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Accuracy of Scatterometer-Derived
Winds using the Cramér–Rao Bound

Travis E. Oliphant and David G. Long, Senior Member, IEEE

Abstract—A wind scatterometer makes measurements of the
normalized radar-backscatter coefficient �� of the ocean surface.
To retrieve the wind, a geophysical model function (GMF), which
relates �� to the near-surface wind, is used. The wind vector
can be estimated using maximum-likelihood techniques from
several �� measurements made at different azimuth angles. The
probability density of the measured �� is assumed to be Gaussian
with a variance that depends on the true �

� and therefore,
depends on the wind through the GMF. With this model for wind
estimation, the Cramér–Rao (C–R) bound is derived for wind
estimation, and its implications for wind retrieval are discussed.
As part of this discussion, the role of geophysical modeling
error is considered and shown to play a significant role in the
performance of near-surface wind estimates. The C–R bound is
illustrated using parameters from the ERS AMI, NSCAT, and
SeaWinds scatterometers.

I. INTRODUCTION

SCATTEROMETERS have been used to estimate wind
over the Earth’s oceans from normalized radar cross-

section measurements since the successful flight of Seasat
in 1978 [12]. Estimation is possible using the relationship
between and wind velocity given by an empirically-derived
geophysical model function (GMF). This relationship does
not generally admit selection of a single wind vector as the
estimate due to inherent near-symmetry in the GMF. As a
result, wind retrieval is typically a two-step process. First,
a collection of wind vectors is estimated for each resolution
element (or cell) using a traditional retrieval method such as
least-squares or maximum-likelihood. Each of these possible
wind solutions is called an ambiguity or an alias and is fed to
a second step called ambiguity removal or dealiasing, which
selects a single wind vector for each cell. The ambiguities have
similar windspeed but differ in direction [12].
With any estimator, it is important to have a measure of the

uncertainty in the estimate. Previous investigators have used
simulations and comparisons with surface-wind data to report
quality in wind estimates [2]. While useful for pre-flight scat-
terometer design, simulations require a significant number of
computations, which somewhat limits their application. Using
surface-wind data from buoys, ships, or island weather stations
to assess wind-retrieval accuracy has its own difficulties,
including limited cover and difficulty comparing surface-
wind data to scatterometer-derived winds. Neither method is
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well-suited to delivering confidence estimates along with the
retrieved wind for each cell where the wind is retrieved.
In this paper, we present the Cramér–Rao (C–R) bound as

a measure of wind-retrieval accuracy that is useful for both
scatterometer design and in-flight wind-retrieval assessment on
a cell-by-cell basis. This measure allows useful evaluation of
the accuracy of scatterometer-derived winds. The C–R bound
provides a lower bound on the wind-estimate performance for
parameter-estimation algorithms [4]. We apply this measure to
the ERS-1/2 AMI scatterometer [1] and the NASA Scatterome-
ter (NSCAT) [12]. In addition, we demonstrate the utility of the
C–R bound in assessing scatterometer design by applying the
technique to the predicted retrieval geometry of the SeaWinds
scatterometer to be launched in 1999 [14].
The organization of this paper is as follows. First, we present

a useful statistical model for scatterometer measurements,
which incorporates geophysical-modeling error in a simplified
fashion. The C–R bound for scatterometer wind retrieval is
then derived as an approximation to the covariance of retrieved
winds. The bound is then applied to ERS-1 and NSCAT data
as a prediction of the statistical uncertainty in winds derived
from these instruments. Finally, the bound is used to predict
the effect on wind-retrieval accuracy of the new pencil-beam
design to be used on the SeaWinds scatterometer.

