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ABSTRACT

CACHE CHARACTERIZATION AND PERFORMANCE STUDIES USING

LOCALITY SURFACES

Elizabeth S. Sorenson

Department of Computer Science

Doctor of Philosophy

Today’s processors commonly use caches to help overcome the disparity between

processor and main memory speeds. Due to the principle of locality, most of the

processor’s requests for data are satisfied by the fast cache memory, resulting in a

signficant performance improvement. Methods for evaluating workloads and caches

in terms of locality are valuable for cache design.

In this dissertation, we present a locality surface which displays both temporal

and spatial locality on one three-dimensional graph. We provide a solid, mathemat-

ical description of locality data and equations for visualization. We then use the

locality surface to examine the locality of a variety of workloads from the SPEC

CPU 2000 benchmark suite. These surfaces contain a number of features that rep-

resent sequential runs, loops, temporal locality, striding, and other patterns from

the input trace.



The locality surface can also be used to evaluate methodologies that involve

locality. For example, we evaluate six synthetic trace generation methods and find

that none of them accurately reproduce an original trace’s locality.

We then combine a mathematical description of caches with our locality defi-

nition to create cache characterization surfaces. These new surfaces visually relate

how references with varying degrees of locality function in a given cache. We exam-

ine how varying the cache size, line size, and associativity affect a cache’s response

to different types of locality.

We formally prove that the locality surface can predict the miss rate in some

types of caches. Our locality surface matches well with cache simulation results,

particularly caches with large associativities. We can qualitatively choose prudent

values for cache and line size. Further, the locality surface can predict the miss rate

with 100% accuracy for some fully associative caches and with some error for set

associative caches.

One drawback to the locality surface is the time intensity of the stack-based

algorithm. We provide a new parallel algorithm that reduces the computation time

significantly. With this improvement, the locality surface becomes a viable and

valuable tool for characterizing workloads and caches, predicting cache simulation

results, and evaluating any procedure involving locality.
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Chapter 1

Introduction

1.1 The Value of Locality

Adherence to Moore’s Law enables processor speeds to double every 18 months.

Memory density is increasing at a similar rate, but DRAM memory speeds increase

at the much slower rate of about 7% per year [43, page 391]. This means that the

time needed to access memory is an increasing bottleneck. To help overcome this

mismatch in speed, computer architects take advantage of the fact that smaller mem-

ories placed close to the processor are significantly faster than main memory [73].

These small, fast memories between the processor and main memory are called

caches. Caches contain a subset of the data in main memory. If a considerable

portion of the data the processor requires is found in the cache, the processor accesses

slower main memory significantly less often. Cache access speeds are on the order of

a single CPU cycle, while main memory access speeds are on the order of hundreds

of cycles [43]. When the contents of an accessed memory location are in the cache,

it is termed a hit. When the contents are not in the cache it is termed a miss.

Large caches are more likely to have hits but are slower and more expensive.
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For this reason, most processors today have multiple levels of caches. Level-one

(L1) caches are next to the processor and are the smallest and fastest kind of cache.

L1 caches are typically split into two pieces, one for intructions and one for data.

Level-two caches (L2) caches are between the L1 cache and main memory. They

are larger and slower than the L1 cache. There may also be more levels of cache

between the L2 cache and main memory. The memory hierarchy refers to the

entire range of memory storage devices, from the smallest and fastest (L1 cache) to

main memory to magnetic disk. Researchers do significant amounts of cache studies

to find appropriate trade-offs between performance and expense at each level of the

hierarchy.

Caches typically store the most recently accessed data from main memory. Due

to the principle of locality, these recently accessed parts of memory are the most

likely to be re-used by the processor in the near future. Caches improve performance

because most programs run on processors have large amounts of locality [28, 43].

Locality means that after a processor accesses location x in memory, x and other

locations close to x in memory tend to be accessed soon. Typically, researchers divide

locality into two types. Temporal locality occurs when the processor reuses the

same location in memory shortly after a previous use. Spatial locality occurs when

items close together in memory are used by the processor soon after one another [43].

Some researchers have divided locality into more types [21, 58, 86], but these two

are the most common.

Cache performance is frequently evaluated in terms of miss rate, or the number

of misses for a given workload divided by the total number of memory references.

Most caches are described in terms of their size (how much data the cache can

hold), their line size (what size chunks of data are pulled from main memory at a

given time, sometimes termed block size) and their associativity (how many places
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in the cache a given piece of data can reside) [43]. Larger cache sizes, line sizes, and

associativities tend to yield lower miss rates, but with slower access times.

Caches also have varying types of replacement policies. The replacement policy

controls which block of memory is evicted from the cache when a new memory

block must be inserted in the cache. The three primary policies are random,

least-recently used (LRU), and first in, first out (FIFO) [43, pages 399-400].

LRU, or an approximation of LRU, is the most common case in today’s caches [9].

In this work we focus exclusively on the LRU replacement policy.

Researchers generally agree that locality and miss rate are closely related [19,

43, 50, 64, 89]. Miss rates for a given workload are usually determined via trace-

driven simulation. To do this, a trace of the workload is first created by recording

the memory requests made by the processor while the workload runs on a given

computer system. This process is termed tracing. There are a number of methods

in use for tracing programs [7, 17, 33, 63, 83].

Once a trace is recorded, the trace is submitted to a cache simulation program

for a given cache configuration. The simulator returns the miss rate, or some other

metric that reflects how well the cache would have performed on the given program.

This can be time consuming, especially if a large number of cache configurations are

evaluated. In addition, the space necessary to store a trace of reasonable length can

be quite large [17].

One replacement for trace-driven simulation is a cache independent locality met-

ric that can be used to predict the miss rate for any cache configuration. (Some

researchers refer to cache independent locality as intrinsic locality [50, 64].) Even

if the calculation of the locality metric takes longer than simulations for several

cache configurations, the trade-off is advantageous if the locality metric can accu-

rately predict the miss rate for any cache. Many such locality metrics have been
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proposed over the years [64, 66, 67].

Researchers have used their locality metrics for a variety of reasons beyond

merely predicting miss rate. The conclusion is that locality is useful for a num-

ber of applications. However, no one locality metric is universally accepted by the

community, primarily because each metric is specifically tailored to a given appli-

cation. We now briefly introduce a number of locality metrics from the computer

science literature and examine one set of them in detail.

1.2 Previous Locality Metrics

A wide variety of locality metrics, each with a slightly different purpose, have been

proposed over the years. Most researchers develop locality metrics for use at some

level of the memory hierarchy. Conte and Hwu use multiple two-dimensional graphs

to characterize workloads in terms of their memory access behavior [24]. In [86]

Wolf and Lam use locality metrics to help modify a compiler to improve loop nest

locality. Thiebaut et al. use a locality metric as an input for creating synthetic

traces [79]. In [66] Salsburg uses a scalar definition of locality to help predict cache

performance. Fiat and Karlin use locality to study paging issues in [32]. In [82]

Truong et al. use locality to help rearrange data in memory to improve program

performance. Sanchez and Gonzalez, in [67], use a different set of two-dimensional

graphs to characterize workloads and analyze cache misses. In [62] McKinley and

Temam use their own set of two-dimensional graphs of various aspects of locality to

help make future “architecture and software cache optimizations.” Luo and John

compress traces using principles of locality [60]. However, each of these locality

metrics has limited application.

In the above examples, the researchers usually evaluate locality as either a scalar
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value [66, 79] or a series of two-dimensional graphs [62, 67]. A scalar value over-

simplifies locality. A value such as the miss rate may help one understand how a

given workload would function in a given cache but gives little indication how the

same workload would function in caches of other sizes or configurations. There is

no single two-dimensional graph that includes all aspects of locality, so multiple

graphs are necessary. For some applications, such as real-time locality analysis [20],

only one aspect of locality is of interest, and therefore simpler locality metrics may

be valuable. However, even in such situations it would be of value to have an all-

encompassing metric with which to evaluate the simple metric’s effect on the other

aspects of locality.

To demonstrate the deficiencies of two-dimensional locality metrics, we now de-

scribe both the temporal and spatial locality metrics from Conte and Hwu’s pa-

per [24]. Most of the metrics we have mentioned are used exclusively by researchers

from the same research groups. Conte and Hwu’s metrics were used by two other

groups, in [50] and [64], making them the closest to a standard in the field of locality.

We describe the metrics defined by Conte and Hwu using both their equations and

their words as presented in their paper. We then show graphs of their functions for

one workload, specifically the instruction fetches of twolf from the SPEC CINT2000

benchmark suite. This trace was taken using the BACH tracing method [33], as

were all the traces used in this dissertation. This trace contains 50,191,887 memory

references, of which 21,988 are unique. Full details about the trace may be found

in Appendix A.

Recall that the purpose of Conte and Hwu was to characterize benchmarks in

terms of their memory access behavior. They divide locality into two forms, the in-

terreference temporal density function and the interreference spatial den-

sity function, i.e. temporal and spatial locality. They define temporal locality as
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Figure 1.1: Conte and Hwu’s interreference temporal density function for the in-
struction fetches of twolf.

the “probability of there being x unique references between successive references to

the same item” [24]. They then present the following equation:

fT (x) =
∑

t

P [u(w(t)) = x] (1.1)

where w is the trace, w(t) is the memory reference in the trace at time t, u(w(t)) is

the number of unique references between w(t) and the next instance of w(t).

In Figure 1.1 we see Conte and Hwu’s interreference temporal density function

for the instruction fetches of twolf. We can immediately see that almost 40% of the

references in the instruction fetches of twolf are immediate repeats of the previous

reference. There are also a fair amount of repeats to the same memory location after

less than fifteen unique references. We can see a slight lump of data around sixty

unique references, indicating that there are a few repeats after around sixty unique

references. Overall, we can see that the instructions of twolf have good temporal

6



Figure 1.2: Conte and Hwu’s interreference spatial density function for the instruc-
tion fetches of twolf.

locality. But other then saying that a cache should be able to contain at least fifteen

items from memory, we learn little about optimal cache size.

Spatial locality is the “probability that between references to the same item, a

reference to an item x units away occurs” [24] and uses the following equation:

fS(x) =
∑

t

next(w(t))∑
k=1

P [|w(t) − w(t + k)| = x] (1.2)

where w is the trace, w(t) is the memory reference in the trace at time t, and

next(w(t)) = i if i is the smallest number such that w(t) = w(t + i).

In Figure 1.2 we see Conte and Hwu’s interreference spatial density function for

the instruction fetches of twolf. This graph covers a greater range of values, making

it harder to see any data. The first bar of the graph, at an address distance of

one, is completely masked by the y axis. This bar should be at a height of 0.003.

This means that 0.3% of memory addresses between two repeated references are at

a distance of one memory location away from the repeated references.
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Figure 1.3: Conte and Hwu’s interreference spatial density function for the instruc-
tion fetches of twolf, with a smaller maximum address distance shown.

To get a better feel for what is going on at small address distances, Figure 1.3

shows the same data with a smaller range for the x axis. Now we can see that,

comparatively speaking, memory addresses between two repeated references tend

to be close in memory. But the percentages are too small to get a clear picture

of what is going on. Many aspects of spatial locality that would be of interest to

cache designers cannot be seen here. We see how close in memory various references

are, but have no feel for how close in time they are. Perhaps all the references that

are close in memory are far enough apart in time that cache designers cannot take

advantage of it. We get no feel for the distribution of sequential runs of intructions.

To see all of this information, even more spatial locality graphs would be needed.

While there are advantages to Conte and Hwu’s locality metrics, they do miss

important aspects of locality. For example, if a, b, and c are all memory addresses,

both abcabc and abcabcabcabcabcabc would have the same locality graphs but dif-
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ferent miss rates. A locality metric would be more useful for cache studies if such

differences were observed.

In addition, this spatial locality metric assumes a significant amount of temporal

locality exists in the trace. If we had a trace that was one long sequential run, such

as 1, 2, 3, 4, . . . , 999, 1000, we should see significant spatial locality. However, since

there is no temporal locality, Conte and Hwu’s interreference spatial density function

would produce no information. In short, when using two-dimensional graphs as

locality metrics, either large numbers of graphs are needed for each workload, or

some aspects of locality are missed. Perhaps a three-dimensional graph would be

more valuable.

We have found three locality metrics that use three-dimensional graphs: the

memory mountain [18, 76], the value reuse profile (VRP) [47], and the locality

surface [38]. Both the memory mountain and the VRP use time as one of their

dimensions. This means their metrics are tied with particular systems that have

given latencies and are not useful for predicting miss rate. The locality surface,

however, has several interesting advantages that give it a more general application

than the other metrics we have mentioned. We now describe the original locality

surface in more detail.

The locality surface, originally developed by Grimsrud [38, 40], incorporates both

temporal and spatial locality in a single, three-dimensional, graph. It is essentially a

histogram of the number of stride/delay occurrences that are found between values

in a list. For any two values, the delay is the number of values between them in

the list and the stride is the difference between the values. Stride can be positive or

negative, but delay is only counted in one direction and is therefore always positive.
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Figure 1.4: Locality surface for the instruction fetches of twolf as defined by [40].

Grimsrud defined his surface using the following equation:

L(�T , s, d) = Pr
(
�T [t0]+s = �T [t0+d]∧ �T [t0]+s �∈ {�T [t0+1], . . . , �T [t0+d−1]}) (1.3)

where �T is the trace, s is the stride, d is the delay, and �T [t0] is the reference at time

t0 in the trace [40]. Figure 1.4 shows Grimsrud’s locality surface for the instruction

fetches of twolf.

For visualization purposes, the surface is displayed on a log scale in both the

stride and delay axis. Two views of the same surface are typically displayed for

easier identification of the height and location of various features. The most dra-

matic difference between Grimsrud’s locality surface and other locality metrics is

the unification of temporal and spatial locality into one locality function. Numer-

ous two-dimensional graphs would be required to see the same information. On the

locality surface, temporal locality becomes a special case of locality that occurs when

the stride equals zero. Information about spatial locality may be seen wherever the

stride is not zero. The locality surface shows much more information regarding the
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spatial locality of the input workload than can ever be seen by one two-dimensional

graph.

There are a few problems with the locality surface described by Grimsrud, es-

pecially when used for evaluating cache memories. For example, Grimsrud’s delay

is the total number of values between two given values in a list. On his locality

surface, the maximum delay is therefore a function of the length of the trace. When

using the locality surface for cache studies, Grimsrud was limited. Caches may

have exactly the same number of misses, or the same miss rate, for multiple traces

of different lengths. LRU caches are more stack based. In fact, other researchers

employing two-dimensional graphs used the number of unique values between two

given values as a delay measure [24, 49] and claim that the unique count is better

for analyzing caches than the total reference count [16, 30].

We need a better locality metric than the ones here mentioned. In [50], John et

al. say one goal of a good locality metric should be to be “useful in predicting cache

performance without detailed simulations.” To do this, a locality metric should

include all aspects of both temporal and spatial locality but also use the unique

count that is more useful for cache studies.

1.3 Dissertation Overview

In this dissertation, we re-introduce our improved locality surface originally pre-

sented in [74]. In that work, we improved Grimsrud’s locality surface by using a

unique count rather than total reference count for delay. This better tailors the local-

ity surface for LRU cache studies. We then used it to characterize a few benchmarks

from the SPEC CINT2000 suite and qualitatively predicted cache performance. In

this dissertation we expand the introduction by adding a detailed mathematical de-
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scription of our locality surface. We again characterize benchmarks and perform

qualitative cache predictions, only with a different group of workloads that includes

both the SPEC CFP2000 suite as well as the SPEC CINT2000 suite.

In [74] we also introduced the cache characterization surface and attempted to

quantitatively evaluate cache performance. Cache characterization surfaces provide

a visual overview of how the cache performs in terms of locality and independent

of any particular workload. However, we were only able to characterize caches with

a cache size up to 256 Kbytes and the quantitative prediction had large errors.

In this work we create cache characterization surfaces for much larger cache sizes

(up to 64 Mbytes). In addition, we model cache performance, which allows us to

mathematically show why, for example, quantitative predictions work better for

fully-associative caches than for direct-mapped caches. We also examine how two

different traces may have the same locality information, and how that affects cache

performance prediction. In this work, we focus on L1 caches. The techniques we

use, however, may be used for any level of the memory hierarchy that uses an LRU

replacement policy and for which traces are available.

Another addition in this work is the evaluation of the effectiveness of a variety of

synthetic trace models in terms of locality. One of the few criticisms of the locality

surface is the length of time for its calculation. In answer to this, we also present a

new parallel algorithm that significantly improves the time to calculate the locality

surface for workloads with poor locality.

We first introduce our new locality surface in Chapter 2 with a precise mathe-

matical description. Next we use the locality surface for characterizing a number

of workloads from the SPEC C2000 suite in Chapter 3. Chapter 4 demonstrates

the value of the locality surface for qualitatively predicting cache simulation results.

In Chapter 5 we describe caches mathematically and introduce the improved cache
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characterization surface. We next mathematically determine some of the limits of

the locality surface in Chapter 6. Then we use the locality surface for quantitative

cache simulation prediction in Chapter 7. In Chapter 8 we use the locality surface

to evaluate the effectiveness of a number of synthetic trace methods. Chapter 9

details the algorithms used for creating the locality surface, including a new parallel

algorithm. In Chapter 10 we conclude and enumerate a number of areas for future

work.
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Chapter 2

A New Definition of Locality

2.1 Introduction

In the previous chapter, we discussed locality, why it is useful, and the limitations of

current locality metrics. In this chapter, we describe a new locality surface using the

mathematics of sets and bags and briefly compare our new surface with Grimsrud’s

locality surface. We treat a trace of memory address references as a string, or a list

of integers, which we input into our locality functions.

We assume that the reader is familiar with normal set notation and operations.

The notation and definitions for bags are inconsistent in the literature [10, 27, 42,

55, 56] and not as commonly known. Books that contain large sections on set theory

usually only mention bags, or multisets, as an aside [35, 71], if at all [77]. Therefore,

we first give some basic definitions of terms and notation and some background

definitions of a number of bag functions.
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2.2 Basic Definitions

Let a string, or vector, be a list of (not necessarily unique) integers where the

order is significant. The length of the string is the number of elements in the

string. The length of string v is written |v|. A string element is any individual

integer within the string. When referring to the ith element of string v, we write

v[i] where 1 ≤ i ≤ |v|. Let V indicate the set of all possible such strings.

We use letters near the end of the alphabet, such as v, w, x, y, and z, to indicate

strings. Letters near the beginning of the alphabet, such as a, b, and c, usually

indicate integers, which may be either indices or individual elements of a string.

Capital letters, such as B, C, and T , indicate sets, bags, cache configurations, or

surfaces. Hence |v| indicates the length of string v, |a| indicates the absolute value

of integer a, and |S| indicates the cardinality of the set S.

Example 2.1. Let us define a string, v1, to be equal to 2, 7, 5, 10, 5, 2, 8. Then
we write v1 = 2, 7, 5, 10, 5, 2, 8. Also, |v1| = 7, v1[1] = 2, v1[2] = 7, v1[3] = 5,
v1[4] = 10, v1[5] = 5, v1[6] = 2, and v1[7] = 8.

The elements of a string may be any integer, whether positive, negative, or zero.
Hence v2 = 47, −8, 3, 0, −62, 99, 3, −8, 0, 24 is also a valid string where |v2| = 10.

We now introduce our own function on a string: the reverse of a string. We

write rev(v) to indicate the reverse of the string v. The reverse of a string is just

like it sounds: the original string is recorded in reverse order. Formally, w = rev(v)

when |w| = |v| and w[i] = v[|v|− i+1] where 1 ≤ i ≤ |w|. We now show that taking

the reverse twice of a string yields the original string. This result is specifically used

in later chapters.

Theorem 2.1. For any string x, rev(rev(x)) = x.

Proof. Let y = rev(x) and z = rev(y) = rev(rev(x)). From the definition of the

reverse, we know that |x| = |y| = |z|. For convenience, let us define k = |x|.
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Therefore, for 1 ≤ i ≤ k, y[i] = x[k − i + 1] and z[i] = y[k − i + 1] = x[k − (k − i +

1) + 1] = x[k − k + i − 1 + 1] = x[i]. Since for 1 ≤ i ≤ k z[i] = x[i], we see that

z = x and rev(rev(x)) = x.

Theorem 2.2. For any string v, if w is a string such that v = rev(w), then w =

rev(v).

Proof. We know that v = rev(w). We reverse both strings to yield rev(v) =

rev(rev(w)). By Theorem 2.1, we may now write rev(v) = w or w = rev(v).

2.2.1 Bag Definitions

In the following sections we make heavy use of bags, which are sometimes called

multisets in the literature. A bag has similar notation and operations as a set but

allows duplicates. For example, {1, 4, 5} is both a set and a bag, whereas {1, 4, 1, 7}
is a bag but is not a set (since it has a duplicate element). Like a set, the elements

of a bag have no order. We now discuss more formal descriptions of bags from the

literature, and some functions on bags, using the notation that works best for our

applications.

Albert defines a bag as “a collection of elements that may contain duplicates” [10].

Kuchen and Gladitz say that a bag is “a variant of sets, where multiple occurrences

of each element are allowed” [57]. Klausner and Goodman say that the number

of copies of an element in a bag is called the multiplicity of the element in the

bag [56]. Albert notes that “while a set is characterized by its membership, a bag

is characterized by the multiplicity of its elements.” Both Kuchen and Gladitz,

in [57], and Klausner and Goodman, in [56], use the notation #(b, B) to denote the

number of occurrences of the element b in the bag B. Further, b ∈ B is equivalent

to #(b, B) > 0.
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Example 2.2. A is a bag such that A = {x, x, y, z}. B is another bag such that
B = {(1, 7), (2, 3), (2, 4), (2, 4), (2, 4)}. Then #(x, A) = 2, #(y, A) = 1, and
#(z, A) = 1. Also, #

(
(1, 7), B

)
= 1, #

(
(2, 3), B

)
= 1, and #

(
(2, 4), B

)
= 3. Note

that #
(
(1, 7), A

)
= 0 and #

(
(1, 3), B

)
= 0.

2.2.2 Bag Operations

We now define a number of operations that we use in the definition of the locality

surface and later in this dissertation. First we formally define bag equality. If B1

and B2 are bags, then B1 = B2 iff ∀b[#(b, B1) = #(b, B2)]. Note that the order of

the elements in the bag is not important.

Example 2.3. {(1, 2), (2, 2), (2, 2)} = {(2, 2), (1, 2), (2, 2)} = {(2, 2), (2, 2),
(1, 2)}. However {(1, 2), (2, 2), (2, 2)} �= {(1, 2), (2, 2)}.

Grumbach and Milo define an operation, additive union or � [42], which we

here describe using our notation. If B1 and B2 are both bags, then B1 �B2 is a bag

such that any element b has the property #(b, B1 � B2) = #(b, B1) + #(b, B2). In

words, the additive union of two bags contains all the elements of the first bag as

well as all the elements of the second bag without removing any duplicates.

For the purposes of this work, we say that every set is also a bag. This allows

us to take the additive union of two or more sets and obtain a bag.

Example 2.4. Let us say that B1 = {(1, 7), (2, 4)} and B2 = {(2, 3), (2, 4), (2, 4)},
then B1 � B2 = {(1, 7), (2, 3), (2, 4), (2, 4), (2, 4)}.

Next we define bag subtraction. When we subtract one bag from another,

we proper-subtract the number of occurrences of every element in the second bag

from the number of occurrences of that element in the first bag [84]. If B1 and B2

are both bags, then B1 − B2 is a bag such that any element b has the property

#(b, B1 − B2) = max
(
0, #(b, B1) − #(b, B2)

)
.
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Example 2.5. Let B1 = {(−2, 1), (0, 1), (0, 1), (2, 1), (0, 2)}. Let B2 = {(0, 1),
(9, 1)}. Then B1 − B2 = {(−2, 1), (0, 1), (2, 1), (0, 2)} and B2 − B1 = {(9, 1)}.

Next we define a function for removing the duplicates from a bag. We may term

the result as either a bag or a set. Albert calls this the duplicate elimination

function [10]. Both Albert [10] and Dayal et al. [27] use δ to indicate duplicate

elimination. Formally, δ(B) = {b|b ∈ B}.

Example 2.6. Let B1 be as defined in Example 2.5. Let B2 = {4, 3, 2, 4, 3, 4}.
Then δ(B1) = {(−2, 1), (0, 1), (2, 1), (0, 2)} and δ(B2) = {4, 3, 2}

Next we define bag select. In [31], Dyreson writes “The selection operation

selects [elements] from a [bag] that fit some criteria, creating a new [bag] with the

selected [elements].” We use the standard symbol for select, σ. We put our select

criteria in the sigma’s subscript. So σλ(B) is a bag that contains all the elements of

B that satisfy the condition λ. Since B is a bag, we specify that the number of each

element in σλ(B) is the same as the number of that element in B. Formally, if B is

a bag and λ is a condition, then σλ(B) is a bag such that #(b, σλ(B)) = #(b, B) if

b satisfies λ and #(b, σλ(B)) = 0 if b does not satisfy λ.

Example 2.7. Let B3 = {(−2, 1), (0, 1), (0, 1), (2, 1), (0, 2)}, where each or-
dered pair contains an x component and a y component designated (x, y). Then
σx=0(B3) = {(0, 1), (0, 1), (0, 2)}, σy=2(B3) = {(0, 2)}, and σx=0∧y=1(B3) = {(0, 1),
(0, 1)}.

Now we define projection. Most of the bags we use in this dissertation contain

ordered pairs as elements. We can use the projection function to create a new

bag that contains only the first or second part of each ordered pair in the original

bag. Gersting writes that “The project operation creates a new relation made up of

certain attributes from the original relation, eliminating any duplicate tuples” [35,

page 282]. Our projection operation does not remove duplicates. In our terminology,
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a relation is a bag that contains elements that have multiple parts, such as a bag with

ordered pairs as elements. We use the following notation to indicate a projection,

πL(B), where L indicates which half of the ordered pair is desired and B indicates

the bag of ordered pairs [84].

Example 2.8. Let B3 be defined as in Example 2.7. Then πx(B3) = {−2, 0, 0, 0,
2} and πy(B3) = {1, 1, 1, 1, 2}.

We now define an operation of our own, called manipulation. There are times

where we have a bag of ordered pairs and we wish to perform some mathematical

operation on each of the first elements of the ordered pairs, or each of the second

elements. We use the following notation to designate a mathematical manipulation,

μE(B), where E indicates some expression that indicates which part of the ordered

pair is to be manipulated and how, and B indicates the bag of ordered pairs.

Example 2.9. Let B3 be as defined in Example 2.7. Then μx=2x(B3) = {(−4, 1),
(0, 1), (0, 1), (4, 1), (0, 2)} and μx=−x∧y=y+1(B3) = {(2, 2), (0, 2), (0, 2), (−2, 2),
(0, 3)}.

2.3 Locality Definitions

Now that our background definitions are complete, we are ready to build our defi-

nition of locality. We begin by defining stride and delay.

The stride is the difference between two separate string elements, where the

former element is subtracted from the latter. Formally,

stride(v[a], v[b]) = v[b] − v[a] (2.1)

where v ∈ V , a and b are both valid indices of the string, and a < b. stride(v[a], v[b])

is undefined when a ≥ b. Since the elements of the string may be any integer, the

stride may also be any integer, whether positive, negative, or zero.
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Example 2.10. Let v1 = 2, 7, 5, 10, 5, 2, 8 as in Example 2.1. Then
stride(v1[1], v1[2]) = 7 − 2 = 5, stride(v1[3], v1[5]) = 5 − 5 = 0, and
stride(v1[2], v1[6]) = 2 − 7 = −5. stride(v1[4], v1[4]) is undefined, since 4 = 4.
stride(v1[3], v1[1]) is undefined, since 1 < 3.

A delay exists between two separate elements of a string, as long as neither

element is equal to another element between the two. Formally, delay(v[a], v[b]) is

defined where v ∈ V , a and b are valid indices of the string, a < b, and ∀i(a < i <

b)(v[a] �= v[i] ∧ v[b] �= v[i]). Note that v[a] may be equal to v[b]. When defined,

the delay is the number of unique elements between two string elements, inclusive

of the earlier element and exclusive of the later. Formally,

delay(v[a], v[b]) =⎧⎪⎨⎪⎩ |δ({v[a] · · ·v[b − 1]})| if (a < b) ∧ (∀i(a < i < b)(v[a] �= v[i] ∧ v[b] �= v[i])
)
,

undefined otherwise,

(2.2)

where v ∈ V and both a and b are valid indices of v. On the right-hand side of the

equation, we put all the elements of the string v between v[a] and v[b−1], inclusive,

into a bag, then remove any duplicates and take the cardinality of the resulting set.

This yields the number of unique elements in v between v[a] and v[b− 1], inclusive.

Property 2.1. For any string v and valid indices a and b, 1 ≤ delay(v[a], v[b]) ≤
b − a when the delay is defined.

For the delay to be defined, we require a < b. This means that the number of

unique elements between v[a] and v[b − 1], inclusive, is always at least one.

The delay is at its maximum when every element is unique. Since we count all

the elements between v[a] and v[b − 1], inclusive, the maximum value is b − a.

Example 2.11. Using v1 from Example 2.1, delay(v1[1], v1[5]) is not defined be-
cause v1[3] = v1[5], delay(v1[1], v1[7]) is not defined because v1[1] = v1[6], and
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delay(v1[4], v1[3]) is not defined because 3 < 4. The following is a list of all the
delays that are defined in v1, any delay not listed is undefined:

delay(v1[1], v1[2]) = 1,
delay(v1[1], v1[3]) = 2,
delay(v1[1], v1[4]) = 3,
delay(v1[1], v1[6]) = 4,
delay(v1[2], v1[3]) = 1,
delay(v1[2], v1[4]) = 2,
delay(v1[2], v1[6]) = 3,
delay(v1[2], v1[7]) = 4,
delay(v1[3], v1[4]) = 1,
delay(v1[3], v1[5]) = 2,
delay(v1[4], v1[5]) = 1,
delay(v1[4], v1[6]) = 2,
delay(v1[4], v1[7]) = 3,
delay(v1[5], v1[6]) = 1,

delay(v1[5], v1[7]) = 2, and
delay(v1[6], v1[7]) = 1.

The stride/delay combination is an ordered pair containing the stride and

delay for two separate elements of a string. It exists if and only if the stride for

the two elements and the delay for the two elements are defined. If the stride/delay

combination exists, it is displayed as: (stride(v[a], v[b]), delay(v[a], v[b])) where v ∈
V and a and b are valid indices of v. When the stride/delay combination does

not exist, for example when the delay is undefined, we say that the stride/delay

combination is undefined. For notational convenience, we write s/d(v[a], v[b]) to

indicate the stride/delay combination for the two elements v[a] and v[b]. Formally,

s/d(v[a], v[b]) =

⎧⎪⎨⎪⎩ (stride(v[a], v[b]),delay(v[a], v[b])) if delay(v[a], v[b]) is defined,

undefined otherwise.

(2.3)

Notice that the stride is always defined when the delay is defined, so it is sufficient

to say that the stride/delay combination is defined when the delay is defined. Note

also that while the stride may be any integer, the delay is always greater than or

equal to one. So (2,−1) is not a valid stride/delay combination.
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Example 2.12. Using v1 from Example 2.1, the stride/delay combination for v1[1]
and v1[2] is (5, 1), the stride/delay combination for v1[2] and v1[6] is (−5, 3), and the
stride/delay relationship for v1[2] and v1[5] is undefined since delay(v1[2], v1[5]) is
undefined. As mentioned earlier, we can also write this as s/d(v1[1], v1[2]) = (5, 1),
s/d(v1[2], v1[6]) = (−5, 3), and s/d(v1[2], v1[5]) is undefined.

Since the stride/delay combination is an ordered pair, one stride/delay combi-

nation is equal to another only if both the stride and delay are equal. Formally,

(a, b) = (c, d) iff (a = c) ∧ (b = d).

Example 2.13. The stride/delay combination (0, 4) is not equal to the stride/delay
combination (0, 3) since 4 �= 3. The stride/delay combination (−2, 7) is equal to the
stride/delay combination (−2, 7) since −2 = −2 and 7 = 7.

The locality data for a particular element of a string, v[a], is a set of all the

valid stride/delay combinations with an earlier element in the string. Formally,

�(v[a]) = {s/d(v[i], v[a]) | (1 ≤ i < a) ∧ delay(v[i], v[a]) is defined}. (2.4)

We now mention a couple of properties of the locality data of individual elements

of strings. These properties are true for any string v ∈ V .

Property 2.2. For any string v, �(v[1]) = ∅.
The first element of a string never has any earlier elements with which to have

stride/delay relationships.

Theorem 2.3. The delay portions of the locality data for a particular string element

is always a set, i.e. a multiset with no duplicates.

Proof. More formally, for any string v, if we let D = πd

(
�(v[i])

)
then for any delay

d ∈ D we know that #(d, D) = 1. In other words, we never see a duplicate delay

within the locality data for an individual string element. We now show this by

contradiction.
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Assume that a particular string element, v[i], has the same delay with two earlier

string elements, namely v[a] and v[b]. We formally write this delay(v[a], v[i]) =

delay(v[b], v[i]) where a < b < i. This means that the number of unique elements

between v[a] and v[i] is equal to the number of unique elements between v[b] and

v[i]. Formally, we write this as

|δ({v[a] · · · v[b] · · · v[i − 1]})| = |δ({v[b] · · · v[i − i]})|.

For this to be true, all the elements from v[a] to v[b− 1] must be elements that are

already between v[b] and v[i−1]. More formally, {v[a] · · · v[b−1]} ⊆ {v[b] · · · v[i−1]}.
Therefore we know that {v[a]} ⊆ {v[a+1] · · · v[i− 1]}. In other words, v[a] is equal

to some element between v[a] and v[i], meaning that delay(v[a], v[i]) is undefined.

We have now reached a contradiction, which means that the delay between a

particular element and any earlier element in the string is unique. We may therefore

conclude that the delay portions of the locality data for a particular string element

is always a set.

Theorem 2.4. The stride portions of the locality data for a particular string element

is always a set, i.e. a multiset with no duplicates.

Proof. More formally, for any string v, if we let S = πs

(
�(v[i])

)
then for any stride

s ∈ S we know that #(s, S) = 1. In other words, we never see a duplicate stride

within the locality data for an individual string element.

Recall from Equation 2.4 that a stride/delay relationship is only included in

the locality data for a given element if the delay is defined. We now prove, by

contradiction, that the stride is never duplicated.

Let us assume that we have two stride/delay relationships in �(v[i]) such that

the stride is the same. We let these two relationships be (s, d1) and (s, d2). Note
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that d1 �= d2, from Theorem 2.3. We let d1 > d2. We let v[j] and v[k] be

the earlier elements of v that cause these stride/delay relationships. Specifically,

s/d(v[j], v[i]) = (s, d1) and s/d(v[k], v[i]) = (s, d2). Since d1 > d2, we know that

j < k < i. From Equation 2.1, we can write that v[i] − v[j] = s and v[i] − v[k] = s.

