diameter. The set B would include behavioral predictions that would include these values

as well as combustor temperatures, pressures, etc. The K, A, V, T and U sets would be

Figure 4.3 Illustration of Fractal Properties

Scale: 1x Scale: 8x

Scale: 24xScale: 16x

67

similarly filled. A turbofan engine may be broken into various subsystems including: high

pressure turbine, low pressure turbine, fan, low pressure compressor, high pressure com-

pressor, combustor, nozzle, fuel system etc. The C set for the high pressure compressor

might include: combustor temperature, efficiency, pressure ratio, etc. The high pressure

turbine might further be broken down into a rotor, consisting of a turbine disk and a tur-

bine blade. A PDG might also be defined for the turbine disk or turbine blade. As we can

see, the turbine blade is as much of a PDG as the entire turbofan engine would be.

4.2.4 Patterns

Patterns are another element of reuse that will be used in the PDG system. Alex-

ander, in his book A Pattern Language, provides profound insight into the design of com-

plex systems. He observes that the design of a complex structure, like a building, can be

Figure 4.4 PDG Structure as a Fractal

68

viewed as the sequential application of a series of patterns. For example, one architectural

pattern is that rooms should have light coming in from two different sides to prevent harsh

shadows. Another pattern is that there should be a transition area between the street and

the inside of the house. By applying these patterns to a design problem, you can create

highly complex solutions to completely unique problems in a disciplined and organized

way.

Patterns are elements of intellectual reuse. They have been widely used in the soft-

ware community to convey solutions to commonly recurring problems and proven solu-

tions to these problems. Patterns, then represent expert solutions to recurring problems in

a context and thus are captured at various levels of abstraction and in numerous domains.

The PDG system will make use of proven software patterns and patterns specific

to PDGs will be identified.

4.2.5 Process and System Reuse

Most companies’ development processes are more a result of random evolution

than conscious design. Such random process evolution can produce well-adapted solu-

tions, but it is increasingly dangerous. Evolution is simply too slow when the external

environment changes rapidly. Instead, we must shift to an approach of deliberate evolu-

tion, in which we analyze the process and make conscious choices.

The problem of designing processes is inherently different from most of the other

design problems that we confront. In product development, we must design our process to

69

be repeatable while still allowing new and innovative elements to be introduced into the

process. The product development process must be flexible enough to adapt to changing

market demand and the infusion of new technology and engineering knowledge. The

product development process is one of the company’s greatest assets and at the same time

it is one of the most poorly managed. In order to create this flexible and responsive pro-

cess the product development process itself warrants careful process design.

While flexibility is important, it must be controlled. We may generate new infor-

mation during the product development process by making new mistakes, but we must

protect ourselves against making the old mistakes again and again. We need to find some

way to preserve what we have learned without discouraging people from doing new

things. I believe that the secret to doing this is to concentrate at the right level of the pro-

cess architecture.

Let us start with a familiar example. Consider the design architecture of the

English language. At the letter level we have rigidly standardized on twenty six letters.

Users of English cannot invent new letters, and if they did other users could not recognize

them. If we move up to the word level we have about 450,000 words, of which a high

school graduate might commonly recognize 40,000. We have almost complete standard-

ization at this level. It is possible to introduce a new word into the language, but we cause

some confusion when we do this. If we move up to the sentence level, there is little stan-

dardization. We have a small set of syntactic rules, such as the subject-verb-object word

order, and enormous freedom everywhere else. We can produce an infinite number of

70

well-formed, recognizable sentences in English. This infinite flexibility at the highest

level of the architecture has been achieved by the standardization at the lower two levels.

This contains an important lesson for use when we design any process that needs

to be flexible. Flexibility does not come from allowing all levels of the architecture to

vary. This will only produce chaos. Flexibility at high levels in the architecture comes

from standardization at the lower two levels in the architecture. Paradoxically, structure is

the key to freedom.

The simplest approach to combining structure and flexibility is to build the devel-

opment process out of modules. By altering the use and sequence of these modules we can

produce millions of possible process configurations without losing control.

How can we develop such modular building blocks? One answer may be in the

methods that we have discussed, namely objects, services and service oriented architec-

tures. Web services exhibit the concept of information hiding and present a well structured

external interface to the world, while preserving freedom in their internal structure. A

well-planned external interface gives us a great deal of flexibility and is the key to reusing

services.

When we design a development process we want to exploit the same properties.

We want to create standardized building blocks that are defined primarily at their inter-

faces rather that by their internal procedures. If we standardize the interfaces, we can

evolve the internal structure as necessary to meet changing requirements. Because the

external properties are controlled, we can change internal methods and data without

71

unraveling our entire development process. Once the inputs and outputs are defined the

module owner can worry about the internal methods for the process.

What is powerful about this approach is that the choice of method is now hidden

inside the module. This means that the method may be flexibly tailored to fit the needs of

an individual program. Because we have standardized the external interface instead of the

internal activities, we have created a module that can be reused by many projects.

We have also created an architecture that is tolerant of change, because most

changes will only affect the internal structure of the module. Thus, we can easily introduce

new methods without having to rewrite our development procedures. This means that

modular development processes offer the desirable property of being both well-structured

and flexible at the same time.

The Business Process Execution Language for Web Services (BPEL4WS) is a lan-

guage for the formal specification of business processes and business interaction proto-

cols. By doing so, it extends the Web Services interaction model and enables it to support

business transactions. BPEL4WS defines an interoperable integration model that should

facilitate the expansion of automated process integration in both the intra-corporate and

the business-to-business spaces. The BPEL4WS specification is supported by many of the

largest software developers including BEA Systems, IBM, Microsoft, SAP AG, Oracle,

and Siebel Systems. IBM, for example, provides a product called Process Choreographer

which is a BPEL4WS engine that facilitates the rapid development and deployment of

business process. This new technology provides much of the flexibility and standardiza-

72

tion needed for a continuously improving and adaptive product development process. As

the name implies, the Process Choreographer can be used to choreograph or orchestrate

the location and execution of web services. This can include the dynamic inclusion or

exclusion of a particular service that represents a particular process step.

This means that we can now start to think of services as building blocks that can be

reused and assembled into larger structures. This gives is the flexibility to respond to new

business demands, and allows a significant degree of integration and communication for

product development.

This section has discussed the basic building blocks for the PDG system. The next

section details the method to break the PDG into these building blocks.

4.3 PDG Creation Process

4.3.1 Selection of the Product Concept and Embodiment

In a typical design process, the first two stages, generally concept generation and

preliminary design, focus on the development of a solution context. This not only identi-

fies the technologies to be used, but typically determines a product configuration as well.

Consequently, in the development of a PDG, a solution context must be identified as the

first step. Along with the chosen concept and embodiment, the best practice steps for

designing the chosen product are identified so that they can be captured in a PDG that will

be specific to a product class. This also includes the identification of all the design arti-

facts, performance predictions, knowledge, and other outputs from the design process.

73

For the purposes of this work, we will assume that the product concept and embod-

iment has been pre-determined. More detail about the selection of the product concept is

found in [1].

4.3.2 Development of the Product Transformation Schematic

The Product Transformation Schematic (PTS) is a visual representation of the

overall transformation function that will be used as a blueprint for the construction of the

PDG. The development of the PTS is the process of defining the PDG as a transformation

function and becomes a representation of the transformation function for the product

development process. In it, the members of the domain and range sets for the intermediate

transformations that comprise the overall product transformation are enumerated. The

actual intermediate transformations between the sets, and their dependencies are identified

and defined in detail. Also, the sequencing of the execution of the intermediate transfor-

mation functions is defined.

Roach proposed that the PTS be constructed in four phases. The four phases are (1)

classification of product elements and intermediate transformations, (2) layout of plans for

the intermediate transformations, (3) rectification of the master parameter list for the PDG,

and (4) layout of the design and release cycles.

While these steps remain valid, additional steps are proposed to help in the design

of a system level PDG. Generally speaking, mechanical design problems are too large to

consider as a single system. Rather, they are aggregations of subsystems and subassem-

blies. Experience has shown that the classification of an entire system into a single set of

74

C, B, M, K, A, T, V, U sets is difficult and prone to error. We can imagine the number of

members of the master parameter list for an entire turbofan engine when a single turbine

disk was found to have hundreds of members in M. If these parameters are captured as a

single list, that list will be enormous and difficult to manage. It also violates the encapsu-

lation rules that we have discussed as being essential for reuse. The division of the master

parameter list also has the advantage of apportioning the processing of the master parame-

ter lists amongst the various services and helps to eliminate the sending of unnecessary

data across the network. For these reasons, supplementary steps are necessary to help deal

with system complexity.

The proposed method for service discovery is composed of the following steps: (1)

recursive modular decomposition, (2) component feature decomposition, (3) recursive

component aggregation, (4) classification of PDG module elements, (5) composition of

the intermediate transformations, (6) rectify M for the PDG module, (7) aggregation of

PDG modules into services, (8) compose services, and (9) layout the design and release

cycles.

While this method shows how to decompose automated design modules into reus-

able services, it is important to note that experience is required to correctly decompose the

system into PDG services. Just as in object-oriented design, these decomposition tech-

niques require practice and experience. If the product is not decomposed properly into its

constituent services, the penalty is the inability to reuse that service. If a mistake is made

during the decomposition, the service may need to be refactored into a more reusable

form.

75

We will now explore each of these steps in more detail beginning with recursive

modular decomposition.

4.3.2.1 Recursive Modular Decomposition

The modular decomposition step refers to the breaking of the system into many

smaller modules. Each module is responsible for a single, distinct function within the sys-

tem. This is sometimes referred to as “top-down design”, in which the bigger problems are

iteratively decomposed into smaller problems.

During this decomposition process, it is important to be acquainted with the prod-

uct architecture. If a family type architecture is being used, it will be advantageous to

break the PDG modules according to the product’s modular strategy. This allows the PDG

to adapt easily to changes or additions to the modules used in the product family. A mis-

match in this aspect, will cause headaches later in the product’s lifecycle as the product

family evolves. Another reason for doing this is that the modules within a product family

are usually designed to be shared and reused. This extra effort is rewarded as the modules

are shared with other products within the family. If the PDG is structured to encapsulate

these modules, that portion of the PDG can be used for the other products as well.

It is also preferable that those carrying out this decomposition be familiar with as

many products within the company’s portfolio as possible. This allows them to assess the

company’s portfolio as a whole when composing reusable services. A corporation that

manufactures aircraft engines as well as turbochargers for automobiles and trucks may be

able to create shared services for some types of compressor analysis. This provides a

76

mechanism for a synergistic relationship between different divisions within a large corpor-

tation.

Every system is different and a generic all encompassing modular structure is not

practical. Experience in this decomposition process, therefore, is invaluable. The modules

that are chosen may not be right the first time but through experience, we will begin to see

patterns. As these new patterns are discovered, it is important to document them so they

may be reused.

The goal of this step is to recursively break the system into smaller and smaller

pieces. We stop the anatomization of the system when we reach a logical level for that

piece which many times corresponds with the part level, although it does not have to cor-

respond to a part. This represents a component of the system. A component, however,

does not represent the smallest unit, it is usually made up of a number of objects. In the

turbofan system, a component that we find might be a turbine disk.

4.3.2.2 Component Feature Decomposition

Component feature decomposition is the process by which the component found in

the previous step is broken into it’s constituent features and parametric scheme. This is

done in order to find any reusable features that may lie inside one of these components.

These are typically represented by objects. We ask ourselves, can these objects stand

alone?

As we look at the turbine disk component we might find an object that represents

the firtree. The firtree is essentially a specialized slot in the disk into which the turbine

blades are inserted. The function of this object is to hold the blade to the disk. We might

spotlight this particular feature because it is a feature that we see elsewhere. It is also

found in compressor disks and fan disks. The design and analysis process is essentially the

same in any of these applications. In another example, we might identify the turbine blade

as a component. Turbine blades exist in the system in the high pressure turbine and the

low pressure turbine with some minor differences. We might find that as we break the tur-

bine blade into objects, we recognize the airfoil object as a good candidate for reuse

Figure 4.5 Recursive Modular Decomposition

because it is used for turbine blades and vanes in both the high and low pressure turbine

sections. If we do a really good job at defining a reusable airfoil, we may also be able to

use the object in the fan etc. In these cases, it may make sense to demarcate the firtree or

the airfoil as independent, ecapsulated services.

Deciding how and to what extent to decompose the system is largely based on

experience and patterns observed over time. There are some questions that can be asked to

determine a reasonable level for the decomposition. First, can the object or module stand

alone? Does it make logical sense for the object to exist independent of any other objects

or modules? Is the object modularly understandable? The modular understandability

refers to the ability of a person to understand the function of the object without having any

knowledge of other services. If the object is not modularly understandable, is it an object

that can be used to build a more logical reusable structure? It may make sense to combine

this object with another object to form a modularly understandable and reusable function.