II. SCATTEROMETER-MEASUREMENT MODEL
To better understand the accuracy of the wind estimate,

the C–R bound can provide a useful tool, since it gives the
minimum achievable variance based on the assumed statistical
model for the measurements. In this paper, we derive the
C–R bound for scatterometer wind retrieval. Since the C–R
bound depends on the statistical model, the scatterometer-
measurement model is briefly presented.
One of the most important factors in determining a reliable

statistically-based error estimate for retrieved winds is the
statistical model for the noise in the measurements. Previ-
ous retrieval algorithms focus primarily on the noise due
to instrumentation and background radiation [2], [12]. This
implicitly assumes that the GMF, which relates wind velocity
to normalized radar cross section, , is an exact relationship.
However, wind velocity is not the only factor affecting .
Other factors, such as local salinity, temperature, and long
waves can change the observed for a fixed wind vector. A
statistical model for wind estimation, from which an analysis
of error is desired, should account for this variability in the
GMF.

0196–2892/99$10.00 © 1999 IEEE
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Let represent the GMF for a given
frequency, where is the radar-incidence angle, is the radar-
azimuth angle, is the wind direction (measured from the
same reference as is the windspeed, and is the radar
polarization. In theory, this represents the mean of observed
under identical wind conditions. Associated with the GMF is
the variance of for the same identical wind conditions,
instrument measurement noise not included. In principle, this
variance, which we denote as , accounts
for the unmodeled (or unknown) parameters in relating wind
velocity to . Lacking a better statistical model for the
variability, we assume the variation to be Gaussian. Then,
for a particular set of and , the true
normalized radar cross section is modeled as a Gaussian
random variable with mean and variance . Defining

we write

where is a unit-variance, zero-mean random variable [8].
With this model, for the true of the ocean surface, a

scatterometer measurement can be modeled as [2]

where is a unit-variance, zero-mean random variable inde-
pendent of , and is the normalized standard deviation
of communication noise often represented as [7], [12]

Here, , and represent parameters in the noise model that
are instrument dependent but independent of wind velocity [2],
[12]. The statistics of the measurement are difficult to com-
pute, since is a function of , which is unknown for real
measurements. For typical values of and , approximating
by its mean, in the equation for has little effect

on the distribution of [13]. Even with this approximation,
is the product of two Gaussian random variables whose

distribution has complicated expresssion but near-Gaussian
shape. As a result, approximating the distribution of as
Gaussian has little impact on wind retrieval [13]. Thus, we
write the distribution of , given the true wind vector , as

where denotes expectation with

Wind retrieval requires two or more measurements from
different azimuth angles [2], [12]. Lacking correlation infor-
mation for , we model these measurements as independent
so the measurement vector is multivariate-Gaussian with
diagonal covariance matrix. The mean of this measurement

Fig. 1. Unbiased C–R bound and simulation-computed standard deviations
for various windspeeds and wind directions at far swath for the ERS-1
geometry and noise variance, with ��� � � using the CMOD4 GMF. The
markers are the C–R-bound calculation, and the curves are sinc-interpolated
simulation results.

vector is comprised of the GMF evaluated at the true wind
velocity, using the radar information associated with each
measurement. We denote this measurement vector as .
The maximum-likelihood [4] wind estimate is then

(1)

Typically, the likelihood function has multiple significant
maxima, which implies several wind-vector estimates. This
makes it difficult to talk about the statistics of the wind
estimate until after ambiguity removal has been performed
to select a single wind estimate. Trying to account for the
ambiguity-removal step in a complete statistical development
of the wind estimate is difficult given the ad hoc nature of
most ambiguity-removal algorithms.
Instead, we ignore the ambiguity removal and focus at-

tention on the wind ambiguities. Each of the ambiguities
is a function of the random measurements and is therefore
a random vector. By approximating the covariance of each
ambiguity and then assuming the ambiguity-removal algorithm
selects the ambiguity corresponding to the true wind, a reliable
covariance will be selected as well. While this does not convey
the complete picture since ambiguity selection is ignored, it
does provide a quantitative measure of how sensitive each
individual ambiguity is to the noisy measurements. With this
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(a) (b)

(c) (d)

Fig. 2. ERS-1 simulation scatter plots compared with C–R bounds using the CMOD4 GMF. Each point represents the result of a wind retrieval from a Monte
Carlo simulation. One thousand wind retrievals were done for each plot. Ellipses represent 70% bounds assuming a two-dimensional (2-D) Gaussian distribution.

in mind, we proceed to approximate the covariance of each
wind ambiguity using the C–R lower bound.