Algebra now tells us that v[j] = v[k]. We can now see that delay(v[j], v[i]) is un-

defined, since v[k] is between v[j] and v[i] and is equal to v[j]. From Equation 2.4,

s/d(v[j], v[i]) is not included in �(v[i]), which is a contradiction.

Since any duplicate stride leads to a contradiction, we have shown that the stride

portions of the locality data for a particular string element is always a set.

Theorem 2.5. The locality data for a particular string element is always a set, i.e.

a multiset with no duplicates.

Proof. In other words, for any string v and stride/delay combination (s, d), if (s, d) ∈
�(v[i]) then #

(
(s, d), �(v[i])

)
= 1. This is easy to see, given either Theorem 2.3 or

Theorem 2.4. If either all the delays are unique or all the strides are unique, then

surely all the stride/delay relationships are also unique. Since the bag of stride/delay

relationships has no duplicates, then it is also a set.

We now give an example showing the locality data for each element of a particular

string. Notice the validity of Property 2.2 and Theorems 2.3 – 2.5.

Example 2.14. Using v1 from Example 2.1,
�(v1[1]) = ∅,
�(v1[2]) = {(5, 1)},
�(v1[3]) = {(−2, 1), (3, 2)},
�(v1[4]) = {(5, 1), (3, 2), (8, 3)},
�(v1[5]) = {(−5, 1), (0, 2)},
�(v1[6]) = {(−3, 1), (−8, 2), (−5, 3), (0, 4)}, and
�(v1[7]) = {(6, 1), (3, 2), (−2, 3), (1, 4)}.
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Remember that the elements in a set are not ordered, hence {(−4, 1), (3, 2)} =

{(3, 2), (−4, 1)}. For convenience, in this work we display sets of stride/delay re-

lationships ordered by the delay. However, this is only to simplify determining if

a particular stride/delay relationship is a member of the set and should not imply

ordering.

Theorem 2.6. The locality data for a given string element yields the same result

as using an LRU stack to compute delays if stack traversal stops when an element

on the stack with the same value is reached.

Proof. Recall that v[a] is the ath member of the string v. If a = 1, then there is no

stack and no locality data for v[a] (Property 2.2). Therefore, assume that a > 1.

The top of the LRU stack at this point is the immediately previous element in the

string, i.e. v[a − 1]. We can easily see that delay(v[a − 1], v[a]) is always defined,

since there is nothing between v[a − 1] and v[a]. Also, the delay is 1, which is also

the depth in the LRU stack of the top element.

Let v[i] be any earlier element of v. If v[a] is equal to some element between v[i]

and v[a], then the stack traversal ceases when the element equal to v[a] is reached,

and the delay between v[i] and v[a] is undefined. If v[i] is equal to some element

between v[i] and v[a], then v[i]’s position in the LRU stack was replaced by that

other element, and the delay is undefined. If neither v[a] nor v[i] are equal to any

elements between them, then the depth in the stack is equivalent to the number of

unique elements between v[i] and v[a − 1], inclusive. Hence our definition of delay

is equivalent to computing delay using an LRU stack, if stack traversal ceases when

the same element is reached on the stack.

The locality data for an entire string v is a bag, or multiset, of all the stride/delay

combinations that exist in v. We can also think of it as the additive union of the
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locality data for each element of the string. Formally,

�(v) =

|v|⊎
i=1

�(v[i]), (2.5)

where v ∈ V .

Example 2.15. Using v1 from Example 2.1, �(v1) = {(−5, 1), (−3, 1), (−2, 1),
(5, 1), (5, 1), (6, 1), (−8, 2), (0, 2), (3, 2), (3, 2), (3, 2), (−5, 3), (−2, 3), (8, 3), (0, 4),
(1, 4)}.

Remember that the elements of a bag are not ordered. As with sets, we display

bags of stride/delay relationships ordered primarily by the delay. Again, this sim-

plifies determining if a particular stride/delay relationship is a member of the bag,

and also helps us enumerate how many of a given relationship are in the bag. This

ordering for convenience should not imply that elements of a bag are ordered.

We now prove that the locality data of a reversed string is the same as the

locality data of the original string except with the sign of the stride reversed.

Theorem 2.7. For any string v,

�(rev(v)) = μs=−s�(v).

Proof. Let v be any string and w = rev(v). From Theorem 2.2, we also know that

v = rev(w). First we show that �(w) ⊆ μs=−s�(v) by showing that any stride/delay

relationship in �(w) is also in �(v) if the stride portion is multiplied by −1. Let

(s, d) be some stride/delay relationship in �(w). Then (s, d) must be a member

of the locality data for some element of w. We call this element w[i], so that

(s, d) ∈ �(w[i]). We now show that there exists some j such that (−s, d) ∈ �(v[j]).

Since (s, d) ∈ �(w[i]), there must be an earlier element of w, let us call it w[a],

such that a < i, stride(w[a], w[i]) = w[i]−w[a] = s, and delay(w[a], w[i]) = d. Since

v and w are reverses of each other, we know that |v| = |w|. Let k = |v|. Therefore,
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w[a] = v[k−a+1] and w[i] = v[k−i+1]. Since a < i, we know that k−i+1 < k−a+1.

Then stride(v[k− i+1], v[k−a+1]) = v[k−a+1]−v[k− i+1] = w[a]−w[i] = −s.

Since v and w are reverses of each other, we know that the same elements that

are between w[a] and w[i] are are also between v[k − i + 1] and v[k − a + 1], only in

reverse order. Since delay(w[a], w[i]) is defined, we know that neither w[a] nor w[i]

is equal to an element between w[a] and w[i]. This means that neither v[k − i + 1]

nor v[k − a + 1] is equal to an element between v[k − i + 1] and v[k − a + 1]. Recall

that k− i+1 < k−a+1. Therefore, we know that delay(v[k− i+1], v[k−a+1]) is

defined. For the same reason, we can also say that delay(w[a], w[i]) = delay(v[k −
i + 1], v[k − a + 1]). Since the elements that exist between w[a] and w[i] are the

same elements that are between v[k − i + 1] and v[k − a + 1], the number of unique

elements between them is also the same. So delay(v[k − i + 1], v[k − a + 1]) = d.

If we let j = k − a + 1, then we may say that (−s, d) ∈ �(v[j]). We have now

shown that �(w) ⊆ μs=−s�(v), if w = rev(v).

Since v = rev(w), we may also say that �(v) ⊆ μs=−s�(w). If we multiply the

stride portion of each of the stride/delay relationships on both sides of this equation

by −s, we get μs=−s�(v) ⊆ μs=−(−s)�(w). We may rewrite this as μs=−s�(v) ⊆ �(w).

Since �(w) and μs=−s�(v) are both subsets of each other, we may conclude that

�(w) = μs=−s�(v). Replacing w with rev(v), we finish with �(rev(v))μs=−s�(v), as

desired.

We believe that our definition of locality data incorporates all interesting aspects

of temporal and spatial locality. For each element of a string, its stride/delay rela-

tionship with the most recent instance of each earlier element value is recorded in

the locality bag. Now we need a useful way to view, store, and analyze all this data.
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2.4 Visualizing Locality Data

When dealing with strings that are millions, even billions, of integers long, the

locality data bag is quite large. For example, the locality data for about 50 mil-

lion instructions of twolf, from the SPEC CINT 2000 suite, contains over 289 mil-

lion stride/delay relationships. We represent this information visually using several

steps. First, we generate a three-dimensional histogram by counting how many

of each stride/delay combination exist in �(v). For large strings, there is still the

potential for millions of stride/delay combinations, so we group some of them to-

gether. We use the visualization technique developed by Grimsrud [38] to display

his locality surfaces. While the computation of our locality surfaces is significantly

different, Grimsrud’s display method works well for our data and also allows easy

comparisons with his work.

Since we want extra detail near the origin, where stride = 0 and delay = 1,

we group logarithmically in both the stride and delay direction. Now the problem

is that those bins at large delays and large strides contain many more stride/delay

combinations, making it difficult to view the data near the origin. Grimsrud found

that the best way to even this out for the type of input strings he used was to divide

each bin by the size of the range of strides that are in the bin. Since our input strings

are very similar to Grimsrud’s, we have found his method to be useful. In order to

view the results as a percentage, we also used Grimsrud’s method of dividing by the

total number of elements in the original trace minus one.

In later chapters, we use this visualization method for other bags besides a

bag of locality data. For this reason, our visualization functions operate on what

we term a stride/delay bag. This is a bag that consists entirely of stride/delay

combinations. So far, the locality data of a string is the only stride/delay bag that
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Stride

D
e
la

y
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

1 1 1 1 2 1
2 1 1 3
3 1 1 1
4 1 1

Table 2.1: The locality histogram for the string v1 from Example 2.1. We write
h(�(v1)) to indicate the entire histogram.

we have encountered. In Chapter 5, however, we define a miss bag that is another

stride/delay bag. When the following visualization functions are used with bags of

locality data, the final result is called the locality surface of the input string. We

now describe each visualization step in detail.

2.4.1 Making the Histogram

Let h(B) represent the three-dimensional histogram that counts the number of

occurrences of each stride/delay relationship in the bag B. When B is the locality

data for some string v, we may term h(B) the locality histogram. Let h(B, s, d)

represent an individual entry in the histogram, namely the count of how many of

the specific stride/delay combination (s, d) are in the bag B. Note that s may be

any integer, positive or negative, while d > 0. Formally,

h(B, s, d) = #
(
(s, d), B

)
(2.6)

where B is a locality bag.

Example 2.16. Recall from Examples 2.1 and 2.15 that v1 = 2, 7, 5, 10, 5, 2, 8 and
�(v1) = {(−5, 1), (−3, 1), (−2, 1), (5, 1), (5, 1), (6, 1), (−8, 2), (0, 2), (3, 2), (3, 2),
(3, 2), (−5, 3), (−2, 3), (8, 3), (0, 4), (1, 4)}. Then h(�(v1), 0, 2) = 1, h(�(v1), 3, 2) =
3, and h(�(v1),−6, 1) = 0. Table 2.1 shows the complete results.
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Figure 2.1: Example of the raw locality histogram for a real trace, the instruction
trace of twolf. This figure merely shows a small part of the actual histogram.

Example 2.17. Figure 2.1 shows a small part of the histogram for the instruction
trace of the real workload twolf. (Twolf is a place and route simulator from the
SPEC CINT 2000 benchmark suite.) There is not enough room to display the entire
histogram, since the histogram ranges from 1 to over 4000 in the delay direction and
from −128 to 128 in the stride direction. Figure 2.1 limits the delay direction to a
maximum of 31 and the stride direction to a maximum absolute value of 30.

Theorem 2.8. For any string v,

∞∑
s=−∞

h(�(v), s, 1) = |v| − 1.

Proof. This says that the locality data for any string v always has |v|−1 stride/delay

relationships where the delay is 1. This is because every element of the string, except

the first element, has exactly one stride/delay relationship where delay = 1. The

first element of the string does not, due to Property 2.2.

For any element of an arbitrary string, v, if 2 ≤ i ≤ |v|, then delay(v[i−1], v[i]) =

1. This delay is always defined because i− 1 < i and there are no elements between

v[i − 1] and v[i] that either element can equal. The delay is always 1 since we are

counting the number of unique elements between v[i−1] and v[i], inclusive of v[i−1]
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and exclusive of v[i]. In this case, there is always exactly one element to count, i.e.

v[i − 1].

Theorem 2.9. For any string v and delay d ≥ 2,

∞∑
s=−∞

h(�(v), s, d) = max

(
0,

( −1∑
s=−∞

h(�(v), s, d − 1) +

∞∑
s=1

h(�(v), s, d − 1) − 1

))
.

(2.7)

Proof. In words, this property means that counting all the stride/delay relationships

at a particular delay is equivalent to zero or one less than the number of stride/delay

relationships with a delay one smaller where the stride is not zero, whichever is

greater.

Let d be the delay we are concerned with. Therefore, d−1 is the delay one smaller.

If a particular element of the given string v has a stride/delay relationship with an

earlier element where the delay is d − 1, there are only two circumstances where

that same element of v does not have a stride/delay relationship where the delay is

d. Formally, if (s1, d − 1) ∈ �(v[i]), there are only two reasons for (s2, d) �∈ �(v[i])

where s1 and s2 are unknown stride values. Both reasons relate to the fact that

the stride/delay relationships that are in �(v[i]) represent a stack traversal of earlier

elements in v, if the stack traversal stops when an element with equal value is

reached. (See Theorems 2.6 and 2.5.)

The first reason occurs if s1 = 0. This means that an element with the same

value as v[i] is found in the stack, at depth d − 1. Stack traversal stops at this

point, and no stride/delay relationships are computed for v[i] for any larger delays.

Hence v[i] cannot have a stride/delay relationship where the delay is d. Each time

this situation occurs there is a (s1, d − 1) stride/delay relationship in �(v[i]). We

know that there are #
(
(0, d− 1), �(v)

)
less stride/delay relationships where delay is

d than where delay is d − 1 due to this reason.
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The second reason occurs if (s1, d − 1) represents the stride/delay relationship

between the element at the bottom of the stack and v[i]. This means that the stack

is not yet deep enough to create a d delay because there are only d − 1 elements

in the stack. When the delay minus one stride/delay relationships have non-zero

strides, this situation may occur only once for a given delay value. If the value of

v[i] was already in the stack, this situation would never occur because a stride zero

would have been found. Therefore, v[i] must be a new value. When it is added to

the stack, the depth of the stack is increased by one and now able to create a delay of

d for future elements in v. This accounts for the subtraction of one in Equation 2.7.

When the delay minus one stride/delay relationships have only zero strides, i.e.

there is no stride/delay relationship (s1, d − 1) where s1 �= 0, then this situation

does not occur at all. In this case, counting all the non-zero-stride stride/delay

relationships results in zero. Subtracting one in Equation 2.7 yields an answer of

−1. We correct this by taking the maximum with zero, so the final answer is 0, as

if one were not subtracted at all.

2.4.2 Binning the Data

We now reduce the resolution of the locality surface as stride and delay become large

by binning. Let H(B) represent the binned histogram of the stride/delay bag B.

When B is the locality data for some string v, we may term H(B) the binned

locality histogram. We decided to center our binning around the stride/delay

combination (0, 1), which is the smallest absolute value stride and the smallest delay.

Since we group in two dimensions (stride and delay), each bin receives a stride label

and a delay label for indexing the bin. The following paragraphs describe the binning

in English, and Equation 2.8 describes the binning mathematically.
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We group in the delay direction by leaving delay = 1 and delay = 2 as separate

bins, with delay labels of 1 and 2 respectively. We bin 3 ≤ delay ≤ 4 together and

give it a delay label of 3, bin 5 ≤ delay ≤ 8 together and give it a delay label of 4,

etc. The delay = 1 case is addressed in Lines 1-3 of Equation 2.8. The other delay

cases are addressed in Lines 4-6 of Equation 2.8.

We group in the stride direction similarly, but it is a bit more complex due to

the negative strides. We leave stride = 0, stride = ±1, and stride = ±2 as five

separate bins, and give them stride labels 0, 1, −1, 2, and −2 respectively. We then

group in both the positive and negative directions, binning 3 ≤ stride ≤ 4 together

and giving it a stride label of 3, binning −3 ≥ stride ≥ −4 together and giving it

a stride label of −3, binning 5 ≤ stride ≤ 8 together and giving it a stride label of

4, binning −5 ≥ stride ≥ −8 together and giving it a stride label of −4, etc. Lines

1 and 4 of Equation 2.8 address the cases when −1 ≤ stride ≤ 1. Lines 2 and 5

of Equation 2.8 address the cases when stride > 1. Lines 3 and 6 of Equation 2.8

address the cases when stride < −1.

Let H(B, a, b) represent a bin where a is the stride bin label and b is the delay

bin label. Then,

H(B, a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h(B, a, b) if (−1 ≤ a ≤ 1 ∧ b = 1),

2a−1∑
s=2a−2+1

h(B, s, b) if (a > 1 ∧ b = 1),

−(2−a−2+1)∑
s=−(2−a−1)

h(B, s, b) if (a < −1 ∧ b = 1),

2b−1∑
d=2b−2+1

h(B, a, d) if (−1 ≤ a ≤ 1 ∧ b > 1),

2a−1∑
s=2a−2+1

2b−1∑
d=2b−2+1

h(B, s, d) if (a > 1 ∧ b > 1),

−(2−a−2+1)∑
s=−(2−a−1)

2b−1∑
d=2b−2+1

h(B, s, d) if (a < −1 ∧ b > 1).

(2.8)
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Figure 2.2: Example of the binned locality histogram for a real trace, the instruction
trace of twolf.

Stride

D
e
la

y

-8 − -5 -4 − -3 -2 -1 0 1 2 3 − 4 5 − 8

1 1 1 1 0 0 0 0 0 3
2 1 0 0 0 1 0 0 3 0

3 - 4 1 0 1 0 1 1 0 0 1

Table 2.2: The binned locality histogram for the string v1 from Example 2.1. We
write H(�(v1)) to indicate the binned locality histogram for v1.

Example 2.18. Table 2.2 shows the binned locality histogram for the string v1 from
Example 2.1.

Example 2.19. Figure 2.2 shows the binned locality histogram for the instruction
trace of twolf. We can now see the entire range of data instead of the small section
shown in Figure 2.1. We typically label each bin using largest (s, d) values assigned to
the bin rather than the (a, b) values, since this is more descriptive of the input data.
We have allowed the stride range to be large enough to see all the visible features.
Notice the high spikes at large strides. The binned locality histogram appears as two
such spikes for all workloads we have seen. To get information that allows us to
characterize the differences of various workloads, we need one more step.

Theorem 2.10. For any string v,

∞∑
a=−∞

H(�(v), a, 1) = |v| − 1.
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Proof. We can show this by using the definition of H(B) and Property 2.8:

∞∑
a=−∞

H(�(v), a, 1) =

−2∑
a=−∞

−(2−a−2+1)∑
s=−(2−a−1)

h(�(v), s, 1) +

1∑
a=−1

h(�(v), a, 1) +

∞∑
a=2

2a−1∑
s=2a−2+1

h(�(v), s, 1)

=

−2∑
a=−∞

h(�(v), a, 1) +

1∑
a=−1

h(�(v), a, 1) +

∞∑
a=2

h(�(v), a, 1)

=

∞∑
a=−∞

h(�(v), a, 1)

= |v| − 1.

2.4.3 Normalizing the Bins

Now we normalize the bins in the stride direction by dividing each bin by the size

of the range of strides that it contains. The bin with a stride label of 0 contains

only one stride value (i.e. 0), so we divide it by one. The bin with a stride label of

−5 is assigned eight stride values (i.e. −16 ≤ stride ≤ −9), so we divide this bin by

eight. In addition, we normalize the entire surface by dividing every bin by one less

than the length of the input string, resulting in a percentage. We term the result a

surface, represented by S(B, v) where B is a locality bag and v is the string whose

length we wish to use. S(B, v) is the entire surface, and S(B, v, a, b) is a specific

bin on the surface.

S(B, v, a, b) =

⎧⎪⎨⎪⎩
H(B,a,b)

(|v|−1)·(2|a|−2)
if |a| > 1,

H(B,a,b)
|v|−1

if |a| ≤ 1
(2.9)
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Stride

D
e
la

y

-8 − -5 -4 − -3 -2 -1 0 1 2 3 − 4 5 − 8

1 0.0417 0.0833 0.1667 0 0 0 0 0 0.1250
2 0.0417 0 0 0 0.1667 0 0 0.2500 0

3 - 4 0.0417 0 0.1667 0 0.1667 0.1667 0 0 0.0417

Table 2.3: The locality surface for the string v1 from Example 2.1. We write either
S(�(v1), v1) or L(v1) to indicate this locality surface.

where B is a locality bag, v ∈ V , and a and b are integers such that 1 ≤ b. Note that

for a bag of locality data |v| − 1 is the number of stride/delay relationships where

delay = 1, as we saw in Properties 2.8 and 2.10. So S(�(v), v, 0, 1) is the percentage

of delay = 1 stride/delay relationships where stride = 0.

What type of surface S(B, v) is depends on what type of stride/delay bag is

used. When B is a bag of locality data, we call S(B, v) a locality surface. Because

we refer to locality surfaces frequently, we now define a function that takes a string

and returns the locality surface of that string. Formally, L(v) = S(�(v), v) and

L(v, a, b) = S(�(v), v, a, b). This new function simplifies the notation.

Example 2.20. Table 2.3 shows the locality surface for the string v1 from Exam-
ple 2.1.

Example 2.21. Figure 2.3 shows the locality surface for the instruction trace of
twolf. Now we can see significant features, identify the size and relative frequency
of loops, and make better comparisons with the locality surfaces of other workloads.
Compare this surface with Grimsrud’s surface for the same workload, Figure 1.4.
Notice that our new locality surface has sharper, more well-defined features. When
we examine the cache results for this workload in Chapter 4, it will be readily appar-
ent to the reader that the cache results directly match our locality surface and not
Grimsrud’s. The maximum stride and delay were chosen to be consistent with the
locality surfaces of all the instruction traces in this dissertation. In Section 3.3 we
explain why these values were chosen.
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Figure 2.3: Example of the locality surface for a real trace, the instruction trace of
twolf.

We now show that creating a locality surface from the reverse of a string yields

the same result as flipping the locality surface over the stride = 0 axis.

Theorem 2.11. For any string v,

L(rev(v), a, b) = L(v,−a, b).

Proof. Let w = rev(v). Let (s, d) be any particular stride/delay combination in

�(w). We then know, from Theorem 2.7, that (−s, d) ∈ �(v). Let (a1, b1) be the

particular bin of the locality surface that (s, d) falls in. We first show that (−s, d)

falls into the bin labeled (−a1, b1).

The delay bin label depends entirely on the value of the delay. Since the delay

values of (s, d) and (−s, d) are the same, they both have the same delay bin label.

Therefore we may say that (−s, d) has a delay bin label of b1.

The absolute value of the stride bin label depends entirely on the absolute value

of the stride. Since the absolute value of the stride portions of (s, d) and (−s, d)

matches, we know that the absolute value of the stride bin labels also match. There-

fore, we may say that (−s, d) has a stride bin label with |a1| as its absolute value.
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The sign of the stride bin label matches the sign of the stride value. Since the

sign of the stride component of (s, d) and (−s, d) are opposite, we may conclude

that the sign of the stride bin labels is also opposite. Therefore the stride bin label

for (−s, d) is −a1. Hence we know that (−s, d) falls into the bin labeled (−a1, b1).

This shows us that H(w, a, b) = H(v,−a, b).

When we compute the locality surface from the binned histogram, the compu-

tations are all based on the length of the string |v| and the absolute value of the

stride label. If the computations on the bins labeled (a, b) and (−a, b) are equivalent,

then reversing the string does not change the computations. From the definition

of reverse, we know that |v| = |w|. Basic math tells us that |a| = | − a|. So both

(a, b) and (−a, b) have the same computations performed on them. Therefore, the

changes made to convert from the binned histogram to the locality surface do not

affect the equality already proved. Hence, S(�(w), w, a, b) = S(�(v), v,−a, b) and

L(w, a, b) = L(v,−a, b).

When computing the locality surface for an input string, it is easiest in terms of

programming time to use a simple stack algorithm, thanks to Theorem 2.6. However,

this may take a lot of compute time, depending on the locality of the input string.

To solve this problem, we have written a parallel version of the stack program

that significantly reduces compute time when multiple processors are available. We

discuss these two algorithms and compare compute time for both in Chapter 9.

In general, when we refer to “the locality program” we mean any program that

computes the locality data defined in Equation 2.5.
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2.5 Summary

We have here described in solid, mathematical terms, our definition of locality. We

have further shown how the locality data can be transformed into a locality surface

that yields a visually pleasing result of large amounts of data. Next, we demonstrate

what common locality surface features represent and examine a number of locality

surfaces of workloads from the SPEC CINT2000 and SPEC CFP2000 benchmark

suites.
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Chapter 3

The Locality of Workloads

In this chapter, we synthetically create strings of numbers that have characteristics

that are known to exist in the memory accesses of real workloads, such as sequential

and looping elements. We also create synthetic strings that produce specific fea-

tures on the locality surface that we later see when examining the surfaces of real

workloads. This helps us understand what a given feature on the locality surface

indicates about the input string.

We then describe the traces we have taken from real workloads and look at a

number of their locality surfaces. All of the real workloads examined in this dis-

sertation are from the SPEC CPU 2000 benchmark suite [3]. This suite is usually

split into two sub-suites, the integer benchmarks (CINT2000) and the floating point

benchmarks (CFP2000). We describe the general characteristics of instruction ver-

sus data traces and integer versus floating point workloads and the effects of various

inputs on the same workload. We also compare the same workload under differing

operating systems.

Our intent is to give an overview of the locality of the workloads in the SPEC

C2000 suite, not to provide a detailed workload characterization study. We do not
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attempt to explain why a given workload has the locality it does. We wish to give

the reader a feel for locality surfaces and what features (including location and size

of the features) are typical.

3.1 Locality Surface Features

We now examine the locality surfaces for a number of artificial traces. We created

each synthetic trace for one of two reasons. One reason was to discover what the

locality for a given pattern of numbers looks like. For example, it is well known that

many workloads contain sequential memory accesses and/or loops. We deliberately

created strings with these characteristics and examined the resulting locality sur-

faces. We sometimes used random references to increase the delay between various

elements of a synthetic trace, so we also examined a trace made entirely of random

references. Another reason we made synthetic traces was to determine what kind

of string created a specific feature on the locality surface. There are several curious

features seen in a number of locality surfaces (which we examine in Section 3.3).

For some of these features, we contrived artificial traces that created the features

when sent through the locality surface program.

For each of these artificial traces, we display the code that creates the trace

and display the locality surface that is produced when the trace is run through the

locality program. In several cases, we also describe other types of traces that may

create similar locality surface features. This helps us when we examine surfaces of

actual workloads; we are better able to determine what the surface features indicate

about the input string.

As mentioned in Chapter 1, we show two views of each locality surface, one

from the side and one from the top. The labels on both axes reflect the maximum
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stride and delay values in each bin rather than the bin labels, since this is more

descriptive of the input trace. This also allows for a more intuitive understanding

of the location of various features and simplifies our cache studies.

3.1.1 Sequential References

First we examine what a locality surface looks like for a simple sequence of memory

references. The code fragment in Figure 3.1 creates a synthetic trace of sequential

references, and Figure 3.2 shows the resulting locality surface. Sequential references

create a ridge on the locality surface where stride = delay, i.e. L(v, a, a). The

length of the ridge represents the length of the sequential run, and the height of

the ridge indicates the percentage of the trace involved in the run. Recall that the

interreference spatial density function described in Chapter 1 would have given us

no information about the sequentiality of this trace.

Real workloads generally contain several different sequential runs of various

lengths. The rate at which the ridge decays as stride and delay increase demon-

strates the distribution of the lengths of the various sequential runs. Because this

feature is so common in real workloads, we call the data where L(v, a, a) the se-

quential ridge.

3.1.2 Random References

The code fragment in Figure 3.3 creates a uniformly distributed string of random

references. The locality surface of these references is shown in Figure 3.4. Most of

the volume of the surface is around a delay of 1 million, about the same number as

the number of unique references in the trace. This is because of the binning and

dividing the bins that was done in Sections 2.4.2 and 2.4.3. When v is a string of
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void main()
{

ulong addr = 0;
for (int i = 0; i < 100000; i++)
{

ProduceReference(addr);
addr++;

}
}

Figure 3.1: Code fragment that creates a synthetic trace of sequential memory
references.

Figure 3.2: Locality surface for the sequential references generated by the code in
Figure 3.1.
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uniformly distributed random references, then h(v), i.e. the unbinned histogram,

looks flat.

Notice the slight spike of the surface along the temporal axis, at the bin labeled

(0, 21). This is an artifact of computing the locality data of random references.

Let v be a string of random numbers. Let v[b] be an element of the string v. Let

v[a] = v[b] such that a < b and there does not exist a v[i] where a < i < b and

v[i] = v[b]. When computing �(v[b]), we do not compute s/d(v[i], v[b]) for all i < b.

We only compute for a < i < b, due to the restrictions on when the delay exists.

This results in a slight preference for temporal locality in the final tally of locality

data, and a small spike on the random hump where stride = 0.

3.1.3 Temporal References

The code fragment in Figure 3.5 creates a synthetic trace of references with varying

amounts of temporal locality. One memory location is referenced repeatedly with

varying numbers of random references between the repetitions. The resulting locality

surface is shown in Figure 3.6. There are two basic features in this surface. Because

of the random references used to create different amounts of temporal locality, we

have a random reference hump around a delay of 64,000. This is because there are

between 32,000 and 64,000 unique references in the trace. There is also a ridge along

the temporal axis from delay = 1 to delay = 64. This indicates repeated references

with between 1 and 64 unique references between the repetitions.

Where L(v, 0, b), the stride is zero, meaning that the axis L(v, 0, b) represents the

delays between repeated instances of the same input number. Researchers commonly

call this temporal locality. Hence we call the axis where L(v, 0, b) the temporal

axis. The data along the temporal axis is roughly equivalent to Conte and Hwu’s
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void main()
{

for (int i = 0; i < 1000000; i++)
ProduceRandomReferences(1);

}

Figure 3.3: Code fragment that creates a synthetic trace of uniformly distributed
random memory references.

Figure 3.4: Locality surface for a series of uniformly distributed random numbers
generated by the code in Figure 3.3.
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void main()
{

ulong addr = 0;
for (int i = 1; i < 64; i ∗ = 2)
{

for (int j = 0; j < 1000; j++)
{

ProduceReference(addr);
ProduceRandomReferences(i-1);

}
}

}

Figure 3.5: Code fragment that creates a synthetic trace with varying amounts of
temporal locality.

Figure 3.6: Locality surface for the synthetic trace with varying amounts of temporal
locality generated by the code fragment in Figure 3.5.
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interreference temporal density function [24] and most other temporal locality defi-

nitions that are based on a unique reference, or stack distance, count [16, 88].

3.1.4 Looping References

Another important feature to identify is a loop. Figure 3.7 shows a code fragment

that creates five loops of equal frequency. The loops are 2, 16, 128, 1024, and 8192

references long. Figure 3.8 shows the resulting locality surface. We see a sequential

ridge on this surface because each loop consists of sequential references. Notice the

decay of the ridge due to the varying lengths of the sequential runs within the loops.

Looping structures that contain positive strides within the loop are featured

between the line where delay = −stride and the temporal axis. The location of the

loop hump along the delay axis roughly indicates the number of unique references

between the repetition of each element in the loop. We generally consider this to

be equal to the number of unique elements in the loop, however, this may not be

the case. For example, if a loop was 200 elements long and between each iteration

of the loop 56 random references were used, there would be 256 unique elements

between the repetition of each loop element, and the loop hump would appear at

a delay of 256 on the locality surface. For the purpose of selecting optimal cache

sizes, whether the loop is 256 unique elements long or 200 elements long with 56

random references in between each iteration does not matter. Either way, a cache

would need to be at least 256 elements in size to ensure that the elements of the

loop are in the cache during each repetition.

In Figure 3.8, the loop of length two is almost hidden next to the sequential

ridge. The height of a loop hump indicates the relative frequency of loops of that

size. Qualitative predictions of cache performance for a particular workload can be
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void main()
{

ulong addr = 0;
int i, len, num;
for (len = 2; len < 0x10000; len ∗ = 8)
{

for (num = 0; num < (0x10000/len); num++)
{

addr = 100 ∗ len;
for (i = 0; i < len; i++)
{

ProduceReference(addr);
addr++;

}
}

}
}

Figure 3.7: Code fragment that creates five sizes of loops with equal frequency.

Figure 3.8: Locality surface that results from the synthetic trace of loops generated
by the code in Figure 3.7.
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Figure 3.9: Locality surface output when the synthetic trace generated by the code
in Figure 3.7 is put through the locality program in reverse order. Notice how this
locality surface is equivalent to the surface in Figure 3.8 flipped over the temporal
axis as predicted by Theorem 2.11.

performed by comparing the cache size with the delay location of the primary loop

structures in a given workload. If the cache is not large enough to contain the major

loops, cache performance will suffer.

Now we ask, what if the loop contains negative strides rather than positive

strides? Figure 3.9 shows the resulting locality surface when we take the reverse

of the synthetic trace generated by the code in Figure 3.7 and run it through the

locality program. As predicted by Theorem 2.11, the reverse of the trace generated

by Figure 3.7 results in the same locality surface merely flipped over the temporal

axis. Notice how, with the negative strides within each loop, the loop structures are

between the temporal axis and the line where delay = stride. This surface actually

gives us a better view of how the sequential ridge decays.

Now we create a loop with both postive and negative strides and where the

absolute value of the stride is not always one. Figure 3.10 shows a code fragment that

creates a loop, repeated ten times, that has primarily sequential data, with periodic

negative stride jumps. The loop contains 8192 unique references. Figure 3.11 shows
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the resulting locality surface.

Again, we can see the sequential ridge and we can easily identify the loop at 8K

unique words. However, the loop structure on the locality surface extends into both

negative and positive strides. When examining real workloads, we see a number of

loops with humps on both sides of the temporal axis. These loops often have a lack

of data at small positive strides. We hypothesize that by looking at the distribution

of stride values in the loop structure, we can deduce what each iteration of the loop

does. In the case of Figure 3.11, there is both positive and negative strides, with

the positive strides being nearly sequential and the negative strides being jumps.

In summary, looking at the delay location of a loop structure helps us know what

cache size is needed to contain the loop. Looking at the distribution of strides in

the loop structure helps us know what the loop contains. Negative strides in the

loop hump indicates forward progress within the loop; positive strides in the loop

hump indicate backwards jumps within the loop. To distinguish beween random

references and loop structures, compare the locality surfaces containing random data

(Figures 3.4 and 3.6) with the locality surfaces containing loops (Figures 3.8, 3.9,

and 3.11). Notice that random references tend to make a uniform stride distribution

across the entire surface for a number of delays while loops tend to have an uneven

stride distribution at a single delay value.

3.1.5 Variable Striding

When examining the locality surfaces of real workloads, a few of the surfaces contain

what appears to be a sequential ridge, only shifted either in the positive stride or

delay direction. These shifted ridges are caused by one of two patterns.

The shift in the stride direction is due to striding. As the sequential references
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void main()
{

ulong addr = 0;
for (int i = 0; i < 10; i++) {

for (int j = 0; j < 80; j++) {
for (int k = j ∗ 10000; k < j ∗ 10000+100; k++) {

ProduceReference(k);
}
for (int k = j ∗ 10000-10; k > j ∗ 10000-20; k−−) {

ProduceReference(k);
}

}
}

}

Figure 3.10: Code fragment that creates one larger loop with both positive and
negative strides.

Figure 3.11: Locality surface that results from the synthetic trace of the loop gen-
erated by the code in Figure 3.10.
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created by the code in Figure 3.1 progress with a stride of one, striding references

progress with a larger, regular, stride. For example, the references 1, 4, 7, 10, 13

are striding references with a stride of three.