Can the object be used in more than one context? The modules should map to a distinct

problem. Does the module provide a specific service to its clients? Another instance where

it is important to decompose the system further is when a replaceable component is found.

In this case you want to decompose the system to this level so the system has the ability to

swap this particular element for another that provides a similar function.

It is important to remember that the goal of the decomposition is not to find the

smallest structures for the system. The purpose of the decomposition is to find objects and

modules that can be combined into larger, coarser grained services. The next step in the

process is to take the objects and modules found during the decomposition and to group

79

them into coarse PDG services. These elements should be as coarse as possible while still

maintaining flexibility and reuse.

4.3.2.3 Recursive Component and Object Aggregation

Recursive component and object aggregation refers to the conglomeration of the

components and objects previously found into logical groupings. Here we are trying to

assemble the components and objects into reusable structures for the PDG system. These

form our lowest level of PDGs. This process is then recursively applied forming the sub-

system PDGs and eventually the system level PDG. In an abstract sense each PDG can be

seen as a service to the system.

Figure 4.6 Recursive Component and Object Aggregation

80

There are some guidelines as we begin to demarcate these PDG services. We will

discuss these guidelines one by one.

1. Modular Composability - The modular composability of a service refers to the

production of services that may be freely combined as a whole with other services to pro-

duce new systems. Services should be created so that they are sufficiently independent to

reuse in an entirely different context from the one for which they were originally intended.

Part of this process is to identify the significant scenarios that the PDG module will need

to support. This will help to describe how the PDG module will function within the sys-

tem.

2. Modular Understandability - The modular understandability of a service is the

ability of a person to understand the function of the service without having any knowledge

of other services. The modular understandability of a service can also be limited if the ser-

vice supports more than one distinct concept. The PDG services should be encapsulated at

a level that promotes easy understanding of the function of that service.

3. Modular Continuity - The modular continuity of a service refers to the impact

of a change in one service requiring a change in other services or in the consumers of the

service. An interface that does not sufficiently hide the implementation details of the ser-

vice creates a domino effet when changes are needed.

4. Direct Mapping - A service should map to a distinct problem domain function.

The boundaries around the PDG service should map to a distinct area of the problem

domain. This is important so the services are self-contained and independent. It is easy to

pollute services interface with functions that: logically belong in another existing service,

81

belong in a new service, span multiple services and require a new composite service, are

really internal knowledge that should not be exposed through an interface.

5. Information Hiding - The PDG service should never expose its internal data

structures. Even the smallest amount of internal information known outside the service

will cause unnecessary dependencies between the service and its consumers.

6. Loose Coupling - Coupling refers to the number of dependencies between

modules. There are two types of coupling: loose and tight. Loosely coupled modules have

a few will known dependencies. Tightly coupled modules have many unknown dependen-

cies. A systems degree of coupling directly affects its modifiability. The more tightly cou-

pled a system is, the more a change in a service will require changes in the service

consumers. Coupling is increased when service consumers require a large amount of

information about the service provider to use the service.

4.3.2.4 Classification of PDG Modules

In this phase, the results of the best-practice process for designing the particular

aggregate component are classified as members of various domain and range sets for the

intermediate transformations. The classifications are divided into eight major sets: cus-

tomer specifications (C), product behavior predictions (B), company rules and best prac-

tices (K), governing master parameters (M), test results (T), product artifacts (A), vaulted

artifacts (V), and final product deliverables (U).

82

This is done exactly as was defined by Roach in [1], the only difference being the

scope of the effort. In this case sets are defined for each of the PDG services individually.

4.3.2.5 Composition of the Intermediate Transformations

In the PDG methodology, the intermediate transformations are defined for all of

the domain and range sets. The intermediate transformations include predictive models,

parametric CAD/CAE/CAM models, testing processes, delivery procedures, data vaulting

procedures, parametric document models, etc. In Figure 2.1 on page 8 these intermediate

transformations are represented by the straight line arrows between the various sets. For

example, the set M, the governing master parameters is the domain set for the intermediate

transformation which is constituted of predictive models (i.e. FEA, CFD, mathematical

models etc.) that produce the range set B, the product behavior metrics.

Parametric models are identified to transform the various domain sets to range

sets. For example, a CAD drawing is defined as an output design artifact. Thus, a paramet-

ric CAD solid model and drawing model represent the reusable transformation function

that can be instantiated to produce the desired drawing artifact. Similarly, a mathematical

equation may be used as a transformation function to produce predictions of product

behavior from a specific set of inputs.

The second phase is to design the parametric intermediate transformations that

were identified previously to produce each of the desired outputs. For design artifacts the

transformation functions are reusable models capable of creating the artifacts. For behav-

83

ior predictions, the transformation functions are simply the equations structured so they

can be parametrically varied.

More information about this process can be found in [1] and [5].

As we begin to characterize the intermediate mappings, we must also be on the

lookout for possible services that have reuse potential. At this stage, we might find two

types of potential services. The first type is typically found in the P transformation. These

are services where the analysis can be generalized enough to be readily used in more than

one context. An example of this may be the encapsulation of flange sizing calculations for

a PDG created for the design of industrial valves. The second type of service typically

found at this stage is an integration service. These services typically provide an interface

to other enterprise systems or applications used in the transformations. As we examine the

the E, R and I mappings, for example, we see a need for an integration service to our PDM

system, our knowledge management system, or our test request system. Upon analysis of

the G and S mappings, we usually find integration services revolving around our CAD,

CAM and document creation applications. These services provide a generic way to call

these systems from any PDG component that may require the creation of a CAD model for

example.

These generic integration services are usually more difficult to create because of

the diversity of the potential service consumers. The benefit of creating them, however, is

that they must only be created once because they can be shared by the entire system. Many

of the commercial vendors of these types of tools are also now creating these types of web

84

service interfaces as standard parts of their applications. The ubiquitous and standardized

nature of web services has allowed these vendors to offer standardized programmatic a tic

access to their applications. The full potential of these interfaces have yet to be seen

because the tools used in typical product development do not take advantage of these stan-

dards. The good news is that we do not have to create many of these services for our-

selves. The vendors are doing the hard work, we just need to create a framework that

promotes their use.

4.3.2.6 Rectify M for the PDG Module

In this phase, the governing parameter for all of the intermediate transformations

are gathered and rectified into a single independent list called the master parameter list. It

is here that we eliminate redundant parameters and remove dependent parameters. Fur-

thermore, identical parameters with different names must be reduced to a single parameter

name. At the conclusion of this process, the master parameter list consists of a set of

unique and independent parameters.

We must remember that the master parameter list referred to here applies only to

the particular PDG module as we have defined it, not the entire system. Each PDG module

has its own master parameter list along with its own definition for all of the other sets and

mappings.

4.3.2.7 Aggregation of PDG Modules

The PDG modules are then collected into logical services. PDG services aggregate

multiple PDG modules into a single interface and thus provide a coarser grained interface.

85

They may also be composite services. A composite service fronts other simple or compos-

ite services. The combination of functions into a composite service also gives the service

consumer the ability to use each service separately or together.

The public interface for the PDG service is defined by gathering all of the mem-

bers of the C, B, U sets for each of the constituent PDG modules.

At this time the services are ready to be written. The should be sufficiently encap-

sulated to the point where the interfaces are well defined. This allows the services to be

developed independently of one another.

4.3.2.8 Compose Services

The system and subsystem PDGs are then composed and assembled from the

existing PDG services. Using preexisting, tested services greatly enhances the system’s

quality and improves its return on investment because of the ease of reuse. Service compo-

sition refers to the ability to combine web services into a process. It is the ability to

sequence and manage the conversations between web services into a larger transaction

A service may be composed in three ways: application composition, service feder-

ation, and service orchestration. An application is typically an assembly of services, com-

ponents, and application logic that binds these functions together for a specific purpose.

Service federations are collections of services managed together in a larger service

domain. Service orchestration is the execution of a single transaction that impacts one or

more services in an organization. It is sometimes referred to as a business process.

86

Because services communicate with one another across the network, it is important

to design services to reduce unnecessary network chatter. This is done by using coarse

public interfaces to the service. A service may still be implemented as a set of fine-grained

objects, but the objects themselves are not accessible over a network connection. A ser-

vice implemented as objects has one or more coarse-grained objects that act as distributed

facades. These objects are accessible over the network and provide access to the internal

object state from external consumers of the service. However, objects internal to the ser-

vice communicate directly with each other within a single machine, not across a network

connection.

4.3.2.9 Layout the Design and Release Cycles

The final phase in the construction of the PTS is the layout of the design and

release cycles that must be instantiated with values to generate a specific design. Formal-

izing the design process is similar to scripting a movie, so it is referred to as storyboard-

ing.

The storyboard is divided into two parts, corresponding to the design cycle and the

release cycle. The goal of the storyboarding effort is to control the process by which val-

ues for the parameters in the master parameter list are determined and to control the

sequence of execution of the PDG services. We begin the storyboard by choreographing

the execution of the various services for the design and release cycles. This gives us the

sequence of execution for each of the cycles including any iterations that may occur in the

design cycle.

87

With the sequencing of the services complete, we now begin a separate storyboard

for the look and feel of the user interface. It determines how the user enters the data for the

C set and how they see the data contained in the B, A, and U sets. The screens that the user

sees may not necessarily coincide with the services that are executed in the background. In

fact, it is important that the UI is not coupled to the logic executed behind it. This will pro-

vide for better maintenance and reuse of the UI elements.

4.4 Summary

In order to divide the PDG system, we must define a unit of partition. The method

explained above utilizes three different units of partition to achieve the optimal level of

reuse. These units are the PDG object, the PDG module and the PDG service.

A general method for PDG decomposition was presented which builds on the

methods developed by Roach in his dissertation.

88

89

CHAPTER 5 RESULTS

The method developed in the previous chapter will be implemented in two differ-

ent examples. The Atmospheric Resistor and the turbofan engine systems will be used to

show the application of the methods previously described. The architecture for a generic

framework for PDG systems will also be shown.

5.1 Architecture of the PDG Framework

A generic framework was developed for interconnected systems of PDGs. This

framework allows for “plug and play” additions to the services and allows for the easy

addition or reordering of the user input screens. It is designed to be the base for future

PDG implementations. This framework is based on industry standard patterns and tech-

nologies and provides application scalability. It is made up of four different layers: (1) the

presentation layer, (2) the business logic layer, (3) the service layer, and (4) the data access

layer. Each of these layers will be discussed in the sections that follow.

90

5.1.1 The Presentation Layer

The presentation layer uses a standard Model-View-Controller (MVC) architec-

ture. The MVC architecture is made up of three core components which allow the separa-

tion of the user interface and the business logic that it executes. The first of these

components is the controller. When a user makes a request from the User Interface (UI) it

is always intercepted be the controller. The controller acts as a traffic cop, examining the

user’s request and then invoking the logic necessary to carry out the requested action. The

execution logic for a user request is encapsulated in the model. The model executes the

business logic and returns the execution control back to the controller. Any data to be dis-

played to the user will be returned by the model via a standard interface. The controller

User

Controller

Model

View

Figure 5.1 Model-View-Controller Pattern

91

will then look up how the data returned from the model is to be displayed to the end user.

The code responsible for formatting the data to be displayed is called the view. When the

view finishes formatting the output data returned from the model, it will return execution

control to the controller. The controller, in turn, will then return control to the user.

The MVC pattern is a powerful model for building applications. The code for each

screen in the application consists of a model and a view. Neither of these components has

explicit knowledge of the other’s existence. These two pieces are decoupled via the con-

troller, which acts as an intermediary between these two components. At runtime, the con-

troller assembles the required logic and the view associated with a particular request.

New functionality can be introduced into the application by writing a model and

view and then registering these items to the controller of the application. If for example

you want to provide a PDF format of the requested data in addition to the HTML format,

you would only need to create a new view.

A MVC based framework offers a very flexible mechanism for building applicai-

tons. However, building a robust MVC framework infrastructure requires time and energy.

For the purposes of this framework, we are able to take advantage of an existing MVC

framework called Struts. Struts is an open source MVC framework developed by the

Apache Software Foundation. It is readily available and generally accepted as a robust

implementation of the MVC architecture.

92

5.1.2 The Business Logic Layer

The business logic layer is made up of four distinct components. This layer imple-

ments the PDG’s business logic and provides access to the various PDG services.