III. CRAMÉR–RAO BOUND
The C–R bound gives a lower bound on the covariance of

any unbiased estimator [4]. This bound has been generalized
to the case of any estimator (biased or unbiased) [3]. While
the wind estimate is generally unbiased, it can be biased for
some wind directions. Thus, both bounds will be computed
and compared to simulations.
The general C–R bound can be expressed, using as the

expectation operator over the measurements , as [4]

where is the Fisher-information matrix defined as

In this expression, is the log-likelihood function

and the vector derivative is a row operator. If ,
where is an arbitrary constant vector, we obtain the unbiased
C–R bound1

Using the measurement model described in the previous
section, it can be shown that with measurements in

(2)

where is the partial derivative of the GMF eval-
uated at with respect to wind component [13]. The
subscript implies the model function is evaluated with
azimuth angle, incidence angle, and polarization determined
1To reflect its range of validity more accurately, it should be termed the

constant-biased C–R bound. However, we stick to more common terminology
and call it the unbiased C–R bound
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(a) (b)

Fig. 3. C–R lower bound on ERS-1 speed and direction-error standard deviation versus ��� for far swath location. Markers are the bound and curves
are sinc-interpolated simulation results.

(a) (b)

Fig. 4. C–R Lower bound on ERS-1 speed and direction-error standard deviation versus cross-track cell location for ��� � �. Markers are the bound
and curves are sinc-interpolated simulation results.

by the th measurement in . The variance of the th mea-
surement is denoted in this equation as . Its derivative with
respect to can be expressed as

where

The partial derivatives of the GMF are typically obtained
numerically and can be computed for polar
or rectangular coordinates. In this paper, a
polar-coordinate system is assumed with the angle measured
clockwise from geographical north.
Computing the biased C–R bound is generally difficult,

since there is no explicit formula for the bias. In order to
determine the biased C–R bound, we adopt the approach
discussed by Fessler [5] to approximate the bias. We expand

the implicit function defined in (1) by a first-order Taylor series
about the mean of the measurements and then
calculate the expected value of this expansion. The result is

Note that is wind retrieval performed on the noise-
less measurement vector . The gradient of the bias
can be approximated as the gradient of the previous equation.
Using the chain rule

where

Authorized licensed use limited to: Brigham Young University. Downloaded on February 2, 2009 at 16:32 from IEEE Xplore.  Restrictions apply.
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is a matrix (which can be numerically approximated) and

which is a matrix, computed using the chain rule as
described by Fessler [5]

is the Hessian of the log-likelihood function (for
fixed , while is the matrix of mixed-derivatives
of the log-likelihood function. The elements of and
are given expressly, using previously defined symbols, as

where

and . Similar notation for the partial deriva-
tives of emphasize that they are evaluated at

.
It should be emphasized that the computation for the biased

bound given here is only an approximation and has two
significant limitations. First, the linear approximation used to
compute the mean may not always be adequate to compute
the gradient of the mean. In principle, a higher-order Taylor
series could be used to improve the approximation. This would
require third-order and fourth-order derivatives of the GMF,
which are difficult to obtain accurately from a tabular GMF.
Second, the derivative matrix may be nearly singular
for some wind directions and measurement geometries. This

Fig. 5. Unbiased C–R bound for various windspeeds and wind directions at
far swath for the NSCAT geometry and noise variance with ��� � �,
using the NSCAT1 GMF. Markers are the C–R bound, and curves are
sinc-interpolated simulation results.

can lead to significant sensitivity to the method used to
compute the derivatives when estimating the biased C–R
bound. Nonetheless, the approximation outlined here (which
was adapted from a more detailed discussion in Fessler in
[5]) is useful in improving the covariance estimate for certain
wind directions where the retrieval process is biased, and
the unbiased C–R bound does not approximate the simulated
covariance well.
As a lower bound on the estimate performance, the C–R

bound is useful in evaluating wind retrieval both as a reporting
tool and a design tool. It also can be a useful measure of
the covariance of a given wind estimate and as an uncertainty
measure of the retrieved wind when assimilating scatterometer
wind measurements into global-circulation models. As the
actual bound depends on the true wind vector (which is
unavailable), the C–R-bound covariance must be reported
approximately by assuming that the retrieved wind is the true
wind vector. In simulations or during design in which the true
wind is known, the C–R bound can be reported correctly.
In the next two sections, the retrieval precision of ERS-