The shift in the delay direction is due to delayed sequential references. This

occurs when otherwise sequential references have a regular number of random (or

merely unrelated) references interspersed between each pair of elements. For obvious

reasons, we refer to the number of interspersed references plus one as the delay. For

example, the references 1, 2, 3 in the string 1, 44, 98, 127, 2, 76, 102, 39, 3 are delayed

sequential references with a delay of four. Grimsrud refers to this as fractional

striding. For convenience, we use the term variable striding to refer to both

striding references and delayed sequential references.

The code in Figure 3.12 creates a trace with a sequential series (as created

in Figure 3.1) for reference, a striding series (with a stride of 16), and a delayed

sequential series (with a delay of 16). Figure 3.13 shows the resulting locality surface.

In this case, the top view may be of more use to show the locations of each of these

series. We purposely made the relative lengths of each series in such a way as to

make the heights of the ridges approximately equal.

We can see the sequential series is the middle ridge on the locality surface. It

begins at the bin labeled (0, 1). The striding series is the ridge on the right, where

stride > delay. It begins at the bin labeled (5, 0), or where the stride equals 16

and the delay equals 1. The delayed sequential series is the ridge on the left, where

stride < delay. It begins at the bin labeled (1, 5), or where the stride equals 1

and the delay equals 16. Notice that adjusting the value of stride in the code of

Figure 3.12 would shift the striding ridge in the stride direction by the amount of

the change. A similar change in the value of delay shifts the delayed sequential

ridge in the delay direction. Notice that even though random values were used, we
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void main()
{

ulong addr = 0;
for (int i = 0; i < 1000; i++) {

ProduceReference(addr++);
} // creates the sequential series
addr += 10000;
int stride = 16;
for (int i = 0; i < 16000; i++) {

ProduceReference(addr);
addr += stride;

} // creates the striding series
addr += 10000;
int delay = 16;
for (int i = 0; i < 1000; i++) {

ProduceReference(addr++);
ProduceRandomReferences(delay-1);

} // creates the delayed sequential series
}

Figure 3.12: Code fragment that makes a sequential series, a striding series with a
stride of 16, and a delayed sequential series with a delay of 16.

Figure 3.13: Locality surface that results from the synthetic trace generated by the
code in Figure 3.12.
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do not see a random hump at any delay. This is because the repeated patterns in

the three ridges sufficiently dominated the small random relationships, making them

effectively disappear.

One feature that sticks out in Figure 3.13 is the height of the initial point of the

striding ridge. This is an artifact of how we chose to bin the data in Chapter 2.

Recall from Section 2.4.3 that we divide the bins in the stride direction by the

number of stride values that fall in that bin. Recall further that we do not divide

the bins in the delay direction, we merely sum them. A regular sequential series has

data at the bins labeled (1, 1), (2, 2), (3, 3), (4, 4), etc. A striding ridge has data at

bins labeled (a, 1), (a+1, 2), (a+2, 3), (a+3, 4), etc., where a depends on the value

of stride in the code. For the regular sequential series, the dividing in the stride

direction matches the summing in the delay direction. For the striding sequence,

however, H(v, a+1, 2) has about the same amount of data as H(v, a, 1), but contains

two times as many stride values so when we compute the locality surface from the

binned histogram, the data at (a + 1, 2) is divided by twice as much as the data

at (a, 1). Because of the summing in the delay direction, H(v, a + 2, 3) has about

twice as much data as H(v, a+1, 2). Therefore, when it is divided by twice as much

as the previous bin, the final result is about the same. Hence a spike is seen where

delay = 1 for the striding series and the rest of the ridge is approximately equal.

As mentioned before, a significant amount of sequential data is found in real

workloads. Several real workloads also show evidence of delayed sequential series.

This may occur, for example, when an array of numbers is summed and stored at

each stage. Hence the array is accessed sequentially, with regular accesses between

each array access to another location in memory where the running total is stored.

Striding is also found in a few real workloads. This may occur when data is

stored in an array of records. If the array is traversed, but only one entry in each
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record is accessed, the result is a striding pattern. The value of the stride used would

be the size of the record. Another possible cause of striding is when the elements

of a matrix are accessed in row order, despite the matrix being stored in column

order. This mistake in coding is commonly fixed now by compilers using the Loop

Interchange compiler optimization technique [43], so is not likely to be the cause of

the striding found in workloads compiled with optimizations set.

3.1.6 The Jut

We now examine another feature seen in a number of real traces which we call the

jut. The code in Figure 3.14 creates a trace that contains several runs of sequential

code where the beginning of each run is a large negative jump from the beginning

of the previous run. Figure 3.15 contains the resulting locality surface. We wish the

reader to notice that the range shown on the stride direction is wider than shown

in previous locality surfaces. We can adjust the location of the jut on the locality

surface by changing the delay and stride values in the code segment.

Just as loops do not necessarily contain sequential elements, juts may not always

be generated by sequential runs as we have done here. Any pattern of numbers may

be repeated to cause a jut rather than a loop. In a loop, the pattern is repeated

exactly the same. To create a jut, the start of each pattern has a large, regular,

negative shift from the previous pattern start. For example, take the pattern: 1001,

1004, 1009, 1016, 1025. If we shift the start of each pattern by −500 from the

previous start and repeat three times, we get: 1001, 1004, 1009, 1016, 1025, 501,

504, 509, 516, 525, 1, 4, 9, 16, 25. The locality surface for this short trace would

contain a small jut. The start of the jut is determined by the size of the negative

jump between each pattern repetition. The length of the jut is determined by the
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void main()
{

int stride = 1000;
int delay = 100;
int freq = 100;
ulong addr = freq ∗ stride;
for (int i = 0; i < freq; i++) {

for (int j = 0; j < delay; j++) {
ProduceReference(addr);
addr++;

}
addr = addr - delay - stride;

}
}

Figure 3.14: Code fragment to create a jut.

Figure 3.15: Locality surface that results from the synthetic trace generated by the
code in Figure 3.14.
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length of the pattern.

3.1.7 Other Features and Locality Events

As we examine locality surfaces of real traces in the next section, we see the need

to examine some of these features in more detail to gain a better understanding of

what causes various aspects of the feature. For example, we have already expressed

a desire to better understand how the contents of a loop affects the distribution of

strides within the loop structure. We could also determine how the distribution of

sequential runs mathematically relates to the distribution of heights of the sequential

ridge.

In addition, we see locality events on the locality surfaces of real workloads that

are not part of the features we have described. We can make some general statements

about such unlabeled features. For example, a bump at a positive stride indicates

frequent forward strides at the given delay. However, more investigation is needed

to make more detailed observations. There is considerable future work available in

this area.

3.2 Real Traces

We now describe the traces used to create the locality surfaces of real workloads.

A trace is an event-ordered list of addresses requested by the CPU from memory.

(A synthetic or artificial trace is a list of numbers generated by any means that

may be processed in the same way as a real trace.) One of the more accurate

methods for tracing is to collect memory addresses directly from the pins of a CPU

package. BYU Address Collection Hardware, or BACH, is one of the more successful

methods for doing this [33, 41]. A large repository of such traces can be found at
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http://traces.byu.edu [1, 81]. All of the traces used in this dissertation are from this

trace library.

We believe these traces are the most correct available. In their well-known

survey of tracing methods, Uhlig and Mudge identify hardware tracing as the most

complete and accurate but the most costly in terms of both time and equipment [83].

Some researchers have questioned the accuracy of hardware tracing, claiming that

the necessity of periodically stalling the processor introduces questionable memory

references. However, a recent paper by Watson and Flanagan dispels this belief [85].

Note that all of the techniques presented in this dissertation are independent of

how the trace is taken. Traces of memory addresses taken from any source, by any

method, may be used. However, errors in the trace cause corresponding errors in

the results, so we have chosen to use the most accurate traces freely available to the

research community.

All of the traces used in this dissertation were taken from a single processor

Pentium III 733 MHz machine with 16 G of disk and 1 G of RAM. The caches were

turned off. Traces were taken under Redhat Linux 6.2, Windows NT Workstation

4.0, and Windows 2000. Details of the traces used in this chapter are found in

Table 3.1. Details for all the SPEC workloads can be found in Appendix A. The

locality surfaces of all the SPEC workloads can be found in Appendix B. In this

dissertation we focus on L1 cache analysis. Since L1 caches are usually split into

separate instruction and data caches, we have split all our traces into separate traces

of instructions and data.

Prior to splitting each trace, the length of each trace was arbitrarily fixed at

about 90 million references. Hence the lengths of the split traces, shown in Table 3.1,

gives a rough indication of the instruction/data mix. For example, the instruction

trace for the workload eon with the kajiya input is 48,518,645 references long. We can
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then guess that the length of the data trace for eon.kajiya is 41,481,355 references,

meaning that the instructions are approximately 53.9% of the original, unsplit, trace.

3.3 Characterizing the Workloads in Terms of Lo-

cality

When creating the locality surface for a given trace, we must choose what granu-

larity we wish to examine. The granularity determines at what level the locality

relationships are determined [16]. For example, if our trace contains consecutive

references to blocks that begin with memory byte 232 and then memory byte 240,

our chosen granularity determines the stride. With a granularity of one byte, the

stride would be 8. With a granularity of one eight-byte memory word, the stride

would be 1.

The chosen granularity also affects the delay. If our trace consists of the following

stream of references to memory bytes: 232, 240, 241, 242, 243, 248, then the delay

between bytes 232 and 248 is 5 with a granularity of one byte. However, the delay

is 2 with a granularity of one eight-byte word. In general, increasing the granularity

decreases the value of many strides and delays.

For all of the locality surfaces in this dissertation, we chose a granularity of one

eight-byte word. We do this for two reasons. First, the Pentium III has an eight-

byte data bus width [2]. Second, eight bytes is the smallest line size of interest in a

cache. (We discuss in Chapter 5 why it is easier to predict cache performance when

the granularity is not larger than the line size.)
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workload suite OS type total refs unique refs description
applu FP L D 44,061,521 1,523,951 Parabolic/Elliptic Partial Differential Equations

bzip2.g7 INT L D 34,797,524 194,560 Compression
eon.cook INT L I 48,100,350 29,999 Computer Visualization

eon.kajiya INT L I 48,518,645 28,220 Computer Visualization
eon.rush INT L I 48,298,304 28,451 Computer Visualization
galgel FP L D 35,138,856 1,177,014 Computational Fluid Dynamics
gap INT L D 31,714,213 923,381 Group Theory, Interpreter
gap INT NT D 33,386,414 1,093,040 Group Theory, Interpreter
gap INT 2k D 33,242,917 991,604 Group Theory, Interpreter

gzip.source INT L I 54,496,031 20,448 Compression
gzip.source INT NT I 59,161,078 29,290 Compression
gzip.source INT 2k I 59,111,271 86,664 Compression

mcf INT L D 33,151,617 1,385,873 Combinatorial Optimization
mgrid FP L D 37,351,118 5,598,803 Multi-grid Solver: 3D Potential Field
mgrid FP NT D 41,755,272 5,570,840 Multi-grid Solver: 3D Potential Field
mgrid FP 2k D 39,023,447 5,090,300 Multi-grid Solver: 3D Potential Field

perlbmk.diffmail INT L D 35,496,885 1,875,818 PERL Programming Language
perlbmk.perfect INT L D 38,424,060 97,950 PERL Programming Language

twolf INT L D 39,611,264 332,193 Place and route simulator
twolf INT L I 50,191,887 21,988 Place and route simulator

wupwise FP L D 51,477,244 8,404,245 Physics/Quantum Chromodynamics
wupwise FP NT D 36,372,267 936,409 Physics/Quantum Chromodynamics
wupwise FP 2k D 36,316,042 874,529 Physics/Quantum Chromodynamics

Table 3.1: Description of the traces used in this chapter.
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3.3.1 Instructions versus Data

First we examine some of the general characteristics of instruction fetches versus data

reads and writes. This also show us some characteristics general to all SPEC CPU

2000 workloads. Recall that we have split all our traces into separate instruction

and data traces to facilitate focus on L1 caches. The first workload is twolf. The

instructions are shown in Figure 3.16(a) and the data are in Figure 3.16(b).

As mentioned in Chapter 2, we show two views of each locality surface, one from

the side and one from the top. Since the granularity is one eight-byte word, the

labels on both axis are in words. For example, in Figure 3.16(b), the maximum

delay with visible data is 256 Kwords.

When examining locality surfaces, we often refer to the largest delay at which

a feature is visible as the effective working set size of the input trace. The

working set size may actually be much larger, but if a number of the references are

accessed much less frequently than others, they do not have a significant impact on

the system performance and do not create visible locality features. The true working

set size would be the effective working set size plus these infrequent references. For

the instructions of twolf, the effective working set size is 4 Kwords. For the data of

twolf, the effective working set size is 256 Kwords.

Similarly, we refer to the largest stride (or the absolute value of the smallest

stride) at which a feature is visible as the effective memory range of the input

trace. For example, if the largest stride with visible data is 16 words and the smallest

stride with visible data is −256 words, we would say that the effective memory range

is 256 words. The actual memory range is the largest memory address used by the

workload minus the smallest memory address. (Note that subtracting two address

yields a stride.) However, if the very large or very small valued memory addresses
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(a) Locality surface for the instruction trace.

(b) Locality surface for the data trace.

Figure 3.16: The locality surfaces for the twolf trace: 3.16(a) shows the instruc-
tions of twolf and 3.16(b) shows the data of twolf. We can here see many of the
typical differences between instruction and data traces. The data trace of twolf is
representative of Category 1 data traces, described later in this chapter.
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are seldom used, they have little impact on performance and the strides to these

locations do not appear on the locality surface. Hence the effective memory range

is the range of memory frequently accessed by the workload. For the instructions of

twolf, the effective memory range is 128 words. For the data of twolf, the effective

memory range is 64 Kwords.

One general difference between instructions and data is the effective memory

range. The locality surfaces for data traces tend to have larger effective memory

ranges then instruction traces. For this reason, we display all the locality surfaces

for instruction traces with a stride range from −1024 words to 1024 words. We

display all the locality surfaces for data traces with a stride range from −131, 072

words to 131, 072 words. We keep these ranges constant throughout the dissertation.

The reader should remember the differences in range if comparing the locality of an

instruction trace with the locality of a data trace.

Recall from Section 3.1.3 that the slice of the locality surface where stride = 0

is referred to as the temporal axis. The location where stride is zero and delay is

one, i.e. the bin labeled (0, 1), is of more specific interest since this indicates hits

in any cache. We term this locality the temporal spike. The temporal spike is

usually the tallest portion of the locality surface, indicating that the stride/delay

relationship (0, 1) occurs more frequently than any other.

Part of the reason for this is our choice of granularity. The larger the granularity,

the more bits are shifted off, and the more likely two values are the same. In the

case of the Pentium III, it is likely that the processor requests the first two bytes

in a word, then the next two bytes, etc. Each request requires the transfer of the

entire eight-byte word on the bus when the caches are turned off. With caches on,

however, the performance impact is minimal. Even the smallest cache results in

a hit with two immediately repeating references to the same word. Therefore, the
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temporal spike gives us an indication of the worst-case cache scenario. If the height

of the temporal spike is 0.60, we know that 60% of the references are hits.

In Figure 3.16(a), the temporal spike reaches a height of 0.395. In Figure 3.16(b),

the temporal spike reaches 0.115. Therefore, 39.5% of the instructions of twolf

are immediate repeats of the previous word and 11.5% of the data references are

immediate repeats. In Figure 3.16(b), the temporal spike is not the tallest point.

The tallest point is actually at the bin labeled (0, 3), or a delay of 4 words, with a

value of 0.119. We allow the maximum height of the surface to be dictated by the

maximum value on the surface. This allows us to see greater detail. However, care

should be taken to note the maximum values when comparing two different surfaces.

We see some significant features in the instructions of twolf. We see several

looping structures, from the smallest delay up to 1 Kword. The loops are almost

entirely on the negative stride side of the surface, meaning they contain positive

strides almost exclusively. This probably matches with the significant sequential

ridge seen in the surface. These features fit with the typical nature of instruction

patterns. Instructions tend to be sequential and tend to be repeated in loops. Loops

and sequential ridges can be seen to varying degrees in all of the instruction trace

locality surfaces we have made.

The data trace for twolf shows more locality events along the temporal axis than

we see with the instruction trace, resulting in a larger effective working set size. This

trend holds for all our traces, i.e. the data traces tend to have more locality events on

their locality surfaces and larger effective working set sizes. However, features and

shapes on the data locality surfaces are not as consistent as for instruction traces.

As mentioned earlier, all instruction traces are primarily loops and sequential ridges.

We have placed each of the SPEC CPU 2000 data traces into one of five categories

based on the primary features, effective working set size, and general appearance
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Figure 3.17: The locality surface for the data trace of bzip2 with the g7 input. This
surface is representative of the Category 2 data traces.

of the surface. We now show a representative locality surface for each of the five

categories.

Category 1 is represented by the data trace of twolf, shown in Figure 3.16(b).

These traces have primarily temporal locality, i.e. most of the features are focused

around the temporal axis, that merges into a random hump.

Category 2 is represented by the data trace for bzip2 with the g7 input, shown

in Figure 3.17. These traces are also primarily temporal locality, as Category 1.

However, the Category 2 surfaces have much smaller effective working set sizes than

Category 1 and do not have random humps.

Category 3 is represented by the data trace for galgel, shown in Figure 3.18.

Again, these surfaces have primarily temporal locality, but with larger effective

working set sizes than in Category 2. The effective working set size of workloads

in Category 3 is similar to that found for workloads in Category 1, however the

Category 3 workloads do not have a random hump. In addition, the Category 3

surfaces may have a jut, as described in Section 3.1.6, and have smaller effective

memory ranges.
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Figure 3.18: The locality surface for the data trace of galgel. This surface is repre-
sentative of the Category 3 data traces.

Category 4 is represented by the data trace for gap, shown in Figure 3.19. These

surfaces are very similar to the ones in Category 3; they have primarily temporal

locality and large effective working set sizes. However, the juts in Category 4 are

more pronounced, and the effective memory range is larger than for Category 3.

Category 5 is the most variable and interesting of the categories. We represent it

with the data trace for wupwise, shown in Figure 3.20. This is the most interesting

locality surface we have created in terms of the number and size of the features.

The workloads in Category 5 have large effective working set sizes and large effec-

tive memory ranges. Each surface also has several features from the following list:

sequential ridges, juts, loops, striding ridges, and/or delayed sequential ridges. For

example, Figure 3.20 has large loops, a significant jut, and a striding ridge with a

stride of 2 words. (The striding ridge is so close to where the sequential ridge would

be that it is difficult to notice the change in position.)

It should be obvious to the reader that the lines between these categories are not

rigidly defined. A number of workloads fall somewhere between the average of two

categories. In addition, some categories are more well defined than others. Specif-
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Figure 3.19: The locality surface for the data trace of gap. This surface is represen-
tative of the Category 4 data traces.

Figure 3.20: The locality surface for the data trace of wupwise. This trace is repre-
sentative of the Category 5 data traces.
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ically, Category 5 contains all the large, wild looking, locality surfaces. However,

splitting the data traces into categories allows us to present a series of surfaces that

covers, fairly well, the range of localities that may be seen in the data traces of the

SPEC CPU 2000 benchmark suite.

3.3.2 Integer Versus Floating Point Workloads

As might be expected, there are some significant differences in locality between the

integer and floating point SPEC CPU benchmarks. In general, the instruction traces

from both the integer and floating point component suites have the same trends:

primarily loops and sequential features.

However, the data traces show some significant differences between the two sub-

suites. In general, the floating point benchmarks have worse locality, meaning more

features, larger effective working set sizes, and larger effective memory ranges. If

we can see features at large delays on the locality surface, that means memory ref-

erences tend to be repeated further apart and references close in memory are used

further apart in time. Features at large strides indicate that memory references

tend not to be close in memory. Therefore, large effective working set sizes and

large effective memory ranges indicate worse locality.

The worst locality of all of the SPEC CPU 2000 workloads is the data trace

of the floating point workload, wupwise, already shown in Figure 3.20. The worst

locality shown in the integer suite is the data trace of mcf, shown in Figure 3.21.

At first glance, it is easy to see that the locality surface for wupwise contains more

features throughout the surface than the locality surface for mcf. Notice that the

effective working set size for the data of mcf is 2 Mwords. The effective working set

size for the data of wupwise is 8 Mwords, meaning that the largest workload in the
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Figure 3.21: Locality surface for the data trace of mcf.

floating point suite is about four times the size of the largest workload in the integer

suite.

We see the same integer versus floating point trends when comparing workloads

from each subsuite that have much smaller effective working set sizes. The locality

surface for the data trace of bzip2.g7, already seen in Figure 3.17, has one of the

smallest effective working set sizes seen in the integer subsuite, namely 4 Kwords.

Figure 3.22 shows the locality surface for the data of applu, which has the smallest

effective working set size of all the surfaces in the floating point subsuite, namely 512

Kwords. Again, we can easily observe a significant difference in effective working set

size. We also see more features on the floating point surface, i.e. a significant jut,

a loop, and temporal locality events at much larger delays. The effective memory

range is also considerably different, 128 words for bzip2.g7 versus 32 Kwords for

applu.

3.3.3 How different inputs affect the locality

A number of the integer benchmarks have several possible input files. The bzip2

workload has six possible inputs, the eon workload has three, gcc has five, gzip has
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Figure 3.22: Locality surface for the data trace of applu.

five, perlbmk has four, vortex has three, and vpr has two. A good question to ask

when characterizing these workloads is whether the locality of the workload changes

with differing inputs? If all the inputs yield the same locality, there is little need

for more than one of the inputs when analyzing memory performance.

In general, when comparing the locality surface for the same workload with

differing inputs, we see the same general trends, but with varying magnitudes. This

is true for both the instruction and data traces. One of the more subtle examples of

this is the instruction traces for the eon workload, which has three different inputs:

eon.rush is shown in Figure 3.23(a), eon.kajiya is shown in Figure 3.23(b), and

eon.cook is shown in Figure 3.23(c). The changing trend is best seen when examining

the height of the loop where stride = 0 at a delay of 4 Kwords. First, note that

the scales for these three surfaces are almost identical. Then one may notice that

the height of the noted loop rises from eon.rush to eon.kajiya to eon.cook. In fact,

the values at these points is 0.067 for eon.rush, 0.086 for eon.kajiya, and 0.106 for

eon.cook.
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(a) rushmeier input (b) kajiya input

(c) cook input

Figure 3.23: The locality surfaces for the instruction traces of the eon workload under three different inputs: 3.23(a) uses
the rushmeier input, 3.23(b) uses the kajiya input, and 3.23(c) uses the cook input. Here we see that locality surfaces for
the same workload with different inputs may appear similar, but have slightly different values.
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There are one or two examples where one of the inputs causes a significant

difference in locality, not merely trend exageration. One of these is the data traces

for the workload perlbmk, which has four inputs. Three of the inputs, diffmail,

makerand, and splitmail, have very similar locality. However, the locality for the

perfect input deviates significantly. We here show only one example of the first three

alongside the perfect input. Figure 3.24(a) shows the locality surface for the data

trace of perlbmk.diffmail and Figure 3.24(b) shows the locality surface for the data

trace of perbmk.perfect.

It is interesting that all the features seen in Figure 3.24(b) are also in Fig-

ure 3.24(a). But there are some significant features in Figure 3.24(a) not it Fig-

ure 3.24(b), namely the jut and the large loop at a delay around 512 Kwords. These

features are found in the other two perlbmk inputs and appear very similar to the

ones seen in Figure 3.24(a). For the readers interested in examining more of these

trends, all the locality surfaces are found in Appendix B.

3.3.4 Trends of the OS

In the trace repository, each workload in the SPEC CPU 2000 was traced under

RedHat Linux 6.2, Windows NT Workstation 4.0, and Windows 2000. The compiler

chosen depended on both the operating system and the language the benchmark was

written in. Workloads written in C/C++ were compiled for Linux using gcc and

compiled for Windows NT and Windows 2000 using the command line version of

MS Visual Studio C. All of the Fortran workloads were compiled using the Lahey

Fortran Compiler under all three operating systems. Comparing the locality surfaces

for the same workload under different operating systems yields interesting results.

The results are a little different for the instruction traces verses the data traces.
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(a) diffmail input

(b) perfect input

Figure 3.24: The locality surfaces for the data traces of the perlbmk workload un-
der two different inputs: 3.24(a) uses the diffmail input and 3.24(b) uses the perfect
input. Here we see that locality surfaces for the same workloads may appear signif-
icantly different.
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The instruction traces have less variance than the data traces. In a few cases

there are small features under one or two operating systems not seen on the other

one or two. The differences are small enough to be generally ignored. The most

interesting feature to compare between operating systems on the instruction traces

is the effective working set size. In general, the effective working set size of the

Windows 2000 instruction trace is larger than for either the Linux or Windows

NT instruction traces. The relationship between the effective working set size of

the Linux and Windows NT traces varies, sometimes Linux is greater, sometimes

Windows NT, and sometimes they are about equal.

For most of the data traces, the NT and 2000 traces look almost identical. The

Linux data traces frequently have a jut not seen in any trace for either of the

Windows operating systems. (We do not know what characteristic of Linux creates

this jut that is not created by the Windows operating systems, but the point of this

dissertation is cache studies, so we leave such investigations to future work.) Also,

the Linux data traces tend to have larger effective memory ranges and the Windows

data traces tend to have larger effective working set sizes. In data traces with large

loops, such as mcf, the Linux data trace tends to have loops on both sides of the

temporal axis while the Windows data traces tend to be only on the negative side.

We now look at a few examples.

First we look at the instruction traces of gzip with the source input file as one

example of instruction trace differences. Figure 3.25 contains the surfaces for the

instructions of gzip.source under Linux, Windows NT, and Windows 2000. Here we

can see some of the minor differences mentioned for instruction traces, the Windows

NT surface shows two blips at larger positive and negative strides than seen for the

Linux surface. The Windows 2000 surface shows only one blip, on the positive stride

side. This workload has one of the larger differences between the three different
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operating systems seen in the instruction traces. The differences are obviously minor,

and may generally be ignored. We can also see here the effective working set size

trend. The Windows NT trace has the smallest effective working set size, followed

by the Linux trace. The Windows 2000 trace has the largest effective working set

size. We speculate that this means that Windows 2000 generally uses more unique

instructions than either Linux or Windows NT.

We now examine data trace differences across operating systems. Our first se-

lected data trace is the data reads and writes of gap. We have already seen the

locality surface for the data trace of gap under Linux in Figure 3.19, however we

repeat the surface in Figure 3.26 for comparison purposes. Figure 3.26 also contains

the locality surfaces for the data of gap under Windows NT and Windows 2000.

Before comparing the surfaces, we first note that the scales are almost identical.

We now note that the shape of the two Windows surfaces are almost identical. The

Linux surface has a different shape along the top of the temporal axis and has the

jut already mentioned. The effective working set sizes of the three surfaces are the

same, but thanks to different features. Without the jut on the Linux surface, its

effective working set size would be much smaller than for the other two surfaces.

The effective memory range is significantly different. For the Linux trace, the effec-

tive memory range is 64 Kwords. However, the Windows NT and 2000 traces have

effective memory ranges of 512 words and 256 words, respectively.

We now look at the data traces for mgrid. This is an example of the few traces

where the surfaces for Windows NT and Windows 2000 are significantly different.

Figure 3.27 shows the locality surfaces for the data traces of mgrid under Linux,

Windows NT, and Windows 2000. This time we note that the scales are significantly

different for each of the three surfaces; we must take this into consideration when

comparing them.
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(a) Linux (b) Windows NT

(c) Windows 2000

Figure 3.25: The locality surfaces for the instruction traces of the gzip workload with the source input file under three
different operating systems: 3.25(a) is under Linux, 3.25(b) is under Windows NT, and 3.25(c) is under Windows 2000.
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(a) Linux (b) Windows NT

(c) Windows 2000

Figure 3.26: The locality surfaces for the data traces of the gap workload under three different operating systems: 3.26(a)
is under Linux, 3.26(b) is under Windows NT, and 3.26(c) is under Windows 2000.
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We first notice that the Linux surface has the characteristic jut that is in neither

of the Windows surfaces. Next, we see that both the Linux surface and the Windows

2000 surface have loop features on both sides of the temporal axis while the Windows

NT surface has loop features only on the negative stride side. This is true even if we

match the scales. In addition, the loop at about 1 Kwords is much more dominant

in the Linux surface than in either of the Windows surfaces. All three surfaces

have a significant loop at about 128 Kwords and another at about 4 Mwords. The

Windows 2000 trace, however, has loops of various sizes between these two. An

interesting side note is that mgrid shows a delayed sequential ridge under all three

operating systems.

For almost all of the workloads in the SPEC CPU 2000 suite, the general shapes

of the locality surfaces between the different operating systems are similar. For one

workload, however, this is not true. Compare the locality surface for the data of

wupwise under Linux (Figure 3.28(a)) with the surfaces for the data of wupwise

under Windows NT (Figure 3.28(b)) and Windows 2000 (Figure 3.28(c)).

The Linux surface has a completely different shape from the two Windows

surfaces, enough to firmly place them in separate general shape categories. Fig-

ure 3.28(a) is definitely Category 5, while Figures 3.28(b) and 3.28(c) are closer to

Category 4, without the jut. Table 3.1 tells us that the number of unique references

in the Linux trace is about ten times the number in either of the Windows traces.

Again, this is the only workload in the SPEC CPU 2000 suite that did this.

Some have noticed the differing lengths in the Linux wupwise trace verses either

of the Windows wupwise traces (51 million verses 36 million, see Table 3.1). This

suggests that perhaps the first 36 million references of all three traces creates the

features seen in Figures 3.28(b) and 3.28(c), while the last 15 million references of

the Linux trace add the extra features seen in Figure 3.28(a). We have checked this
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(a) Linux (b) Windows NT

(c) Windows 2000

Figure 3.27: The locality surfaces for the data traces of the mgrid workload under three different operating systems: 3.27(a)
is under Linux, 3.27(b) is under Windows NT, and 3.27(c) is under Windows 2000.
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(a) Linux (b) Windows NT

(c) Windows 2000

Figure 3.28: The locality surfaces for the data traces of the wupwise workload under three different operating sys-
tems: 3.28(a) is under Linux, 3.28(b) is under Windows NT, and 3.28(c) is under Windows 2000.
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hypothesis by creating the locality surface for only the first 36 million references

of the Linux wupwise trace. The locality surface of the truncated Linux wupwise

trace has all of the features seen in Figure 3.28(a) clearly displayed to the point that

displaying the truncated trace’s locality surface is redundant.

We believe that there is a simpler explanation for the differing lengths of the

wupwise traces. Whatever caused the difference in locality between the Linux and

Windows traces also altered the instruction/data mix, affecting the length of our

split traces as mentioned in Section 3.2.

Conjectures such as this should be checked by a serious study of how the locality

of a given workload varies across multiple traces of the same workload before being

stated as solid conclusions. It is possible that the deviations of the Linux trace

of wupwise was caused by some anomaly of the tracing system evident in that

particular tracing run. It is less likely that the two Windows traces were caused by

some unknown anomaly, since they are so similar to each other. We do not think it

likely that the different locality evidenced by the Linux trace of wupwise was merely

an anomaly, since several other floating point data traces have similar locality (see

Figure 3.27 and the data locality surface for swim in Appendix B).

Other unexplained variations in locality, such as seen in Figure 3.24, may also be

caused by unknown factors in the tracing method. Again, we do not believe this is

likely, however it is possible. Before the observations made in this chapter become

conclusive statements, such a possibility should be investigated. We leave this to

future work.
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3.4 Summary

In this chapter, we have created synthetic traces that produce a variety of features on

the locality surface. We have also shown the locality surfaces for a number of traces

from the SPEC CPU 2000 benchmark suite. The locality surfaces created from

synthetic traces have helped us understand what the features on a surface indicate

about the input trace. Further investigation in this area would yield a greater

understanding of how locality surface features and input trace patterns relate.

In addition, we have described how instruction traces and data traces typically

appear in terms of locality. We have also compared the general features of integer

workloads versus floating point workloads and the trends for workloads with different

inputs. Lastly, we compared the traces for workloads taken under differing operating

systems. Next we use a number of locality surfaces to qualitatively predict the cache

performance of the input trace data.
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Chapter 4

Qualitative Cache Performance

Prediction Using Locality Surfaces

In this chapter, we look at a number of locality surfaces and qualitatively predict

optimal cache size and whether larger or smaller line sizes perform better. We

examine a range of actual cache simulation results and check the accuracy of our

predictions. We do this to demonstrate how well our locality surface matches cache

performance, in terms of miss rate, and its value in qualitatively predicting cache

simulation results. This allows researchers to better focus their simulation efforts

on interesting cache configurations and to avoid investigating obviously impractical

cache configurations.

Table 4.1 shows the statistics for the traces used in this chapter. Some of the

traces and locality surfaces were used in earlier chapters. We show these locality

surfaces again to make life easier for the reader. These same six traces are also

used for quantitative cache performance predictions in Chapter 7. We selected

these traces because they represent both integer and floating point benchmarks,

instruction and data traces, and a variety of features on the locality surface. In
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workload suite type total refs uniq refs description

Parabolic/Elliptic
applu FP D 46,261,474 1,524,041 Partial Differential

Equations
crafty INT I 50,020,348 30,338 Game Playing: Chess

Computation Fluid
galgel FP D 37,070,561 1,255,136

Dynamics
PERL Programming

perlbmk.diffmail INT I 54,083,478 34,648
Language
Shallow Water

swim FP D 42,031,084 7,988,204
Modeling
Place and Route

twolf INT I 50,191,887 21,988
Simulator

Table 4.1: Description of the traces used in this chapter. All of these traces were
taken under the Linux operating system.

short, we believe these six traces to cover the range of locality among the SPEC

benchmarks.

4.1 Predicting Optimal Cache Size

We begin by using the locality surface to predict optimal cache size. It should be

obvious that increasing cache size never decreases cache performance, in terms of

miss rate. However, there frequently is a point beyond which increasing the cache

size improves performance very little. Optimal cache size can generally be predicted

by noting at what point along the delay axis the majority of the locality surface

volume is contained. For many locality surfaces, this involves noting the location of

the major looping structures.

We now demonstrate this ability using three different workloads. For each work-

load, we compare the locality surface with the cache performance of each trace. The
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first surface has a small effective working set size, the second has a larger effective

working set size, and the third has one of the largest effective working set sizes.

The first trace we examine is the instructions of twolf. The locality surface

is shown in Figure 4.1. The effective working set size for this trace is 4 Kwords.

The most significant loop on this surface is at a delay of 1 Kword. There is little

data on the surface at a delay of 256 words. Therefore, we expect to see dramatic

cache performance improvements as the cache size increases to about 128 words,

or 1 Kbytes. We then expect little improvement as the cache size further increases

in size to 512 words, or 4 Kbytes. We expect a more dramatic improvement as

the cache size reaches 1 Kword, or 8 Kbytes, further improvement as the cache

size reaches 4 Kwords, or 32 Kbytes, and very little improvement as the cache size

increases further.

Figure 4.2 shows the cache performance, obtained from cache simulations, for

the instruction trace of twolf. The x axis shows the cache size, increasing by powers

of two. The y axis shows the miss rate, i.e. the number of misses in the given cache

divided by the total references submitted to the cache. Four different associativities

are shown, from direct mapped to 8-way associative caches. All the caches simulated

for Figure 4.2 have 8-byte line sizes.