The first of these components is the PDG business delegate. The PDG business

delegate hides the complexity of instantiating and using the PDG services from the appli-

cation consuming the services. It is designed to hide the complexity of remote communi-

cation with PDG services that may exist on many different machines distributed

throughout the network. It also promotes reusability by abstracting the service from the

service requestor. This abstraction effectively decouples the service from the service con-

sumer.

PDG
Business
Delegate

PDG
Service
Locator

Web
Service
Broker

PDG
Session
Facade

Figure 5.2 PDG Business Logic Layer

93

The second component is the service locator. The service locator is designed to

hide the details of looking up the service. The service may be implemented as a web ser-

vice or an Enterprise Java Bean (EJB). The service locator provides a standard interface

for service lookup regardless of how the service is actually implemented. It allows the

PDG business delegate to transparently locate services in a uniform manner.

The third component is the web services broker. The web service broker is a course

grained service that is also implemented as a web service. It functions to coordinate inter-

actions among one or more PDG services, aggregates responses and provides transactional

support for the PDG services.

The final component of the business logic layer is the session facade. The session

facade is a coarse grained wrapper around finer-grained pieces of code. It is mainly used

to wrap functionality that is not implemented as a web service.

5.1.3 The Service Layer

The service layer is the layer where the actual PDG services reside. It is essentially

stand alone in the sense that the services exist on their own, independent of any particular

application. The service layer provides the execution environment for the individual ser-

vices.

94

5.1.4 The Data Access Layer

The data access layer encapsulates the manipulation of data stored in a persistent

database. Access mechanisms, supported APIs. and features vary among vendors of Rela-

tional Database Management Systems (RDBMS). Even with a single API, the underlying

implementations might provide proprietary extensions in addition to standard features.

Mingling persistence logic with application logic creates a direct dependency

between the application and the persistence storage implementation. These code depen-

dencies make it difficult and tedious to migrate the application from one type of data

source to another. When the data source changes, the components must be modified to

handle the new type of data source.

User

Controller

Model

View

Transfer
Object

PDG
Business
Delegate

PDG
Service
Locator

Web
Service
Broker

PDG
Session
Facade

Transfer
Object

Data
Access
Objects

Database

PDG
Services

Figure 5.3 Generalized Architecture of the PDG framework

95

The solution implemented in the PDG framework is the Data Access Object

(DAO). The DAO is used to abstract and encapsulate all access to the persistent store. The

DAO also manages the connection with the data source to obtain and store data.

5.1.5 Transfer Objects

Data is passed between these layers in the form of Transfer Objects (TO). Transfer

objects are used to carry multiple data elements across a layer at the same time. A TO is

designed to optimize data transfer across the layers and the network. Instead of sending or

receiving individual data elements, a TO, contains all the data elements in a single struc-

ture required by the request or response.

5.1.6 Summary

This section outlines the architecture for a PDG framework that enables an inter-

connected system of PDG services. This base framework is generic enough to form the

base for future PDG systems. The next section describes two example implementations of

the techniques and methods described in this thesis.

5.2 Example Implementations

5.2.1 Implementation of the Atmospheric Resistor

The original Atmospheric Resistor PDG was built as a stand alone Visual Basic

application. In this state, it does not have the ability to participate in a higher level system

nor does it allow the reuse of the functionality within the PDG. We will show that by

restructuring the PDG methodology, we can achieve an interconnected system of “little”

96

resistor PDGs which provide greater potential for reuse. We will also show that these PDG

services can then be accessed and used in different contexts.

5.2.1.1 Selection of the Product Concept and Embodiment

In this case, the problem that this product is trying to solve is to reduce the noise

produced by gas venting into the atmosphere. This can be done with a silencer or an atmo-

spheric resistor. For this example, we choose the atmospheric resistor as the product con-

cept.

An atmospheric resistor is a fixed orifice “valve” that controls noise by controlling

the expansion rate of the gas as it is released to the atmosphere. Resistors are used on a

variety of oil and gas production facilities, pulp and paper mills and other process plants.

The expansion of the gas is controlled by forcing the gas through a tortuous and circuitous

path through a stack of thin disks. Figure 5.4 shows a typical resistor configuration.

5.2.1.2 Recursive Modular Decomposition

The purpose of recursive modular decomposition is to break the resistor system

into smaller modules. We will continue to decompose the system into its constituent com-

ponents until we reach a logical level.

Figure 5.5 shows how the resistor system was broken into modules. The six main

modules chosen were the lifting attachment, the bottom flange, the top flange, the shroud,

the disk stack and the standard parts. The shroud was broken down further into the shroud

97

bottom plate and the shroud cylinder. The disk stack was decomposed further into the top

disk, the bottom disk, and the separator.

5.2.1.3 Component Feature Decomposition

In component feature decomposition we break the component found in the previ-

ous step into its features and parametric scheme. As we do this we try to identify any reus-

able features or parameterizations that may occur within these components. These are

represented as objects.

Figure 5.4 Atmospheric Resistor

98

In the atmospheric resistor we can identify a number of reusable objects. In the

bottom flange, for example, we pinpoint a reusable flange feature, which represents the

flange to connect the resistor to its upstream piping. Our knowledge of the product line

tells us that this type of feature is used on many of the valves in our product line and there-

fore has reuse potential. The welded joint feature on the bottom flange also represents a

potential reusable feature for the same reason. We also find a bolt hole circle feature in

three of the modules. We find the expansion pattern in the disks that make up the disk

stack is also used elsewhere.

Figure 5.5 Modular Decomposition of the Atmospheric Resistor

99

5.2.1.4 Recursive Component and Object Aggregation

In this step we amalgamate the components and objects into logical reusable struc-

tures. Figure 5.6 shows how the components and objects were grouped together. They

were combined into a pipe connections module, a disk expansion patterns module, a pur-

chased part module, a top plate module, a bottom plate module, a shroud module, and a

disk stack module. The pipe connections module, for example, contains the elements nec-

essary to design the connections to the inlet and outlet piping for a valve. These groupings

promote reuse across the product line and provide the ability to distribute the design of the

resistor across the network.

Lifting
Attachment

Lineup
Rods

StudsDisk
Stack

Bottom
Plate

ShroudTop Plate

Shroud
Cylinder

Shroud
Bottom
Plate

SeparatorTop
Disk

Bottom
Disk

Bolt
Circle
Bolt
Circle FlangeFlange Welded

Flange
Welded
Flange

Punch
Pattern
Punch
Pattern

EDM
Pattern
EDM
Pattern

Bolt
Circle

Flange

Welded
Flange

Bolt
Circle
Bolt
Circle

FlangeFlange

Welded
Flange
Welded
Flange

Punch
Pattern

EDM
Pattern

Punch
Pattern
Punch
Pattern

EDM
Pattern
EDM
Pattern

Shroud
Cylinder

Shroud
Bottom
Plate

Shroud
Cylinder

Shroud
Bottom
Plate

Lineup
Rods

Studs

Lifting
Attachment

Lineup
Rods

Lineup
Rods

Studs

Lifting
Attachment

Lineup
Rods Separator

Top
Disk

Bottom
Disk

Separator

Top
Disk

Bottom
Disk

Disk
Stack
Disk
Stack

Bottom
Plate
Bottom
Plate

Top PlateTop Plate

Figure 5.6 Recursive Component and Object Aggregation

Pipe Connections
Disk Expansion
Patterns

Purchased Parts

Disks

100

5.2.1.5 Classification of PDG Modules

In this step the best practices for each of the defined modules are classified into the

C, B, K, M, T, A, V, and U sets. Figure 5.7 shows the pipe connection module broken

down into its sets. This is done in exactly the same way as Roach proposed in his work,

the only difference being the scope. In order to take advantage of system modularity, the

classification exercise is done for each module individually. This same exercise would be

applied to the disk module, the purchased parts module, the bottom flange module etc.

Figure 5.7 Classification of Pipe Connection Module into its Constituent Sets

C
NPS

Schedule

ANSI Class

OD

ID

Thickness

Material

Temperature

Pressure

Welding Method

C
NPS

Schedule

ANSI Class

OD

ID

Thickness

Material

Temperature

Pressure

Welding Method

K
Buttweld Dimensions ASME B16.47

Flange Dimensions ASME B16.25

K
Buttweld Dimensions ASME B16.47

Flange Dimensions ASME B16.25

B
Pipe Wall Thickness

B
Pipe Wall Thickness

M
Flange OD

Min Flange Thickness

Hub Length

Top Hub Dia

Raised Face Dia

Dia Bolt Circle

Bolt Holes

Dia Bolt Holes

Min Fillet Radius

Weld Angle1

Weld Angle2

…

M
Flange OD

Min Flange Thickness

Hub Length

Top Hub Dia

Raised Face Dia

Dia Bolt Circle

Bolt Holes

Dia Bolt Holes

Min Fillet Radius

Weld Angle1

Weld Angle2

…

A
Flange Feature Model

Flange Interface Dwg.

Buttweld Feature Model

Buttweld Interface Dwg.

Interface Document

NC Code

A
Flange Feature Model

Flange Interface Dwg.

Buttweld Feature Model

Buttweld Interface Dwg.

Interface Document

NC Code

U
Flange Feature Model

Flange Interface Dwg

Buttweld Feature Model

Buttweld Interface Dwg.

Interface Document

NC Code

U
Flange Feature Model

Flange Interface Dwg

Buttweld Feature Model

Buttweld Interface Dwg.

Interface Document

NC Code

101

5.2.1.6 Composition of the Intermediate Transformations

The intermediate transformations are used to map between the domain and range

sets. They include predictive models, parametric CAD/CAE/CAM models, parametric

document models etc. In the pipe connection module, for example, a CAD drawing is

defined as an output design artifact. Thus, a parametric CAD solid model and drawing

model represent the reusable transformation function that can be instantiated to create the

desired design artifact. The mapping between the set K and the set M, known as the rules

mapping (R), maps the dimensions for the pipe connections to the master parameter list

using the C set as input. This is implemented as a simple lookup from a database table

since these dimensions are defined by ANSI and ASME standards. The mapping between

the set M and the set B, known as the P mapping, is defined as a simple calculation using

the master parameter list as input and calculating the wall thickness of the pipe.

As was previously mentioned, we must be on the lookout for possible services

with reuse potential during this phase. If we look carefully, we can find a number of reus-

able services that could be created for the pipe connection module.

The first example of a reusable service is found in the mapping to the CAD model

artifact. We know that this requires an integration with our CAD software. Experience has

shown that this type of integration service can readily be reused in multiple PDG contexts.

Nearly all PDGs require some sort of CAD output in the form of drawings or solid models.

With this in mind, we identify a potential integration service that could be developed as an

interface between the PDG system and the CAD system. This service must only be devel-

102

oped once. Once it is developed any element within the PDG system can use it whenever a

CAD artifact is required.

A second example of a reusable service is found in the R mapping. In this case, the

R mapping is a simple lookup from a set of tables compiled by the ANSI and ASME stan-

dards organizations. These standards are designed to ensure that the dimensional charac-

teristics of pipe manufactured by different vendors were the same. Since all connections to

the resistor are made to piping that meets these standards, we can use tables to look up the

dimensions for the standard flange or welded connections to this piping. These lookups

are identical for a resistor, or any of the other control valves in this particular manufactur-

ers product line. A service is therefore identified to perform these lookups.

Another example of a reusable service is in the mapping that maps the master

parameter list to the Interface Document artifact. This is a report document that contains

the information that specifies the interfaces to the resistor and how it should be joined to

the upstream piping. The Interface Document is typically a Word document made up of

parametric text and images. The document is instantiated for each design to provide the

interface information germane to that particular design. We have seen that nearly every

PDG requires some sort of document creation mechanism. This experience has shown that

an integration service to integrate Word into the PDG system would be valuable. As with

other integration type services this would only need to be created once and may be pro-

vided by the vendor of the application.

103

5.2.1.7 Rectify M for the PDG module

At this stage, the master parameter list is reconciled to eliminate redundancies and

dependencies. At the conclusion of this step, we have a single list of unique and indepen-

dent parameters.

5.2.1.8 Aggregation of PDG Modules

The PDG modules found in the previous steps are collected and united under a sin-

gle interface. This creates a composite service which is made up of two or more finer

grained services. This composite service simply becomes a single interface point for more

than one related services.

In the resistor PDG system, we may decide to provide a composite service which

includes the disk stack and the disk services. This does not mean that they no longer exist

as individual services. It simply means that, for the sake of simplifying the interface point,

we choose present these as a single service because they will be used together the majority

of the time. If we need to access them individually, we are still able to do so.

5.2.1.9 Compose Services

The services can now be built and then composed and assembled into the system

and sub-system applications. Because the services are completely encapsulated, they may

be created independently of one another and individually registered in the UDDI.