1/2 and NSCAT are evaluated using the C–R bound. The
C–R bound is also useful as a design tool in obtaining
predictions of scatterometer performance. The final section
uses the bound to give predictions of the accuracy of the
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(a) (b)

Fig. 6. C–R lower bound on-speed and direction-error standard deviation versus ��� for NSCAT far-swath location.

SeaWinds scatterometer. In all three sections, the predicted
covariance is compared to simulation in order to evaluate
the usefulness of the C–R bound as a realistic measure of
uncertainty.

IV. CRAMÉR–RAO BOUND FOR ERS-1/2
In this section, we evaluate the C–R bound for wind

retrieval using ERS-1/2 AMI scatterometer measurements. The
discussion is intended to be neither a validation of nor an
exhaustive study of the performance of the ERS scatterometer.
It is presented to illustrate the utility of the C–R bound in
analyzing the wind-measurement performance.
In order to understand the results presented, a brief review

of ERS-scatterometer geometry is instructive. A detailed de-
scription of the C-band ERS-1 scatterometer is given in [1].
The ERS-2 scatterometer is an identical follow-on instrument.
Three beams obtain measurements from each wind vector
cell (WVC) at two incidence angles and three different azimuth
angles. The measurement SNR is very high, so most of the
noise in wind retrieval comes from the geophysical-modeling
error . There are nineteen WVC’s across the single
swath with ( ) measurements from each WVC. Wind-
retrieval geometry, and consequently wind-retrieval error, is
distinct for each cell across the swath. For convenience,
representative WVC’s are selected for study. In the following,
the European Space Angency (ESA) reported ERS-1 geometry,
and noise variance along with the CMOD4 GMF [6] are
used, though we have observed quite similar results with other
GMF’s.

V. RESULTS
The unbiased C–R bound for a representative far swath

wind-vector cell of ERS-1 as a function of the true windspeed
and direction is plotted with markers in Fig. 1. The data for this
figure were generated assuming no modeling error (
and no uncertainty in the GMF). Note that both the wind-
direction error and windspeed error are peaked at particular
directions. While this behavior has been previously attributed

to problems with using the correct model function in wind
retrieval, the C–R bound suggests that this behavior is intrinsic
to the wind-estimation problem. The larger variance at these
directions can be attributed to the shape of the model function
and the relative azimuth angles of the observations. When one
of the fore or aft scatterometer beams is directly upwind or
directly downwind, there is less information about the wind
in the measurements [13].
For comparison, standard-deviation estimates from a simple

compass simulation [2] with the maximum-likelihood (ML)
wind-retrieval algorithm are also shown in Fig. 1 with the solid
lines. For a given WVC, the compass simulation is performed
by repeating the following steps times: 1) calculating the
GMF for each true wind vector; 2) adding noise according
to the associated with that WVC and desired ; 3)
retrieving the wind by maximum-likelihood optimization; and
4) selecting the wind alias that is closest to the true wind as
the simulated wind estimate. The -retrieved winds are used
to calculate statistics on the wind estimate. More details on
compass simulation can be found in [2].
In Fig. 1, the curves were created by sinc-interpolation of

simulation results. These lines appear to also interpolate the
C–R bound results, suggesting that the wind-retrieval algo-
rithm is statistically efficient in an estimation-theoretic sense
at far swath and zero GMF error. For most ERS-1 WVC’s
and true wind velocities, the agreement between covariance
predicted with the unbiased C–R bound and covariance cal-
culated by simulations is excellent [13], as suggested by
Fig. 2(a)–(d). These figures also show that the small disparity
between the covariance estimated with the C–R bound and the
simulated covariance that occurs at low windspeed and high

values can be improved by using the biased C–R-bound
approximation, although the effect is small in these cases.
We can use the C–R bound to investigate the sensitivity

of wind estimation to other wind-retrieval conditions. In
particular, Fig. 3 shows an example at a representative far
swath WVC of the sensitivity of the wind estimate to the
GMF normalized variance for several windspeeds and a
direction of 120 (corresponding to an uncertainty peak). This

Authorized licensed use limited to: Brigham Young University. Downloaded on February 2, 2009 at 16:32 from IEEE Xplore.  Restrictions apply.