The 8-way associative cache line most closely matches our predictions. We see

consistent improvement in cache performance until the cache size reaches about

1 Kbyte, then a plateau. We see the most dramatic cache performance improvement

as the cache size moves from 4 Kbytes to 8 Kbytes, and maximal cache performance

is reached between 32 Kbytes and 64 Kbytes. The other associativities show similar

trends, but at larger cache sizes. For example, the direct-mapped cache line reaches

maximal cache performance at about 256 Kbytes. We discuss in Chapter 5 why

caches with greater associativities match more closely with the locality surface.
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Figure 4.1: Locality surface for the instruction trace of twolf.

Figure 4.2: Cache simulation results for the instruction trace of twolf. All caches
have an 8-byte line size.
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Figure 4.3 shows the locality surface for the data of applu. The effective working

set size for this trace is 512 Kwords. There appears to be only one loop in this

trace, with a delay of 2 Kwords. The vast majority of locality surface features are

at a smaller delay of 2 Kwords, hence we expect much more cache performance

improvements at cache sizes smaller than 16 Kbytes, and diminishing improvements

at larger cache sizes. There is a lack of temporal locality data between 32 Kwords

and 128 Kwords. We therefore expect little cache performance improvement as the

cache size increases from 16 Kwords, or 128 Kbytes, to 128 Kwords, or 1 Mbyte.

Figure 4.4 shows the cache simulation results for the data trace of applu. We see

several associativities and all the caches have an 8-byte line size. Again, the largest

associativity shown (8-way associative) has the best match with our predictions.

The miss rate decreases sharply until about 16 Kbytes, and then plateaus until

2 Mbytes. As the cache size increases from 2 Mbytes to 4 Mbytes, we see another

sharp improvement in miss rate. At this point, the optimum cache performance is

reached, and we see almost no further improvement.

One of the advantages of qualitative cache performance predictions is to give

cache designers an idea of the likelihood of significant returns when increasing the

cache size. For example, Figure 4.4 shows us that increasing the cache size from

256 Kbytes to 512 Kbytes, or from 32 Mbytes to 64 Mbytes, yields almost no

performance improvements. This can also be observed from the locality surface,

without the need for any cache simulations.

Figure 4.5 shows the locality surface for the data of swim. The effective working

set size for this trace is 8 Mwords. One can see a number of looping structures

on this surface. Due to the large amount of locality data at all delays, we expect

somewhat consistent improvements at each step as we increase the cache size up to

about 8 Mwords, or 64 Mbytes. We expect a somewhat sharper improvement in
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Figure 4.3: Locality surface for the data trace of applu.

Figure 4.4: Cache simulation results for the data trace of applu. All caches have an
8-byte line size.
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cache performance as we reach a cache size of 16 Kwords, or 128 Kbytes.

Figure 4.6 shows the cache simulation results for the data of swim. The cache

performance does improve at each increase of cache size, with the sharpest increase

reached as we move to 128 Kbytes. For the 8-way associative cache, we see the

optimal cache performance reached at about 64 Mbytes, as predicted. Looking at

the miss rates in Figure 4.6, we see that increasing the cache size at any point would

be advantageous. This can also be seen from the locality surface in Figure 4.5,

without the need for numerous cache simulations.

4.2 Predicting Optimal Line Size

We now attempt to qualitatively predict optimal line sizes using the locality surface.

We can predict whether smaller or larger line sizes are more optimal primarily based

on the nature of the sequential ridge in a locality surface. Traces with large amounts

of sequential references perform better with larger line sizes, and also have larger

sequential ridges. We compare three other locality surfaces with their associated

cache simulation results. The first surface has a large sequential ridge, the second

has a small sequential ridge, and the third has no sequential ridge.

The locality surface for the instruction trace of crafty is found in Figure 4.7.

This trace produces the most pronounced sequential ridge of any of the traces from

the SPEC CPU2000 suite. There appear to be a number of sequential runs that

are at least 64 words long in this trace. We therefore expect to see significant cache

performance improvement as the line size is increased. The effective working set size

for this surface is 8 Kwords. We should see improvements as we increase cache size

until reaching 8 Kwords, or 64 Kbytes, where nearly optimal performance would be

reached.

91



Figure 4.5: Locality surface for the data trace of swim.

Figure 4.6: Cache simulation results for the data trace of swim. All caches have
8-byte line sizes.
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Figure 4.8 shows the cache results obtained from simulation. In this figure, each

line of the graph indicates a different cache line size. We see exactly the predicted

trends. Increasing the line size significantly increases the overall cache performance.

In addition, optimal cache performance is reached at about 64 Kbytes, as predicted.

Figure 4.8 shows that increasing the line size by one or two factors generally

improves cache performance more than by increasing the cache size by one or two

factors. For a 1 Kbyte cache, merely changing from an 8-byte line size to a 16-byte

line size improves the miss rate from 53.97% to 37.95%. If instead of doubling the

line size we quadruple the cache size, we only see the miss rate improving from

53.97% to 42.01%. These results are predicted by the locality surface. When the

surface shows a large sequential ridge and an effective working set size not much

larger than the maximum sequential run, increasing the line size would achieve much

better performance than increasing the cache size.

The locality surface for the instruction trace of perlbmk with the diffmail input

is shown in Figure 4.9. The locality surface shows a much smaller sequential ridge,

reaching a maximum delay of 16 words. We therefore expect that the longest se-

quential run in the trace is 16 words long. The effective working set size is 4 Kwords.

Unlike the instruction trace of crafty, perlbmk.diffmail has a much larger effective

working set size than the length of the maximum sequential run. This means that

the instructions of perlbmk.diffmail reach the point where increasing the line size

creates more misses than hits faster than the instructions of crafty did.

The cache results for the instruction trace of perlbmk.diffmail is in Figure 4.10.

As predicted, we see improvements as the line size is increased, but much smaller

improvements than seen for the instructions of crafty in Figure 4.8. (Note different

scales when comparing the graphs.) This shows that, indeed, the surface with the

more dominate sequential ridge has greater improvements with increased line size
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Figure 4.7: Locality surface for the instruction trace of crafty.

Figure 4.8: Cache simulation results for the instruction trace of crafty. All caches
are direct mapped.
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than the surface with the smaller sequential ridge.

Because this time the effective working set size is much larger than the maximum

sequential run, increasing the cache size is now more effective than increasing the

line size. Merely looking at the graph shows us that, beginning with a 1 Kbyte

cache with 8-byte lines, doubling the cache size improves performance more than

increasing the line size to 64 bytes.

The locality surface for the data trace of galgel is found in Figure 4.11. Here

we have an example of a trace that consists primarily of temporal locality. When

examining the cache results, we should see sharp improvements as we increase the

cache size up to about 1 Kwords, or 8 Kbytes, continued but lessening improvements

up to a cache size of 64 Kwords, or 512 Kbyte, and then larger improvements as

we increase the cache size to 1 Mword, or 8 Mbytes. There is a small amount of

sequential locality data, however it is dominated by the temporal locality. Therefore

we expect less performance improvements with increased line size.

Figure 4.12 shows some cache simulation results for direct mapped caches with

varying line sizes. First we notice that varying the line size changes the cache results

very little. In fact, 8-byte and 16-byte line size results are almost identical, as are

32-byte and 64-byte line size results.

4.3 Summary

In this chapter, we have seen how our locality surface matches well with cache

simulation results, particularly with caches with larger associativies. We have also

seen how optimal cache size and optimal line size can be predicted with the use

of the locality surface. In the next chapter, we mathematically describe caches,
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Figure 4.9: Locality surface for the instruction trace of perlbmk.diffmail.

Figure 4.10: Cache simulation results for the instruction trace of perlbmk.diffmail.
All caches are direct mapped. When comparing with the results in Figure 4.8, note
the difference in scale on the y-axis.
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Figure 4.11: Locality surface for the data trace of galgel.

Figure 4.12: Cache simulation results for the data trace of galgel. All caches are
direct mapped.
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present a cache characterization surface, and answer the question as to why caches

with larger associativities correlate better with locality.
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Chapter 5

Caches and Locality

We have just seen that locality and cache miss rate seem correlated with respect

to cache size and line size. Now we ask, can we quantify the correlation and verify

these results for the general case? How does associativity fit into the equation? To

answer these questions, it would help if we could first describe caches in terms of

locality without tying the results to a particular workload. In this chapter, we do

just that for traditional caches.

We begin by writing an equation for the miss rate of a cache, based on the cache

configuration and the input string. This equation mathematically represents what

a cache simulator does. Next, we introduce three new surfaces, the miss surface, the

miss rate surface, and finally the cache characterization surface.

This last surface is our desired description of a given cache in terms of local-

ity that visually represents how various stride/delay relationships impact a given

cache, independent of any workload. This chapter focuses exclusively on traditional

caches, i.e. caches that may be described entirely by their size, line size, and asso-

ciativity. However, the techniques described may be applied to any cache with a

LRU replacement policy, such as column-associative [6] and skewed associative [68]
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caches.

To our knowledge, no other group of researchers have attempted to describe

caches in terms of locality. The closest that other researchers have come is the

memory mountain [18, 76], a three-dimensional graph with working set size, stride,

and throughput as the dimensions. The mountain essentially graphs throughput

versus locality rather than miss rate versus locality as we do. In addition, Bryant

and O’Halloran used their memory mountain to characterize the entire memory

system of an actual computer, rather than the miss rate of one level of the system.

We also make our cache characterization surfaces for any cache we have a simulator

for, not just caches that have been built.

5.1 A Description of Traditional Caches

We begin by describing traditional caches and creating an equation which, given a

cache configuration and input string, returns the miss rate for that string in the

given cache. Let C indicate the parameters necessary to describe a specific cache.

We use subscripts to indicate specific parameters. For traditional caches, the cache

size, line size, and associativity completely describe the cache. Therefore, we let Cs

represent the cache size, Cl represent the line size, and Ca represent the associativity.

Notice that the number of lines in a cache is Cs/Cl, and the size of a cache set is

CaCl. When a cache is fully associative, then Ca = Cs/Cl. We describe a direct

mapped cache as a 1-way associative cache, i.e. where Ca = 1. We also use the term

set associative to refer to any cache that is not fully associative.

We wish to create a function where given a cache configuration, a string, an

index to a specific element of the string, and the granularity of the string, we can

determine if the specific string element results in a hit or miss in the given cache.
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(Recall from Section 3.3 that granularity is defined as the level at which the locality

relationship is determined.) Let miss(C, v, i, g) be such a function, where C is

the cache configuration, v is the string, v[i] is the specific element, and g is the

granularity of the string. miss is a boolean function that returns 1 if the element is

a miss in the cache and 0 if it is a hit. Formally,

miss(C, v, i, g) =

⎧⎪⎨⎪⎩ 1 if v[i] is a miss in cache C,

0 otherwise.

Now we must mathematically describe how to determine when v[i] misses in the

given cache. We consider four cases: 1) when the cache is fully associative and

the line size equals the string granularity, 2) when the cache is fully associative

and the line size does not equal the string granularity, 3) when the cache is set

associative and the line size equals the string granularity, and 4) when the cache is

set associative and the line size does not equal the string granularity.

5.1.1 Case One

When the cache is fully associative and the line size equals the string granularity, we

can determine if a particular element, v[i], of the string is a hit or miss by finding the

last time that value was in the string and counting the number of unique references

between them. If the number of unique references, i.e. the delay, is less than the

number of lines in the cache, then it is a hit, otherwise it is a miss. If the delay is

greater than the number of cache lines or v[i] is the first instance of the value in the

string, then v[i] is a miss.

In other words, given Ca = Cs/Cl and Cl = g, miss(C, v, i, g) is 0 if there exits

an integer d such that d ≤ Ca and (0, d) is in the locality bag for v[i]. Recall that

(0, d) is only in �(v[i]) if v[i] is a repeated value and the most recent instance of that
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value in v was d unique references earlier. In all other instances, miss(C, v, i, g) is

1. Formally, when (Ca = Cs/Cl) ∧ (Cl = g), then:

miss(C, v, i, g)

=

⎧⎪⎨⎪⎩ 0 if (∃d)
[
(0, d) ∈ �(v[i]) ∧ d ≤ Ca

]
,

1 otherwise.

(5.1)

Example 5.1. Let v = 194, 35, 193, 57, 290, 259, 66, 310, 118, 222, 158, 57, 194,
130, 150, 345, 194, 246, 310, 67, 66, 57, 162, 54, 193, 67, 89, 98, 226, 257. Note
that |v| = 30. Also, let gv = 8.

For this example, let Cs = 64, Cl = 8, and Ca = 8. Note that Ca = Cs/Cl and
Cl = gv. We now calculate miss(C, v, i, g) for several of the elements of v in cache
C using Equation 5.1:

miss(C, v, 1, g) = 1,

miss(C, v, 4, g) = 1,

miss(C, v, 12, g) = 0, since (0, 8) ∈ �(v[12]) and 8 ≤ 8,

miss(C, v, 21, g) = 1,

miss(C, v, 22, g) = 1,

miss(C, v, 26, g) = 0, since (0, 6) ∈ �(v[26]) and 6 ≤ 8.

5.1.2 Case Two

We now consider the case where the cache is fully associative, but the line size and

string granularity are not equal. We assume that the granularity is never greater

than the line size, and that both the line size and granularity are always powers of

two. Given these assumptions, we can write Cl = 2hg, where h ≥ 1. (If h = 0, then

the line size and granularity are equal. If h < 0, then the granularity is greater than

the line size; the elements of the string are too large to fit in a cache line.)

We wish to create a new string that is equivalent to v but with the granularity

adjusted to match Cl. We define a function, zoom(v, h), that returns the desired

string, where h is the factor necessary to adjust the granularity appropriately, i.e. h
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is a positive integer such that Cl = 2hg. To increase the granularity of a particular

string element, we divide that element by the zoom factor. Since we always adjust

the granularity by a power of two, we simply shift the string element right by h bits.

Therefore, zoom(v, h) = w where w[k] = v[k] >> h, |w| = |v|, and 1 ≤ k ≤ |v|.
Now, given Ca = Cs/Cl and Cl = 2hg,

miss(C, v, i, g) = miss(C, zoom(v, h), i, g′) (5.2)

where h = log2(Cl/g) and g′ = Cl. We have now transformed Case Two into an

instance of Case One and may use Equation 5.1.

Example 5.2. Let v = 194, 35, 193, 57, 290, 259, 66, 310, 118, 222, 158, 57, 194,
130, 150, 345, 194, 246, 310, 67, 66, 57, 162, 54, 193, 67, 89, 98, 226, 257. Note
that |v| = 30. Also, let gv = 8.

For this example, let Cs = 64, Cl = 32, and Ca = 2. Note that Ca = Cs/Cl and
Cl �= gv. Before we can use Equation 5.1, we must first calculate zoom(v, h) where
Cl = 2hgv. We let h = 2. To calculate zoom(v, 2), we simply shift each element of
v right two places. Therefore, zoom(v, 2) = 48, 8, 48, 14, 72, 64, 16, 77, 29, 55, 39,
14, 48, 32, 37, 86, 48, 61, 77, 16, 16, 14, 40, 13, 48, 16, 22, 24, 56, 64.

We now calculate miss(C, zoom(v, 2), i, Cl) for several of the elements of v in
cache C using Equation 5.1:

miss(C, zoom(v, 2), 1, Cl) = 1,

miss(C, zoom(v, 2), 4, Cl) = 1,

miss(C, zoom(v, 2), 12, Cl) = 1,

miss(C, zoom(v, 2), 21, Cl) = 0,

miss(C, zoom(v, 2), 22, Cl) = 1,

miss(C, zoom(v, 2), 26, Cl) = 1.

5.1.3 Case Three

When the cache is set associative and the line size equals the string granularity,

we can determine if a particular element, v[i], of the string is a hit or miss by first
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selecting all the elements of the string that map to the same cache set as v[i] and

then performing the same operations as in Case One, only using the number of lines

in the cache set rather than the number of lines in the entire cache.

First, we need a way to create a new string consisting entirely of the elements of

v that map to the same cache set as v[i]. We define a function, cacheset(v, i, C), that

returns the desired new string given the input string, v, the index to an element in

v that maps to the desired cache set, and the cache configuration, C. We compute

cacheset(v, i, C) using several intermediary functions. Intermediary functions are

functions that are only used for computing the result of the equation or function they

are attached to. We let px() indicate an intermediary function, where x designates

which one. Functions that are used in several places, i.e. non-intermediary functions,

are given names, e.g. cacheset(v, i, C).

We let p1(v, i, k, C) be our first intermediary function. It determines if v[k] is in

the same cache set as v[i]. We define a function, count(v, i, k, C), that tells us how

many elements in v, up to index k, map to the same cache set as v[i]. Using both

p1(v, i, k, C) and count(v, i, k, C), we can then create another intermediary function,

p2(v, i, k, C) that returns the index into v of the kth element of v that is in the same

cache set as v[i]. Using p2(v, i, k, C), we can create the desired string of elements

that map to the same cache set as v[i]. Note that while all three of these funtions

have the same inputs, i.e. v, i, k, and C, k has a different meaning in each.

While performing all of these operations, we execute a couple of computations

repeatedly. To simplify notation, we here introduce two variables, n and t, as

shortcuts. Since the granularity of v equals the line size of the cache in Case Three,

we know the lower order bits of each element indicate the cache set. The number of

bits necessary is equal to the log2 of the number of cache sets. Let n represent the
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number of cache sets, so

n = Cs/(CaCl).

Then the number of bits equals log2(n). To use n, a function must have a cache

configuration as input.

We may determine which cache set element v[i] belongs to by calculating the

element mod the number of cache sets. Hence v[i] belongs to cache set v[i] mod n.

We let t indicate the cache set that v[i] belongs to, i.e.

t = v[i] mod n.

To use t, a function must have a string named v, an index i into v where v[i] is in

the desired set, and a cache configuration as input.

Example 5.3. Let v = 194, 35, 193, 290, 57, 259, 66, 310, 118, 222, 57, 158, 194,
130, 150, 345, 194, 246, 310, 67, 66, 57, 162, 54, 193, 67, 89, 98, 226, 257. Note
that |v| = 30. Let C be defined such that Cs = 1024, Cl = 8, and Ca = 4. We wish
to compute n and t for index 28.

By the definitions above,

n = Cs/(CaCl)

= 1024/(4 ∗ 8)

= 32

and

t = v[28] mod n

= 98 mod 32

= 2.

Now we define the intermediary function p1(v, i, k, C) to return 1 if v[k] and v[i]

are in the same cache set and 0 otherwise. Formally,

p1(v, i, k, C) =

⎧⎪⎨⎪⎩ 1 if t = v[k] mod n,

0 otherwise,

where 1 ≤ i ≤ |v| and 1 ≤ k ≤ |v|.
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Example 5.4. Let v and C be as defined in Example 5.3. We wish to compute
p1(v, i, k, C) where i = 28 and k = 1 . . . 30.

p1(v, 28, 1, C) = 1, p1(v, 28, 11, C) = 0, p1(v, 28, 21, C) = 1,

p1(v, 28, 2, C) = 0, p1(v, 28, 12, C) = 0, p1(v, 28, 22, C) = 0,

p1(v, 28, 3, C) = 0, p1(v, 28, 13, C) = 1, p1(v, 28, 23, C) = 1,

p1(v, 28, 4, C) = 1, p1(v, 28, 14, C) = 1, p1(v, 28, 24, C) = 0,

p1(v, 28, 5, C) = 0, p1(v, 28, 15, C) = 0, p1(v, 28, 25, C) = 0,

p1(v, 28, 6, C) = 0, p1(v, 28, 16, C) = 0, p1(v, 28, 26, C) = 0,

p1(v, 28, 7, C) = 1, p1(v, 28, 17, C) = 1, p1(v, 28, 27, C) = 0,

p1(v, 28, 8, C) = 0, p1(v, 28, 18, C) = 0, p1(v, 28, 28, C) = 1,

p1(v, 28, 9, C) = 0, p1(v, 28, 19, C) = 0, p1(v, 28, 29, C) = 1,

p1(v, 28, 10, C) = 0, p1(v, 28, 20, C) = 0, p1(v, 28, 30, C) = 0.

Let count indicate the number of elements of v earlier than v[k] that are in the

same cache set as v[i]. Formally,

count(v, i, k, C) =
k∑

j=1

p1(v, i, j, C),

where 1 ≤ i ≤ |v| and 1 ≤ k ≤ |v|. Notice that if we wish to determine how

many elements of v are in the same cache set as v[i] and earlier than i, we compute

count(v, i, i − 1, C).

Example 5.5. Let v and C be as defined in Example 5.3. We wish to compute
count(v, i, k, C) where i = 28 and k = 1 . . . 30.

count(v, 28, 1, C) = 1, count(v, 28, 11, C) = 3, count(v, 28, 21, C) = 7,

count(v, 28, 2, C) = 1, count(v, 28, 12, C) = 3, count(v, 28, 22, C) = 7,

count(v, 28, 3, C) = 1, count(v, 28, 13, C) = 4, count(v, 28, 23, C) = 8,

count(v, 28, 4, C) = 2, count(v, 28, 14, C) = 5, count(v, 28, 24, C) = 8,

count(v, 28, 5, C) = 2, count(v, 28, 15, C) = 5, count(v, 28, 25, C) = 8,

count(v, 28, 6, C) = 2, count(v, 28, 16, C) = 5, count(v, 28, 26, C) = 8,

count(v, 28, 7, C) = 3, count(v, 28, 17, C) = 6, count(v, 28, 27, C) = 8,

count(v, 28, 8, C) = 3, count(v, 28, 18, C) = 6, count(v, 28, 28, C) = 9,

count(v, 28, 9, C) = 3, count(v, 28, 19, C) = 6, count(v, 28, 29, C) = 10,

count(v, 28, 10, C) = 3, count(v, 28, 20, C) = 6, count(v, 28, 30, C) = 10.
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Now we define another intermediary function, p2(v, i, k, C), that returns the

index into v of the kth instance of an element in the same set as v[i]:

p2(v, i, k, C) = j where p1(v, i, j, C) = 1 ∧ count(v, i, j, C) = k,

where 1 ≤ i ≤ |v| and 1 ≤ k ≤ count(v, i, |v|, C). Requiring p1(v, i, j, C) = 1 means

that v[j] must be in the same cache set as v[i]. Requiring count(v, i, j, C) = k means

that just after v[j] we have seen k string elements of v in the same cache set as v[i].

Example 5.6. Let v and C be as defined in Example 5.3. We wish to compute
p2(v, i, k, C) where i = 28 and k = 1 . . . 10. We do this using the values for
p1(v, 28, k, C) from Example 5.4 and the values for count(v, 28, k, C) from Exam-
ple 5.5:

p2(v, 28, 1, C) = 1 because p1(v, 28, 1, C) = 1 and count(v, 28, 1, C) = 1,
p2(v, 28, 2, C) = 4 because p1(v, 28, 4, C) = 1 and count(v, 28, 4, C) = 2,
p2(v, 28, 3, C) = 7 because p1(v, 28, 7, C) = 1 and count(v, 28, 7, C) = 3,
p2(v, 28, 4, C) = 13 because p1(v, 28, 13, C) = 1 and count(v, 28, 13, C) = 4,
p2(v, 28, 5, C) = 14 because p1(v, 28, 14, C) = 1 and count(v, 28, 14, C) = 5,
p2(v, 28, 6, C) = 17 because p1(v, 28, 17, C) = 1 and count(v, 28, 17, C) = 6,
p2(v, 28, 7, C) = 21 because p1(v, 28, 21, C) = 1 and count(v, 28, 21, C) = 7,
p2(v, 28, 8, C) = 23 because p1(v, 28, 23, C) = 1 and count(v, 28, 23, C) = 8,
p2(v, 28, 9, C) = 28 because p1(v, 28, 28, C) = 1 and count(v, 28, 28, C) = 9,
p2(v, 28, 10, C) = 29 because p1(v, 28, 29, C) = 1 and count(v, 28, 29, C) = 10.

Now we can write that cacheset(v, i, C) = w where w[k] = v[p2(v, i, k, C)], |w| =

count(v, i, |v|, C), and 1 ≤ k ≤ |w|.

Example 5.7. Let v and C be as defined in Example 5.3. We wish to compute
cacheset(v, 28, C). We do this using the values for p2(v, 28, k, C) from Example 5.6.
If w = cacheset(v, 28, C), then

w[1] = v[p2(v, 28, 1, C)] = v[1] = 194, w[6] = v[p2(v, 28, 6, C)] = v[17] = 194,
w[2] = v[p2(v, 28, 2, C)] = v[4] = 290, w[7] = v[p2(v, 28, 7, C)] = v[21] = 66,
w[3] = v[p2(v, 28, 3, C)] = v[7] = 66, w[8] = v[p2(v, 28, 8, C)] = v[23] = 162,
w[4] = v[p2(v, 28, 4, C)] = v[13] = 194, w[9] = v[p2(v, 28, 9, C)] = v[28] = 98,
w[5] = v[p2(v, 28, 5, C)] = v[14] = 130, w[10] = v[p2(v, 28, 10, C)] = v[29] = 226.

Finally, we write the desired results: cacheset(v, 28, C) = 194, 290, 66, 194, 130,
194, 66, 162, 98, 226.
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Now, given Ca �= Cs/Cl and Cl = g,

miss(C, v, i, g) = miss(C ′, cacheset(v, i, C), count(v, i, i, C), g) (5.3)

where C ′
s = CaCl, C ′

l = Cl, and C ′
a = Ca. Our new cache configuration, C ′, is

equivalent to a fully associative cache that is the same size as the cache set size of C

since C ′
a = Ca = (CaCl)/Cl = C ′

s/C
′
l. Because our new cache is fully associative,

we may now use Equation 5.1.

5.1.4 Case Four

We now consider the case where the cache is set associative and the line size does

not equal the string granularity. As before, if we can transform the cache and string

into an instance of a case we have already defined, we can use an earlier equation.

We have three choices. First, we can adjust the granularity and remove all the

elements of the string not in the given cache set and then use Equation 5.1. Second,

we can remove all the elements of the string not in the given cache set and then use

Equation 5.2. Or, third, we can adjust the granularity and use Equation 5.3.

The first option involves the most work. The second option involves performing

operations similar to what we did in Case Three, only the computations are more

complex because the granularity and line size do not match. Therefore, it seems

that the third option would be the simplest choice. When presented with a Case

Four situation, we adjust the granularity and reduce the problem to a Case Three

situation. We can do this by using Equation 5.2, which transforms Case Four into

Case Three. To summarize the whole process for this case, when a cache is set

associative and does not have matching line size and granularity, we use Equation 5.2

to transform Case Four into an instance of Case Three and then use Equation 5.3

to transform into Case One.

108



We may now combine Equations 5.1, 5.2, and 5.3 and write the definition of

miss as one equation that covers all four cache cases:

miss(C, v, i, g)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

miss(C, zoom(v, h), i, g′)

miss(C ′, cacheset(v, i, C),

count(v, i, i, C), g)

0

1

if (Cl �= g),

if (Cl = g) ∧ (Ca �= Cs/Cl),

if (Ca = Cs/Cl) ∧ (Cl = g)∧

(∃d)
[
(0, d) ∈ �(v[i]) ∧ d ≤ Ca

]
,

otherwise,

(5.4)

where h = log2(Cl/g), g′ = Cl, C ′
s = CaCl, C ′

l = Cl, and C ′
a = Ca. The first line

of Equation 5.4 represents Case Two and the first step of Case Four. The second

line of Equation 5.4 represents Case Three and the second step of Case Four. The

third and fourth lines of Equation 5.4 represent Case One.

5.1.5 Miss Rate

We can now mathematically write the miss rate for a given trace and cache combi-

nation. To do this, we count the number of misses in the trace and divide by the

length of the trace. We let Miss(v, C) indicate the miss rate of the string v in the

cache C. Formally,

Miss(v, C) =

|v|∑
i=1

miss(C, v, i, gv)

|v| , (5.5)

where gv is the granularity of the string v.

Now that we have formally described caches and written an equation that de-

termines if a given string element is a miss in the given cache, we are ready to tie

locality and cache performance together for particular strings.
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5.2 Miss and Miss Rate Surfaces

In this section, we present two new surfaces that help us understand, from a locality

perspective, how a given workload functions in a particular cache. This brings us

closer to describing caches in terms of locality for all workloads in general.

5.2.1 Miss Surface

We first introduce the miss surface. A miss surface is based on a bag of stride/delay

relationships called the miss data. The miss data is converted into a miss surface

using the visualization steps described in Section 2.4. Recall from Equation 2.5

that the locality bag for a given string is the additive union of the locality data for

each element of the string. In contrast, the miss data for a given string and cache

configuration is the additive union of the locality data for each element of the string

that causes a miss in the given cache. We let m(v, C) indicate the miss data for

string v in cache C. We compute the miss data as follows:

m(v, C) =

|v|⊎
i=1

[
�(v[i]) ∗ miss(C, v, i, g)

]
. (5.6)

Notice that in this equation we are multiplying a bag (i.e. �(v[i])) with an integer

(i.e. miss(C, v, i, g)). In this case, the integer is either a 0 or a 1. So we formally

declare what occurs in these two cases. Let B be a bag. Then B ∗ 0 = ∅ and

B ∗ 1 = B.

Example 5.8. Let v1 = 2, 7, 5, 10, 5, 2, 8 as in Example 2.1. Let C be a cache
configuration where Cs = 32 bytes, Cl = 8 bytes, and Ca = 4. Note that C is fully
associative. Recall from Example 2.14 that

�(v1[1]) = ∅,
�(v1[2]) = {(5, 1)},
�(v1[3]) = {(−2, 1), (3, 2)},
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�(v1[4]) = {(5, 1), (3, 2), (8, 3)},
�(v1[5]) = {(−5, 1), (0, 2)},
�(v1[6]) = {(−3, 1), (−8, 2), (−5, 3), (0, 4)}, and
�(v1[7]) = {(6, 1), (3, 2), (−2, 3), (1, 4)}.

Now we compute miss(C, v, i, g) for each element of v1:

miss(C, v1, 1, g) = 1,
miss(C, v1, 2, g) = 1,
miss(C, v1, 3, g) = 1,
miss(C, v1, 4, g) = 1,
miss(C, v1, 5, g) = 0,
miss(C, v1, 6, g) = 0, and
miss(C, v1, 7, g) = 1.

Using Equation 5.6, we calculate that m(v1, C) = �(v1[1]) � �(v1[2]) � �(v1[3]) �
�(v1[4])� �(v1[7]) = {(−2, 1), (5, 1), (5, 1), (6, 1), (3, 2), (3, 2), (3, 2), (−2, 3), (8, 3),
(1, 4)}.

Recall that in Section 2.4 we made the visualization functions use stride/delay

bags as input, rather than locality bags. Since the miss bag is a stride/delay bag, we

are now allowed to use miss bags as inputs without changing the functions to create

the miss surface. Hence h(m(v, C)) is the miss histogram, H(m(v, C)) is the binned

miss histogram, and S(m(v, C), v) is the miss surface. Let M be the miss surface

fuction that takes a string and a cache configuration as input and returns a miss

surface. Formally, M(v, C) = S(m(v, C), v) and M(v, C, a, b) = S(m(v, C), v, a, b).

Figure 5.1 shows an example miss surface. Specifically, it shows the instruction

trace of twolf filtered by a 1 Kbyte direct mapped cache with an 8-byte line size. As

with the locality surface, we show two views of the miss surface. We have scaled the

maximum value of the graph to be equivalent to the maximum value on the locality

surface for the instruction trace of twolf, last seen in Figure 4.1 and reshown here

in Figure 5.2. Note that the grayscale color map in Figure 5.1 does not match the

one in Figure 5.2 but is relative to the maximum height in Figure 5.1. This allows

us to better determine the relative heights of the features on the miss surface.
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Figure 5.1: The miss surface for the instruction trace of twolf filtered by a 1 Kbyte
direct mapped cache with an 8-byte line size.

Figure 5.2: The locality surface for the instruction trace of twolf.
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The size of the cache used for the miss surface in Figure 5.1 is 1 Kbytes, or

128 words. When comparing the locality surface for the same trace in Figure 5.2 with

the miss surface in Figure 5.1, note that the height of all the features is dramatically

reduced where the delay is less than 128 but hardly reduced at all where the delay

is greater than 128. For example, consider the loop at 1 Kwords. The exact value of

the bin where the loop crosses the temporal axis is 0.145242 on the locality surface

and 0.144540 on the miss surface. Hardly a reduction at all.

Recall that the miss surface shows us the locality of the elements of the trace

that missed in the cache. Another thing we may notice on the miss surface in

Figure 5.1 is the absence of a temporal spike. Specifically, M(v, C, 0, 1) = 0 for any

trace and cache configuration. Even the smallest cache has a hit any time a value

is immediately repeated.

5.2.2 Miss Rate Surface

The miss surface for a particular workload and cache can help us understand how the

given workload function in the given cache, but we find ourselves constantly referring

back to the locality surface of the workload. To remove this necessity, we define the

miss rate surface. Each bin on this surface is equivalent to the corresponding bin

on the miss surface divided by the corresponding bin on the locality surface. Before

we formally define the miss rate surface, we define division of surfaces.

Given two surfaces, T1 and T2, we may divide them, bin by bin, to obtain a third

surface, T3. Formally, if T3 = T1/T2, then T3(a, b) = T1(a, b)/T2(a, b) for any valid

bin (a, b).

Let R be the miss rate function that takes a string and a cache configuration,

computes the miss surface and locality surface, divides them bin by bin, and re-
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turns the miss rate surface. Formally, R(v, C) = M(v, C)/L(v) and R(v, C, a, b) =

M(v, C, a, b)/L(v, a, b). Let us follow the math to see what drops out as we perform

these calculations:

R(v, C, a, b) =
M(v, C, a, b)

L(v, a, b)

=
S(m(v, C), v)

S(�(v), v)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

H(m(v,C),a,b)

(|v|−1)·(2|a|−2)

H(�(v),a,b)

(|v|−1)·(2|a|−2)

if |a| > 1

H(m(v,C),a,b)
|v|−1

H(�(v),a,b)
|v|−1

if |a| ≤ 1

=
H(m(v, C), a, b)

H(�(v), a, b)
. (5.7)

We remove the problem of dividing by zero by declaring that when H(�(v), a, b) =

0, we define R(v, C, a, b) = 0. As the miss rate surface is computed, the dividing

done by the Surface Function S drops out. Dividing the miss surface by the locality

surface is equivalent to dividing the binned miss histogram by the binned locality

histogram.

Figure 5.3 shows the miss rate surface for the instruction trace of twolf and a

1 Kbyte direct mapped cache with an 8-byte line size. By definition, this is the

miss surface in Figure 5.1 divided by the locality surface in Figure 5.2. As with the

locality and miss surfaces, we again show two views of the miss rate surface. Unlike

the locality and miss surfaces, we use a different angle. Since miss rate surfaces tend

to have lower values close to the origin and higher values away from the origin, it is
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Figure 5.3: The miss rate surface for the instruction trace of twolf filtered by a
1 Kbyte direct mapped cache with an 8-byte line size. Essentially, this is the miss
surface in Figure 5.1 divided by the locality surface in Figure 5.2.

of more value to have the origin in the foreground. Each bin now shows the average

miss rate for all trace elements that have the given stride and delay.