In simple terms, the web service is created by developing the code that defines the

functionality of the service and describing this functionality in a WSDL document. The

104

WSDL document tells the service consumer what services are available and how to access

them

The source code and WSDL file for a simple Web Service are found in Appendix

A. This is a simplified version of a service to illustrate the mechanics of creating a Web

Service. Further information on Web Services can be found in [30].

The services can then be plugged into the framework and composed into a higher

level application.

Figure 5.8 Sample WSDL Document from Resistor PDG

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions targetNamespace="http://threadengage.pdg.cci.com"

xmlns:impl="http://threadengage.pdg.cci.com" xmlns:intf="http://thre

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <wsdl:types>

 <schema elementFormDefault="qualified"

targetNamespace="http://threadengage.pdg.cci.com"

xmlns="http://www.w3.org/2001/XMLSchema" xmlns:impl="http://threaden

xmlns:intf="http://threadengage.pdg.cci.com"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <complexType name="PrelimEngageVO">

 <sequence>

 <element name="a" type="xsd:double"/>

 <element name="dmi" type="xsd:double"/>

 <element name="dpe" type="xsd:double"/>

 <element name="tpi" type="xsd:double"/>

 </sequence>

 </complexType>

 <element name="calcShearAreaExt">

105

5.2.1.10 Layout the Design and Release Cycles

We begin the storyboard by choreographing the execution of the PDG services.

Figure 5.9 shows an example of service choreography. In its most simple sense service

choreography is the sequencing of the services that the application needs to call in order to

provide the required functionality. The diagram shows the design and release phases as

well as the helper services. The helper services encapsulate shared functionality needed by

the main services but are shared amongst the main services.

Bolt
Circle

Flange

Welded
Flange

Bolt
Circle
Bolt
Circle

FlangeFlange

Welded
Flange
Welded
Flange

Punch
Pattern

EDM
Pattern

Punch
Pattern
Punch
Pattern

EDM
Pattern
EDM
Pattern

Shroud
Cylinder

Shroud
Bottom
Plate

Shroud
Cylinder

Shroud
Bottom
Plate

Lineup
Rods

Studs

Lifting
Attachment

Lineup
Rods

Lineup
Rods

Studs

Lifting
Attachment

Lineup
Rods

Bottom
Plate
Bottom
Plate

Separator

Top
Disk

Bottom
Disk

Disk
Stack

Separator

Top
Disk

Bottom
Disk

Separator

Top
Disk

Bottom
Disk

Disk
Stack
Disk
Stack

BoltingBolting

Top
Plate
Top
Plate

NoiseNoise

CostCost

Standard
Flange
Lookup

Standard
Flange
Lookup

Document
Creation
Document
Creation

CADCAD

Design Phase

Release
Phase

Helper Services

Figure 5.9 Service Choreography

106

With the sequencing of the services complete, we create a separate storyboard for

the look and feel of the user interface. This is mainly to determine how the user interacts

with the application and how the resulting data is presented. Figure 5.10 shows the story-

board for the user interface portion of the application.

5.2.1.11 Results

The atmospheric resistor system described above has shown that a PDG can be

broken up into individual services and those services can take part in an interconnected

Figure 5.10 Resistor User Interface Storyboard

Design Phase

Release Phase

Enter Specifications

Cost

Lifting Attachment Noise Prediction Top/Bottom Plate Design

Stud SizingDisk Stack Design

107

system of other PDGs. The services provide a much more reusable framework for PDG

creation and allow PDGs to be built from existing and pre-tested PDG services.

The PDG services can also be used in the context of other product lines. Figure

5.11 shows some of the other products where these same resistor PDG services could be

used. These products include choke valves, valves for atmospheric venting, valves for

boiler feed pump recirculation as well as sprinter valves. While each of these products is

different, there are some very important similarities that can be used to our advantage.

Some of these similarities are due to a product family architecture that was not explicitly

Figure 5.11 Other Products Where Resistor PDG Services Could Be Used

108

designed but rather came from the use of the same technology across these products. Other

similarities come from the fact that in general all valves are performing a similar function

although it may be under vastly different conditions. It is easy to see, therefore, how a ser-

vice based environment for product development can create an interconnected system of

shared PDG services which can be used over and over again. Many of the services created

in the resistor PDG system are directly applicable to other products.

The integration services can obviously be used for these other products since they

provide access to needed applications. The disk stack services are especially useful since

all of these products use a similar disk stack technology to control fluid flow. This particu-

lar company currently has many duplicate copies of the disk stack calculations in various

spreadsheets and other stand alone programs. Each of these programs and spreadsheets

must be maintained separately in their current paradigm. We have seen that there are sig-

nificant advantages that could be seen if the disk stack portion of these spreadsheets and

programs were to be consolidated into a PDG service. The pipe connection service would

also be reused across these products as they all must be joined to the piping systems of the

process plant. Other services such as the thread engagement service would prove useful in

the PDG system as they too would be used over and over again. Since many of the pur-

chased parts such as nuts, bolts, rods, actuators etc., are used in every product, the pur-

chased part service would provide a much needed standardized lookup service for these

parts.

The example of the Atmospheric Resistor PDG system shows that the method

developed does indeed provide a valuable technique for building a better PDG infrastruc-

109

ture. This method provides the ability to reuse PDG modules in many different contexts

without recompiling or even touching a single line of code. This has been shown to be the

key to building a system level PDG without creating a single all ecompassing PDG pro-

gram. The functionality is encapsulated and can be combined into the relevant process at

runtime. The encapsulation provided by this method allows for easier maintenance of the

system and provides the ability to distribute processing. This distributed processing is

takes advantage of the processing power of all of the computers attached to the network

and also provides a mechanism to divide the work geographically.

5.2.2 Implementation of the Turbofan Engine

The turbine disk PDG, which sparked many of the ideas for this work, proved to be

a much more complicated problem. The turbine disk PDG was designed to improve upon

many of the weaknesses shown in the resistor PDG. It was built as a web based application

to take advantage of economies in license usage for expensive 3rd party software and

takes advantage of a server based environment. It too was shown to provide significant

reductions in design cycle time, allowing the engineer to focus on the more value added

activities in the design process. It also helped to eliminate the need to run intermediate

reduced order models because of the speed with which the higher level models could be

built and executed. The turbine disk also provided the ability for an engineer to leverage

the entire body of company knowledge.

Notwithstanding these significant advantages, several difficulties were encoun-

tered in the development of the turbine disk PDG that were not seen with the Atmospheric

110

Resistor. The turbofan engine is a much more complicated product than the resistor is. Not

only are the analytical models more difficult and complex but the system level interactions

are orders of magnitude more difficult. A need was identified for the turbine disk to be

able to take part in a higher level system.

The implementation of the turbine disk, front frame, fan, vane and turbine blade

PDGs will be used to illustrate an interconnected system of PDG services.

5.2.2.1 Selection of the Product Concept and Embodiment

The product concept chosen for this exercise is that of a turbofan engine. These

engines are typically used on commercial aircraft and other business and commuter type

aircraft. A typical configuration for a turbofan engine is shown in Figure 5.12. The main

part of a turbofan engine is made up of a fan, a compressor, a combustor and a turbine.

Figure 5.12 The Pratt and Whitney PW4000 Turbofan Engine

113

5.2.2.2 Recursive Modular Decomposition

Figure 5.13 and Figure 5.14 are simplified graphical representations showing how

the turbine engine system was broken down into modules. While the turbofan engine is

made up of thousands of parts, we will only consider five of the major engine modules in

this discussion. These modules are the fan, the front frame, the compressor, the combustor,

and the turbine.

The fan module can be further broken down into its constituent components. The

fan blade, the fan disk and the fan stator all make up the higher level fan module.

Figure 5.13 Simplified Decomposition of a Turbofan Engine

114

The Front Frame is a single entity and will not be broken down any further at this

time. It will, however, be decomposed into objects when we reach that step.

The compressor module can be broken down into the low pressure section and the

high pressure section. Each of these sections is made up of a number of rotors. The rotors

are made up of compressor disks, compressor blades, and in some cases a single entity

called a centrifugal compressor.

A combustor may be further decomposed into a number of sheet metal compo-

nents that make up the combustor casing and fuel nozzles.

The turbine section is very similar in structure to the compressor section. It is made

up of a high pressure turbine section and a low pressure turbine section. Each of these sec-

tions is also made up of a number of rotors, each of which could be made up of a turbine

disk and a turbine blade.

While there are many more components that make up these turbofan engine mod-

ules, we will consider only these for the sake of simplifying the discussion. These compo-

nents will be further broken up into their corresponding objects in the next section.

5.2.2.3 Component Feature Decomposition

In the previous section, we broke the fan module into the fan blade, the fan disk

and the fan stator. Using experience, we would break the fan blade into an airfoil object,

an attachment object, and a platform object. The fan disk may be made up of a disk object,

115

an attachment object, and a flange object. The fan stator is made up of an airfoil object, a

hub object and an outer ring object.

The front frame module was not broken down any further in the previous step.

There are, however, some potentially reusable objects contained within the front frame.

We would consider the regular strut and the king strut to be objects. These objects would

be made up of airfoil objects and internal passage objects. The core struts, the hub, the

bypass ring, the outer ring and the mount pads are also designated as objects.

The compressor section was divided into the low pressure section and the high

pressure section. Each section was made up of a rotor which contains a disk and a blade.

The disk would be broken down into a flange object, a curvic object, and an attachment

Turbofan Engine
Fan

Rotor
Disk
Blade

Fan Stator
Airfoil
Ring

Front Frame
Strut
Ring

Compressor
Low Pressure

Rotor
Blade
Disk

High Pressure
Rotor

Blade
Disk

Centrif

Combustor
Fuel Nozzle
Casing

Turbine
High Pressure

Rotor
Disk
Blade

Low Pressure
Rotor

Disk
Blade

Figure 5.14 Tree Representation of Engine Decomposition

116

object. A compressor blade might be divided into and airfoil object, an attachment object,

tip shroud object and a platform object. A centrifugal compressor could be divided into a

hub object and a blade object.

The combustor section was broken into the casing and the fuel nozzles. It could be

divided further into objects that represent the sheet metal pieces that comprise the com-

bustor casing.

The turbine module was divided into high and low pressure sections, each made up

of a number of rotors. The rotors were further broken into a turbine disk and a turbine

blade. The disk would be comprised of the disk object, the curvic object, the flange object,

the attachment object, the discourager object, and the anti-rotation slot object. The blade

would be broken down into the airfoil object, the attachment object, the platform object

and the tip shroud objects.

5.2.2.4 Recursive Component and Object Aggregation

We now can take the results from our previous two decomposition activities and

join together the modules and objects into logical reusable structures.

We will combine all of the airfoil objects into a single module. Even though the

airfoil parameterizations may be slightly different, this functionality will be centralized

into a single PDG module. The disk objects will similarly be grouped into a single PDG

module as will the platform object. The attachment objects for the disks and the attach-

ment objects for the blades will also be consolidated into a single module despite their dif-

117

ferences. In this case the design of the disk attachment is so tightly coupled to the design

of the blade attachment that we will aggregate them into a single PDG module. We will

also combine the disk flange objects and the curvic objects into a single disk coupling

module.

The hub object and the outer ring objects found in the fan stator will be joined back

together under the fan stator module. While this may seem odd that we would join these

objects after decomposing them into individual objects, the process of breaking the mod-

ules apart allowed the discovery of a reusable airfoil object that was previously hidden

from view. The hub and outer ring objects will be combined under the fan stator module.

The three different types of strut objects from the front frame module will be com-

piled into a single strut module, this strut module will in turn be combined into an aggre-

gated service with the internal passage module and the mount pad module.

The hub and blade object for the compressor will be combined in a service aggre-

gation as will the sheet metal objects that make up the combustor casing. The disk module

will contain the discourager object, the anti-rotation slot object and will be a client to the

coupling service and the attachment service.

With the aggregation of the modules and objects complete, we are now ready to

classify the intermediate transformations for each of the PDG services.

118

5.2.2.5 Classification of the Intermediate Transformations

The intermediate transformations themselves are defined using the method devel-

oped by Roach. In this case we will focus mainly on identifying reusable mappings.

If we look at the G mapping we can find a number of potential integration services.

These are a CAD service, a document creation service and a service that can be used to

create plots of our data.

Figure 5.15 Sample Aggregation from Turbofan Engine PDG System

119

In the P mappings we find a potential integration service with our CFD and FEA

software packages. We also find some simple 2D aerodynamic calculations that we can

demarcate as a PDG service.

The R mapping identifies a service to look up material data from the materials

database. Another useful service is a service to look up rules from the design for manufac-

turing database.

The vaulting map identifies an integration service to our design repository data-

base. It is here that the designs are collected and stored for historical record keeping.