2648 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 37, NO. 6, NOVEMBER 1999

(a) (b)

(c) (d)

Fig. 7. C–R lower bound on-speed and direction-error standard deviation versus cross-track cell location for ��� � ��

figure suggests that the accuracy of wind estimates from ERS-
1 data is quite sensitive to the precise value of (which
is not well known). Again, in this figure, markers indicate the
C–R-bound standard deviation, while the solid lines represent
sinc-interpolations of simulated data. The comparison between
simulations and the C–R bound shows good agreement except
at high values of and low windspeeds, where the unbi-
ased C–R bound overpredicts the simulated standard deviation
in the wind-direction estimate. This indicates that under these
conditions, the wind estimate is biased. The approximate
biased C–R bound is closer to the simulated results, as in
Fig. 2.
Another point of interest is the accuracy of wind estimates

across the swath. Fig. 4 shows the C–R bound on the standard
deviation of speed and direction estimates as the cross-track
cell number varies from near (1) to far (19). The true wind
direction for these plots is 120 , and the results for sev-
eral windspeeds are shown. This figure shows quantitatively
that near-swath winds are not as accurate, especially for
low windspeeds. In addition, at near swath and under low
windspeeds, the unbiased C–R bound over-predicts simula-
tion performance, indicating a biased estimator under these
conditions.

VI. CRAMÉR–RAO BOUND FOR NSCAT
In this section, we give results of the C–R bound applied to

NSCAT-retrieved winds using representative NSCAT geome-
try and noise-data. As before, the discussion is not intended
to be a validation of nor an exhaustive study of NSCAT
performance, but is presented to illustrate the utility the C–R
bound in analyzing the wind-measurement performance.
In order to more fully understand the results, a brief

overview of NSCAT is helpful. A more detailed description
is contained in [12]. The NSCAT instrument was launched
in August 1996 aboard the Japanese satellite ADEOS. It
operates under the same general principles as ERS-1 but
with significant differences that contribute to different error
characteristics. Three main factors contribute to differences in
wind estimates from ERS-1 and NSCAT: operating frequency,
transmit power, and measurement geometry. NSCAT operates
in Ku-band at 14 GHz. As a result, the model function used
to relate wind velocity to is different from that used
for ERS-1 data. One significant difference is that azimuth
modulation is more pronounced at low windspeeds than
at C-band, suggesting that wind-direction retrieval may be
more accurate at lower windspeeds with NSCAT than with
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(a) (b)

(c) (d)

Fig. 8. NSCAT simulation scatter plots compared to C–R bounds using ��� � ���� and the NSCAT1 GMF. Each point represents the result of a wind
retrieval from a Monte Carlo simulation. Ellipses represent 70% bounds assuming a 2-D Gaussian distribution.

ERS-1 [9]. The C–R bound allows us to easily quantify this
hypothesis for a specific WVC.
NSCAT uses 120-W peak-transmit power compared to

about 5 kW for ERS-1. Consequently, the SNR of NSCAT
data is lower, resulting in a larger value of . This does
not necessarily mean NSCAT retrieves wind less accurately,
however, as GMF modeling error plays a major role in the
wind-retrieval precision.
A key difference between ERS-1 and NSCAT is retrieval

geometry for the center antenna. NSCAT uses three beams on
each side of the spacecraft to gather data for two swaths, each
approximately 600-km across [12]. The fore and aft beams
are separated by 90 , while the center beam is offset 25
from center to facilitate the use of Doppler processing. In
addition, the center beam makes both horizontal and vertical-
polarization measurements, while the fore and aft beams make
vertical-polarization measurements only. Nominally sixteen
measurements are gathered to estimate the wind in a 50-
km square WVC. Each of the two swaths has 12 such cells.
However, the measurements can also be collocated so that
three to five measurements are available for each of 24–25-
km resolution cells per swath. In the following, we use the

NSCAT1 GMF [10], [11], although the results are similar for
the Wentz [15] (SASS-2) GMF.