Let T be the miss rate surface in Figure 5.3. The bin labeled (3, 2) refers to the

stride/delay relationships where the stride is 3 or 4 and the delay is 2. T (3, 2) =

0.538 means that 53.8% of all stride/delay relationships assigned to the (3, 2) bin

belong to the locality data of a reference in the instructions of twolf that was a miss

in the given cache.

Notice that bins near the origin have low miss rates. In general, the further the

bin is from the origin, the worse the miss rate. Note that the miss rate is zero at the

(0, 1) bin. As mentioned before, any cache has a hit when a reference is immediately

repeated.

This miss rate surface tells us interesting things about how the instruction trace

of twolf functions in a 1 Kbyte direct mapped cache with 8-byte lines, but little else.
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We could conjecture that other workloads are likely to have similar miss rates for

each stride/delay relationship with this cache, but intuition tells us this is highly

suspect. Notice how the miss rate is not symmetric across the temporal axis. Logic

tells us that traditional caches are not likely to favor negative strides over positive

strides. Instead, we guess that the disparity is due to a lack of sufficient data

at a number of bins. If the instruction trace of twolf has only a few stride/delay

relationships that contribute to a given bin, it is hard to believe that the miss rate

for that bin is representative of all traces in that cache.

The miss rate surface for a particular workload and cache can help us understand

how the given workload functions in the given cache, but little other information. In

general, the miss rate surface is more difficult to create than it is useful. It involves

both cache simulation for the desired cache and computation of the locality data

for the given workload, and yields information only about the specific workload

and cache combination. However, if we could create a miss rate surface that is

independent of any particular workload, we would have a surface that visualizes a

cache in terms of locality.

5.3 Cache Characterization Surface

We have said that we wish to characterize caches in terms of locality. To do this,

we wish to know the miss rate associated with each given stride/delay combination.

If we can create a miss rate surface where the input trace is independent of any

workload, we would have the desired cache characterization surface. We first

discuss the notation for such a creation and then investigate the practicality of

creating a true cache characterization surface. Finally, we display a number of

cache characterization surfaces created using the method we chose.

116



Let C be a the cache characterization function that takes a cache configuration.

Formally, C(C) = R(v, C) and C(C, a, b) = R(v, C, a, b) where v is a string that is

independent of any workload. The question is, what v would fit the requirements?

5.3.1 Picking v

One idea is to use an infinite number of strings for v. For every workload that

exists, create the miss surface for the given cache and the locality surface. Add,

bin by bin, all the miss surfaces together into a composite miss surface. Similarly,

add, bin by bin, all the locality surfaces together into a composite locality surface.

Divide the composite miss surface by the composite locality surface to get a cache

characterization surface.

There are several drawbacks to this plan. First, it is obvious to anyone who has

ever considered benchmark selection that there is no list of all possible workloads,

and the field is hotly debated as to which workloads are best at representing the

entire workspace. In addition, it is well understood that current workloads cannot

pretend to be representative of future workloads. Current workloads may seldom

use the bin (11, 1), but future workloads may use it frequently. The few times it

is used by current workloads may not be representative of all its possible uses in a

given cache.

Another idea for creating a cache characterization surface for a given cache,

which we used here, is to submit random data to a miss rate surface program. This

avoids the debate as to which workloads are representative and whether current

workloads are adequate to predict future workloads. The random stream should be

long enough that all stride/delay relationships are represented.

The random data should not only contain every stride/delay combination of
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interest but should contain every combination a number of times. As the reader

will see when examining actual cache characterization surfaces, a given stride/delay

relationship may sometimes be a hit and sometimes a miss in a given cache. We wish

to determine, on average, the percentage of times each stride/delay relationship is

a hit versus a miss. To do this, we need each stride/delay relationship to occur a

number of times.

The primary drawback to using a random trace as input is how time intensive

it is. The locality program is stack based and therefore is O(n2). (This is discussed

more in Chapter 9.) With random data, the stack grows large quickly and the

compute time grows with the square of the stack size. One way to minimize this

is to determine the maximum desired delay. For example, if we determine that a

maximum delay of one million is adequate, there is no need to let the stack grow

larger than that. The smaller the maximum delay, the faster the computation.

However, the larger the maximum delay desired, the more applicable the resulting

cache characterization surface is to any workload. Determing what is the optimal

maximum delay is a balance between how general the cache characterization surface

should be and available processing power/time.

A method for improving the speed of computing the cache characterization sur-

face data for a random input is to notice that bins with large delay and large stride

absolute value have a lot of possible stride/delay relationships that fall in the bin.

In addition, stride/delay relationships that fall in the same bin tend to have the

same response in a given cache. So we really do not need the occurrences of each

stride/delay relationship to be equal, we need the number that fall in each bin to be

roughly equal. This means we need more stride/delay relationships that are small,

meaning small absolute value of both the stride and delay, because the bins with

small stride/delay relationships have fewer stride/delay relationships per bin than
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Figure 5.4: The Laplacian distribution with parameters μ = 0 and λ = 1000.

the large ones.

We create this preference by using a different random distribution than the

uniform distribution. The Laplace, or double exponential, distribution is shown

in Figure 5.4. This distribution takes two parameters, μ and λ. The parameter

μ determines the mean and λ determines how steep the dropoff is and hence the

spread. A larger λ causes the central peak to be lower and the horizontal spread to

increase. A smaller λ raises the central peak and decreases the horizontal spread. By

carefully picking λ, we can find a balance point where bins with many entries, such

as (−11, 8) with 32, 768 entries, have approximately the same number of stride/delay

relationships as bins with few entries, such as (1, 2) with one entry.

Another point that reduces the time to compute miss surface/locality data for a

random input string involves determining how long to make the random string. We

first notice that after a point the value in each bin does not change. For example,

after one stride/delay relationship in the �(0, 1) bin, which always is a hit, the value

never changes. We have noticed, for the caches we computed for this dissertation,

that bins tend to hold constant after about 100 entries. Therefore, we attempt to

cut the length of the random stream at the point where every bin has at least 100
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entries.

Another method to improve the time to compute random locality data is to

improve the speed of the program computation itself. A number of researchers have

developed improvements to stack based programs [11, 80], but these are not useful

when every level of the stack needs to be accessed each time, as is needed to compute

the locality data. Our solution is a parallel algorithm, which we discuss in Chapter 9.

In addition, we can compute a number of cache characterization surfaces at the same

time. We use the same stream of random numbers for each cache characterization

surface, meaning we can use one stack for all the surfaces. The only difference in

the computations is the cache simulation and hit/miss results.

We are willing to spend a lot of time processing the cache characterization sur-

faces partly because we can compute a number of them at the same time. The

biggest reason we are willing to spend weeks on the computation is that each sur-

face need only be computed once. The only time new cache characterization surfaces

need to computed is if we wish one for a new cache or if we wish to have a larger

maximum delay.

5.3.2 Actual Cache Characterization Surfaces

We have created a number of cache characterization surfaces using a stream of

random references generated by the Laplacian distribution. We selected a maximum

delay goal of 8 Mwords, or 64 Mbytes. This meant that our random stream needed

between 4, 194, 305 and 8, 388, 608 unique numbers. In addition, we wished to have a

roughly equivalent number of entries in each bin of the binned histogram. Through

trial and error, we created a trace with 500, 000, 000, or 500 million, entries. Each

value was generated by the Laplacian distribution with λ = 600, 000. The trace had
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7, 931, 968 unique references and roughly met the other requirements.

We created cache characterization surfaces using this random trace for 24 dif-

ferent caches with varying cache size, line size, and associativity. When performing

the actual computations, we used the parallel algorithm discussed in Chapter 9 and

created all 24 cache characterization surfaces at the same time. The time for this

computation, using all 64 processors of the parallel machine we have, was just over

seven weeks.

We now show several surfaces here and discuss what we learn about how changing

the cache size, the line size, and/or the associativity affects the cache’s response to

inputs with various locality. All cache characterization surfaces that we computed

are shown in Appendix C.

First we examine how changing the cache size affects various stride/delay rela-

tionships. To do this, we hold the line size constant at 8-bytes and examine caches

that are fully associative. Figure 5.5 shows a 16 Kbyte cache, Figure 5.6 shows a

128 Kbyte cache, and Figure 5.7 shows a 1 Mbyte cache.

As with all our surfaces, we display two views of the cache characterization

surface. As with the miss rate surface, we display the cache characterization surface

rotated so that the origin is in the foreground. Each bin on the surface indicates

the percentage of references that have a stride/delay relationship in the bin and are

misses in the given cache.

When creating the surface, whenever a bin is equal to zero on the locality surface,

we define the equivalent bin on the cache characterization surface to be zero. This

explains why the surface displays zero where the delay equals 16 Mwords. We picked

the maximum delay shown on the surface to be one bin larger than the maximum

delay seen on any of our cache characterization surfaces on purpose. This allows a

clear indication of the color mapping and at what percentages the colors change. It
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Figure 5.5: The cache characterization surface for a 16 Kbyte fully associative cache
with 8-byte lines.

Figure 5.6: The cache characterization surface for a 128 Kbyte fully associative
cache with 8-byte lines.
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Figure 5.7: The cache characterization surface for a 1 Mbyte fully associative cache
with 8-byte lines.

also visually connects the surface to the coordinates.

The first significant feature we see on the surfaces in Figures 5.5 – 5.7 is a trough

down the temporal axis. We term this the temporal trough. At the bottom of

the temporal trough the miss rate is 0%, indicating that references that have the

given stride/delay relationships are always hits in the cache. Everywhere else on

the cache characterization surface the miss rate is nearly 100%. For Figure 5.5, the

temporal trough extends to a delay of 2 Kwords, or 16 Kbytes. For Figure 5.6,

the temporal trough extends to 16 Kwords, or 128 Kbytes. And for Figure 5.7 the

temporal trough extends to 128 Kwords, or 1 Mbyte. In other words, the length of

the temporal trough matches the size of the given cache. More specifically, the delay

at which the temporal trough ends is equal to the number of lines in the cache.

This makes logical sense given what we know of fully associative caches where

the line size and granularity match. If d represents the number of lines in the given
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fully associative cache, any value repeated within a delay of d from the previous

reference to the value is a hit, any value repeated at a greater delay is a miss. The

points on the temporal axis that are close to 100% represent the capacity misses in

the cache. Remember that there are no conflict misses for fully associative caches.

Note that compulsory misses are not represented on the temporal axis. Values cause

compulsory misses when they have never been seen before in the trace, and values

that are seen for the first time have no earlier reference to the same value to cause

stride to be zero. Hence compulsory misses cannot occur on the temporal axis.

Another feature seen on some cache characterization surfaces is the overall slump

across all strides as the delay decreases. This feature is evident in Figure 5.7 but

not in Figures 5.5 or 5.6. This overall slump occurs when the cache size is large in

comparison to the working set size of the trace input into the cache characterization

program. As the cache size approaches the working set size the chance that any

given reference is already in the cache increases, regardless of the locality of the

given reference. Caches larger than 1 Mbyte have an overall slump on the cache

characterization surface that is even lower. If cache characterization surfaces in the

middle of your cache size range already exhibits an overall slump, then you know

that you need an input trace with a larger working set size to make the resulting

surfaces useful.

Now notice that we are able to create cache characterization surfaces for fully

associative caches with 8-byte lines and cache size up to 64 Mbytes. Using our

previous cache characterization program, used in [74], the maximum size we could

create was 256 Kbytes. We have improved our maximum cache size by a factor of

256.

Now we examine how changing the line size affects the cache characterization

surface. To do this, we hold the cache size consistent at 128 Kbytes and use only
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Figure 5.8: The cache characterization surface for a 128 Kbyte fully associative
cache with 16-byte lines.

fully associative caches. We saw earlier, in Figure 5.6, the cache with 8-byte lines.

Figure 5.8 shows a cache with 16-bytes lines, Figure 5.9 shows a cache with 32-byte

lines, and Figure 5.10 shows a cache with 64-byte lines.

It should be clear from this series of figures that increasing the line size increases

the width and decreases the length of the temporal trough. In fact, the width of

the temporal trough is directly related to the line size.

Note that the 8-byte line cache in Figure 5.6 has miss rate nearly 100% except

where stride is zero. The 16-byte line cache, in Figure 5.8, has miss rate nearly

100% except where the stride is ±1 or zero. When the stride is ±1, the miss rate is

about 50%; where the stride is zero, the miss rate is 0%. Again, this makes logical

sense. For a cache with 16-byte lines, if a value of the given string is ±1 from the

immediately previous value, there is a 50/50 chance that the new value was in the

same line as the previous value and therefore is a hit.

125



Figure 5.9: The cache characterization surface for a 128 Kbyte fully associative
cache with 32-byte lines.

Figure 5.10: The cache characterization surface for a 128 Kbyte fully associative
cache with 64-byte lines.
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(a) unbinned (b) binned

Figure 5.11: The miss rate for various strides when Cl = 8g. Figure 5.11(a) shows
the unbinned results and Figure 5.11(b) shows the binned results.

Now notice that the sides of the trough do not always rise linearly as the stride

increases. This is particularly evident in Figure 5.10. This occurs because of the

binning. We can best explain this visually using a line size of 8g. Figure 5.11(a)

shows the unbinned results and Figure 5.11(b) shows the binned results. A reference

that is stride ±3 from the previous reference has 37.5% chance of not being in the

same line. A reference stride ±4 has a 50% chance of being in the same line.

However, when the binning occurs, strides 3 and 4 are averaged together, and the

result is 43.75%. The final binned result, as seen in Figure 5.11(b), is not linear.

Another result of this binning is a non-linear relationship between the trough

width and cache line size. For example, no standard cache line size results in a

trough width of ±4. Table 5.1 contains the lookup table that relates trough width

to cache line size. To use this table, determine the stride at which the miss rate

nearly reaches 100% along the delay = 1 axis. This is the trough width. For

example, in Figure 5.10, the trough width is ±16. Then lookup the trough width in

Table 5.1 to obtain the result that Cl = 8g for the cache in Figure 5.10.
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trough width Cl

±1 g
±2 2g
±8 4g
±16 8g

Table 5.1: Lookup table relating trough width to Cl.

Recall how we said that the length of the temporal trough indicates the number

of lines in the cache. This becomes more significant now that we have differing line

sizes. Actually, we can now write an equation for fully associative caches that tells

us the cache size, given a few values from the cache characterization surface. For

fully associative caches,

Cs = d ∗ Cl, (5.8)

where d is the length of the temporal trough. Cl may either be known, or obtained

using Table 5.1.

We should mention that we processed the input random trace as if it has a

granularity of 8 bytes. In reality, artificially generated traces may be defined to have

arbitrary granularity. The declared granularity of the random stream is important

because Figure 5.6, for example, is not really a cache characterization surface for a

cache with 8-byte lines, it truly is a cache characterization surface for a cache where

the granularity of the input trace and the line size of the cache match. Figure 5.8

is actually a cache characterization surface for a cache where the granularity of the

input trace is half the size of the line size of the cache. Therefore, if a locality

surface were computed for a given trace with a granularity of 32 bytes, and the

cache we wished to examine had a line size of 32 bytes, we would use the cache

characterization surface in Figure 5.6 rather than the one in Figure 5.9. For this

reason, Table 5.1 determines the relationship between g and Cl and not the absolute
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Figure 5.12: The cache characterization surface for a 128 Kbyte direct mapped cache
with 8-byte lines.

cache line size.

Now we examine how changing the associativity affects the cache characterization

surface. In this case, we hold the cache size constant at 128 Kbytes and the line size

constant at 8-bytes and adjust the associativity. Figure 5.12 shows a direct mapped

cache and Figure 5.13 shows a 4-way associative cache. The effects of associativity

can be seen more clearly when we compare these surfaces with the related fully

associative 128 Kbyte cache with 8-byte lines in Figure 5.6.

Notice in the fully associative cache, in Figure 5.6, the bottom of the temporal

trough lies flat at a miss rate of zero. As we change the associativity to 4-way and

then direct mapped, the bottom of the trough begins to curve upward as the delay

increases. The point on the temporal axis where the value of the bin reaches 100%

is also at a larger delay.

This curve at the back of the temporal trough occurs because there are stride/delay

129



Figure 5.13: The cache characterization surface for a 128 Kbyte 4-way associative
cache with 8-byte lines.

events that would normally result in hits in a fully associative cache, but have been

evicted by conflict misses due to the set associativity. The lengthening of the trough

results from the other half of the story; stride/delay events that would normally be

evicted as capacity misses by a fully associative cache are sometimes found in the

cache because of the set associativity.

Notice how the curve at the back of the temporal trough is most dramatic in

Figure 5.12, which is the direct mapped cache. The slant of the back of the temporal

trough for the 4-way associative cache, in Figure 5.13 is almost as sharp as for the

fully associative cache in Figure 5.6. It is interesting how increasing the associativity

by only two factors so closely approximates a fully associative cache. When we take

into consideration that smaller associative caches are faster and easier to build [44],

we can now see why small associativies are a common choice for the caches of today’s

processors. In essence, a 4-way or 8-way associative cache is almost equivalent to a
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fully associative cache but has faster access times and is easier to build.

It is difficult to quantitatively determine the associativity of a cache based on

its cache characterization surface. A practiced eye can generally differentiate be-

tween direct mapped, 4-way associative, and fully associative, however more specific

determinations are difficult.

Regardless, it would be useful to determine the cache size for caches that are set

associative. To do this, we may continue to use Equation 5.8 and merely change

how the value for d is read on the surface. Instead of letting d be equal to where

the temporal trough reaches nearly 100%, we let d be equal to the delay where the

temporal trough reaches 50%. For fully associative caches, the back line of the trough

reaches from 0% to 100% within one cache size, so d does not change. For caches

that are set associative, the random data used to create the cache characterization

surfaces has an equal chance of being found in the cache when it would not have

been for a fully associative cache and of being a conflict miss, i.e. not found in the

cache when it would have been for a fully associative cache. Due to this equality,

the 50% point on the temporal trough is equivalent to the nearly 100% point for a

fully associative temporal trough.

Using this information, we now see if we can determine the cache configuration

for an unknown cache, given its cache characterization surface. Figure 5.14 shows a

cache characterization surface for an unknown cache configuration. We first observe

that the trough width is ±8. We use Table 5.1 to determine that Cl = 4g. We

now recall that our granularity is always 8 bytes in this dissertation, and therefore

Cl = 4g = 32 bytes.

We now observe that the back of the temporal trough is significantly curved. It

is as curved as any we have seen. We therefore conjecture that this cache is direct

mapped. The back of the trough reaches the 50% point at a delay of 4K, hence
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Figure 5.14: The cache characterization surface for a 128 Kbyte direct mapped cache
with 32-byte lines.

d = 4K. We use Equation 5.8 to calculate Cs = 4K ∗ 32 bytes = 128 Kbytes.

In fact, Figure 5.14 shows a direct mapped 128 Kbyte cache with 32-byte lines,

as predicted. It is interesting to observe that lessening the associativity not only

affects the back of the temporal trough but also the corners of the top of the trough.

Compare the corners in Figure 5.14 with the corners in Figure 5.9. Notice how the

fully associative cache has sharp, well defined corners. The direct mapped cache has

rounded, soft corners.

We can get a feel for how a particular workload would function in a given cache

by comparing the locality surface for the workload with the cache characterization

surface for the given cache. If the locality surface has a lot of volume where the

cache characterization surface has large miss rates, then performance is worse than

if the volume of the locality surface is entirely in the temporal trough of the cache

characterization surface. This ad hoc method confirms the qualitative assumptions
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we made in Chaper 4. For example, we assumed that the amount of data on the

temporal axis less than the cache size were hits, and the amount of data on the

temporal axis greater than the cache size were misses. The relationship of the

length of the temporal trough to cache size validates this assumption.

Further, we can now visually see how the cache line size relates to increasing

stride, now known as the width of the temporal trough. We can now visually see how

increasing line size helps any references that are physically close to recent references,

not just references that contribute to a large sequential ridge. When we observe the

softening of the back of the temporal trough for caches with less associativity, we

understand why caches with larger associativities have more predictable results.

5.4 Summary

In this chapter, we related caches and locality. We developed an equation that

calculates whether a specific element of a given string is a hit or miss in a given

cache. Researchers can use this equation to calculate the miss rate for the entire

string in the given cache. We then proved whether or not the miss rate can be

computed from the locality data for given types of cache configurations.

We also presented the miss surface and the miss rate surface. Since their useful-

ness is limited, we decided that they are more trouble than they are worth. However,

they did allow us to develop the cache characterization surface which has great value.

The cache characterization surface directly related how references with varying de-

grees of locality function in a given cache. Another use of the cache characterization

surface would be to validate the claims of alternative cache configurations. For ex-

ample, the column associative cache creators claim that their cache has the same
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performance as a 2-way associative cache [6]. It would be interesting to see if the

cache characterization surface for each cache is equivalent to the other cache.

We now have two useful surfaces. The locality surface describes a workload in

terms of locality, and the cache characterization surface describes caches in terms

of locality. Perhaps there is a way to combine the two surfaces to yield quantitative

cache results. Before attempting this in a practical setting, we first examine the

theoretical limitations of using locality to quantitatively predict cache miss rate.
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Chapter 6

Theoretical Limitations on

Locality

In Chapter 4 we showed that our locality function seems to qualitatively match

cache performance. It would be nice to use our locality surface to quantify cache

performance, but first we ask, “Is this possible?” Is there a function such that, given

a bag of locality data (or a locality surface) and a cache configuration, returns the

miss rate? Using the precise definitions of locality from Chapter 2 and caches from

Chapter 5, we show that we are limited in how well our locality functions predict

cache performance, depending on the cache configuration.

We do this by first examining under what circumstances two strings may have the

same locality data. We then examine, for various cache types, if there are situations

where two strings have different miss rates but equivalent locality data.
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6.1 When Two Strings Have the Same Locality

Data

We now investigate when two strings have the same locality data. This is of interest

when determining how valuable our locality metric is for predicting cache results.

If two strings have the same locality data but access a particular cache in different

ways, locality cannot precisely predict cache performance for that cache. However,

if any two strings with the same locality data always access a particular cache in

the same manner, our locality metric is more useful.

In this section, we examine when two strings have the same locality data, i.e.

when �(v) = �(w). If the locality data is the same, the locality count, the binned

locality count, and the locality surface are also the same.

Property 6.1. For two strings v and w, if �(v) = �(w), then h(�(v)) = h(�(w)),

H(�(v)) = H(�(w)), and L(v) = L(w).

It should be obvious from looking at the equations for visualizing locality data,

Equations 2.6, 2.8, and 2.9, that if the input locality bags are equal then the resulting

data is also equal.

We now discuss some equivalence relations on V that define equivalence classes

where all the members of the given class have the same locality. An equivalence

relation is well defined in set literature as “a binary relation on a set S that is

reflexive, symmetric, and transitive” [35, page 256]. For a given equivalence relation

ρ, an equivalence class of an element v ∈ V defined by ρ is the set [v]ρ = {w ∈
V |vρw}. We use here the definition for equivalence class found in Sudkamp [77,

page 14], with similar notation. We define and discuss the following four equivalence
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relations: string equality, string shift equivalence, base equivalence with equal order,

and equality with respect to locality.

6.1.1 String Equality

First, we formally define what it means for two strings to be equal. Here we use

the näıve definition of equality: two strings are equal if and only if they have the

same length and the same elements in the same order. Formally, v = w iff
[
(|v| =

|w|) ∧ ∀i(1 ≤ i ≤ |v|)(v[i] = w[i])
]

where v ∈ V , w ∈ V , and i is an integer.

Theorem 6.1. String equality is an equivalence relation on V .

Proof. First we note that for any string v, v = v since |v| = |v| and v[i] = v[i] for

any element of v. Hence string equality is reflexive.

Second, we show that for strings v and w, if v = w, then w = v. If v = w, then we

know that |v| = |w|. Due to the symmetry of equality, we know that |w| = |v|. Also,

since v = w, then for all elements of v, v[i] = w[i], which means that w[i] = v[i].

Hence w = v and string equality is symmetric.

Third, we show that for strings v, w, and x, if v = w and w = x, then v = x.

If v = w and w = x, then |v| = |w| and |w| = |x|. Since equality is transitive, we

know that |v| = |x|. Also, since v = w and w = x, we know that for any element

of v, v[i] = w[i] and for any element of w, w[i] = x[i]. Hence for any element of v,

v[i] = x[i]. This means that v = x and string equality is transitive.

Since string equality is reflexive, symmetric, and transitive, string equality is an

equivalence relation on V .

Remember that equivalence relations define equivalence classes. Hence [v]= is

the equivalence class of v defined by string equality. Since any equivalence relation

ρ is reflexive, we know that v ∈ [v]ρ for any type of equivalence class. Thus v ∈ [v]=.
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Property 6.2. If v and w are strings such that v = w, then �(v) = �(w).

The locality data function, �(v), is deterministic, meaning that the same string

always yields the same results. Therefore, two strings that are equivalent yield the

same results.

6.1.2 String Shift Equivalence

Another equivalence relation on V is what we term the string shift. One string is

a shift of another if the two strings are the same length, and each element of the

first string is equivalent to the same element of the second string plus a constant.

The constant must be an integer, but may be either positive, negative, or zero. We

write v = shift(w) to indicate that v is a shift of w. Formally, v = shift(w) iff[
(|v| = |w|) ∧ ∀i(1 ≤ i ≤ |v|)(v[i] = w[i] + c)

]
where v ∈ V , w ∈ V , i is an index

into either string, and c is a constant integer.

Example 6.1. Let v1 = 2, 7, 5, 10, 5, 2, 8 as defined in Example 2.1. Let v2 = 5,
10, 8, 13, 8, 5, 11 and v3 = 3, 9, 8, 14, 10, 8, 15.

Then v1 = shift(v2) since |v1| = |v2| and v1[1] = v2[1] − 3, v1[2] = v2[2] − 3,
v1[3] = v2[3] − 3, v1[4] = v2[4] − 3, v1[5] = v2[5] − 3, v1[6] = v2[6] − 3, and v1[7] =
v2[7] − 3.

v1 �= shift(v3). Even though |v1| = |v3|, the difference between the elements of
the strings is not constant since v1[1] = v3[1] − 1 and v1[2] = v3[2] − 2.

We use the term shift equivalent to indicate that two strings are string shifts

of each other. We write shift equivalence as
s
=. Formally, (v

s
= w) ≡ (v = shift(w)).

We now show that the string shift is an equivalence relation on V .

Theorem 6.2. String shift is an equivalence relation on V .

Proof. We must show that string shift is reflexive, symmetric, and transitive on V .

First we show that string shift is reflexive. Given string v we can easily see that
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|v| = |v| and ∀i(1 ≤ i ≤ |v|)(v[i] = v[i] + 0), hence v
s
= v. Therefore string shift is

reflexive on V .

Next, we show symmetry. We are given strings v and w where v
s
= w. To prove

symmetry, we must show that w
s
= v. Since v

s
= w, we know that |v| = |w| and

∀i(1 ≤ i ≤ |v|)(v[i] = w[i] + c). Therefore, |w| = |v|, due to the symmetry of

equality, and ∀i(1 ≤ i ≤ |w|)(w[i] = v[i] − c). If c is a constant integer, then −c is

also a constant integer. So w
s
= v, and string shift is symmetric on V .

Last, we show that string shift is transitive. We are given strings v, w, and x

where v
s
= w and w

s
= x. To prove it is transitive, we must show that v

s
= x. Since

v
s
= w, we know that |v| = |w|. Since w

s
= x, we know that |w| = |x|. Since equality

is transitive, we know that |v| = |x|.
We also know that ∀i(1 ≤ i ≤ |v|)(v[i] = w[i] + c) and ∀i(1 ≤ i ≤ |w|)(w[i] =

x[i] + d) where c and d are constants that may be different. Since |v| = |w|, we may

now write ∀i(1 ≤ i ≤ |v|)(v[i] = x[i] + d + c). Since d and c are both constants,

their sum is also a constant. Therefore, v
s
= x and string shift is transitive on V .

Since string shift is reflexive, symmetric, and transitive on V , we know that

string shift is an equivalence relation on V .

Since string shift is an equivalence relation, it also defines an equivalence class for

any string v. The notation for the equivalence class of v defined by shift equivalence

is [v] s
=
. Therefore, for any string w where w ∈ [v] s

=
we know that w

s
= v. We may

refer to any equivalence class defined by shift equivalence as a shift equivalence

class.

We now show that strings that are shift equivalent have the same locality data,

and hence all the members of a shift equivalence class have the same locality data.

Theorem 6.3. If v and w are strings such that v
s
= w then �(v) = �(w).
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Proof. Let k = |v|. Since v
s
= w, then k = |w| as well. Refer to Equation 2.5 for the

definition of locality data. We wish to see if

k⊎
i=1

�(v[i])
?
=

k⊎
i=1

�(w[i]).

Hence we may show that for all i, where 1 ≤ i ≤ k, �(v[i]) = �(w[i]).

Given the definition of string shift, we may rewrite string w as w = v[1]+c, v[2]+

c, · · · , v[k] + c. The stride between any two elements of v is therefore equal to the

stride between the same two elements of w:

stride(w[a], w[b]) = w[b] − w[a]

= (v[b] + c) − (v[a] + c)

= v[b] − v[a] + c − c

= v[b] − v[a]

= stride(v[a], v[b]),

where a and b are both valid indices of both v and w.

Similarly, the delay between any two elements of v is equal to the delay between

the same two elements of w. We first examine the case where the delay between two

elements of w is defined. In this situation:

delay(w[a], w[b]) = |δ({w[i] | (a ≤ i < b)})|

= |δ({v[i] + c | (a ≤ i < b)})|.

Adding a constant to each element of a set does not change the cardinality of the

set, so

|δ({v[i] + c | (a ≤ i < b)})| = |δ({v[i] | (a ≤ i < b)})|

= delay(v[a], v[b]).

140



We now examine the case where the delay between two elements of w is undefined.

This occurs when a ≥ b or there exists an i such that a < i < b and either

w[a] = w[i] or w[b] = w[i]. We wish to determine if delay(w[a], w[b]) is undefined iff

delay(v[a], v[b]) is undefined.

If either condition is true, then the delay is undefined. The first condition,

that a ≥ b, gives the same result whether we are referring to string v or string w.

Therefore, we must merely prove the second condition is equivalent for both strings.

We wish to see if ∃i(a < i < b)
[
(w[a] = w[i]) ∨ (w[b] = w[i])

]
is equivalent to

∃i(a < i < b)
[
(v[a] = v[i]) ∨ (v[b] = v[i])

]
.

We begin with ∃i(a < i < b)
[
(w[a] = w[i]) ∨ (w[b] = w[i])

]
. Since we know that

w[k] = v[k] + c for any valid index k, we may rewrite the condition as ∃i(a < i <

b)
[
(v[a]+ c = v[i]+ c)∨ (v[b]+ c = v[i]+ c)

]
. We can now subtract c from both sides

of each equality, resulting in ∃i(a < i < b)
[
(v[a] = v[i]) ∨ (v[b] = v[i])

]
, as desired.

We can use the same argument in the other direction to prove the “only if” portion.

Therefore, delay(w[a], w[b]) is undefined iff delay(v[a], v[b]) is undefined.

We have now covered both cases for the delay. We may now say that for any two

elements of w, delay(w[a], w[b]) = delay(v[a], v[b]). We previously showed that for

any two elements of w, stride(w[a], w[b]) = stride(v[a], v[b]). Therefore, we may now

write that for any two elements of w, s/d(w[a], w[b]) = s/d(v[a], v[b]). Therefore,

for all i, where 1 ≤ i ≤ k, �(v[i]) = �(w[i]). It follows that �(v) = �(w).

Theorem 6.4. For any shift equivalence class [v] s
=
, if w ∈ [v] s

=
then �(v) = �(w).

Proof. By definition of a shift equivalence class, if w ∈ [v] s
=
, then v

s
= w. By

Theorem 6.3, �(v) = �(w).
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6.1.3 Base Equivalence With Equal Order

When two adjacent elements of a string have the same value, we term the second

element an immediately recurring element. Formally, v[i] is an immediately

recurring element iff v[i − 1] = v[i], where v ∈ V and i is an integer such that

2 ≤ i ≤ |v|.

Example 6.2. Let v1 = 7, 2, 9, 9, 10, 1, 1, 12, 9. In this string there are two
immediately recurring elements: v1[4] and v1[7].

The string 1, 2, 1, 2, 1, 2, 3, 4, 2, 3 contains several recurring elements, but
none of them are immediately recurring.

The interesting thing about immediately recurring elements is that changing

their location in a string does not change the string’s locality data. Changing

the number of immediately recurring elements only changes the number of (0, 1)

stride/delay relationships in the locality data. In fact, the number of immediately

recurring elements in a string is equal to the count of the stride/delay combination

(0, 1) in the locality data for that string. We define the order of a string to be

the number of immediately recurring elements in the string. If we remove all of the

immediately recurring elements from a string, the result is what we term the base

of the string. If two strings have the same base and the same order, then they have

the same locality data. For this reason, we wish to define a new equivalence relation

on V , base equivalence with equal order.

First we formally define some new operations on strings. As just mentioned, we

let the order of a string v be the number of immediately recurring elements in v.

We formally define order(v) as follows:

order(v) =

|v|∑
k=1

p3(v, k)
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where

p3(v, k) =

⎧⎪⎨⎪⎩ 1 if (k > 1) ∧ (v[k] = v[k − 1]),

0 otherwise.

In the above equation, p3(v, k) is an intermediary function that returns 1 if v[k] is

an immediately recurring element and 0 otherwise.

We can also calculate the order of a substring, designated by v[i..j], where 1 ≤
i < j ≤ |v|. When taking the order of a substring, it does not matter if elements

of the substring are immediately recurring to elements not in the substring. The

substring is considered as a complete string itself. Formally,

order(v[i..j]) =

j∑
k=i

p4(v, i, k)

where

p4(v, i, k) =

⎧⎪⎨⎪⎩ 1 if (k > i) ∧ (v[k] = v[k − 1]),

0 otherwise.

In the above equation, p4(v, i, k) is another intermediary function which returns 1 if

v[k] is an immediately repeating element and k > i. It returns 0 otherwise. We use

p4(v, i, k) rather than p3(v, k) because requiring k > i means that the first element

of the substring is never marked as an immediately recurring element.

Example 6.3. Let v1 = 7, 2, 9, 9, 10, 1, 1, 12, 9 as defined in Example 6.2. Then
order(v1) = 2, order(v1[1..4]) = 1, order(v1[1..6]) = 1, and order(v1[4..6]) = 0.

Let v2 = 1, 2, 1, 2, 1, 2, 3, 4, 2, 3. Then order(v2) = 0.

Let v3 = 4, 4, 4, 4, 4, 4, 4. Then order(v3) = 6 and order(v3[6..7]) = 1.