Figure 5.16 Set Definitions for Turbine Airfoil

120

5.2.2.6 Rectify M for the PDG Module

The master parameter list is then reconciled to eliminate duplicate parameters and

to eliminate dependent parameters from the list. Again, this is done for each PDG module

individually.

5.2.2.7 Aggregation of PDG Modules

At this point we are ready to aggregate the modules that we have defined into PDG

services. These services may be constructed as composite services where the higher level

service calls other services to perform its function.

The disk module might be made from the attachment service, the coupling service,

the disk object, and the discourager object. This does not mean that the functionality of the

attachment service lies inside of the disk module, only that the disk module requests the

services of the attachment service.

A rotor subsystem service might be made up of the disk service discussed above as

well as the blade service. This subsystem service would then be called a number of times

to do the analysis of the low pressure turbine system. This service the becomes a client to

the turbine section service which becomes a client for the turbofan engine service. This

process is repeated until the entire system is built from these reusable services.

121

5.2.2.8 Compose Services

Service composition is the process of sequencing the services into a workflow.

This workflow essentially exists only at runtime because the services are never perma-

nently connected to one another. They are simply discovered in the UDDI registry and

bound to at the time of execution.

5.2.2.9 Layout the Design and Release Cycles

Figure 5.17 and 5.18 show the layout of the design and release phases for the tur-

bine disk portion of the PDG system.

Figure 5.17 Storyboard of the Turbine Disk User Interface Design Phase

122

5.2.2.10 Results

The turbofan engine system shows that through the method developed in this

work, a complicated system may be decomposed and divided into reusable services. The

fluid nature of service composition allows the process to easily adapt to changes in the

product development process. Different services can be dynamically added or excluded in

the design process at the time of execution. This essentially creates a service toolbox for

product development. The correct service can be pulled from the toolbox in order to help

solve the problem at hand. A service based architecture also has many advantages when it

comes to communications between diverse design groups. Since all services by definition

Figure 5.18 Storyboard of the Turbine Disk User Interface Release Phase

123

have a standardized interface, the passing of data between design groups becomes much

easier. The data passed does not need to be converted into a different format for the appli-

cation consuming the data since the services are based on industry standard integration

technologies such as SOAP and WSDL.

124

125

CHAPTER 6 SUMMARY,
CONCLUSIONS AND
RECOMMENDATIONS

This thesis has extended the PDG methodology originally developed by Roach to

include a method for developing an interconnected system of PDGs. This chapter presents

a summary of the work followed by a discussion of the conclusions and recommendations

for future research.

6.1 Summary

The concept of a service based system for PDG development represents an exten-

sion of the existing PDG methodology and provides an efficient method to implement a

PDG for an entire system. These additions to the PDG methods provide a generalized

approach for constructing PDGs with reuse in mind. It takes advantage of the standardized

Web Services interfaces, allowing services to be easily plugged into the system. A frame-

work for a generic PDG architecture was also presented which takes advantage of a num-

ber of proven software patterns. The combination of this framework and methods provides

a mechanism for rapid PDG development and integration. PDGs built using this approach

are easier to maintain and because each service is clearly demarcated, PDGs are easier to

126

build in a distributed team. The following sections review the contributions to the general

body of knowledge.

6.1.1 A Method For Decomposing a Product into PDG Services

In Chapter 4, the PDG methods developed by Roach were extended to facilitate

reuse. The object, the PDG module and the PDG service were presented as general units

of reuse in a PDG system.

The object is the lowest level of reuse within the PDG system. It can be seen as the

smallest bundle of reusable functionality. Encapsulation of this functionality is the key to

enable the object to be used in more than one context. Objects are identified by recursively

decomposing the system until the smallest logical elements of reuse are identified. Exam-

ples of reusable objects were the disk object in the Atmospheric Resistor and the airfoil

object in the turbofan engine.

These objects are then collected into larger units known as PDG modules. A PDG

module is merely a collection of related objects. The turbine disk module, for example is

made up of the disk object and the discourager object. While the PDG module is reusable

at a higher level than the object, it is not necessarily exposed in the service layer.

The modules are then aggregated into PDG services. A PDG service might be

made up of one or more PDG modules. The pipe connections service, for example is made

up of the flange module, the welded flange module and the bolt circle module. A service

127

may also become the client to another service. The attachment service would be a client to

both the disk service and the blade service.

In order to effectively break the system into these reusable units, the PDG method

was extended to include some additional steps. These steps include (1) recursive modular

decomposition, (2) component feature decomposition, (3) recursive component aggrega-

tion, (4) classification of PDG module elements, (5) composition of the intermediate

transformations, (6) rectification of M for the PDG module, (7) aggregation of PDG mod-

ules into services, (8) composition of services, and (9) the layout the design and release

cycles.

The idea of a PDG fractal was also developed to help convey the idea that each

service that makes up the PDG system is itself a small PDG. This provides insight into

how we leverage the proven PDG methodology to create a network of PDG services.

The application of patterns to the development of PDGs was also proposed as a

form of intellectual reuse. This enables PDG creators to build on proven practices and

methods for PDG development. The insight that the patterns provide can help to eliminate

many known pitfalls in this type of architecture and builds on proven integration tech-

niques.

6.1.2 A System Level PDG

A method for creating a system level PDG was also presented. The system level

PDG is formed by orchestrating a group of well defined PDG services. The standardiza-

128

tion at the service level can be shown to provide great flexibility at the process level. A

change in the process is simply made by changing the sequencing of the service execu-

tions. This process is defined using the BPEL4WS standard. This ability to define the ser-

vice choreography using a standard business process language allows us to abstract the

process from the functional code. We do not have to re-code the process within our appli-

cations. The BPEL document is deployed to a workflow service and can be instantiated at

will. The services are never permanently connected to one another. They are dynamically

bound at runtime and execution logic can change the process as it executes based on feed-

back that the workflow service captures.

6.1.3 A Web Based Framework for PDG Systems

The architecture for a web based PDG environment was presented. This environ-

ment allows the easy plug and play of PDG services and provides a potential base for

future PDG environments. It provides ample separation between the user interface, the

process choreography and the PDG services to enable general reuse of the system.

6.2 Conclusions

The purpose of this research was to provide a method to nest PDGs in an intercon-

nected framework. Evaluation of the results of this research leads to the following conclu-

sions:

1. Encapsulation is the key to creating reusable PDG elements. If the functional-

ity is not encapsulated properly, the system will become too tightly coupled.

129

2. A nested PDG framework requires a standard communication protocol. The

protocol used for this research is the industry standard Web Services protocol of SOAP

over HTTP.

3. A service based approach to this framework provides enormous flexibility at

the system level. As the process changes, additional services may be added or a different

combination of existing services may be used. This provides standardization at the service

and object levels while still maintaining flexibility at the process level. This provides an

easy mechanism for new methods and tools to be integrated into the system. The service

based approach can take further advantage of best in class process and optimization soft-

ware.

4. PDG services can be classified into three groups, the integration services, the

calculation services and the helper services.

5. It is possible to create a generic framework for PDGs. This framework takes

advantage of the latest software technologies and is structured around reuse.

6. Flexibility is achieved by standardizing the lower levels of the architecture.

The next section provides recommendations for future work.

6.3 Recommendations

The purpose of this work was to develop a method for nesting PDG elements into

an interconnected system. While this objective was achieved, future work can be done in

130

order to improve upon this framework. The following are recommendations for future

work:

1. Develop robust methods and strategies for the storage of the knowledge con-

tained in K. At this time there is no standard structure nor robust strategy for storing PDG

knowledge elements.

2. Apply the extended PDG method to more industrial products to further evalu-

ate the method and to build a larger set of PDG patterns.

131

CHAPTER 7 REFERENCES

[1] Roach, Gregory M., 2003, The Product Design Generator--A Next Genera-
tion Approach to Detailed Design, Doctoral Thesis, Brigham Young Uni-
versity, Provo, UT.

[2] Davis, S., 1987, Future Perfect, Addison-Wesley Publishing Company
Inc., Reading MA.

[3] Pine II, J.B. and Boyton, 1993, “Making Mass Customization Work”, Har-
vard Business Review, Vol. 71, No. 5, pp. 108-111.

[4] Roach, Gregory M., Cox, Jordan J. and Teare, Shawn, S., 2001, “Reconfig-
urable Models and Product Templates as a Means to Increasing Productiv-
ity in the Product Development Process”, Proceedings of the 2001 Mass
Customization and Personalization Conference.

[5] Roach, Gregory M., Cox, Jordan J. and Young, Jared M., 2003, “A New
Strategy for Automating the Generation of Product Family Members and
Artifacts to an Aerospace Application“, Proceedings of the 2003 Design
Engineering Technical Conferences, Chicago, IL, CIE-2003-85.

[6] Baker, Albert D., Parunak, Van Dyke H., and Erol, Kutluhan. 1999.
“Agents and the Internet: Infrastructure for Mass Customization”, IEEE
Internet Computing.

[7] DaSilveria, Giovani, Borenstein, Denis, Fogliatto, Flavio S., 2001, “Mass
Customization: Literature Review and Research Directions”, Production
Economics, Vol. 72, pp. 1-13.

132

[8] Aziz, El-Sayed, and Chassapis, C., 2002, “Development of an Interactive
Web-Based Support System for Gear Design”, Proceedings of the 2002
Design Engineering Technical Conferences, Montreal, Canada,
DETC2002/DAC-34114.

[9] Szykman, Simon, 2002, “Architecture and Implementation of a Design
Repository System”, Proceedings of the 2002 Design Engineering Techni-
cal Conferences, Montreal, Canada, DETC2002/CIE-34463.

[10] Shen, Weiming, Ghenniwa, 2002, “A Distributed Multidisciplinary
Design Optimization Framework based on Web and Agents. Proceedings
of the 2002 Design Engineering Technical Conferences, Montreal, Canada,
DETC2002/CIE-34461.

[11] Karne, Ramesh K et al, 1998, “Web-It-Man: A Web Based Integrated Tool
for Manufacturing Environment”, Proceedings of the 1998 Design Engi-
neering Technical Conferences, Atlanta, GA, DETC98/CIE-5524.

[12] Rangel, Fernando, and Shah, Jami, J., 2002, “Integration of Commercial
CAD/CAM System with Custom CAPP Using Orbix Middleware and
CORBA Standard”, Proceedings of the 2002 Design Engineering Techni-
cal Conferences, Montreal, Canada, DETC2002/DAC-34069.

[13] Wong, Lee Ming, Friesen, Charles, Foo, Ken How, Wang, Gary G., and
Pang, Lucas. 2002, “Development of an Automated Design and Optimiza-
tion System for Industrial Silencers”. Proceedings of the 2002 Design
Engineering Technical Conferences, Montreal, Canada, DETC2002/DAC-
34118.

[14] Siddique, Zahed, and Yanjiang, Zhou., 2002, “Automatic Generation of
Product Family Member CAD Models Supported by a Platform Using a
Template Approach”, Proceedings of the 2002 Design Engineering Techni-
cal Conferences, Montreal, Canada, DETC2002/CIE-34407.

[15] Siddique, Zahed, and Ninan, Jiju, 2003, “Internet Based Framework to
Perform Automated FEA on User Customized Products”, Proceedings of
the 2003 Design Engineering Technical Conferences, Chicago, Illinois,
USA, DETC2003/DAC-48719.

[16] Ninan, Jiju and Siddique, Zahed, 2004, “Finite Element Analysis Tem-
plate Approach to Support Web-Based Customer Centric Design”, Design
Engineering Technical Conferences, Salt Lake City, UT, USA, DETC2004-
57697.

133

[17] D. Xue, F. Zhang, 2002, “Distributed Database and Knowledge Base
Modeling for Concurrent Design”, Computer Aided Design, Vol. 34, pp 27-
40.

[18] Flores, Rogelio, Jensen, C. Greg, and Shelley, Jon, “A Web Enabled Pro-
cess for Accessing Customized Parametric Designs”, Proceedings of the
2002 Design Engineering Technical Conferences, Montreal, Canada,
DETC2002/DAC-34078.

[19] Ulrich, K.T., and Eppinger, S.D, 2000, Product Design and Development,
McGraw-Hill, Inc., New York.

[20] Otis, C.E., and Vosbury, P.A., 2001, Aircraft Gas Turbine Powerplants,
Jeppesen Sanderson, Inc., Englewood, CO.

[21] Bergin, Jr., T.J., and Gibson, R.G., 1996, History of Programming Lan-
guages - II, ACM Press, New York NY, and Addison-Wesley Publ. Co.,
Reading MA.

[22] Northrup, Matthew M., 1997, The Application of Object-Oriented System
Analysis to the Early Stages of Discrete Product Design, Masters Thesis,
Brigham Young University, Provo, UT.