VII. RESULTS
This section details a few results of applying the C–R bound

to representative NSCAT WVC’s. The unbiased C–R bound
for a representative far swath WVC as a function of the
true windspeed and direction is plotted in Fig. 5, assuming
the modeling error is zero ( ). As was the case for
the ERS-1, both the wind-direction error and windspeed error
are peaked at particular true wind directions. However, the
asymmetric beam arrangement for NSCAT creates a larger
peak in the direction of the fore or aft beam closest to the
center beam.
For comparison, sinc-interpolated simulation results are also

shown in Fig. 5 as curves. In the simulation, the wind error
is for the ambiguity closest to the true wind direction. The
C–R bound and simulation plots are close but not identical.
As in ERS-1 at near-swath and low windspeeds, the large
peak in wind-direction uncertainty predicted by the C–R bound
for a true windspeed aligned with the fore or aft beam is

Authorized licensed use limited to: Brigham Young University. Downloaded on February 2, 2009 at 16:32 from IEEE Xplore.  Restrictions apply.



2650 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 37, NO. 6, NOVEMBER 1999

significantly reduced in the simulations. For NSCAT, however,
this is only true when the true wind direction is closely aligned
with the fore or aft beam nearest the center beam. The peak is
lower in the simulation, because the wind estimate is biased
at these locations. For all but these locations, the unbiased
C–R bound gives uncertainty predictions that are very close to
simulations. This suggests that the wind-estimation algorithm
for NSCAT is statistically efficient in an estimation-theoretic
sense for almost all wind directions. Similar results apply for
near and mid-swath WVC’s. These empirical results justify
using the unbiased C–R bound as a predictor of the uncertainty
whenever the retrieved wind is not aligned with the fore or aft
beam closest to the NSCAT center beam.
In order to explore some of the predictions of the C–R bound

for the NSCAT instrument, consider Figs. 6 and 7. These
graphs show how wind-velocity uncertainty varies according
to and cross-track location, as predicted by the C–R
bound for the NSCAT instrument. We note that NSCAT
predictions are also sensitive to the true value of over
a wide range of values at 25-km resoultion. Also, when
evaluating the cross-track plots, it should be kept in mind that
some of the WVC’s have only three measurements available,
thus causing the variable-estimation performance at certain
cross-track locations.
Fig. 8(a)–(d) shows worst-case and typical predictions made

by the unbiased and biased C–R bound for near and far-
swath WVC’s. Visual inspection suggests that the unbiased
C–R bound is a good bound for the typical case but is less
accurate for the worst case. This is because the wind estimate
is biased at these wind directions. While the approximation to
the biased bound calculated in this paper improves the agree-
ment between simulation and prediction, the approximation is
not good enough to completely predict the biased-estimator
performance.

VIII. CRAMÉR–RAO BOUND FOR SEAWINDS
The previous two sections applied the C–R bound to pre-

dicting wind uncertainties for past or current scatterometers.
This section applies the method to predicting wind uncertain-
ties for the future SeaWinds scatterometer to be launched
in 20002 [14]. While ERS-1/2 and NSCAT are fan-beam
scatterometers, SeaWinds is based on a scanning pencil-beam
design. SeaWinds uses a dual-beam, scanning pencil-beam
antenna. The two antenna beams are at different incidence
angles and sweep out two large circles on the ocean with
radii of approximately 850 and 1100 km, respectively. As a
result, the two to four azimuth measurements from each 25-km
cell are at fixed incidence angles but have varying azimuthal
relationships depending on the (cross-track) distance from the
projected along-track of the satellite. This creates a retrieval
geometry for SeaWinds that eliminates the nadir gap.
The effect of these geometries on wind retrieval can be

explored with the C–R bound. Using this as a prediction of
wind uncertainty allows insight into the wind-measurement of
the performance of the SeaWinds design.