If any element of a string is followed by one or more immediately recurring ele-

ments, then we may say that those immediately recurring elements are associated

with the original element. Note that an element may both be an immediately recur-

ring element and have elements associated with it. Also, an immediately recurring
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element may be associated with multiple elements. We write assoc(v, i) to indicate

the number of immediately recurring elements associated with v[i]:

assoc(v, i) =

|v|∑
k=i+1

p5(v, i, k)

where

p5(v, i, k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if k = i,

1 if
(
k > i

) ∧ (v[k] = v[i]
) ∧ (p5(v, i, k − 1) �= 0

)
,

0 otherwise.

In the above equation, p5(v, i, k) is another intermediary function. Remember that

we wish to determine what elements of v are associated with v[i]. The function

p5(v, i, k) returns 1 when i = k as a base mark. For larger values of k, p5(v, i, k)

returns 1 if v[i] and v[k] are equal and if p5(v, i, k−1) is also 1. The first requirement

means that v[k] is a repeat of the value v[i]. The second requirement means that

all elements between v[i] and v[k] are also equal to v[i]. In all other cases, p5(v, i, k)

returns 0.

Example 6.4. Let v1 = 7, 2, 9, 9, 10, 1, 1, 12, 9 and v3 = 4, 4, 4, 4, 4, 4,
4 as defined in Example 6.3. Then assoc(v1, 1) = 0 and assoc(v1, 3) = 1. Also,
assoc(v3, 1) = 6 and assoc(v3, 4) = 3.

Now we are ready to formally define the base of a string. Recall that we obtain

the base of a string by removing all the string’s immediately recurring elements. We

write base(v) to indicate the base of v.

If w = base(v), then w[i] = v[p6(v, i)] where |w| = |v| − order(v), 1 ≤ i ≤ |w|,
and p6(v, i) is defined as follows:

p6(v, i) =

⎧⎪⎨⎪⎩ 1 if i = 1,

p6(v, i − 1) + 1 + assoc
(
v, p6(v, i − 1)

)
otherwise.
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In the above equation, p6(v, i) is another intermediary function that returns the

index of the first instance of the ith unique element in v. It does this by taking

the index of the (i− 1)st unique element of v and then adding 1 and the number of

references associated with v[p6(v, i − 1)].

Example 6.5. Let v1 = 7, 2, 9, 9, 10, 1, 1, 12, 9, v2 = 1, 2, 1, 2, 1, 2, 3, 4, 2,
3, and v3 = 4, 4, 4, 4, 4, 4, 4 as defined in Example 6.3. Then base(v1) = 7, 2,
9, 10, 1, 12, 9, base(v2) = 1, 2, 1, 2, 1, 2, 3, 4, 2, 3, and base(v3) = 4. Note that
base(v2) = v2.

Property 6.3. For any string v, |base(v)| = |v| − order(v).

In other words, the length of the base of a string is equal to the length of the

original string minus the number of elements removed when creating the base, which

is the number of immediately recurring elements in the original string.

Property 6.4. For any string v, order(base(v)) = 0.

Since the order of a string counts the number of immediately recurring elements

and the base of a string removes the immediately recurring elements, then it makes

sense that the order of the base of any string is always be zero.

Property 6.5. For a given string v, if order(v) = 0, then v = base(v).

If the order of a string is zero, then that string must not contain any immediately

recurring elements. Taking the base of a string simply removes the immediately

recurring elements. If there are none to remove, then the string is unchanged.

We now show that if two arbitrary strings have the same base, then they have

the same number of immediately recurring elements if and only if they have the

same length. This allows us to interchange referring to two strings having the same

base and length with two strings having the same base and order.

Theorem 6.5. If base(v) = base(w), then order(v) = order(w) iff |v| = |w|.
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Proof. We know that |base(v)| = |v|−order(v) and |base(w)| = |w|−order(w) from

Property 6.3. Since base(v) = base(w), we can write |v|−order(v) = |w|−order(w).

Now we first show that if the orders are the same, then the length is the same.

Given order(v) = order(w), we may write |v| − order(v) = |w| − order(v). Adding

order(v) to both sides we are left with |v| = |w|. Therefore, if base(v) = base(w)

and order(v) = order(w) we know that |v| = |w|.
Now we show that if the lengths are the same, then the order is the same.

Given |v| = |w|, we may write |v| − order(v) = |v| − order(w). Subtracting |v|
from both sides and multiplying both sides by −1, we have order(v) = order(w).

So if base(v) = base(w) and |v| = |w| then order(v) = order(w). Therefore, if

base(v) = base(w), then order(v) = order(w) if and only if |v| = |w|.

When two strings have the same base, then the locality data is very nearly the

same. For this purpose, we define base equivalence as follows. Two strings v

and w are base equivalent if their bases are equal. We write base equivalent as
b
=.

Formally, (v
b
= w) ≡ (base(v) = base(w)).

When the lengths of two strings are the same, and the bases are the same, then

the locality data is the same. The only thing that may have changed is where

the immediately recurring elements occur in the strings, and floating immediately

recurring elements to other locations in the string does not change the locality data.

Since they yield the same locality information, for some purposes we may want

to treat all such strings as if they are the same. So we define a version of base

equivalence that requires the lengths of the strings to be the same.

Recall that the order of a string is the number of immediately recurring elements

in the string. Hence, if for string v, order(v) = n then we say string v has order

n. Two strings v and w are base equivalent with equal order if they have the same
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base and equal orders. We write base equivalent with equal order as
bo
=. Formally,

(v
bo
= w) ≡ (base(v) = base(w) ∧ order(v) = order(w)).

Example 6.6. Let v1 = 7, 2, 9, 9, 10, 1, 1, 12, 9, v2 = 1, 2, 1, 2, 1, 2, 3, 4, 2, 3,
and v3 = 4, 4, 4, 4, 4, 4, 4 as defined in Example 6.3.

Let v4 = 4, 4, 4. Then v4
b
= v3 since base(v4) = 4 and base(v3) = 4. But v4 �bo= v3

since order(v4) = 2 and order(v3) = 6.

Let v5 = 7, 7, 7, 2, 9, 10, 1, 12, 9. Then v5
b
= v1 and v5

bo
= v1 since base(v5) =

base(v1) = 7, 2, 9, 10, 1, 12, 9 and order(v5) = order(v1) = 2.

Theorem 6.6. Base equivalence is an equivalence relation on V .

Proof. Two strings, v and w, are base equivalent if and only if base(v) = base(w).

To show that base equivalence is an equivalence relation on V , we must show that

base equivalence is reflexive, symmetric, and transitive on V .

First, we show base equivalence is reflexive. It should be obvious to see that

v
b
= v since base(v) = base(v).

Next we show base equivalence is symmetric. Assuming v
b
= w, show that

w
b
= v. By definition, base(v) = base(w). Since equality is symmetric, we may write

base(w) = base(v) and hence w
b
= v.

Last, we show that base equivalence is transitive. Given v
b
= w and w

b
= x, show

that v
b
= x. By definition, we know that base(v) = base(w) and base(w) = base(x).

Since equality is transitive, we can see that base(v) = base(x) and hence v
b
= x.

Since base equivalence is reflexive, symmetric, and transitive on V , it is an

equivalence relation on V .

Since base equivalence is an equivalence relation on V , it also defines an equiv-

alence class for any string v. The notation for the equivalence class of v defined

by base equivalence is [v] b
=
. We may refer to any equivalence class defined by base

equivalence as a base equivalence class.
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We now show that all strings that are base equivalent have the same locality

data when all the (0, 1) stride/delay relationships are removed.

Theorem 6.7. If v and w are strings such that v
b
= w, then �(v)−σs=0∧d=1(�(v)) =

�(w) − σs=0∧d=1(�(w)).

Proof. First, we show that for any string v, �(base(v)) = �(v)−σs=0∧d=1(�(v)). This

takes a number of steps. Recall Equation 2.5,

�(v) =

|v|⊎
i=1

�(v[i]).

For all the elements of v that are not immediately recurring elements, the locality

data of that element in the string is the same as the locality data of that same

element in the base. In other words, when computing the locality data of a non-

immediately recurring element of a string, removing all the immediately recurring

elements from the string does not change that element’s locality data. Formally,

we must show that, given u = base(v), ∀v[i](v[i] �= v[i − 1])
[
�(v[i]) = �(u[k]) where

k = i − order(v[1..i])
]
.

Let v[a] be an arbitrary element of v such that a < i. We wish to show that

removing all the immediately recurring elements between v[a] and v[i] does not

change s/d(v[a], v[i]). Removing immediately recurring elements does not change

whether or not s/d(v[a], v[i]) is defined as long as v[a] is not an immediately recurring

element. If s/d(v[a], v[i]) is undefined, then there is some element between v[a] and

v[i] equal to either v[a] and v[i]. Since we are only removing immediately recurring

elements, this does not change. If s/d(v[a], v[i]) is defined, removing elements cannot

change that.

Removing any number of elements cannot change the value of stride(v[a], v[i])

since that is only dependent on the values of v[a] and v[i] and not their indices. Re-

moving immediately recurring elements also does not change the value of delay(v[a], v[i])
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when it is defined, since in that case the delay is simply the count of the number

of unique elements. Removing immediately recurring elements does not change the

unique count.

The only time when removing immediately recurring elements from a string

changes s/d(v[a], v[i]) is when v[a] is itself an immediately recurring element. We

now show that the value of s/d(v[a], v[i]) is still preserved. Let v[b] be the element

that is associated with v[a]. Note that b < a, v[b] = v[a], and for any j such that b <

j < a, v[b] = v[j]. Since b < a and v[b] = v[a], delay(v[b], v[i]) is undefined. However,

after removing v[a] and the other immediately recurring elements, if delay(v[a], v[i])

was not undefined, then delay(v[b], v[i]) is no longer undefined, instead it is equal

to delay(v[a], v[i]). Since v[b] = v[a], stride(v[b], v[i]) = stride(v[a], v[i]). Thus

s/d(v[b], v[i]) = s/d(v[a], v[i]) and the stride/delay relationship is not lost.

We now know that removing all the immediately recurring elements of a string

does not change an element’s locality data. This allows us to write

�(base(v)) =
⊎

v[i] �=v[i−1]

�(v[i])

=

|v|⊎
i=1

�(v[i]) −
⊎

v[i]=v[i−1]

�(v[i])

= �(v) −
⊎

v[i]=v[i−1]

�(v[i]).

Next, we show that �(v[i]) = {(0, 1)} when v[i] is an immediately recurring

element. By definition of immediately recurring element, we know that v[i] = v[i −
1]. This means that stride(v[i − 1], v[i]) = v[i] − v[i − 1] = 0 and delay(v[i −
1], v[i]) = |δ({v[i− 1]})| = |{v[i− 1]}| = 1. Therefore, (0, 1) ∈ �(v[i]) when v[i] is an

immediately recurring element. Now we must show that (0, 1) is the only element

of �(v[i]). Recall that the delay, and the stride/delay relationship, between two

elements is undefined when either element is equal to another element between the
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two. For any earlier element of v, v[i − 1] is an element between the two, and since

v[i] = v[i − 1], the delay and the stride/delay relationship is undefined. Therefore

(0, 1) is the only stride/delay relationship in �(v[i]), and �(v[i]) = {(0, 1)} when v[i]

is an immediately recurring element.

Now we show that if v[i] is not an immediately recurring element then (0, 1) �∈
�(v[i]). Recall that the delay is either undefined or the number of unique elements

between two given elements, inclusive of the earlier and exclusive of the later. If v[i]

is not an immediately recurring element, then delay(v[i − 1], v[i]) = 1. If v[i − 1]

is not an immediately recurring element, then delay(v[i − 2], v[i]) = 2. The delay

between an earlier element and v[i] is greater than 1, since there are always at least

two unique elements to count, i.e. v[i− 2] and v[i− 1]. If v[i− 1] is an immediately

recurring element, then delay(v[i − 2], v[i]) is undefined, since v[i − 2] = v[i − 1].

So the delay is only 1 between v[i − 1] and v[i]. In this instance, v[i] is not an

immediately recurring element, so v[i − 1] �= v[i] and stride(v[i − 1], v[i]) �= 0.

Therefore (0, 1) �∈ �(v[i]).

Then we can write

⊎
v[i]=v[i−1]

�(v[i]) = σs=0∧d=1(�(v))

and by replacement

�(base(v)) = �(v) − σs=0∧d=1(�(v)).

Now we return to proving that if v
b
= w then �(v) − σs=0∧d=1(�(v)) = �(w) −

σs=0∧d=1(�(w)). Since v and w are base equivalent, we know that

base(v) = base(w)

and naturally

�(base(v)) = �(base(w)).
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We just proved that the locality data of the base of a string is equal to the

locality data of the string minus the select of all the (0, 1) elements in the string

locality data. This allows us to rewrite the above as

�(v) − σs=0∧d=1(�(v)) = �(w) − σs=0∧d=1(�(w)),

which is what we desired to prove.

We now show that base equivalence with equal order is also an equivalence

relation on V .

Theorem 6.8. Base equivalence with equal order is an equivalence relation on V .

Proof. Two strings, v and w, are base equivalent with equal order if and only if

base(v) = base(w) and order(v) = order(w). To show that base equivalence with

equal order is an equivalence relation on V , we must show that it is reflexive, sym-

metric, and transitive on V .

First, we show base equivalence with equal order is reflexive. It should be obvious

to see that v
bo
= v since base(v) = base(v) and order(v) = order(v).

Next we show base equivalence with equal order is symmetric. Assuming v
bo
= w,

we show that w
bo
= v. By definition, base(v) = base(w) and order(v) = order(w).

Since equality is symmetric, we may write base(w) = base(v) and order(w) =

order(w). Hence w
bo
= v.

Last, we show that base equivalence with equal order is transitive. Given v
bo
= w

and w
bo
= x, we show that v

bo
= x. By definition, we know that base(v) = base(w) and

base(w) = base(x). Since equality is transitive, we can see that base(v) = base(x).

By definition, we also know that order(v) = order(w) and order(w) = order(x).

Again, since equality is transitive, we know that order(v) = order(x). By showing

that both base(v) = base(x) and order(v) = order(x), we know v
bo
= x.
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Since base equivalence with equal order is reflexive, symmetric, and transitive

on V , it is an equivalence relation on V .

Since base equivalence with equal order is an equivalence relation, it also defines

an equivalence class for any string v. The notation for the equivalence class of v

defined by base equivalence with equal order is [v]bo
=
. We may refer to any equiv-

alence class defined by base equivalence with equal order as a base and order

equivalence class.

We now show that all strings that are base equivalent with equal order have the

same locality data and hence all the members of a base and order equivalence class

have the same locality data.

Theorem 6.9. If v and w are strings such that v
bo
= w then �(v) = �(w).

Proof. First, we show that for any string v,

�(v) =

order(v)⊎
i=1

{(0, 1)} � �(base(v)). (6.1)

Recall from the proof for Theorem 6.7 that if v[i] is an immediately recurring

element, then �(v[i]) = {(0, 1)}. So any time we add an immediately recurring

element to a string, its locality data consists entirely of the stride/delay relationship

(0, 1).

We now show that adding an immediately recurring element does not change

the locality data of any of the other elements. We wish to examine the stride/delay

relationship between two arbitrary elements of v, namely v[a] and v[b] where a < b.

If we add an immediately recurring element, v[i], such that i < a or b < i, the

stride/delay relationship between v[a] and v[b] is not affected at all.

Now let us look closely at the case where a < i < b. stride(v[a], v[b]) is not

affected, since v[b] − v[a] is still the same. If i �= a + 1, then delay(v[a], v[b]) is not
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affected either, adding an element that is the same as an element already there does

not change the number of unique elements. Also, if delay(v[a], v[b]) is defined, then

we know that neither v[a] nor v[b] is equal to any element in between. Since v[i] is

an immediately recurring element, it is equal to an element between v[a] and v[b],

meaning v[a] and v[b] are still not equal to any element between them as long as

i �= a+1. If delay(v[a], v[b]) is undefined, that means that either v[a] or v[b] is equal

to an element between them. Adding a new element does not change this.

In the case where i = a + 1, if delay(v[a], v[b]) was undefined, then it is still

undefined. If delay(v[a], v[b]) was defined, then we have a change. Since v[i] is an

immediately recurring element and i = a + 1, we know that v[a] = v[i], meaning

that v[a] is now equal to an element between v[a] and v[b] and the delay is now

undefined. However, delay(v[i], v[b]) gives the same value as delay(v[a], v[b]) did.

Since v[a] = v[i], stride(v[i], v[b]) = stride(v[a], v[b]). So even when there is a

change, the overall stride/delay relationships remain the same.

Therefore, adding an immediately recurring element to a string merely adds

one (0, 1) stride/delay relationship to the locality data. Adding any number of

immediately recurring elements to a string adds that number of (0, 1) stride/delay

relationships to the locality data.

Since the strings v and w are base equivalent with equal order, we know that

order(v) = order(w). Also, base(v) = base(w) which means that �(base(v)) =

�(base(w)). This allows us to replace order(v) with order(w) in Equation 6.1, and
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�(base(v)) with �(base(w)), with the following result:

�(v) =

order(v)⊎
i=1

{(0, 1)} � �(base(v))

=

order(w)⊎
i=1

{(0, 1)} � �(base(w))

= �(w).

We have now shown that when two strings are base equivalent with equal order,

the locality data of one string is equal to the locality data of the other.

6.1.4 Equal with respect to locality

We now wish to group all the strings that yield the same locality data into the same

equivalence class. First we discuss a few more ways that two different strings may

yield the same locality data. As has already been shown, if v
s
= w then �(v) = �(w)

and if v
bo
= w then �(v) = �(w). We can also easily see that v and w have the same

locality data if v
s
= x

bo
= w even if v �= w. Note that v � s= w and v �bo= w and yet v and

w have the same locality data.

For this reason, we define a chain of equalities. We say that v chains w over

s
= and

bo
= if there exists some finite number of strings, x1 . . . xn, such that v � x1 �

x2 · · ·xn �w where � may be either
s
= or

bo
=. We can now say that if v chains w over

s
= and

bo
= then �(v) = �(w).

There are other ways in which two different strings may have the same locality

data. We now give one example which we term reverse d1 equivalence. We

later show that reverse d1 equivalence is not an equivalence relation on V , since it

is neither reflexive nor transitive. Before giving a precise definition of reverse d1

equivalence, we define a new function on a string.
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The delay = 1 string, or d1 string, is a string that contains, in order, all the

strides that occur at a delay of 1 in a given string. We write d1(v) to indicate the

delay = 1 string of v. Notice that the length of the d1 string is always one less than

the length of the given string, similar to Theorem 2.8. Formally, given a string v,

w = d1(v) when |w| = |v| − 1 and w[i] = v[i + 1] − v[i] where 1 ≤ i ≤ |w|.

Example 6.7. Let v1 = 7, 2, 9, 9, 10, 1, 1, 12, 9, v2 = 1, 2, 1, 2, 1, 2, 3, 4, 2, 3,
and v3 = 4, 4, 4, 4, 4, 4, 4 as defined in Example 6.3.

Then d1(v1) = −5, 7, 0, 1, −9, 0, −11, −3, d1(v2) = 1, −1, 1, −1, 1, 1, 1, −2,
1, and d1(v3) = 0, 0, 0, 0, 0, 0.

We can also use the d1 string to compute the stride between any two elements

of the original string.

Property 6.6. For a string v, if u = d1(v), then

stride(v[a], v[b]) =
b−1∑
i=a

u[i].

Since the d1 string records the difference between immediately successive elements

of the original string, v, we can determine the stride between non-successive elements

of v by summing all the intermediate differences.

Notice that saying that two strings have equal d1 strings is equivalent to saying

that the two strings are shift equivalent. We formalize this as a property.

Property 6.7. For two strings v and w, d1(v) = d1(w) iff v
s
= w.

As was shown in the proof for Theorem 6.3, when two strings are shift equivalent,

the stride between any two elements of one string is the same as the stride between

the same two elements of the other string.

Two strings v and w have equivalent locality data if the d1 string for v is equal

to the reverse of the d1 string of w. Recall the reverse function of a string, defined

in Section 2.1. Example 6.8 demonstrates this for two specific strings.
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Example 6.8. Let v1 = 1, 4, 8, 6, 2, 5, 3, 10, 7, 9 and v2 = 2, 4, 1, 8, 6, 9, 5,
3, 7, 10. We may therefore calculate that d1(v1) = 3, 4, −2, −4, 3, −2, 7, −3, 2,
d1(v2) = 2, −3, 7, −2, 3, −4, −2, 4, 3, and rev(d1(v2)) = 3, 4, −2, −4, 3, −2, 7,
−3, 2. It is easy to see that d1(v1) = rev(d1(v2)).

If we calculate the locality data for v1 and v2, we get equal results:

�(v1) = {(−4, 1), (−3, 1), (−2, 1), (−2, 1), (2, 1), (3, 1), (3, 1),
(4, 1), (7, 1), (−6, 2), (−1, 2), (−1, 2), (1, 2), (2, 2), (4, 2),
(5, 2), (7, 2), (−3, 3), (−3, 3), (−2, 3), (2, 3), (5, 3), (6, 3),
(8, 3), (−5, 4), (1, 4), (1, 4), (4, 4), (4, 4), (5, 4), (−1, 5),
(1, 5), (2, 5), (4, 5), (7, 5), (−1, 6), (2, 6), (3, 6), (6, 6),
(1, 7), (3, 7), (9, 7), (5, 8), (6, 8), (8, 9)} = �(v2).

We later show that this is true for any two strings where the d1 string of one

is equal to the reverse of the d1 string of the other. For this reason we name this

property reverse d1 equivalence. Two strings are reverse d1 equivalent if and only

if the d1 string for one string is equal to the reverse of the d1 string for the second

string. We write reverse d1 equivalence as
r
=. Formally, (v

r
= w) ≡ (d1(v) =

rev(d1(w))).

Theorem 6.10. Reverse d1 equivalence is symmetric but not reflexive or transitive.

Proof. Two strings, v and w, are reverse d1 equivalent if and only if d1(v) =

rev(d1(w)).

First, we show that reverse d1 equivalence is symmetric. If v
r
= w, then we know

that d1(v) = rev(d1(w)). We know take the reverse of both sides of the equation,

yielding rev(d1(v)) = rev(rev(d1(w))). By Theorem 2.1, rev(rev(d1(w))) = d1(w).

We now know that rev(d1(v)) = d1(w). By the reflexitivity of equality, d1(w) =

rev(d1(v)) and w
r
= v. Hence reverse d1 equivalence is symmetric.

Now we show that reverse d1 equivalence is not reflexive. If v
r
= v, then d1(v) =

rev(d1(v)). It is easy to see that this is not true unless the d1 string of v is its own

reverse. Hence v � r= v for some v ∈ V and reverse d1 equivalence is not reflexive.
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Last, we show that reverse d1 equivalence is not transitive. Given v
r
= w and w

r
=

x we wish to show that v
r
= x is not necessarily true. Due to the symmetry of reverse

d1 equivalence, we can write that w
r
= v and hence rev(d1(v)) = d1(w). Since w

r
= x,

we write d1(w) = rev(d1(x)). Since equality is transitive, rev(d1(v)) = rev(d1(x)).

Taking the reverse of both sides and using Theorem 2.1 we obtain d1(v) = d1(x).

Now, unless the d1 string of x is its own reverse, d1(v) �= rev(d1(x)). Hence v � r= x

and reverse d1 equivalence is not transitive.

Theorem 6.11. Reverse d1 equivalence is not an equivalence relation on V .

Proof. To be an equivalence relation on V , reverse d1 equivalence must be reflexive,

symmetric, and transitive. In Theorem 6.10 we saw that reverse d1 equivalence is

neither reflexive nor transitive. Hence it cannot be an equivalence relation.

Theorem 6.12. If v
r
= w then �(v) = �(w).

Proof. First, we remind ourselves that since v
r
= w, we know that d1(v) = rev(d1(w)).

Now, we prove this theorem using induction on the length of v.

We first examine the base case, where |v| = 2. Let us write that v = v[1], v[2]

and w = w[1], w[2]. Then d1(v) = v[2] − v[1] and d1(w) = w[2] − w[1]. Since

d1(v) = rev(d1(w)), we know that v[2] − v[1] = w[2] − w[1]. Then we can write

�(v) = {(v[2] − v[1], 1)} = {(w[2] − w[1], 1)} = �(w).

Next, we assume that when |v| = k, �(v) = �(w).

Lastly, we prove that when |v| = k + 1, �(v) = �(w). Notation is very important

here. Let vk and wk be the strings that are length k, where we already know

�(vk) = �(wk). Let vk+1 and wk+1 be the strings of length k + 1. The two sets of
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strings relate as follows:

vk+1 = vk+1[1], vk+1[2], · · · , vk+1[k], vk+1[k + 1]

= vk[1], vk[2], · · · , vk[k], vk+1[k + 1]

wk+1 = wk+1[1], wk+1[2], wk+1[3], · · · , wk+1[k + 1]

= wk+1[1], wk[1], wk[2], · · · , wk[k].

Notice that the added elements that change the strings from length k to length

k + 1 come in different places. In string v the added element is at the end and in

string w it is at the beginning. This is because of the reverse equality requirement.

We know that d1(vk) = rev(d1(wk)). Adding an element to the end of vk adds the

element vk[k] − vk[k − 1] to the end of d1(vk), which means vk[k] − vk[k − 1] must

be added to the beginning of d1(wk), since the d1 strings are reverses of each other.

Hence we get a new element on the beginnning of the string w.

Using this notation, we know that �(vk) = �(wk) and we wish to prove that

�(vk+1) = �(wk+1). Recall from the definition of locality data that

�(vk+1) =

k+1⊎
i=1

�(vk+1[i]).

We can rewrite this as

�(vk+1) = �(vk) � �(vk+1[k + 1]).

We can write the locality data for wk+1 as

�(wk+1) =

k⊎
i=1

{s/d(wk+1[1], wk[i])} � �(wk).

Since we know that �(vk) = �(wk), we need only show

�(vk+1[k + 1])
?
=

k⊎
i=1

{s/d(wk+1[1], wk[i])}
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to prove that �(vk+1) = �(wk+1). To show that the two sides are equal, we prove

that each side is a subset of the other side. First, we show that the left side is a

subset of the right side.

To do this, we pick an arbitrary element of vk+1 that is earlier than vk+1[k + 1].

Let vk+1[a] be such an element. Note that 1 ≤ a < k + 1. For any such a where

s/d(vk+1[a], vk+1[k+1]) is defined, we know that s/d(vk+1[a], vk+1[k+1]) ∈ �(vk+1[k+

1]) and must prove that s/d(vk+1[a], vk+1[k + 1]) ∈ ⊎k
i=1{s/d(wk+1[1], wk[i])}.

First, we examine the stride portion of the stride/delay relationship, using Prop-

erty 6.6:

stride(vk+1[a], vk+1[k + 1]) =

k∑
i=a

d1(vk+1)[i]

=

k+1−a∑
i=1

d1(wk+1)[i]

= stride(wk+1[1], wk+1[k + 1 − a])

= stride(wk+1[1], wk[k − a]).

Next, we examine the delay portion. The number of unique references be-

tween vk+1[a] and vk+1[k] can be determined by examining the d1 string between

d1(vk+1[a]) and d1(vk+1[k − 1]). One may determine the number of repeated el-

ements by noting the number of times you can sum any number of consecutive

d1 string elements with the result of zero. The same answer is reached if the d1

string is reversed, so we can instead examine the elements between d1(wk+1[1]) and
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d1(wk+1[k − a]) and get the same result. Hence,

delay(vk+1[a], vk+1[k + 1]) = |δ({vk+1[a] · · · vk+1[k]})|

= |δ({wk+1[1] · · ·wk+1[k − a + 1]})|

= |δ({wk+1[1] · · ·wk[k − a]})|

= delay(wk+1[1], wk[k − a]).

Therefore, we know that s/d(vk+1[a], vk+1[k + 1]) = s/d(wk+1[1], wk[k − a]),

which is an element of
⊎k

i=1{s/d(wk+1[1], wk[i])}. So, for any stride/delay rela-

tionship in �(vk+1[k + 1]) we know the same stride/delay relationship exists in⊎k
i=1{s/d(wk+1[1], wk[i])}. We have just shown that

�(vk+1[k + 1]) ⊆
k⊎

i=1

{s/d(wk+1[1], wk[i])}.

We now show that the right side is a subset of the left side. We pick an arbitrary

element of
⊎k

i=1{s/d(wk+1[1], wk[i]])}. Let i = a and assume that s/d(wk+1[1], wk[a])

is defined. If it is not defined, then it is not an element of
⊎k

i=1{s/d(wk+1[1], wk[i]])}
and we do not need to consider it.

Again, we examine the stride first, using Property 6.6:

stride(wk+1[1], wk[a]) =

a−1∑
i=1

d1(wk+1)[i]

=
k∑

k−a+2

d1(vk+1)[i]

= stride(vk+1[k − a + 2], vk+1[k + 1]).

Now we examine the delay:

delay(wk+1[1], wk[a]) = |δ({wk+1[1] · · ·wk[a − 1]})|

= |δ({vk+1[k − a + 2] · · · vk+1[k]})|

= delay(vk+1[k − a + 2], vk+1[k + 1]).
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Therefore, we know that s/d(wk+1[1], wk[a]) = s/d(vk+1[k − a + 2], vk+1[k +

1]), which is an element of �(vk+1[k + 1]). So, for any stride/delay relationship

in
⊎k

i=1{s/d(wk+1[1], wk[i])} we know the same stride/delay relationship exists in

�(vk+1[k + 1]). We have just shown that

k⊎
i=1

{s/d(wk+1[1], wk[i])} ⊆ �(vk+1[k + 1]).

And we may now write that

�(vk+1[k + 1]) =

k⊎
i=1

{s/d(wk+1[1], wk[i])}.

Which is what we needed to show that �(vk+1) = �(wk+1). Therefore, by induc-

tion on the length of the string, if v
r
= w then �(v) = �(w).

We can also notice that if the reverse of the d1 string is equal to the d1 string,

then two strings being reverse d1 equivalent is the same as the two strings being

string shift equivalent.

Property 6.8. For any two strings v and w, if rev(d1(v)) = d1(v) and v
r
= w, then

v
s
= w.

Since v
r
= w, we know that d1(v) = rev(d1(w)). We can replace d1(v) with

rev(d1(v)), since they are equal. We then take the reverse of both sides and use

Theorem 2.1 to remove the double reverses. This leaves us with d1(v) = d1(w).

From Property 6.7 we now know that v
s
= w.

We must now add reverse d1 equivalence to our list of equivalences over which

one string may chain another. Specifically, we now say that if v chains w over
s
=,

bo
=,

or
r
=, then �(v) = �(w). However, there still exist other ways by which �(v) = �(w).

We now give one example.
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Example 6.9. Let v1 = 3, 8, 2, 8, 3. Let v2 = 2, 8, 3, 8, 2. Let v3 = 8, 2, 7, 2, 8. When
we compute the locality data for each string, they are equivalent:

�(v1) = {(−6, 1), (−5, 1), (5, 1), (6, 1), (−1, 2), (0, 2), (1, 2), (0, 3)}
= �(v2)
= �(v3).

Notice in this example that v1 � s= v2, v1 � s= v3, v1 �bo= v2, v1 �bo= v3, v1 � r= v2, v1 � r= v3,

and v1 does not chain either v2 or v3 over
s
=,

bo
=, and

r
=. Therefore, there must

exist at least one other way where different strings may have the same locality. We

believe that the list of ways various strings may have the same locality grows as the

length of the strings increases, so we do not attempt to list all these ways in this

dissertation.

When two strings have the same locality, whether by one of the equivalences we

have discussed in this chapter, or one chains the other over all known equivalences,

or by some way not discussed here, we say that the strings are equal with respect

to locality. We write
l
= to indicate equal with respect to locality. Formally, v

l
= w

iff �(v) = �(w).

Theorem 6.13. Equality with respect to locality is an equivalence relation on V .

Proof. We must show that equality with respect to locality is reflexive, symmetric,

and transitive on V . First we show it is reflexive. Given string v, we can easily see

that v
l
= v since �(v) = �(v). Therefore equality with respect to locality is reflexive

on V .

Next, we show symmetry. Given two strings, v and w, we must show that if

v
l
= w then w

l
= v. If v

l
= w, then �(v) = �(w). Due to the symmetry of equality,

we know that �(w) = �(v) and w
l
= v. Hence equality with respect to locality is

symmetric on V .

Last, we show equality with respect to locality is transitive. Given three strings,

v, w, and x, we must show that if v
l
= w and w

l
= x, then v

l
= x. Since v

l
= w and
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w
l
= x, we may write that �(v) = �(w) and �(w) = �(x). Since equality is transitive,

we can see that �(v) = �(x) and therefore v
l
= x. Hence equality with respect to

locality is transitive on V .

Since equality with respect to locality is reflexive, symmetric, and transitive on

V , then it is an equivalence relation on V .

Since equality with respect to locality is an equivalence relation, it also defines

an equivalence class for any string v. The notation for the equivalence class of v

defined by equality with respect to locality is [v] l
=
. We may refer to any equivalence

class defined by equality with respect to locality as a locality equivalence class.

Theorem 6.14. If �(v) = �(w), then |v| = |w|.

Proof. If �(v) = �(w), then

σd=1(�(v)) = σd=1(�(w)),

and

πs

[
σd=1(�(v))

]
= πs

[
σd=1(�(w))

]
.

Choosing the stride portion of all the stride/delay relationships where d = 1

from a locality bag is equivalent to putting all the elements of the d1 string in a

bag, i.e. πs

[
σd=1(�(v))

]
= {d1(v)}. Therefore,

{d1(v)} = {d1(w)}.

If the bags are equivalent, then the number of elements in each bag is equivalent:

∞∑
i=−∞

#
(
i, {d1(v)}) =

∞∑
i=−∞

#
(
i, {d1(w)}).

Counting the number of elements in a bag that consists of all the elements of a

string is equivalent to obtaining the length of the string, i.e.
∑∞

i=−∞ #
(
i, {v}) = |v|.
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Therefore,

|d1(v)| = |d1(w)|.

From the definition of the d1 string, we know that |d1(v)| = |v| − 1. So,

|v| − 1 = |w| − 1

and

|v| = |w|.

Therefore, if �(v) = �(w), then |v| = |w|.

Corollary 6.1. If |v| �= |w|, then �(v) �= �(w).

Proof. This follows from the simple logic result that if A → B and ∼ B, then ∼ A. If

we let A be equivalent to the statement that �(v) = �(w) and B be equivalent to the

statement that |v| = |w|, then A → B is the logical representation of Theorem 6.14.

For this corollary, we assume that |v| �= |w|, or ∼ B. We can now conclude ∼ A, or

�(v) �= �(w).

6.1.5 How the various kinds of equalities relate

All these different types of equivalence classes relate to each other as shown in

Figure 6.1. Relating the equivalence classes like this helps us to recognize how far

reaching our information about a particular string is. For example, if a string is base

equivalent with equal order to another string, do we know anything about whether

or not the two strings are also equal, shift equivalent, or locality equivalent? We

now put into theorems and prove some of the relationships shown in Figure 6.1.