[23] Montgomery, Stephen L., 1994, Object-Oriented Information Engineer-
ing: Analysis, Design, and Implementation, AP Professional, New York,
New York.

[24] Beiter, Kurt A. and Ishii, Kosuke, 2003, ”Integrating Producibility and
Product Performance Tools Within a Web-Service Environment”, Proceed-
ings of the Design Engineering Technical Conferences, Chicago, Illinois,
USA, DETC2003/CIE-48281.

[25] Reichwald, Ralf, Piller, Frank T. and Moslein, Kathrin, 2000. “Mass Cus-
tomization Concepts for the E-Conomy: Four Strategies to create competi-
tive Advantage with Customized Goods and Services on the Internet”,
International NAISO Congress on Information Science Innovations, Dubai,
UAE.

[26] Kao, Kevin J., Seeley, Charles E., Yin, Su and Kolonay, Raymond M.,
2003. “Business-to-Business Virtual Collaboration of Aircraft Engine
Combustor Design”, Proceedings of the Design Engineering Technical
Conferences, Chicago, Illinois, USA, DETC2003/CIE-48282.

[27] Wujek, Brett A. Koch, Patrick N., McMillan, Mark and Chiang, Wei-
Shan, 2002, “A Distributed, Component-Based Integration Environment

134

for Multidisciplinary Optimal and Quality Design”, American Institute of
Aeronautics and Astronautics, Cary, NC, USA.

[28] Johansson, Bjorn and Krus, Petter, 2003, “A Web Service Approach for
Model Integration in Computational Design”, Proceedings of the Design
Engineering Technical Conferences, Chicago, Illinois, USA, DETC2003/
CIE-48196.

[29] Radcliffe, Clark J and Sticklen Jon, 2002, “The Internet Engineering
Design Agent System: iEDA”, Proceedings of IMECE ASME Interna-
tional Mechanical Engineering Congress and Exposition, New Orleans,
Louisiana, USA, IMECE2002-39286.

[30] McGovern, James, Tyagi, Sameer, Stevens, Michael E., Mathew, Sunil,
2003, Java Web Services Architecture, Morgan Kaufmann Publishers, New
York.

[31] Anosike, Anthony and Zhang, David, 2000, “An Agent-Oriented Model-
ling Approach for Agile Manufacturing”, School of Engineering and Com-
puter Science, University of Exeter, Exeter, United Kingdom.

[32] Wang, S.L, Xia, H., Liu, F., Tao, G.B., and Zhang, Z., 2002, “Agent-Based
Modeling and Mapping of a Manufacturing System”, Journal of Materials
Processing Technology, Vol. 129, pp. 518-523.

[33] Shen, Weiming, 2002, “Distributed Manufacturing Scheduling Using
Intelligent Agents”, IEE Intelligent Systems, January/February 2002, pp.
88 - 94.

[34] Tian, Gui Yun, Yin, Guofu, and Taylor, David, 2002, “Internet-Based
Manufacturing: A Review and a New Infrastructure for Distributed Intelli-
gent Manufacturing”, Journal of Intelligent Manufacturing, Vol. 13, pp.
323-338.

[35] Tumkor, Serdar, 2000, “Internet-Based Design Catalogue for the Shaft
and Bearing”, Research in Engineering Design, Vol. 12, pp. 163-171.

[36] Whitfield, Robert Ian, Duffy, Alex H.B., Coates, Graham, Hills, William,
2002, “Distributed Design Coordination”, Research in Engineering
Design, Vol. 13, pp. 243-252.

[37] Aldous, Kenneth, and Lintott, Andrew B., 2003, “A Web Platform for the
Exchange and Transformation of Business Objects”, Design Engineering
Technical Conferences, Chicago, Illinois, USA, DETC2003/CIE-48266.

135

[38] Skolicki, Zbigniew and Arciszewski, Tomasz, 2003, “Intelligent Agents
in Design”, Design Engineering Technical Conferences, Chicago, Illinois,
USA, DETC2003/DTM-48671.

[39] Wang, Peijun, Bjarnemo, Robert, and Motte, Damien, 2003, “Develop-
ment of a Web-Based Customer-Oriented Interactive Virtual Environment
for Mobile Phone Design”, Design Engineering Technical Conferences,
Chicago, Illinois, USA, DETC2003/CIE-48300.

[40] Rosenman, Mike, and Wang, Fujun, 1999, “CADOM: A Component
Agent-Based Design-Oriented Model for Collaborative Design”, Research
in Engineering Design, Vol. 11, pp. 193-205.

[41] Raj, Ajoy R., and Ramani, Karthik, 2004, “Enabling ‘Self-Service’ Data
Management: Distributed Product Data Management Architecture”,
Design Engineering Technical Conferences, Salt Lake City, UT, USA,
DETC2004-57788.

[42] Liao, Xiaoyun, and Wang, G. Gary, 2004, “Variation Analysis of Non-
Rigid Assembly Using FEM and Fractals”, Design Engineering Technical
Conferences, Salt Lake City, UT, USA, DETC2004-57753.

[43] Shooter, Steven B., Stone, Robert B., Simpson, Timothy W., Kumara,
Soundar R.T., Terpenny, Janis P., 2004, “Toward an Information Manage-
ment Infrastructure for Product Family Planning and Mass Customiza-
tion”, Design Engineering Technical Conferences, Salt Lake City, UT,
USA, DETC2004-57430.

[44] Robertson, D. and Ulrich, K., 1998, “Planning Product Platforms,” Sloan
Management Review, 39(4), pp. 19-31.

[45] Araque, Rafael, Bailey, Trevor, Bonilha, Murilo W., and Fletcher, Jay,
2004, “A Systems Framework For Platform Architecture Analysis”,
Design Engineering Technical Conferences, Salt Lake City, UT, USA,
DETC2004-57299.

[46] Yang, QZ, and Lu, W.F., 2004, “Development of a J2EE Web Application
for STEP-Based Design Conformance Checking”, Design Engineering
Technical Conferences, Salt Lake City, UT, USA, DETC2004-57522.

[47] Bidarra, Rafael, van Bunnik, Andre, and Bronsvoort, Willem, 2004,
“Direct Manipulation of Feature Models in Web-Based Collaborative
Design”, Design Engineering Technical Conferences, Salt Lake City, UT,
USA, DETC2004-57716.

136

[48] Zha, Xuan F., Li, Ling L., and Lim, Samuel Y.E., 2004, “A Multi-Agent
Intelligent Environment For Rapid Assembly Design”, Planning and Sim-
ulation, Design Engineering Technical Conferences, Salt Lake City, UT,
USA, DETC2004-57713.

[49] Tseng, Mitchell M., and Piller, Frank T., 2003, The Customer Centric
Enterprise: Advances in Mass Customization and Personalization,
Springer, New York.

[50] Nanda, Jyotirmaya, Thevenot, Henri J., Simpson, Timothy W., Kumara,
Soundar R.T., 2004, “Exploring Semantic Web Technologies for Product
Family Modeling”, Design Engineering Technology Conferences, Salt
Lake City, UT, DETC2004-57683.

[51] Li, W.D., and Lu, W.F., 2004, “Development of a Web-Based Process
Planning Optimization System”, Design Engineering Technical Confer-
ences, Salt Lake City, UT, DETC2004-57675.

[52] Mulberger, Jessica L., and Simpson, Timothy W., 2004, “Advancements
in a Web-Based Framework in Product Family Optimization and Visualiza-
tion”, Design Engineering Technical Conferences, Salt Lake City, UT,
DETC2004-57688.

[53] Hao, Qi, Shen, Weiming, Zhang, Zhan, Park, Seong-Whan, Lee, and Jai-
Kyung, 2004, “A Multi-Agent Framework for Collaborative Engineering
Design and Optimization”, Design Engineering Technical Conferences,
Salt Lake City, UT, DETC2004-57686.

[54] Shen, W., Norrie, D.H. and Barthes, J.P., 2001, “Multi-Agent Systems for
Concurrent Intelligent Design and Manufacturing”, Taylor and Francis,
London, UK.

[55] Wang, L., Shen, W., Xie, H., Neelamkavil, J, and Pardasani, A., 2002,
“Collaborative Conceptual Design: A State-of-the-Art Survey”, CAD,
34(13), pp. 981-996.

[56] Alur, Deepak, Crupi, John, and Malks, Dan, 2003, Core J2EE Patterns:
Best Practices and Design Strategies, Prentice Hall PTR, Upper Saddle
River, NJ.

[57] Panchal, Jitesh H., Chamberlain, Matthew k., Rosen, David W., Allen,
Janet K., and Mistree, Farrokh, 2002, “A Service Based Architecture for
Information and Asset Utilization in Distributed Product Realization”,
American Institute of Aeronautics and Astronautics.

137

[58] Gerhard, Jonathan F., Rosen, David, Allen, Janet K., and Mistree, Far-
rokh, 2000, “A Distributed Product Realization Environment for Design
and Manufacturing”, Design Engineering Technical Conferences, Balti-
more, Maryland, USA, DETC2000/CIE-14624.

[59] Han, Charles, Kunz, John C., and Law, Kincho H., 1999, “An Internet-
Based Distributed Service Architecture”, Design Engineering Technical
Conferences, Las Vegas, NV, USA, DETC99/CIE-9077.

[60] Xiao, Angran, Choi, Hae-Jin, Kulkarni, Rahul, Allen, Janet K., Rosen,
David, and Mistree, Farrokh, 2001, “A Web-Based Distributed Product
Realization Environment”, Design Engineering Technical Conferences,
Pittsburgh, PA, USA, DETC2001/CIE-21766.

[61] Brock, Rebecca Wirfs and McKean, Alan, 2003, Object Design: Roles,
Responsibilities and Collaborations, Addison Wesley, NY.

[62] Knapik, Michael and Johnson, Jay, 1998, Developing Intelligent Agents
for Distributed Systems, McGraw-Hill, NY.

[63] Murch, Richard and Johnson, Tony, 1999, Intelligent Software Agents,
Prentice Hall PTR, Upper Saddle River, NJ.

[64] Shooter, S. B., Keirouz, W. T., Szykman, S., Fenves, S. J., 2000, “A
Model for the Flow of Design Information in Product Development”,
Engineering with Computers, Vol. 16: pp 178-194.

[65] Zhang, Mike Tao and Goldberg, Ken, 2002, “Internet-Based CAD Tool
for Design of Gripper Jaws”, Design Engineering Technical Conferences,
Montreal, Canada, DETC2002/CIE-34460.

[66] Whitney, Daniel E, and Dong, Qi, 1999, “Introducing Knowledge-Based
Engineering into an Interconnected Product Development Process”,
Design Engineering Technical Conferences, Las Vegas, NV, DETC99/
DTM-8741.

[67] Roy, U., and Kodkani, S. S., 1999, “Product Modeling Within the Frame-
work of the World Wide Web”, IIE Transactions, Vol. 31, pp 667-677.

[68] Paydarfar, Saeed, 2001, “An Integration Maturity Model for the Digital
Enterprise”, The Digital Enterprise, Fall 2001, pp. 29-44.

[69] Gonzales-Zugasti, Javier P., Otto, Kevin N., and Baker, John D., 2000, “A
Method for Architecting Product Platforms”, Research in Engineering
Design, Vol. 12, pp 61-72.

138

[70] Reich, Yoram, Konda, Suresh, Subrahmanian, Cunningham, Douglas,
Dutoit, Allen, Patrick, Robert, Thomas, Mark, and Westerberg, Arthur W.,
1999, “Building Agility for Developing Agile Design Information Sys-
tems”, Research in Engineering Design, Vol. 11, pp. 67-83.

[71] Martin, Mark V., and Ishii, Kosuke, 2002, “Design for Variety: Develop-
ing Standardized and Modularized Product Platform Architectures”,
Research in Engineering Design, Vol. 13, pp. 213-235.

[72] Ullman, David G., 2002, “Toward the Ideal Mechanical Engineering
Design Support System”, Research in Engineering Design, Vol. 13, pp. 55-
64.

[73] Ahmed, Saeema, Wallace, Ken M., and Blessing, Lucienne T.M., 2003,
“Understanding the Differences Between How Novice and Experienced
Designers Approach Design Tasks”, Research in Engineering Design, Vol.,
14, pp. 1-11.

[74] Rohl, Peter J., Kolonay, Raymond M., Paradis, Michael J., and Bailty
Michael W., 2001, “Intelligent Compressor Design in a Network Centric
Environment”, General Electric Corporate Research and Development.

[75] Tumkor, Serdar, 2000, “Internet-Based Design Catalogue for the Shaft
and Bearing”, Research in Engineering Design, Vol. 12, pp 163-171.