2An early copy of SeaWinds was successfully launched aboard QuikScat
in June 1999. The results presented herein are prelaunch predictions.

Fig. 9. Unbiased C–R bound (markers) and simulation (curves) calculated
for several true windspeeds and directions. SeaWinds geometry and noise
variance for a WVC 350 km to the right (facing in direction of satellite
motion) from the subsatellite track are used, along with zero-modeling error
and the NSCAT1 GMF. The curves are sinc-interpolated, simulated standard
deviations. Wind direction is measured clockwise from direction of satellite
motion.

Fig. 9 shows the predictions of the unbiased C–R bound
using SeaWinds geometry and at 50-km resolution [14].
The NSCAT1 GMF with a is used. The results
shown are for a mid-swath cell about 350 km to the right
of the subsatellite track when facing the direction of satellite
motion. As with the other instruments, the C–R bound agrees
well with simulations for most true wind directions and
windspeeds. As in the previous case, at the characteristic
peaks in uncertainty, the unbiased C–R bound overpredicts
the simulation result, because the wind estimate is biased at
these wind velocities. Using the approximation to the biased
C–R bound outlined in this paper improves the correspondence
between prediction and simulation somewhat. Even though
the C–R bound does not perfectly predict the wind-estimate
covariance, this figure demonstrates that it can be a useful
prediction of the uncertainty of retrieved wind for SeaWinds.
It is interesting to note that in the case of the SeaWinds

instrument, the large peaks in retrieval uncertainty do not
occur when the true wind is aligned with the measurement as
was the case with the fixed azimuthal relationships in ERS-1
and NSCAT. Instead, the largest values in wind-retrieval
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(a) (b)

Fig. 10. C–R lower bound on-speed and direction-error standard deviation versus ��� for SeaWinds mid- and right-swath locations. Markers are unbiased
C–R bounds and curves are sinc-interpolated simulations.

(a) (b)

Fig. 11. C–R Lower bound on-speed and direction-error standard deviation versus cross-track locations. Negative distances are left swath and positive
distances are right swath. Markers are unbiased C–R bounds and curves are sinc-interpolated simulations.

uncertainty consistently occur when the true wind velocity
is near 40, 140, 220, and 320 degrees clockwise form the
direction of the satellite motion at this cross-track distance.
Fig. 10 shows the effect on wind-retrieval uncertainty of

different values of as predicted by the unbiased C–R
bound. The data for this figure was generated using a mid
swath location with a true direction of 100 (near a valley).
This figure suggests that uncertainty in wind retrieval using
SeaWinds is sensitive to , though the sensitivity is less
than for NSCAT.
Finally, Fig. 11 demonstrates use of the C–R bound to un-

derstand cross-track performance of the SeaWinds instrument.
Also included in this figure are interpolated simulation results.
There is generally good agreement between the simulated
results and the C–R bound in this figure except for at isolated
points where the wind estimate is apparently biased. One
interesting point is the increased performance of the right
swath when compared to the left swath. This is due to the

relationship between the azimuth angles that are used to
retrieve the wind from the left swath.

IX. CONCLUSIONS
In this paper, we have derived the unbiased C–R bound

for wind retrieval using scatterometer measurements. Using
simple approximations, we also derived a biased C–R bound.
The unbiased bound can be used as a reliable measure of
wind-retrieval accuracy for almost all true wind directions.
In particular, the unbiased bound is an accurate predictor of
simulation results whenever the true wind direction is not
azimuthally aligned with the fore or aft antenna for fan-
beam scatterometers where the wind estimate is biased. The
C–R bound provides a lower bound on the covariance of
the estimate [4]. Thus, the C–R bound can be useful in
understanding the accuracy of scatterometer-derived winds in
both present and future wind scatterometers. The approximate
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biased bound derived herein can produce improved results for
some cases but requires more calculations and is limited by the
approximations used in its derivation. The limitations are most
severe for NSCAT and SeaWinds. Applying the C–R bound
to different scatterometers demonstrates that wind-estimator
performance is sensitive to the modeling error and to cross-
track location of the wind-vector cell.
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