We already saw in Section 6.1.4 that there may be a string, w, that has the

same locality as string v without being either equal or string shift equivalent or base

equivalent with equal order. We now show that any string, w, that is either string
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[v]=[v] s= [v]bo=

[v] l=

Figure 6.1: This figure demonstrates how the various equivalence classes relate.

shift equivalent to a string v or base equivalent with equal order to a string v is also

locality equivalent to v.

Theorem 6.15. For any string v, [v] s
=
⊆ [v] l

=
and [v]bo

=
⊆ [v] l

=
.

Proof. To show that [v] s
= ⊆ [v] l

=
, we must show that for any string w, if w ∈ [v] s

=

then w ∈ [v] l
=
. Let us assume that w ∈ [v] s

=
. This means that v

s
= w, and, from

Theorem 6.3, �(v) = �(w). If �(v) = �(w), then we know that w ∈ [v] s
=
. Hence

[v] s
=
⊆ [v] l

=
.

Similarly, to show that [v]bo
=

⊆ [v] l
=
, we must show that for any string w, if

w ∈ [v]bo
=

then w ∈ [v] l
=
. Again, we assume that w ∈ [v]bo

=
. This means that v

bo
= w,

and, from Theorem 6.9, �(v) = �(w). If �(v) = �(w), then we know that w ∈ [v]bo
=
.

Hence [v]bo
=
⊆ [v] l

=
.

Now we show that if a string, w, is both string shift equivalent to string v and

base equivalent with equal order to string v, then w and v must be equal.

Theorem 6.16. For strings v and w, w ∈ [v] s
=

and w ∈ [v]bo
=

if and only if w = v.
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Proof. First, we show that if v = w, then v
s
= w and v

bo
= w. If v = w, then |v| = |w|

and v[i] = w[i] + 0. Since the lengths of v and w are equal, and each element of v is

equal to the same element of w plus a constant, we know that v
s
= w. If v = w, we

know that base(v) = base(w) and order(v) = order(w), which is all that is required

to show that v
bo
= w. Therefore, if v = w, then v

s
= w and v

bo
= w. We may also write

that if v = w, w ∈ [v] s
=

and w ∈ [v]bo
=
.

Now we show that if v
s
= w and v

bo
= w then v = w. To do this, we must show

that |v| = |w| and ∀i(1 ≤ i ≤ |v|)(v[i] = w[i]). Since v
s
= w, we know that |v| = |w|.

We also know that ∀i(1 ≤ i ≤ |v|)(v[i] = w[i] + c). If we can show that c = 0, then

we know that v = w.

Since we know how each element of v and w relate, we also know how each

element of the bases of v and w relate. Let u = base(v) and x = base(w). Then

∀j(1 ≤ j ≤ |u|)(u[j] = x[j] + c). Note that the value of c has not changed. Since

v
bo
= w, we know that |u| = |x|. We also know that ∀j(1 ≤ j ≤ |u|)(u[j] = x[j]).

Therefore, c = 0. We now know that ∀i(1 ≤ i ≤ |v|)(v[i] = w[i]) and hence v = w.

So if w ∈ [v] s
=

and w ∈ [v]bo
=

then v = w.

We have just examined a number of ways by which various strings may have

equivalent locality data. We now determine whether two strings may be equivalent

with respect to locality, but not equivalent with respect to miss rate.

6.2 Matching Locality Data and Cache Perfor-

mance

Equation 5.5 showed that the input string and cache configuration are sufficient to

determine miss rate. We now show whether or not the locality data (or the locality
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surface), the length of the input string, and the cache configuration are sufficient to

determine miss rate. Essentially, we wish to replace the actual values in the string

with the locality of the string. In other words, does the function Miss(B, a, C) exist,

where B = �(v), a = |v|, and C is the cache configuration. Also, does the function

Miss(T, a, C) exist, where T = L(v), a = |v|, and C is the cache configuration.

Note that the locality surface contains less information than the locality data.

Transforming from �(v) to L(v) is a lossy transformation. As the binning occurs, we

lose information about the distribution of stride/delay relationships within a given

bin. Therefore, if Miss(B, a, C) does not exist for a given class of caches, then

Miss(T, a, C) also does not exist. We first look at Case One caches, the Cases Two

and Four together, and lastly Case Three caches.

6.2.1 Case One

Fully associative caches, where the cache line sizes equals the trace granularity, are

the most basic caches. They also tend to be the caches that require the most time to

simulate. (When simulating a cache, each reference in the trace must be compared

with each entry in the appropriate set. Fully associative caches have the largest

set size and therefore the longest search time for each trace entry.) We now show

that simulation is unnecessary for 100% accuracy if the locality surface, or binned

locality histogram, is available.

Theorem 6.17. If a cache is fully associative and the input trace granularity matches

the cache line size, then the miss rate of the trace in the cache can be determined

entirely from the locality data (or the locality surface), the length of the input trace,

and the cache configuration.

Proof. For a traditional cache, the misses may be divided into three types: compul-
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sory misses, capacity misses, and conflict misses [43]. This allows us to write

|v|∑
i=1

miss(C, v, i, g) = compulsory + capacity + conflict. (6.2)

Compulsory misses occur when a reference has never been seen before. It is equal

to the number of unique cache lines referenced by the trace. When the granularity

of the trace equals the cache line size, the number of compulsory misses equals the

number of unique references in the trace. This can be determined from either the

locality data or the locality surface.

For any given string element v[a], we can determine if the value has been seen

earlier in the string from the locality data for v[a]. If (0, d) ∈ �(v[a]) for some delay

d, then v[a] = v[b] where b < a, or the value v[a] has been seen earlier in the string.

If (0, d) /∈ �(v[a]) for some delay d, then v[a] is the first instance of that value in the

string. To count the number of elements that are the first instance of that value, we

count the number of elements in the string where ∼ ∃d
[
(0, d) ∈ �(v[a])

]
, or count

the number of elements where ∃d
[
(0, d) ∈ �(v[a])

]
and subtract from |v|. We can do

this using either the locality data or the locality histogram:

compulsory = |v| −
∞∑

d=1

#
(
(0, d), �(v)

)
(6.3)

= |v| −
∞∑

d=1

h(�(v), 0, d).

When we convert from the histogram to the binned histogram, nothing is changed

in the stride direction where stride is zero. In the delay direction, some of the values

are summed together to make delay bins, but the smallest delay value is still one.

Since we are summing to infinity, we do not need to worry about the maximum

value. We may therefore write

compulsory = |v| −
∞∑

b=1

H(�(v), 0, b). (6.4)
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When we convert from the binned histogram to the surface, each bin is divided

by |v| − 1 where stride equals zero:

compulsory = |v| −
∞∑

b=1

[
(|v| − 1)S(�(v), v, 0, b)

]
= |v| − (|v| − 1)

∞∑
b=1

L(v, 0, b). (6.5)

As can be easily seen from Equations 6.3 and 6.5, the number of compulsory

misses for a fully associative cache where the line size and granularity match can be

determined not only from the locality data for the input trace, but also from the

locality surface for the input trace.

Capacity misses occur when an element of the input trace is a repeated value,

but the delay between the two values is larger than the number of lines in the cache.

This can be determined from the locality data by counting the occurrences of the

stride/delay combination (0, d) where d is greater than the number of lines in the

cache. Specifically:

capacity =

∞∑
d=(Cs/Cl)+1

#
(
(0, d), �(v)

)
(6.6)

=

∞∑
d=(Cs/C1)+1

h(�(v), 0, d).

Since we are again focused entirely on the temporal axis of the locality histogram,

we may perform the same operations for capacity misses that we performed for

compulsory misses:

capacity =

∞∑
b=log2(Cs/Cl)+2

H(�(v), 0, b)

=
∞∑

b=log2(Cs/Cl)+2

[
(|v| − 1)S(�(v), v, 0, b)

]
= (|v| − 1)

∞∑
b=log2(Cs/Cl)+2

L(v, 0, b). (6.7)
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Again, Equations 6.6 and 6.7 show that the number of capacity misses can be

determined not only directly from the locality data, but also from the locality surface

for the input trace.

By definition, there are no conflict misses in a fully associative cache. We may

therefore write conflict = 0.

We have shown that we can determine the number of each type of misses possible

for a conventional cache using either the locality data or the locality surface. We can

then use Equation 6.2 to compute the total number of misses for the input trace in a

fully associative cache where the granularity matches the line size. To compute the

miss rate, we merely divide the number of misses by the length of the input trace.

Therefore, for a Case One cache, we can compute the miss rate given the locality

data or locality surface of the input trace and the length of the input trace. There

exists equations for Miss() such that Miss(v, C) = Miss(B, a, C) = Miss(T, a, C)

where v is the input string, C is the cache configuration, B = �(v), a = |v|, and

T = L(v).

6.2.2 Cases Two and Four

Cases Two and Four caches are both situations where the cache line size and gran-

ularity do not match. The difference is that Case Two caches are fully associative

and Case Four caches are not. However, we now show that, regardless of the asso-

ciativity, the locality data is insufficient to determine the miss rate when the cache

line size does not match the trace granularity.

Theorem 6.18. If the input trace granularity does not match the line size of the

desired cache, then the locality data of the input trace, the length of the input string,

and the cache configuration are insufficient to determine the miss rate.
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Proof. We prove this by contradition. Assume the function Miss(B, a, C) exists for

caches where Cl �= g. Recall that B = �(v), a = |v|, and C is the cache configuration.

This means that given the locality data, string length, and cache configuration, we

should be able to determine the miss rate.

Let v1 = 1, 2, 3, 4. Let v2 = 2, 3, 4, 5. Note that v1
s
= v2 and therefore �(v1) =

�(v2) from Theorem 6.3. We compute �(v1) = {(1, 1), (1, 1), (1, 1), (2, 2), (2, 2),

(3, 3)} = �(v2). We choose a granularity of 8 bytes, i.e. g = 8 bytes, for both strings.

Now, let us pick a cache configuration. Let Cl = 16 bytes, Cs = 16 Kbytes, and

Ca = 1024. Therefore, C is a fully associative cache. Now we compute the miss

rate for v1 and v2 in C using Miss(v, C) from Equation 5.5. For both v1 and v2, we

compute h = log2(Cl/g) = log2(2) = 1. We calculate that zoom(v1, 1) = 0, 1, 1, 2

and zoom(v2, 1) = 1, 1, 2, 2. Miss(v1, C) = 3/4 = 75%. Miss(v2, C) = 2/4 = 50%.

Now we return to the function we assumed existed, i.e. Miss(B, a, C). Let a = 4

and B = �(v1) = �(v2). Then Miss(B, a, C) = 0.75 sometimes and Miss(B, a, C) =

0.5 sometimes. This is a contradiction. Therefore, the function Miss(B, a, C) can-

not exist when Cl �= g. In other words, the locality data, string length, and cache

configuration are insufficient to determine miss rate when the line size does not equal

the granularity.

The basic reason for this result can be seen in Equation 5.4. When the line size

and granularity do not match, we need to use the function zoom(v, h). Recall that

computing the result of zoom(v, h) requires the actual value of each element of v.

The locality data only contains the relative values of each element of v, not the actual

values. When v
s
= w, we know that �(v) = �(w), but zoom(v, h) may not be equal

to zoom(w, h), as seen in the proof for Theorem 6.18. If zoom(v, h) �= zoom(w, h),

then we cannot guarantee that the miss rate of v is equal to the miss rate of w.
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Although the locality data is insufficient to precisely predict cache performance,

the spatial locality on the locality surface is helpful in Case Two situations. We

already saw, in Chapter 4, that the information off the temporal axis guides quali-

tative assessments of optimal line size. In Chapter 7 we show how we can predict,

with some error, the number of compulsory misses when the cache line size is larger

than the trace granularity.

6.2.3 Case Three

We now look at caches that are set associative and where the cache line size equals

the trace granularity. By definition, the capacity misses in a set associative cache are

equal to the capacity misses in a fully associative cache that has the same cache and

line size. The conflict misses in a set associatve cache are equal to the total number

of misses in that cache minus the compulsory misses and the capacity misses [43,

page 423].

It periodically occurs, however, that a capacity miss in a fully associative cache

becomes a hit in a set associative cache with the same size. Because of this, it is

difficult to determine whether a given trace element is a capacity or conflict miss in a

set associative cache. For this reason, we group capacity and conflict misses together

and only differentiate between compulsory misses and capacity/conflict misses.

Theorem 6.19. If a cache is not fully associative, but the line size of the cache

matches the granularity of the trace, then the locality data of each element of the

trace is sufficient to predict the trace miss rate in the given cache.

Proof. Let C be the given cache configuration and v be the input trace. Since we

know that the cache is not fully associative and the line size matches the granularity,

we may write that Ca �= Cs/Cl and Cl = g. We now show that we can compute
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miss(C, �(v[i]), g) for any i such that 1 ≤ i ≤ |v|. In other words, the locality data

for the trace element is sufficient to determine if that element is a hit or miss in the

cache.

We can easily determine if v[i] is a compulsory miss by detecting if there is

a stride/delay relationship in the locality data for v[i] where the stride is zero.

Specifically, if ∼ ∃d[(0, d) ∈ �(v[i])] then v[i] is a compulsory miss.

Given that v[i] is not a compulsory miss, we now wish to determine if it is either

a capacity or conflict miss. We do this by counting how many unique elements have

occurred in the same cache set and comparing it with the number of lines in the

cache set. We know from the cache configuration that there are Ca lines in each

cache set of the cache. If there were less than Ca unique accesses to the same cache

set since v[i] was last referenced, then v[i] is a hit. If there were Ca or more unique

accesses, then v[i] is a miss.

We now need to determine the number of unique accesses to the same cache

set since v[i] was last referenced. We can get this information from �(v[i]). Let

v[j] be the most recent element where v[j] = v[i]. For any element v[k] such that

k < j, we know that s/d(v[k], v[i]) �∈ �(v[i]) since v[j] is between v[k] and v[i] and

v[j] = v[i] (see Equation 2.4). Therefore, �(v[i]) does not contain any stride/delay

relationships with elements of v earlier than the last time v[i] was seen. We also

know, from Theorem 2.4, that �(v[i]) only contains unique strides, and therefore

does not reference earlier duplicate accesses.

We can determine which stride/delay relationships in �(v[i]) are with elements

that use the same cache set as v[i] by examining the stride portion. Let s/d(v[j], v[i])

be a stride/delay relationship in �(v[i]). If stride(v[j], v[i]) is a multiple of the

number of cache sets in the cache C, then v[j] is assigned to the same cache set

as v[i]. This should be easy to see when we recall from Chapter 5 how the cache
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set for a particular element is computed. Let t be the cache set v[i] is assigned

to. Then t = v[i] mod n where n = Cs/(CaCl) or the number of cache sets in

the cache. Let s = stride(v[j], v[i]) = v[i] − v[j]. If s is a multiple of n, then

v[j] mod n = (v[i] − s) mod n = v[i] mod n.

Therefore, to determine the number of unique accesses to the same cache set since

v[i] was last referenced, we need only remove the stride/delay relationships where the

stride is not a multiple of the number of sets, and count the number of relationships

remaining. Specifically, v[i] is a capacity or conflict miss if
∣∣σ(s mod n=0)

(
�(v[i])

)∣∣ >

Ca, where n = Cs/(CaCl). To summarize, v[i] is a miss if either ∼ ∃d[(0, d) ∈ �(v[i])]

or
∣∣σ(s mod n=0)

(
�(v[i])

)∣∣ > Ca, where n = Cs/(CaCl), otherwise v[i] is a hit.

Since we can determine if each element of v is a hit or miss in a set associative

cache using the locality data of that element, we can sum up the number of misses

and divide by the length of v to determine the miss rate of v in C using the locality

data of each element of v.

We have just shown that, given the cache configuration and the locality data

for a given trace element, we can determine if the element is a hit or miss in a set

associative cache where the cache line size equals the trace granularity. However,

when the locality data for all the elements are bagged together it is difficult to

determine which stride/delay relationships are associated with which elements.

Our interest is primarily with stride/delay relationships where the stride is either

0 or n, where n is the number of cache sets. The stride = 0 relationships are

preserved when the locality histogram is binned. However, if n > 2, all the stride =

n relationships are binned with other strides, and impossible to accurately separate.

Even when n = 2, the binning in the delay direction still removes much of the

necessary detail. We therefore conclude that the method used to determine hits
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and misses in Theorem 6.19 is no longer possible using either the binned locality

histogram or the locality surface. In the next chapter, we discuss another method

for estimating the miss rate in Case Three caches.

6.3 Summary

In this chapter, we have shown how two different strings may have the same locality

data, and hence the same locality surface, for various reasons, and grouped these

reasons into equivalence classes. These equivalences can be applied in a number of

ways. For example, Theorem 6.7 allows us to conveniently reduce a trace size. We

may store the base of a given trace along with the trace’s immediately repeating

reference count without losing any locality information. For many of our traces,

this is a quick removal of about 30% of the trace. Many trace compression methods

take advantage of immediately repeating elements, however they generally preserve

the specific location of each one [51, 60]. We now know that it is unnecessary to

preserve the location, since immediately repeating elements affect any cache in the

same manner no matter where they are located.

We have also proved that two strings that are equivalent with respect to locality

have the same miss rate in fully associative caches where the cache line size matches

the traces’ granularity. We then examined how two strings that are equivalent with

respect to locality may have different miss rates in other types of caches. This limits

our ability to use the locality surface to predict miss rate for specific categories of

caches. Next, we demonstrate the accuracy of our predictions by attempting to

predict cache performance for several workloads with various cache configurations.

175



176



Chapter 7

Quantitative Cache Performance

Prediction Using Locality Surfaces

As just discussed in Chapter 6, we are limited in our ability to predict the results

of cache simulation using the locality surface. In this chapter, we validate the

conclusions drawn and examine some approximating methods. We use the same

six traces we used in Chapter 4. We reproduce Table 4.1 here as Table 7.1 for

convenience. Recall from Chapter 4 that these traces were selected as representative

of a variety of localities.

We first examine fully associative caches where the line size equals the trace’s

granularity (Case One). Next we examine fully associative caches where the line size

does not match the trace granularity (Case Two), and then discuss set associative

caches (Case Three). Lastly we review the results of other researchers, compare

them with our work, and examine the difficiencies of their work.
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workload suite type total refs uniq refs description

Parabolic/Elliptic
applu FP D 46,261,474 1,524,041 Partial Differential

Equations
crafty INT I 50,020,348 30,338 Game Playing: Chess

Computation Fluid
galgel FP D 37,070,561 1,255,136

Dynamics
PERL Programming

perlbmk.diffmail INT I 54,083,478 34,648
Language
Shallow Water

swim FP D 42,031,084 7,988,204
Modeling
Place and Route

twolf INT I 50,191,887 21,988
Simulator

Table 7.1: Description of the traces used in this chapter. All of these traces were
taken under the Linux operating system.

7.1 Case One

As presented in Chapter 5, a Case One situation occurs when the cache is fully

associative and the cache line size equals the input string’s granularity. The proof

for Theorem 6.17 tells us that in this situation we can determine the miss rate of

the trace from the locality surface or the binned locality histogram, the length of

the trace, and the cache configuration.

When outputting the results from our locality program, we routinely output both

the binned locality histogram and the locality surface. The values on the binned

histogram are output as unsigned longs and the values on the locality surface are

output as floats with six significant digits. We use the latter to make the visual

locality surface, but the former has more precision and is therefore more useful for

calculations such as needed here.

Using the binned locality histogram for all six traces with cache sizes from 8 bytes

(the smallest cache possible with 8-byte lines) to 128 Mbytes, we achieve 100%
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accuracy, as proved in Theorem 6.17. Using the locality surface, rather than the

binned locality histogram, we have very small errors (on the order of 0.05%) due to

round off.

7.2 Case Two

As presented in Chapter 5, a Case Two situation occurs when the cache is fully

associative and the cache line size does not equal the input string’s granularity. We

know from Theorem 6.18 that the locality data is insufficient to precisely determine

the miss rate of the input trace. We can, however, use the locality surface to make

some approximations. Since this is a fully associative cache, we wish to predict the

compulsory misses and the capacity misses. The conflict misses are zero.

7.2.1 Compulsory Misses

First we discuss the compulsory misses. We can use the locality data and some

probability to make some guesses as to the number of compulsory misses for a

given trace in a given cache when the trace granularity and cache line size do not

match. When the line size is less than the granularity, the trace itself contains no

information about performance with the smaller line size. If the trace does not have

the information, the locality cannot either. Therefore, we only examine cases where

the line size is greater than the granularity.

We first examine the situation when the cache line size is twice the size of the

granularity. If we knew how many unique references in the trace had a stride = 1

relationship with another unique reference, then we could guess that half of those

would be in the same line as the other reference, and reduce our compulsory miss

count accordingly.
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workload uniq8 str1 ûniq16 uniq16 error

applu 1,524,041 1,204,681 921,700 888,859 3.69%
crafty 30,338 24,689 17,993 17,683 1.76%
galgel 1,255,136 487,704 1,011,284 985,057 2.66%

perlbmk.diffmail 34,648 27,682 20,807 20,274 2.63%
swim 7,988,204 4,781,027 5,597,690 5,577,900 0.35%
twolf 21,988 15,290 14,343 13,713 4.59%

Table 7.2: The data and calculation results for ûniq16 given the number of unique
references that are stride 1 from another unique reference.

We let str1 represent the count of how many unique references have a stride = 1

relationship with another unique reference. We may compute str1 from the trace

by listing all the unique references in the given trace (at the specified granularity),

sorting the list, and counting how many references are stride = 1 from the previous

reference. We let uniq8 represent the number of unique references that exist in a

given trace with a granularity of 8 bytes, uniq16 be the number of unique references

in the trace with a granularity of 16 bytes, etc. Further, we let ûniq16 be our estimate

of the number of unique references at a granularity of 16 bytes, etc. We then use

the following equation to calculate ûniq16:

ûniq16 = uniq8 − 1
2
str1. (7.1)

Table 7.2 shows the results, using Equation 7.1, for all six traces, and the errors.

Note that the number of unique references at a given granularity is equivalent to

the number of compulsory misses at that line size.

These errors are quite good. The problem is that we computed str1 from the

trace, not the locality surface. The locality data tells us how often stride = 1 occurs

relative to the total number of references, not the unique number of references as

required. We must find a way to approximate str1 from the locality surface of the

trace.
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If we sum along the (1, d) slice of the binned histogram, we get the total number

of references in the trace that have a stride = 1 relationship with some other

reference in the trace at some delay. If, before summing, we divide each bin by the

total number of references in the trace, then each bin represents the percentage of

references that have a stride = 1 relationship with some other reference at the given

delay. By summing these divided bins we get the percentage of references in the

trace that have a stride = 1 relationship with some other reference at some delay.

We remind the reader that this is total references, not unique references.

Recall that we divided each bin by the total number of references. However, we

know that any reference that has a stride = 0 relationship at some delay cannot

have a stride = 1 relationship at a larger delay. We also know that any reference

that has a stride = 0 relationship is not the first instance of that value, and hence is

not unique. Therefore, when dividing each bin, we wish to divide by the number of

references that do not have stride = 0 relationships at a smaller delay rather than

dividing by the total number of references.

When we divide this way and sum the results, we get an approximation of the

percentage of unique references in the trace that have a stride = 1 relationship with

some other unique reference at some delay. If we multiply this percentage by the

number of unique references, we get an approximation for str1, as desired. We let

ŝtr1 represent this approximation:

ŝtr1 =
∞∑

d1=1

H(�(v), 1, d1)

|v| −
d1∑

d2=1

H(�(v), 0, d2)

(7.2)

Table 7.3 compares the actual str1 with its approximation calculated using Equa-

tion 7.2 and shows the error. We now use ŝtr1 instead of str1 in Equation 7.1 to

compute ûniq16. Table 7.4 shows these results for all six traces, along with the error.

We can use a similar technique for predicting uniq32 and uniq64, or the number of
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workload ŝtr1 str1 error

applu 1,049,329 1,204,681 -12.90%
crafty 22,859 24,689 -7.41%
galgel 681,458 487,704 39.75%

perlbmk.diffmail 26,783 27,682 -3.25%
swim 3,238,640 4,781,027 -32.26%
twolf 19,006 15,290 24.30%

Table 7.3: Both str1 and ŝtr1 are listed here, along with the error. ŝtr1 is calculated
using Equation 7.2.

workload uniq8 ŝtr1 ûniq16 uniq16 error

applu 1,524,041 1,049,329 999,376 888,859 12.43%
crafty 30,338 22,859 18,908 17,683 6.93%
galgel 1,255,136 681,458 914,407 985,057 -7.17%

perlbmk.diffmail 34,648 26,783 21,256 20,274 4.84%
swim 7,988,204 3,213,000 6,381,704 5,577,900 14.41%
twolf 21,988 19,006 12,485 13,713 -8.96%

Table 7.4: Computing ûniq16 using ŝtr1 calculated from the binned locality his-
togram using Equation 7.2.
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compulsory misses for cache line sizes of 32 byte and 64 bytes, respectively. In these

cases, we not only need the number of stride = 1 relationships among the unique

references, we also need the stride = 2 through stride = 7 relationships. Our

results would be even more accurate if we knew the stride = 2 through stride =

7 relationships that did not span a smaller stride relationship. For example, if

the sorted list of unique references included 4, 5, 6 we would technically have one

stride = 2 relationship. However, the probability of 4 and 6 being in the same line

is already covered by the two instances of stride = 1 relationships and therefore the

stride = 2 relationship should not be counted.

Let str2, str3, str4, etc. be the frequency of stride 2, 3, 4, etc. occuring between

unique references without counting strides that are covered by smaller strides. We

calculated strk (where k represents the desired stride value) directly from the trace

by first creating a sorted list of the unique references and then counting the number

of immediately successive references with a stride k. Using this data, we can estimate

uniq32 and uniq64 as follows:

ûniq32 = uniq8 − 3
4
str1 − 1

2
str2 − 1

4
str3, (7.3)

ûniq64 = uniq8 − 7
8
str1 − 3

4
str2 − 5

8
str3 − 1

2
str4 − 3

8
str5 − 1

4
str6 − 1

8
str7, (7.4)

where ûniq32 and ûniq64 are the estimates of uniq32 and uniq64, respectively.

Table 7.5 shows the results calculated using Equations 7.3 and 7.4 where str1

through str7 were calculated from the trace. Again, the results are quite promising,

if we are able to adequately calculate str2 through str7 from the binned histogram

rather than the trace.

Unfortunately, approximating str2 through str7 from the binned locality his-

togram is more difficult than approximating str1. In addition to converting from

total references to unique references, we must also subtract off the references that we
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workload ûniq32 uniq32 error ûniq64 uniq64 error

applu 598,243 557,382 7.33% 410,211 388,508 5.59%
crafty 10,787 10,718 0.65% 6,468 6,393 1.18%
galgel 781,998 739,463 5.75% 542,442 519,490 4.42%

perlbmk.diffmail 12,607 12,463 1.16% 7,644 7,524 1.60%
swim 4,195,654 4,156,728 0.94% 2,338,565 2,315,298 1.00%
twolf 9,486 9,420 0.70% 5,926 5,833 1.60%

Table 7.5: Calculations for ûniq32 and ûniq64 (if str1 through str7 were available)
using Equations 7.3 and 7.4.

already covered by smaller strides. We cannot just subtract the values obtained for

the smaller strides, since not all of them contribute to a larger stride. For example,

the string 4, 5, 67, 68, 70, 71, 72 has four instances of stride 1 and two instances of

stride 2. There is no way to determine from the count of strides how many of the

smaller strides contibute to the larger stride count. Another issue is the binning

on the locality surface and binned histogram. For strides greater than 2, multiple

strides are binned together and we must guess how many are of each type.

We have investigated a number of methods for estimating the desired figures

despite these constraints, however none have proved more accurate for most of our

workloads than not using the values at all. The simplest method is to merely use

ŝtr1, which we have already computed. This method is about as accurate as any

we have investigated that use ŝtr2 through ŝtr7. The equations are as follows:

ûniq32 = uniq8 − 3
4
str1, (7.5)

ûniq64 = uniq8 − 7
8
str1. (7.6)

The results and errors for ûniq32 and ûniq64 using Equations 7.5 and 7.6 are

shown in Table 7.6. When we compare with the results for ûniq16 from Table 7.4,

we can see that in general the error increases as the line size increases. We believe

Equations 7.5 and 7.6 work relatively well because the values for str2 through str7
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workload ûniq32 uniq32 error ûniq64 uniq64 error

applu 737,044 557,382 32.23% 605,878 388,508 55.95%
crafty 13,193 10,718 23.10% 10,336 6,393 61.68%
galgel 744,043 739,463 0.62% 658,860 519,490 26.83%

perlbmk.diffmail 14,561 12,463 16.83% 11,213 7,524 49.03%
swim 5,559,224 4,156,728 33.74% 5,154,394 2,315,298 122.62%
twolf 7,733 9,420 -17.90% 5,358 5,833 -8.15%

Table 7.6: Results and errors for ûniq32 and ûniq64 using Equations 7.5 and 7.6 and
the estimate for str1.

are generally small. When str2 through str7 approach zero, Equations 7.3 and 7.4

become Equations 7.5 and 7.6.

In summary, we can estimate the compulsory misses when the line size does

not match the granularity of the locality surface. When the line size is twice the

granularity, the errors are reasonable (less than ±15%), however, they can become

much larger as the line size increases. Most of the error comes from the estimate of

str1 through str7 from the locality surface. Perhaps a method that also uses the

negative stride information would prove more accurate.

7.2.2 Capacity Misses

Predicting the capacity misses for a Case Two situation is more difficult than pre-

dicting compulsory misses. If we had the temporal axis for the locality surface where

the granularity did match, we would have a Case One situation and 100% accuracy.

Perhaps there is a way to use the spatial locality information from a locality surface

to estimate the temporal axis for larger granularities.

We computed the locality surfaces for both the data trace of applu and the in-

struction trace of twolf with granularities of 16 bytes, 32 bytes, and 64 bytes so

we can determine how accurate our estimates are. We picked these two workloads
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because they have very different locality surfaces. applu has poor locality and is a

floating point data trace. twolf has fairly good locality and is an integer instruc-

tion trace. If we can approximate the values on the temporal axis for the larger

granularity surfaces, then we may predict the miss rate for caches with those line

sizes.

We can predict the first couple of entries on the temporal axis fairly accurately.

When multiplying the granularity by two, we know that half the stride = 1 and

stride = −1 entries where delay = 1 are probably in the same line as the previous

reference. We use a similar philosophy for estimating how many are in the same

line when the line size is multiplied by four or eight.

Again, we are using the binned histogram, with the following notation. We let

H8(a, b) be the bin labeled a and b on the histogram with 8-byte granularity. We let

H16(a, b), H32(a, b), and H64(a, b) be the 16-byte, 32-byte, and 64-byte (respectively)

granularity histogram bins labeled a and b. We let Ĥ16(a, b), Ĥ32(a, b), and Ĥ64(a, b)

be the estimates for the 16-byte, 32-byte, and 64-byte (respectively) granularity

histogram bins labeled a and b.

Using this notation, we use the following equations for estimating the delay 1

entries on the temporal axis:

Ĥ16(0, 1) =H8(0, 1) + 1
2

[
H8(1, 1) + H8(−1, 1)

]
, (7.7)

Ĥ32(0, 1) =H8(0, 1) + 3
4

[
H8(1, 1) + H8(−1, 1)

]
+ 1

2

[
H8(2, 1) + H8(−2, 1)

]
+ 1

8

[
H8(3, 1) + H8(−3, 1)

]
, (7.8)

Ĥ64(0, 1) =H8(0, 1) + 7
8

[
H8(1, 1) + H8(−1, 1)

]
+ 3

4

[
H8(2, 1) + H8(−2, 1)

]
+ 9

16

[
H8(3, 1) + H8(−3, 1)

]
+ 3

16

[
H8(4, 1) + H8(−4, 1)

]
. (7.9)

Notice that when dealing with bins that contain multiple strides we assume
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applu twolf
delay 1 delay 2 delay 1 delay 2

Ĥ16(0, d) 7,382,719 4,431,380 27,603,743 3,141,872
H16(0, d) 7,268,095 3,857,957 28,656,416 4,076,924

error 1.58% 14.86% -3.67% -22.94%

Ĥ32(0, d) 10,279,541 6,086,303 32,714,425 9,522,786
H32(0, d) 9,038,482 4,802,816 33,455,514 4,745,447

error 13.73% 26.72% -2.22% 100.67%

Ĥ64(0, d) 12,200,856 7,552,402 35,803,129 13,653,779
H64(0, d) 10,486,305 5,512,830 37,013,995 5,073,421

error 16.35% 37.00% -3.27% 169.12%

Table 7.7: Estimating the temporal axis for larger granularity temporal axes for
delays 1 and 2 using Equations 7.7 – 7.9.

that each stride in the bin is equally represented with the other strides in the bin.

Table 7.7 shows the results for delays 1 and 2 using Equations 7.7 – 7.9.

The errors are very good where delay = 1, but are much larger for delay 2. The

errors increase even further at larger delays. This occurs because there are references

in the 8-byte granularity trace that create a stride/delay relationship of (1, 1), but

create a (0, 1) in a larger granularity. In the smaller granularity, the reference has

relationships with larger strides. However, the larger granularity does not have

any relationships at larger strides. As the delay gets larger on the temporal axis,

more and more of these relationships are ones that would simply not be calculated

at larger granularities and our errors become unreasonably large. Therefore, this

method for estimating the temporal axis at larger granularities is not practical for

delays larger than 2 or 3, depending on the trace.

We can use our estimates of compulsory misses to estimate the maximum delay

that has data for larger granularities. We know that there cannot be a delay larger

than the number of unique references. Therefore, we take the estimate of the number

of unique references and round up to the next largest power of two for our estimate
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applu twolf

ûniq16 999,376 12,485
estimated max delay 1 M 16 K

real max delay 1 M 16 K

ûniq32 737,044 7,733
estimated max delay 1 M 16 K

real max delay 1 M 16 K

ûniq64 605,878 5,358
estimated max delay 1 M 8 K

real max delay 512 K 8 K

Table 7.8: Here we use the estimate of the unique references at larger granularities
to predict the largest delay that has data on the temporal axis. Only one of the six
cases is inaccurate.

of the maximum delay with data at a given granularity. Table 7.8 shows these

results. In the six test cases, we were only off once.

We can also use our estimates of compulsory misses to estimate the total number

of values that should appear on the temporal axis. Recall Equation 6.4, which we

redisplay here as Equation 7.10:

compulsory = |v| −
∞∑

b=1

H(�(v), 0, b). (7.10)

Recall also that the compulsory misses are equivalent to the number of unique

references. Therefore, if we know the length of the trace and have an estimate for

the number of unique references, we can estimate the sum along the temporal axis

on the binned locality histogram.

So, when attempting to predict the temporal axis at larger granularities, we have

the first few points fairly accurately, we know at what delay the values become zero,

and we know approximately how many values should be on the temporal axis. We

have attempted a number of methods for predicting the other values on the temporal

axis, but none that work well for both of the workloads selected. Perhaps if more

workloads were examined, better equations or heuristics could be discovered.

188



granularity applu twolf

8 bytes 2d 11:30:38 0:45:54
16 bytes 1d 05:31:35 0:19:41
32 bytes 13:16:46 0:08:48
64 bytes 09:21:38 0:04:11

Table 7.9: The time to compute the locality surfaces for the data trace of applu and
the instruction trace of twolf at various granularities. The time is shown in days,
hours:minutes:seconds.