[76] Simpson, Timothy W., and D’Souza, Brayan, 2002, “Assessing Variable
Levels of Platform Commonality Within a Product Family Using a Multi-
objective Genetic Algorithm”, Symposium on Multidisciplinary Analysis
and Optimization, Atlanta, Georgia, AIAA 2002-5427.

[77] Messac, Achille, Martinez, Michael P., and Simpson, Timothy W., 2002,
“Effective Product Family Design Using Physical Programming”, Engi-
neering Optimization, Vol. 34, pp 245-261.

[78] Lampel, J., and Pine, J.B., 1997, “Customizing Customization”, Sloan
Management Review, Vol. 38, pp. 21-30.

[79] Erens, F., and Verhulst, K., 1997, “Architectures for Product Families”,
Computers in Industry, Vol. 33 pp. 165-178.

[80] Erens, F., and Wortman, H.C., 1996, “Generic Product Modeling for Mass
Customization”, Implementation Road Map, 1996, Ann Arbor, MI.

139

[81] Jiao, J., 1998, Design for Mass Customization by Developing Product
Family Architecture, Doctoral Thesis, Hong Kong University of Science
and Technology, Kowloon, Hong Kong.

[82] Jiao, J., and Tseng, M.M., 1999, “A Methodology of Developing Product
Family Architecture for Mass Customization”, Journal of Intelligent Man-
ufacturing, Vol. 10, pp. 3-20.

[83] Sun Microsystems, “What is an Object?”, URL: http://java.sun.com/docs/
books/tutorial/java/concepts/object.html, valid as of June, 2005.

[84] Sun Microsystems, “What is a Message?”, URL: http://java.sun.com/
docs/books/tutorial/java/concepts/message.html, valid as of June, 2005.

[85] Flores-Zubillaga, Rogelio, 2002, Distribued CAD Components, Masters
Thesis, Brigham Young University, Provo, UT.

[86] IBM Developerworks, “Business Process Execution Language for Web
Services”, URL: http://www-128.ibm.com/developerworks/library/specifi-
cation/ws-bpel/, valid as of June, 2005.

140

141

APPENDIX A SIMPLE WEB SERVICE
SOURCE CODE

7.1 Capacity.java

/*
 * Created on Jul 7, 2005
 *
 * TODO To change the template for this generated file go to
 * Window - Preferences - Java - Code Style - Code Templates
 */
package com.cci.services.noise;

/**
 * @author Jared
 *
 * TODO To change the template for this generated type comment go to
 * Window - Preferences - Java - Code Style - Code Templates
 */
public class Capacity {

public double calcCapacityConst(CapacityVO vo)
{
double flowRate = vo.getFlowRate();
double compressFlowFactor = vo.getCompressFlowFactor();
double density = vo.getDensity();
double pressure = vo.getInletPressure();
double atmPressure = vo.getAtmPressure();

142

return (0.016 * flowRate) / (compressFlowFactor * Math.sqrt(density * (pressure
- atmPressure)));

}
}

7.2 CapacityVO.java

/*
 * Created on Jul 7, 2005
 *
 * TODO To change the template for this generated file go to
 * Window - Preferences - Java - Code Style - Code Templates
 */
package com.cci.services.noise;

/**
 * @author Jared
 *
 * TODO To change the template for this generated type comment go to
 * Window - Preferences - Java - Code Style - Code Templates
 */
public class CapacityVO {
private double flowRate;
private double density;
private double inletPressure;
private double atmPressure;
private double compressFlowFactor;
/**
 * @return Returns the atmPressure.
 */
public double getAtmPressure() {
return atmPressure;
}
/**
 * @param atmPressure The atmPressure to set.
 */
public void setAtmPressure(double atmPressure) {
this.atmPressure = atmPressure;
}
/**
 * @return Returns the compressFlowFactor.
 */

143

public double getCompressFlowFactor() {
return compressFlowFactor;
}
/**
 * @param compressFlowFactor The compressFlowFactor to set.
 */
public void setCompressFlowFactor(double compressFlowFactor) {
this.compressFlowFactor = compressFlowFactor;
}
/**
 * @return Returns the density.
 */
public double getDensity() {
return density;
}
/**
 * @param density The density to set.
 */
public void setDensity(double density) {
this.density = density;
}
/**
 * @return Returns the flowRate.
 */
public double getFlowRate() {
return flowRate;
}
/**
 * @param flowRate The flowRate to set.
 */
public void setFlowRate(double flowRate) {
this.flowRate = flowRate;
}
/**
 * @return Returns the inletPressure.
 */
public double getInletPressure() {
return inletPressure;
}
/**
 * @param inletPressure The inletPressure to set.
 */
public void setInletPressure(double inletPressure) {
this.inletPressure = inletPressure;
}

144

}

7.3 Capacity_SEI.java

package com.cci.services.noise;

public interface Capacity_SEI extends java.rmi.Remote
{
 public double calcCapacityConst(com.cci.services.noise.CapacityVO vo);
}

7.4 CapacityVO_Deser.java

/**
 * CapacityVO_Deser.java
 */

package com.cci.services.noise;

public class CapacityVO_Deser extends com.ibm.ws.webservices.engine.encod-
ing.ser.BeanDeserializer {

 /**
 * Constructor
 */
 public CapacityVO_Deser(
 java.lang.Class _javaType,
 javax.xml.namespace.QName _xmlType,
 com.ibm.ws.webservices.engine.description.TypeDesc _typeDesc) {
 super(_javaType, _xmlType, _typeDesc);
 }
}

145

7.5 CapacityVO_Helper.java

/**
 * CapacityVO_Helper.java
 *
 */

package com.cci.services.noise;

public class CapacityVO_Helper {
 // Type metadata
 private static com.ibm.ws.webservices.engine.description.TypeDesc typeDesc =
 new com.ibm.ws.webservices.engine.description.TypeDesc(Capaci-

tyVO.class);

 static {
 com.ibm.ws.webservices.engine.description.FieldDesc field = new

com.ibm.ws.webservices.engine.description.ElementDesc();
 field.setFieldName("atmPressure");
 field.setXmlName(com.ibm.ws.webservices.engine.utils.QNameTable.create-

QName("http://noise.services.cci.com", "atmPressure"));
 field.setXmlType(com.ibm.ws.webservices.engine.utils.QNameTable.create-

QName("http://www.w3.org/2001/XMLSchema", "double"));
 typeDesc.addFieldDesc(field);
 field = new com.ibm.ws.webservices.engine.description.ElementDesc();
 field.setFieldName("compressFlowFactor");
 field.setXmlName(com.ibm.ws.webservices.engine.utils.QNameTable.create-

QName("http://noise.services.cci.com", "compressFlowFactor"));
 field.setXmlType(com.ibm.ws.webservices.engine.utils.QNameTable.create-

QName("http://www.w3.org/2001/XMLSchema", "double"));
 typeDesc.addFieldDesc(field);
 field = new com.ibm.ws.webservices.engine.description.ElementDesc();
 field.setFieldName("density");
 field.setXmlName(com.ibm.ws.webservices.engine.utils.QNameTable.create-

QName("http://noise.services.cci.com", "density"));
 field.setXmlType(com.ibm.ws.webservices.engine.utils.QNameTable.create-

QName("http://www.w3.org/2001/XMLSchema", "double"));
 typeDesc.addFieldDesc(field);
 field = new com.ibm.ws.webservices.engine.description.ElementDesc();
 field.setFieldName("flowRate");
 field.setXmlName(com.ibm.ws.webservices.engine.utils.QNameTable.create-

QName("http://noise.services.cci.com", "flowRate"));
 field.setXmlType(com.ibm.ws.webservices.engine.utils.QNameTable.create-

QName("http://www.w3.org/2001/XMLSchema", "double"));

146

 typeDesc.addFieldDesc(field);
 field = new com.ibm.ws.webservices.engine.description.ElementDesc();
 field.setFieldName("inletPressure");
 field.setXmlName(com.ibm.ws.webservices.engine.utils.QNameTable.create-

QName("http://noise.services.cci.com", "inletPressure"));
 field.setXmlType(com.ibm.ws.webservices.engine.utils.QNameTable.create-

QName("http://www.w3.org/2001/XMLSchema", "double"));
 typeDesc.addFieldDesc(field);
 };

 /**
 * Return type metadata object
 */
 public static com.ibm.ws.webservices.engine.description.TypeDesc getType-

Desc() {
 return typeDesc;
 }

 /**
 * Get Custom Serializer
 */
 public static com.ibm.ws.webservices.engine.encoding.Serializer getSerializer(
 java.lang.String mechType,
 java.lang.Class javaType,
 javax.xml.namespace.QName xmlType) {
 return
 new CapacityVO_Ser(
 javaType, xmlType, typeDesc);
 };

 /**
 * Get Custom Deserializer
 */
 public static com.ibm.ws.webservices.engine.encoding.Deserializer getDeserial-

izer(
 java.lang.String mechType,
 java.lang.Class javaType,
 javax.xml.namespace.QName xmlType) {
 return
 new CapacityVO_Deser(
 javaType, xmlType, typeDesc);
 };

}

147

7.6 CapacityVO_Ser.java

/**
 * CapacityVO_Ser.java
 *
 */

package com.cci.services.noise;

public class CapacityVO_Ser extends com.ibm.ws.webservices.engine.encod-
ing.ser.BeanSerializer {

 /**
 * Constructor
 */
 public CapacityVO_Ser(
 java.lang.Class _javaType,
 javax.xml.namespace.QName _xmlType,
 com.ibm.ws.webservices.engine.description.TypeDesc _typeDesc) {
 super(_javaType, _xmlType, _typeDesc);
 }
 public void serialize(
 javax.xml.namespace.QName name,
 org.xml.sax.Attributes attributes,
 java.lang.Object value,
 com.ibm.ws.webservices.engine.encoding.SerializationContext context)
 throws java.io.IOException
 {
 context.startElement(name, addAttributes(attributes,value,context));
 addElements(value,context);
 context.endElement();
 }
 protected org.xml.sax.Attributes addAttributes(
 org.xml.sax.Attributes attributes,
 java.lang.Object value,
 com.ibm.ws.webservices.engine.encoding.SerializationContext context)
 throws java.io.IOException
 {
 return attributes;
 }
 protected void addElements(
 java.lang.Object value,
 com.ibm.ws.webservices.engine.encoding.SerializationContext context)
 throws java.io.IOException
 {

148

 CapacityVO bean = (CapacityVO) value;
 java.lang.Object propValue;
 javax.xml.namespace.QName propQName;
 {
 propQName = QName_0_0;
 propValue = new Double(bean.getAtmPressure());
 context.serialize(propQName, null,
 propValue,
 QName_1_5,
 true,null);
 propQName = QName_0_1;
 propValue = new Double(bean.getCompressFlowFactor());
 context.serialize(propQName, null,
 propValue,
 QName_1_5,
 true,null);
 propQName = QName_0_2;
 propValue = new Double(bean.getDensity());
 context.serialize(propQName, null,
 propValue,
 QName_1_5,
 true,null);
 propQName = QName_0_3;
 propValue = new Double(bean.getFlowRate());
 context.serialize(propQName, null,
 propValue,
 QName_1_5,
 true,null);
 propQName = QName_0_4;
 propValue = new Double(bean.getInletPressure());
 context.serialize(propQName, null,
 propValue,
 QName_1_5,
 true,null);
 }
 }
 public final static javax.xml.namespace.QName QName_0_4 =
 com.ibm.ws.webservices.engine.utils.QNameTable.createQName(
 "http://noise.services.cci.com",
 "inletPressure");
 public final static javax.xml.namespace.QName QName_0_3 =
 com.ibm.ws.webservices.engine.utils.QNameTable.createQName(
 "http://noise.services.cci.com",
 "flowRate");
 public final static javax.xml.namespace.QName QName_1_5 =

149

 com.ibm.ws.webservices.engine.utils.QNameTable.createQName(
 "http://www.w3.org/2001/XMLSchema",
 "double");
 public final static javax.xml.namespace.QName QName_0_0 =
 com.ibm.ws.webservices.engine.utils.QNameTable.createQName(
 "http://noise.services.cci.com",
 "atmPressure");
 public final static javax.xml.namespace.QName QName_0_2 =
 com.ibm.ws.webservices.engine.utils.QNameTable.createQName(
 "http://noise.services.cci.com",
 "density");
 public final static javax.xml.namespace.QName QName_0_1 =
 com.ibm.ws.webservices.engine.utils.QNameTable.createQName(
 "http://noise.services.cci.com",
 "compressFlowFactor");
}

7.7 Capacity.wsdl

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://noise.services.cci.com" xmlns:impl="http://noise.ser-

vices.cci.com" xmlns:intf="http://noise.services.cci.com" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:xsd="http://www.w3.org/2001/
XMLSchema">

 <wsdl:types>
 <schema elementFormDefault="qualified" targetNamespace="http://noise.services.cci.com"

xmlns="http://www.w3.org/2001/XMLSchema" xmlns:impl="http://noise.services.cci.com"
xmlns:intf="http://noise.services.cci.com" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <complexType name="CapacityVO">
 <sequence>
 <element name="atmPressure" type="xsd:double"/>
 <element name="compressFlowFactor" type="xsd:double"/>
 <element name="density" type="xsd:double"/>
 <element name="flowRate" type="xsd:double"/>
 <element name="inletPressure" type="xsd:double"/>
 </sequence>
 </complexType>
 <element name="calcCapacityConst">
 <complexType>
 <sequence>
 <element name="vo" nillable="true" type="impl:CapacityVO"/>
 </sequence>
 </complexType>
 </element>

150

 <element name="calcCapacityConstResponse">
 <complexType>
 <sequence>
 <element name="calcCapacityConstReturn" type="xsd:double"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </wsdl:types>

 <wsdl:message name="calcCapacityConstRequest">

 <wsdl:part element="intf:calcCapacityConst" name="parameters"/>

 </wsdl:message>

 <wsdl:message name="calcCapacityConstResponse">

 <wsdl:part element="intf:calcCapacityConstResponse" name="parameters"/>

 </wsdl:message>

 <wsdl:portType name="Capacity">

 <wsdl:operation name="calcCapacityConst">

 <wsdl:input message="intf:calcCapacityConstRequest" name="calcCapacityConstRequest"/>

 <wsdl:output message="intf:calcCapacityConstResponse" name="calcCapacityConstRe-
sponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="CapacitySoapBinding" type="intf:Capacity">

 <wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="calcCapacityConst">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="calcCapacityConstRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="calcCapacityConstResponse">

 <wsdlsoap:body use="literal"/>

151

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="CapacityService">

 <wsdl:port binding="intf:CapacitySoapBinding" name="Capacity">

 <wsdlsoap:address location="http://localhost:9080/CapWeb/services/Capacity"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

152

	Nesting Automated Design Modules In An Interconnected Framework
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Figures
	CHAPTER 1 Introduction
	CHAPTER 2 Literature Review
	2.1 Mass Customization
	2.2 Product Design Generator Methodology
	Figure 2.1 Schematic Representation of the PDG
	2.2.1 PDG Construction

	2.3 Web-Enabled Product Development
	2.4 Commercial Integration Tools
	2.5 Object-Oriented Theory
	2.5.1 Objects

	2.6 Agent-Based Systems
	2.7 Summary

	CHAPTER 3 Background
	3.1 Foundation
	3.1.1 Atmospheric Resistor PDG
	Figure 3.1 Anatomy of the Atmospheric Resistor
	3.1.1.1 Introduction
	3.1.1.2 Architecture
	Figure 3.2 Atmospheric Resistor PDG Architecture
	Figure 3.3 Agent-Based Architecture for the Atmospheric Resistor PDG

	3.1.2 Turbine Disk PDG
	Figure 3.4 CAD Model of a Typical Turbine Disk
	3.1.2.1 Introduction
	Figure 3.5 Turbine Disk PDG Architecture

	3.1.2.2 Architecture

	3.1.3 The Compliant Constant-Force Spring PDG
	3.1.3.1 Introduction
	Figure 3.6 Constant-Force Compression Spring

	3.1.3.2 Architecture

	3.1.4 Class Projects - Turbofan Engine Components
	3.1.4.1 Fan Disk and Cone PDG
	Figure 3.7 CAD Model of Fan Disk and Cone

	3.1.4.2 Fan Blade PDG
	Figure 3.8 CAD Model of Fan Blade

	3.1.4.3 Fan Stator PDG
	Figure 3.9 CAD Model of Fan Stator Assembly

	3.1.4.4 Class Project Architecture

	3.2 Enabling Technologies
	3.2.1 Distributed Computing
	3.2.2 Service Oriented Architecture
	Figure 3.10 SOA’s Find-Bind-Execute Paradigm
	Figure 3.11 Different Layers of Service Oriented Applications

	3.2.3 Web Services
	1. Service Provider: hosts the computational service or resource. This service can be of any kind ranging from a simple random number generator to a complex sequence of computations or optimizations.
	2. Service Requester: the counterpart that invokes the service from the provider. Thanks to well defined standards for communication and description of the service, it is possible to universally connect service requesters to providers in a pe...
	3. Service Directory: or broker. This is a service itself where the provider can publish services and the requester can search and discover services suiting the purpose.

	3.2.4 Web Service Basics
	1. The systems are easier to manage and the IT support can be centralized.
	2. With standard service descriptions it is possible to assemble “best in class” solutions
	3. Enforces corporate standards by defining data and the services that operate on that data
	4. Legacy code can be incorporated into the information processing workflow
	5. Services and clients are platform agnostic, and the links between them are loosely coupled

	3.2.5 Existing and Emerging Standards
	3.2.5.1 Extensible Markup Language
	3.2.5.2 Simple Object Access Protocol
	3.2.5.3 Universal Description, Discovery, and Integration
	3.2.5.4 Web Services Description Language

	3.2.6 Benefits of Web Services
	3.2.6.1 Reusability
	3.2.6.2 Location Transparency
	3.2.6.3 Composition
	3.2.6.4 Scalability and Availability

	3.2.7 Modularity of Services
	3.2.7.1 Modular Decomposability
	3.2.7.2 Modular Composability
	3.2.7.3 Modular Understandability
	3.2.7.4 Modular Continuity
	3.2.7.5 Modular Protection
	3.2.7.6 Direct Mapping
	3.2.7.7 Information Hiding
	3.2.7.8 Loose Coupling
	3.2.7.9 Network-Addressable Interface
	3.2.7.10 Coarse-Grained Interfaces

	3.2.8 Web Services and Service Oriented Architectures
	3.2.9 Engineering Web Services

	3.3 Patterns
	3.4 Product Architecture
	1. Upgrade: As technological capabilities or user needs evolve, some products can accommodate this evolution through upgrades.
	2. Add-Ons: Many products are sold by a manufacturer as a basic unit, to which the user adds components, often produced by third parties, as needed.
	3. Adaptation: Some long lived products may be used in several different use environments, requiring adaptation.
	4. Wear: Physical elements of a product may deteriorate with use, necessitating replacement of the worn components to extend the useful life of the product.
	5. Consumption: Some products consume materials, which can then be easily replenished.
	6. Flexibility in use: Some products can be configured by the user to provide dif ferent capabilities.
	7. Reuse: In creating subsequent products, the firm may wish to change only a few functional elements while retaining the rest of the product intact.
	3.4.1 Types of Modularity
	Figure 3.12 Three types of Modular Architecture
	3.4.1.1 Slot-Modular Architecture
	3.4.1.2 Bus-Modular Architecture
	3.4.1.3 Sectional-Modular architecture
	3.4.1.4 Product Platforms and Product Families

	3.5 Fractals
	3.6 Summary

	CHAPTER 4 Method
	4.1 The PDG
	4.2 Units of Reuse and Units of Partition
	4.2.1 The Object
	Figure 4.1 “Cellular” Representation of an Object [83]
	Figure 4.2 Message Passing Between Objects [84]

	4.2.2 The Service
	4.2.3 The PDG as a Fractal
	Figure 4.3 Illustration of Fractal Properties
	Figure 4.4 PDG Structure as a Fractal

	4.2.4 Patterns
	4.2.5 Process and System Reuse

	4.3 PDG Creation Process
	4.3.1 Selection of the Product Concept and Embodiment
	4.3.2 Development of the Product Transformation Schematic
	4.3.2.1 Recursive Modular Decomposition
	4.3.2.2 Component Feature Decomposition
	Figure 4.5 Recursive Modular Decomposition

	4.3.2.3 Recursive Component and Object Aggregation
	Figure 4.6 Recursive Component and Object Aggregation
	1. Modular Composability - The modular composability of a service refers to the production of services that may be freely combined as a whole with other services to pro duce new systems. Services should be created so that they are sufficientl...
	2. Modular Understandability - The modular understandability of a service is the ability of a person to understand the function of the service without having any knowledge of other services. The modular understandability of a service can also...
	3. Modular Continuity - The modular continuity of a service refers to the impact of a change in one service requiring a change in other services or in the consumers of the service. An interface that does not sufficiently hide the implementati...
	4. Direct Mapping - A service should map to a distinct problem domain function. The boundaries around the PDG service should map to a distinct area of the problem domain. This is important so the services are self-contained and independent. I...
	5. Information Hiding - The PDG service should never expose its internal data structures. Even the smallest amount of internal information known outside the service will cause unnecessary dependencies between the service and its consumers.
	6. Loose Coupling - Coupling refers to the number of dependencies between modules. There are two types of coupling: loose and tight. Loosely coupled modules have a few will known dependencies. Tightly coupled modules have many unknown depende...

	4.3.2.4 Classification of PDG Modules
	4.3.2.5 Composition of the Intermediate Transformations
	4.3.2.6 Rectify M for the PDG Module
	4.3.2.7 Aggregation of PDG Modules
	4.3.2.8 Compose Services
	4.3.2.9 Layout the Design and Release Cycles

	4.4 Summary

	CHAPTER 5 Results
	5.1 Architecture of the PDG Framework
	5.1.1 The Presentation Layer
	Figure 5.1 Model-View-Controller Pattern

	5.1.2 The Business Logic Layer
	Figure 5.2 PDG Business Logic Layer

	5.1.3 The Service Layer
	5.1.4 The Data Access Layer
	Figure 5.3 Generalized Architecture of the PDG framework

	5.1.5 Transfer Objects
	5.1.6 Summary

	5.2 Example Implementations
	5.2.1 Implementation of the Atmospheric Resistor
	5.2.1.1 Selection of the Product Concept and Embodiment
	Figure 5.4 Atmospheric Resistor

	5.2.1.2 Recursive Modular Decomposition
	Figure 5.5 Modular Decomposition of the Atmospheric Resistor

	5.2.1.3 Component Feature Decomposition
	5.2.1.4 Recursive Component and Object Aggregation
	Figure 5.6 Recursive Component and Object Aggregation

	5.2.1.5 Classification of PDG Modules
	Figure 5.7 Classification of Pipe Connection Module into its Constituent Sets

	5.2.1.6 Composition of the Intermediate Transformations
	5.2.1.7 Rectify M for the PDG module
	5.2.1.8 Aggregation of PDG Modules
	5.2.1.9 Compose Services
	Figure 5.8 Sample WSDL Document from Resistor PDG

	5.2.1.10 Layout the Design and Release Cycles
	Figure 5.9 Service Choreography
	Figure 5.10 Resistor User Interface Storyboard

	5.2.1.11 Results
	Figure 5.11 Other Products Where Resistor PDG Services Could Be Used

	5.2.2 Implementation of the Turbofan Engine
	Figure 5.12 The Pratt and Whitney PW4000 Turbofan Engine
	5.2.2.1 Selection of the Product Concept and Embodiment
	5.2.2.2 Recursive Modular Decomposition
	Figure 5.13 Simplified Decomposition of a Turbofan Engine
	Figure 5.14 Tree Representation of Engine Decomposition

	5.2.2.3 Component Feature Decomposition
	5.2.2.4 Recursive Component and Object Aggregation
	Figure 5.15 Sample Aggregation from Turbofan Engine PDG System

	5.2.2.5 Classification of the Intermediate Transformations
	Figure 5.16 Set Definitions for Turbine Airfoil

	5.2.2.6 Rectify M for the PDG Module
	5.2.2.7 Aggregation of PDG Modules
	Figure 5.17 Storyboard of the Turbine Disk User Interface Design Phase

	5.2.2.8 Compose Services
	5.2.2.9 Layout the Design and Release Cycles
	Figure 5.18 Storyboard of the Turbine Disk User Interface Release Phase

	5.2.2.10 Results

	CHAPTER 6 Summary, Conclusions and Recommendations
	6.1 Summary
	6.1.1 A Method For Decomposing a Product into PDG Services
	6.1.2 A System Level PDG
	6.1.3 A Web Based Framework for PDG Systems

	6.2 Conclusions
	6.3 Recommendations

	CHAPTER 7 References
	APPENDIX A Simple Web Service Source Code
	7.1 Capacity.java
	7.2 CapacityVO.java
	7.3 Capacity_SEI.java
	7.4 CapacityVO_Deser.java
	7.5 CapacityVO_Helper.java
	7.6 CapacityVO_Ser.java
	7.7 Capacity.wsdl