7.2.3 Recomputing the Locality

Rather than using the smaller granularity locality surface to predict the results at

larger granularities, we can convert the original trace to a larger granularity and

recompute the locality surface. Essentially, we convert a Case Two situation into

a Case One situation, where we have 100% accuracy. Figure 7.1 shows the locality

surface at all four computed granularities for the data trace of applu. Figure 7.2

shows the locality surface for all four computed granularities for the instruction trace

of twolf.

The advantage of computing the surface with a larger granularity is 100% accu-

rate cache simulation predictions for that particular granularity and faster locality

computation. Table 7.9 shows the times necessary to run the locality program for

our two traces at various granularities. These timing runs were all performed on a

3.20 GHz Pentium 4 machine with 512 Kbytes of L2 cache.

As the granularity increases, the locality also improves, meaning that our stack

based algorithm runs faster. We can see significant improvement for both workloads

in the time to compute the locality as the granularity increases. If a researcher has

no interest in results at a smaller granularity, it is advantageous to the compute

time to use the larger granularity.

The disadvantage of computing the locality at a larger granularity is the loss of
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(a) 8-byte granularity (b) 16-byte granularity

(c) 32-byte granularity (d) 64-byte granularity

Figure 7.1: The locality surfaces for the data trace of applu with various granularities.
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(a) 8-byte granularity (b) 16-byte granularity

(c) 32-byte granularity (d) 64-byte granularity

Figure 7.2: The locality surfaces for the instruction trace of twolf with various granularities.
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information. We lose information about smaller granularities and we lose our ability

to perform much of the workload characterization discussed in Chapter 3. It can

be easily seen in both Figure 7.1 and 7.2 that features disappear as the granularity

increases. Ding and Zhong point out similar advantages to keeping the granularity

smaller, even at the expense of more accurate cache simulation predictions [30].

In addition, all our techniques for estimating cache results at different granu-

larities involve increasing the granularity, not decreasing it. We can qualitatively

predict cache performance for larger granularities using the techniques of Chapter 4,

or quantitatively predict some aspects of cache simulation using the techniques de-

scribed in this section. However, there is no way to predict performance at smaller

granularities; the information is lost.

We therefore recommend computing the locality surface at the smallest granular-

ity of interest. If accuracy is required at larger granularities, recompute the locality

for each of the granularities, keeping in mind that the compute time at the larger

granularity is not as intensive as the compute time for the smaller granularity.

7.3 Case Three

As presented in Chapter 5, a Case Three situation occurs when the cache is set

associative (i.e. not fully associative) and the cache line size equals the input string’s

granularity. In Section 6.2.3 we described what information is needed to determine

if a given reference is a hit or miss in a set associative cache. We also discussed why

that data is unobtainable from the locality surface or the binned locality histogram.

We can, however, make some estimates. Recall from Theorem 6.17 that we

can determine the compulsory misses from the binned locality histogram, using

Equation 7.10. Note that the number of compulsory misses does not change as we

192



16 64 256 1K 4K 16K 64K 256K
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

delay

pr
ob

ab
ili

ty

assoc 1    
assoc 2    
assoc 4    
fully assoc

Figure 7.3: The temporal axes from several 128 Kbyte cache characterization sur-
faces with varying associativities.

adjust the cache associativity; the compulsory misses only change if we change the

line size. Therefore, we may use Equation 7.10 to compute the compulsory misses

in Case Three.

To determine the capacity and conflict misses, we use the temporal axis from

the appropriate cache characterization surface. Recall from Chapter 5 that the

associativity changes the shape of the temporal axis curve on the cache character-

ization surface. Figure 7.3 shows the temporal axis for several 128 Kbyte caches

with varying associativities.

Notice that the temporal axis for the fully associative cache moves directly from

0 to 100%. The portions under the set associative curves that fall to the left of

the fully associative curve represent misses in the set associative caches that would

have been hits in the fully associative cache. The portions over the set associative

curves that fall to the right of the fully associative curve represent hits in the set
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associative cache that would have been misses in the fully associative cache. It is

interesting that the curves all cross at about 70%, and the volume under the curves

to the left of the fully associative line is greater than the volume over the curves to

the right. This matches with the well known fact that set associative caches have

more misses than fully associative caches.

We use these curves in Figure 7.3 to estimate the capacity and conflict misses

of the set associative caches. Recall that we calculated the capacity misses for fully

associative caches by summing along the temporal axis from the size of the cache to

infinity (Equation 6.7). This is equivalent to multiplying the temporal axis of the

locality histogram (or surface) with the temporal axis of the fully associative cache

characterization surface for the correct cache size and summing the result.

We use this same technique for the set associative caches. For example, to

estimate the number of misses in the 128 Kbyte, 2-way set associative cache for the

data trace of applu, we multiply the temporal axis of the binned locality histogram

for applu with the temporal axis of the appropriate cache characterization surface

and sum the result. If we let ĉapcon represent our estimate of the number of capacity

plus conflict misses, the following equation specifies this process:

ĉapcon =
∞∑

b=1

[
H(�(v), 0, b) ∗ C(C, 0, b)

]
, (7.11)

where v is the desired trace and C is the desired cache configuration. Combining

Equation 7.11 with Equation 7.10, we get:

̂misses = |v| −
∞∑

b=1

H(�(v), 0, b) +
∞∑

b=1

[
H(�(v), 0, b) ∗ C(C, 0, b)

]
= |v| +

∞∑
b=1

[
H(�(v), 0, b) ∗ (C(C, 0, b) − 1

)]
, (7.12)

where ̂misses is our estimate of the number of misses for trace v in cache C.
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workload Ca = 1 Ca = 2 Ca = 4 Ca = 8

̂misses 4,883,919 4,181,017 3,968,537 3,903,054
applu misses 8,612,874 7,670,076 6,306,170 5,418,684

error -43.30% -45.49% -37.07% -27.97%
̂misses 2,556,467 793,541 243,458 109,406

crafty misses 2,752,372 261,022 119,685 80,303
error -7.12% 204.01% 103.42% 36.24%
̂misses 4,508,783 4,308,332 4,259,317 4,238,313

galgel misses 8,858,121 7,898,721 6,057,235 5,222,165
error -49.10% -45.56% -29.68% -18.84%
̂misses 758,162 263,960 129,608 93,155

perlbmk.diffmail misses 855,076 441,268 324,779 147,151
error -11.33% -40.18% -60.09% -36.69%
̂misses 15,115,953 14,196,168 13,667,975 13,349,677

swim misses 18,886,397 18,214,693 16,449,426 15,718,587
error -19.96% -22.06% -16.91% -15.07%
̂misses 813,824 166,721 44,522 28,867

twolf misses 859,166 445,543 195,992 96,489
error -5.28% -62.58% -77.28% -70.08%

Table 7.10: Results using Equation 7.12 for all six traces used in this chapter with
128 Kbyte caches of various associativities.
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Table 7.10 shows the results for ̂misses using Equation 7.12, the real number

of misses, and the error for all six workloads used in this chapter with 128 Kbyte

caches of various associativities. The errors are acceptable, but not excellent. Note

that all but two of the errors are negative, indicating that our estimates tend to be

high. We guess this is because our estimate is based on the purely random data

used to create the cache characterization surface, while real traces are not random.

Perhaps this could be used for better results in the future.

7.4 Case Four

As presented in Chapter 5, a Case Four situation occurs when the cache is set

associative and the cache line size does not equal the input string’s granularity. We

do not specifically investigate this situation, due to the lack of reliable results for

Case Two caches. Should a reasonable method be discovered for Case Two caches,

it would be valuable to combine the technique with the best Case Three equations

found and apply the results to Cache Four situations.

7.5 Previous Work

We now briefly examine the results of other researchers attempting to predict cache

miss rates so we can better evaluate our results. Many of these other researchers

do not specifically mention the error between their predictions and the actual miss

rates. Instead they display graphs where readers can visually see the separation

between the lines representing the predicted miss rates versus the lines reprsenting

the actual miss rates. To ease comparison between our results and these other

researchers’ results, we have calculated a few errors from these graphs by selecting
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a few points, approximating their values, and then calculating the error. We hope

that this method does not in any way misrepresent anyone’s results. We first discuss

researchers who used locality to predict miss rates, than other methods, and finally

compare our research with theirs.

7.5.1 Using Locality to Predict Miss Rate

Several research groups have spent time examining temporal locality by calculating

the number of unique addresses between repeated references to the same memory

address. To differentiate from researchers who use other methods for evaluating

temporal locality, many have termed this reuse distance [11, 16, 30]. The two-

dimensional reuse distance graphs are equivalent with the temporal axis from our

lcoality surface, except some researchers visualize the data differently.

Most reuse distance researchers have noticed, as we did in Section 7.1, that

temporal locality can predict Case One cache miss rates with 100% accuracy [16, 88].

These researchers generally do not examine line sizes that are different than their

chosen granularity. When addresssing set associative caches, they typically claim

that accurate fully associative results are sufficient for one of two reasons.

Some point out that since temporal locality can accurately predict the capacity

misses, it can also pinpoint the cache sizes around which more detailed simulation

should be done [88]. Others reference Smith’s paper [72] that uses the fully as-

sociative cache results as inputs to a single, complex equation to predict the set

associative results [19, 45]. Hill and Smith claim that the relative error, using this

equation, is usually less than 5% and rarely greater than 10% [45].

Since others have adequately examined how the results of the fully associative

cache can predict the results of set associative caches, we have not replicated this
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work. We simply note that since we also can predict Case One cache performance

results with 100% accuracy, we may also use these same methods for Case Three

caches.

It is not troubling to note that temporal locality researchers typically do not

predict miss rates for caches with varying line sizes, since changing the line size

is more related to spatial locality. However, most spatial locality researchers apply

their locality metrics to other areas such as prefetching [48, 53, 87] and redistributing

data in memory [82, 90] rather than finding the optimal cache line size.

7.5.2 Using Non-locality Methods to Predict Miss Rate

Other methods for predicting cache miss rate results include cache miss equations,

analytical models, sampling, and synthetic traces. We briefly discuss an example of

each.

Cache miss equations are detailed, mathematical representations of loops and

other memory accessing patterns in the code of a program [37, 65]. Researchers using

these equations have reported excellent miss rate prediction errors, specifically, their

errors are less than 0.4% [37]. Cache miss equations have been used to determine

optimal line size at arbitrary associativies. In other words, they are powerful enough

to predict results for all four of our cache cases. However, the information necessary

for the equations is obtained at the compiler level and is therefore not useful to

replace trace driven simulation and cannot be compared with our work.

Analytical models involve extracting a few parameters from a given trace and

using them as inputs to the model’s equations that calculate the miss rate. A couple

of examples include Singh et al. [70] and Agarwal et al. [5]. We here discuss the first

example.

198



Singh et al. created an analytical model that extracts four parameters from a

given trace [70]. Using these four parameters, they predict miss rate with “high

accuracy” in large fully associative caches. They apply their model to caches with

various cache size and line sizes and show their results using a series of graphs.

For large caches, the errors approach zero as the cache size and line size increase.

However, some of the relative errors are as large as 46%. For small caches, the errors

do not appear to be directly related to the cache size. The smallest errors appear

at medium line sizes and are close to zero. We calculated their maximum error for

small, fully associative caches at about 190%. Singh et al. did not present results

for varying associativities.

Sampling is typically used to dramatically reduce the time necessary for trace

driven simulation by selecting a small portion of a trace to represent the entire

trace. A number of sampling methods have been examined over the years. One

recent example is Berg and Hagersten’s work [15] that used sampling to estimate

miss rate for fully associative caches with random replacement. Since line size is not

mentioned, we assume that the granularity and line size matched.

Berg and Hagersten presented their results using a series of graphs and did not

specifically mention any errors. We calculated that their maximum relative error

was around 85% for Case One caches. A problem with Berg and Hagersten’s work

is that they used random replacement caches, rather than the more common LRU

caches [9]. Obviously our results for Case One caches compares favorably with theirs.

Lastly, we discuss synthetic traces. When using synthetic traces to predict miss

rate, the object is to represent the trace as a small number of parameters which

take much less space to store than the entire trace. (This is discussed in more detail

in the next chapter.) Thiebaut et al. represented each of seven traces using merely

two parameters [79]. They then created synthetic traces, ran them through cache
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simulators, and compared the miss rate with the actual miss rate.

Again, the paper did not specifically mention errors in most cases, so we have

approximated the errors from the graphs in the paper. Thiebaut et al. first investi-

gated the results of all seven traces they used in a range of fully associative caches up

to 4 Kbytes in size. Since line size is not mentioned, we assume that the granularity

matches the line size. Some of the larger errors are well over 300% for these Case

One caches.

When investigating set associative caches, Thiebaut et al. picked one of the

traces (which appears to have the smallest maximum relative error, around 29%) and

simulated the synthetic and original versions of the trace on caches with associativity

from 1 to 128. The paper claims that the maximum relative error found was 25%.

7.5.3 Comparing Our Work

In general, it is difficult to directly compare our work with the results presented by

other researchers. Some of the older papers use traces much shorter than ours, and

older benchmarks [45, 70, 72, 79]. As mentioned in Chapter 1, we believe our traces

to be among the most accurate available. For a fair comparison, all cache prediction

methods should be performed on the same set of traces.

In addition, completely evaluating a given method involves cache simulations

and method predictions for a large number of traces and cache configurations. Even

if performing all the simulations is within reason, it is difficult to present all the

results in a single paper. Therefore, most reseachers limit either the number of

caches or the number of traces used. For example, in their synthetic traces paper,

Thiebaut et al. only use one trace on their range of set associative caches [79]. In

contrast, we chose to use only one cache size.
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When reducing the number of traces to a reasonable level, most researchers do

not mention how they selected the traces used. We, however, used our locality

surface to select traces with a variety of locality features and sizes to make sure our

method applies to all varieties of traces.

In general, our miss rate predictions are just as good, if not better than the

results presented by other researchers. Only the reuse distance researchers were able

to also obtain 100% accuracy for Case One caches. Few researchers even attempted

to predict results for Case Two caches. For those that did, their errors were in the

same range with the errors we obtained for Case Two compulsory misses [70]. The

researchers who evaluated Case Three caches reported errors in the same range as

our Case Three errors [79].

We also point out that the goal for many of these researchers was not necessarily

100% accuracy. For example, the point of sampling is to reduce the trace size

and simulation time while keeping accuracy within reason [15]. The goal of the

analytical modeling and synthetic trace papers mentioned was to reduce the trace

to two or four scalar parameters [5, 70, 79]. Our locality surface is admittedly time

consuming to compute and uses many more than four parameters. However, the

few kilobytes necessary to store the locality surface and binned locality histogram

is still significantly better than the gigabytes necessary for today’s traces. We more

completely address the issue of time to compute our locality surface in Chapter 9.

7.6 Summary

We have found that, using the temporal axis of our locality surface, we can predict

cache miss rates with 100% accuracy for fully associative caches where the cache

line size and trace granularity match. In addition to using the locality surface
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visually to qualitatively determine optimal line size, we can quantitatively predict

the compulsory misses, with some error, when the cache line size is larger than the

trace granularity. Another option is to recompute the locality surface at the desired

larger granularity for 100% accuracy. Finally, we can use the cache characterization

surface and the locality surface to quantitatively predict, with some error, the miss

rate for set associative caches.

In general, it appears that other researchers who have results much better than

ours are estimating the miss rate at a different point than we do [37]. A number of

researchers have discovered, as we did, that the miss rate of Case One caches can be

accurately predicted using the temporal locality. However few of these researchers

have attempted to expand the results to include Case Two or Three caches. For

those who have, our errors are in the same range as theirs. We next use the locality

surface as a method of evaluating a number of synthetic traces presented by other

researchers.
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Chapter 8

Using Locality Surfaces to

Evaluate Synthetic Traces

We have spent considerable time discussing how we can use the locality surface to

predict cache performance. We now investigate another use of the locality surface:

evaluating the accuracy of synthetic trace models.

One of the most popular methods for evaluating systems is trace-driven simula-

tion. Originally, synthetic traces were used in simulations because real traces didn’t

exist. Now, as mentioned in Section 3.2, real and accurate traces are obtainable.

The length of these real traces is only limited by the time necessary to obtain the

trace and the storage limitations. As caches get larger, however, the storage re-

quired for even one sufficiently long trace increases significantly [17]. One solution

is a return to synthetic traces.

Synthetic traces have small storage requirements. For a given model, one can

extract the necessary parameters from a real trace. Storing only these parameters,

one can later produce an arbitrarily long trace. Synthetic traces can also be created

for systems not yet developed, and controlled to “stress” a system in ways that
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workloads have not yet reached. In this situation, one must only specify the param-

eters necessary for the given model to produce a long trace. Using this method, it is

much easier to create a synthetic trace than to collect a real trace by taking costly

time to instrument and trace the system.

Unfortunately, synthetic traces have a large drawback—even when the param-

eters are extracted from a real trace, the synthetic trace tends to be inaccurate.

When using traces for simulation purposes, one would want the simulation results

of a synthetic trace to be the same as the real trace the model parameters came

from. In this chapter, we evaluate the accuracy of synthetic traces by comparing

the synthetic trace’s locality surface with the original trace’s locality surface.

In addition to all its previous uses, the locality surface is a good measure for

evaluating how well a synthetic trace duplicates the locality of the original trace. If

the locality surfaces match, the synthetic trace is accurate in terms of locality. If

the surfaces do not match, the synthetic trace is not accurate. We here show that

none of the synthetic models evaluated reproduce the original trace’s locality. It

would be ideal to be able to use the locality surface itself to generate a synthetic

trace; however, we do not attempt that at this time.

We first describe the six models we discuss, and then compare the locality surface

for each synthetic trace with the original trace locality surface. We then compare

the cache results for each synthetic trace with the original trace cache results. This

confirms the conclusions reached when comparing the locality surfaces, and further

validate the argument that the locality surface represents cache results. Lastly, we

roughly describe a potential algorithm for creating synthetic traces from the locality

surface.

In [39], Grimsrud used his original locality surfaces to evaluate several synthetic

trace models. However, his surface had many weaknesses that kept him from specif-
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ically determing what portions of each model were accurate and what portions were

not. Grimsrud’s surface was not very effective at predicting cache performance, leav-

ing some question as to its ability to determine whether a given model is effective

at replicating cache results.

8.1 Previous Models

We selected six synthetic trace generation models to examine. The necessary pa-

rameters for each model can either be extracted from a real trace or independently

determined by a researcher. These models are all fairly simple, and have been

around for at least ten years.

8.1.1 Independent Reference Model

First is the Independent Reference Model (IRM) [8, 14]. From a real trace,

we determine the frequency of any given memory address occuring. We use these

frequencies as probabilities for generating a sequence of references having the same

distribution.

8.1.2 Stack Model

Next is the Stack Model (SM) from [13]. For this model, we maintain a LRU stack

of references already seen and record the frequency of accessing a reference x deep

in the stack or a reference not yet in the stack. In implementing this model, when

we were required to create a new reference not in the stack, we generated a random,

uniformly distributed, reference.
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8.1.3 Partial Markov Reference Model

The Partial Markov Reference Model (PM) [5] assumes that all references are

either sequential or random. The model has two states, one that creates random

references and one that generates sequential references. From a real trace, we de-

termine the frequency of staying in each state versus switching states. Using these

statistics, we can switch states and generate references. When creating random ref-

erences, we used a uniform distribution between the minimum and maximum values

found in the real trace.

8.1.4 Distance Model

Next is the Distance Model (D) [75]. Again we take a real trace and determine

the frequency of any stride occuring between succesive references in memory. In

calculating references we generate a stride from the stored probabilities, add the

stride to the previous reference and thereby produce the next reference.

8.1.5 Distance-Strings Model

The Distance-Strings Model (DS) [75, 34] also uses the frequencies of the strides

from a real trace. However, instead of using the strides between successive references,

the Distance-Strings Model uses the strides between successive bursts of sequential

references. It also uses the frequencies of the lengths of sequential bursts. When

creating references, we use the stored probabilities to generate a stride and a burst

length. We add the stride to the first reference of the last sequential burst and then

produce x sequential references, where x is the randomly chosen length.
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8.1.6 Random Walk Model

The Random Walk Model (RW) [79] simulates a random walk “with references

governed by a hyperbolic probability law.” (This is the synthetic generation model

that was briefly discussed in Chapter 7.) Two parameters are extracted from a real

trace. The authors claim that the two parameters correspond to the working set

size and the locality of the real trace. These parameters are input into a program

that simulates the random walk through memory, outputting the memory address

at each step. To extract the necessary two parameters from the original trace, the

footprint of the trace must be calculated. The footprint is a graph showing the

number of unique references seen versus the total number of references processed.

8.2 Traces Used

We selected the workload twolf, from the SPEC CINT 2000 benchmark suite, to

use as a base for modeling each of the six models mentioned. Again, we separated

instruction fetches from data reads and writes, effectively giving us two traces to

model. For simplicity, in this chapter we are only using the first 10 million instruc-

tions and the first 10 million data reads and writes from the twolf trace. The first

10 million instructions of twolf have 18, 407 unique references; the first 10 million

data reads and writes of twolf have 207, 852 unique references. Figure 8.1 shows the

first 10 million references from the instruction trace of twolf. Figure 8.2 shows the

first 10 million references from the data trace of twolf.

We selected twolf because its two traces demonstrate several of the features

discussed in Chapter 3. The locality surfaces for both the instructions and the data

of twolf show significant temporal locality. The locality surface for the instruction

trace also shows a significant sequential ridge and some strong loops. The locality
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Figure 8.1: Locality surface for the instruction trace of twolf.

Figure 8.2: Locality surface for the data trace of twolf.
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surface for the data trace of twolf consists of mainly temporal locality, with some

random features around 64 Kwords.

The effective working set sizes and and effective memory ranges for the two traces

is significantly different. For the instruction trace, the effective working set size is

4 Kwords and the effective memory range is 128 words. For the data trace, the effec-

tive working set size is 256 Kwords and the effective memory range is 128 Kwords.

These differences allow us to determine if a particular synthetic model is effective

across a range of effective working set sizes and effective memory ranges.

Using the appropriate statistics gained from these two traces, we generated a

stream of references 10 million long using each of the six models. The locality

surfaces for each of these twelve synthetic traces are shown in the next section and

should be compared wtih Figures 8.1 and 8.2. The closer the surfaces are to each

other and the closer the cache results are, the better the model.

8.3 Comparing Locality Surfaces

We now compare the locality surface for the traces generated by each of the models

with the locality surface for the original traces from which we extracted model

statistics. If a model is accurate, the locality surface for the model looks the same

as the locality surface for the real trace.

8.3.1 Independent Reference Model

First we examine the Independent Reference Model. The locality surface from the

trace IRM generated for the twolf instructions is in Figure 8.3, and the locality

surface for the data is in Figure 8.4. Compare these surfaces to Figures 8.1 and 8.2.

First we note that Figure 8.3 has neither the looping structures nor the sequential
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Figure 8.3: Locality surface for the references generated by the Independent Refer-
ence Model for the instruction trace of twolf. Compare with Figure 8.1.

Figure 8.4: Locality surface for the references generated by the Independent Refer-
ence Model for the data trace of twolf. Compare with Figure 8.2.
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ridge prominantly displayed in Figure 8.1. Figure 8.4 does look quite similar to

Figure 8.2 in shape. But we see a significant difference when examining the top of

the temporal ridge–the shape and overall heights are different. This difference is

more evident if we directly compare the stride = 0 axis of the locality surfaces on a

separate 2-D graph. Figure 8.5 does this for the instruction fetches of the real trace

and the associated IRM generated trace; Figure 8.6 does this for the data reads and

writes. It is easy to see from Figures 8.5 and 8.6 the differences along the stride = 0

axis.

The biggest advantage of the IRM is that it creates an effective working set size

similar in size to the real trace. For the real instruction trace, the effective working

set size is 4 Kwords and for the IRM instruction trace, the effective working set size

is 16 Kwords. For both the real and the IRM data trace, the effective working set

size is 128 Kwords. The effective memory range is further off for the instruction

trace. For the real trace, the effective memory range is 128 words, but for the IRM

instruction trace, it is 2 Kwords. For both the real and the IRM data trace, the

effective memory range is 128 Kwords.

It appears that the IRM is better at approximating the effective working set size

and effective memory range for larger values than for smaller. The only locality

feature that the IRM appears able to preserve is a random hump. Even for traces

with large working set sizes and memory ranges, the IRM does not preserve even

such basic locality features as the temporal spike.

8.3.2 Stack Model

Next is the Stack Model. The locality surface this model generated for the instruc-

tion trace of twolf is in Figure 8.7; the locality surface for the data trace of twolf is
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Figure 8.5: Duplicates of the stride = 0 axes of the locality surfaces for the original
instruction trace of twolf, the Independent Reference Model, and the Stack Model.
Notice how the lines for the original trace and the Stack Model are very close.

Figure 8.6: Duplicates of the stride = 0 axes of the locality surfaces for the original
data trace of twolf, the Independent Reference Model, and the Stack Model. Notice
how the lines for the original trace and the Stack Model are quite close.
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in Figure 8.8. Compare with Figures 8.1 and 8.2.

This model appears to be extremely accurate along the stride = 0 axis. Fig-

ure 8.5 shows the stride = 0 axis from the instructions of the real trace and the

Stack Model. The lines for the real trace and the stack model are almost identical.

Figure 8.6 shows the stride = 0 axis from the data reads and writes of the real trace

and the Stack Model. The lines for the real trace and the Stack Model are again

quite close.

While both the height and shape of the temporal ridge appears very close for

the stack model, there are no other features at all on the Stack Model’s locality

surfaces. The effective memory range for both Stack Model traces is zero. We do

not see the sequentiality or looping of the twolf instruction fetches, nor the random

lump at a delay of 64 Kwords of the twolf data. While the temporal locality is

extremely accurate, we are missing the spatial locality. Notice, however, that the

effective working set sizes match with those of the real trace.

8.3.3 Partial Markov Model

Next we look at the Partial Markov Model. The locality surface this model generated

for the instructions of twolf is in Figure 8.9, while Figure 8.10 holds the locality

surface for the data. Again, compare these surfaces to Figures 8.1 and 8.2.

The Partial Markov Model attempts to generate sequential references similar to

the sequential portions of the real trace. However, comparing Figures 8.9 and 8.1,

we see that the sequential ridge generated by the model is nothing like the ridge

seen for the real trace. Most sequential runs in the synthetic trace are less than 4

references long. The real trace of the data of twolf does not contain any sequential

ridge at all, yet the Partial Markov Model has the beginnings of such a ridge. It
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Figure 8.7: Locality surface for the references generated by the Stack Model for the
instruction trace of twolf. Compare with Figure 8.1.

Figure 8.8: Locality surface for the references generated by the Stack Model for the
data trace of twolf. Compare with Figure 8.2.
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Figure 8.9: Locality surface for the references generated by the Partial Markov
Model for the instruction trace of twolf. Compare with Figure 8.1.

Figure 8.10: Locality surface for the references generated by the Partial Markov
Model for the data trace of twolf. Compare with Figure 8.2.
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also has some random references at a much larger delay than exhibited by the real

trace, meaning that the effective working set size of the model is much larger than

the target effective working set size of the real trace.

Since the effective working set sizes for the Partial Markov Model traces are

nearly equivalent and so much larger than for the real traces (8 Mwords for the

instruction trace and 16 Mwords for the data trace), we guess that the effective

working set size is more closely related to the parameters of the random number

generator used than the original trace. The effective memory range does differ

between the two Partial Markov traces (128 Kwords for the instruction trace and

1 Mwords for the data trace). We guess that this is relative to how many random

references are generated by the model, i.e. the length of time spent in the random

state of the model versus the sequential state.

In general, the Partial Markov Model does not even come close to representing

the real trace in any respect. The only feature from the locality surface of the real

trace that even begins to appear on the Partial Markov Model locality surface is

the sequential ridge, and that is woefully inadequate. Even the temporal spike is

non-existant on either Partial Markov Model locality surface.

8.3.4 Distance Model

The locality surface of the trace generated by the Distance Model for the twolf

instructions is in Figure 8.11, and the locality surface for the data of twolf is in

Figure 8.12. Compare these figures to Figures 8.1 and 8.2.

Immediately we notice the lack of effective working set size in the traces generated

by the Distance Model. For both instruction fetches and data reads and writes the
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Figure 8.11: Locality surface for the references generated by the Distance Model for
the instruction trace of twolf. Compare with Figure 8.1.

Figure 8.12: Locality surface for the references generated by the Distance Model for
the data trace of twolf. Compare with Figure 8.2.
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maximum delay shown on the locality surface is less than 8 words long, a very small

effective working set size.

Since the Distance Model focuses entirely on the strides where the delay equals

one, it is interesting to examine its accuracy along this axis alone. Figures 8.13

and 8.14 show the curves from the delay = 1 axis of the locality surfaces for several

traces. Figure 8.13 shows the instruction fetches traces and Figure 8.14 shows the

data reads and writes traces. Notice that the curves for the real traces and the

Distance Model traces are indistinguishable in both figures. This demonstrates the

accuracy of the Distance Model along the delay = 1 axis.

However, the effective memory range is still significantly off. For the instruction

trace, the Distance Model has an effective memory range of 8 words, rather than

the 128 words of the real trace. For the data trace, the Distance Model has an

effective memory range of 16 words, rather than the 128 Kwords of the real trace.

In summary, the Distance Model is useful for recreating the delay = 1 relationships,

but little else.

8.3.5 Distance-Strings Model

The locality surface generated by the Distance-Strings Model for the twolf instruc-

tions is in Figure 8.15, and the locality surface for the data of twolf is in Figure 8.16.

Compare these figures to Figures 8.1 and 8.2.

This model attempts to retain all the advantages of the Distance Model and add

appropriate sequentiality. Comparing the locality surfaces for the real trace fetches

and the model fetches, the Distance-Strings model appears to have failed in both

respects. While the shape along the delay = 1 axis is still similar between the two

instruction trace locality surfaces, it is nowhere near as clear, and the heights are
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Figure 8.13: Duplicates of the delay = 1 axes of the locality surfaces for the original
instruction trace of twolf, the Distance Model, and the Distance-Strings Model.
Notice how the lines for the original trace and the Distance Model are the same.

Figure 8.14: Duplicates of the delay = 1 axes of the locality surfaces for the original
data trace of twolf, the Distance Model, and the Distance-Strings Model. Notice
how the lines for the original trace and the Distance Model are the same.
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Figure 8.15: Locality surface for the references generated by the Distance-Strings
Model for the instruction trace of twolf. Compare with Figure 8.1.

Figure 8.16: Locality surface for the references generated by the Distance-Strings
Model for the data trace of twolf. Compare with Figure 8.2.

220



now significantly off. This can be more easily seen by comparing the delay = 1 axis

of the locality surfaces, shown in Figure 8.13.

Figure 8.14 shows the delay = 1 axis of the data locality surfaces. Here the

Distance-Strings Model is still quite close to the line for the real trace, probably

because the real trace has no significant sequentiality. Since sequentiality is the

only difference between the Distance Model and the Distance-Strings Model, the

locality surfaces in Figures 8.16 and 8.12 look almost the same.

As with the Distance Model, the effective memory range is significantly off.

Overall, we say the Distance-Strings Model loses some of the accuracy the Distance

Model had, without any benefit.

8.3.6 Random Walk Model

The locality surface of the trace generated by the Random Walk Model for the

instruction trace of twolf is in Figure 8.17, and the locality surface for the data trace

of twolf is in Figure 8.18. Compare these figures with Figures 8.1 and 8.2.

The Random Walk Model appears to create a tall slice along the temporal axis

and a random hump. For the data trace of twolf, it also appears to have created a

few delayed sequential references (see Section 3.1.5). However, there is almost no

data along the delay = 1 axis and thus no temporal spike. The random hump for

the instruction Random Walk trace appears at the same delay as the loop structure

in the original instruction trace. However, converting a loop into random references

cannot be advantageous. The random hump seen on the original data trace is at

about 64 Kwords. Unfortunately, there is little information at 64 Kwords on the

Random Walk data trace.

The effective working set size for the Random Walk Model is one order larger
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Figure 8.17: Locality surface for the references generated by the Random Walk
Model for the instruction trace of twolf. Compare with Figure 8.1.

Figure 8.18: Locality surface for the references generated by the Random Walk
Model for the data trace of twolf. Compare with Figure 8.2.
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than the original effective working set size for the instruction trace and one order

smaller for the data trace. It appears that the Random Walk Model does much

better than either the Distance or Distance-Strings Models at aproximating the

effective working set size of the original trace. The effective memory range is the

same for the Random Walk data trace as the original twolf data trace. However, the

Random Walk instruction trace is significantly different than the original instruction

trace. Figure 8.17 does not show it, but the effective memory range is 8 Kwords.

The original effective memory range is 128 words.

The Random Walk Model appears to approximate the effective working set

size reasonably, but does not adequately represent either the temporal axis or the

delay = 1 slice of the locality surface. It also does not replicate loops or the sequen-

tial ridge. We speculate that one of its two parameters controls the effective working

set size and the other controls the magnitude of the delayed sequential ridge.

8.4 Comparing Cache Simulation Results

We now examine the cache simulation results for the real traces with each trace

generated by one of the synthetic models. This further validates our argument that

the locality surface and cache simulation results are related. We selected cache

configurations that are typical for L1 caches in many systems today. Specifically,

we simulated caches with sizes 32 Kbytes and 64 Kbytes, associativities from 1-way

to 8-way, and all with 32-byte lines.

The cache simulation results for the original twolf traces and all six models are

in Figures 8.19 and 8.20. Tables 8.1 and 8.2 show the percent error of each of the

six models versus the original trace. We first notice that the errors are very large in

most cases. The results from the Distance Model and the Distance-Strings Model
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are very similar to each other, especially for the data where the real trace had no

sequential features. The Partial Markov Model has the worst miss rate, probably

because it relies quite heavily on random references.

The Independent Reference Model, the Stack Model, and the Random Walk

Model are the only models that give us much variability between the different cache

configurations. That is probably because these were the models that created re-

motely accurate effective working set sizes. Yet the percent errors are still quite

large.

The only real trace and model combination that has any reasonable error for

all the cache simulation results is for the data of twolf and the Stack Model. If we

remember from the locality surfaces in Figures 8.2 and 8.8, the only real features

of the real trace were the temporal locality. As we saw earlier, the Stack Model

reproduces the temporal locality very well and only falls short in dealing with spatial

locality. For traces such as the data of twolf, where there is no significant spatial

locality, the Stack Model would perform quite well.

This also further validates the conclusions from Chapters 6 and 7, that temporal

locality is sufficient for fully associative caches where Cl = g. However, if the spatial

locality does not match, there are errors for Cases Two through Four. These errors

should be minimized for traces with little spatial locality. Recall that the Stack

Model recreated the temporal locality almost exactly and only failed in the matter

of spatial locality. Now, we see that for the trace with little spatial locality (i.e. the

data trace of twolf), the Stack Model gave reasonable approximations of the Case

Four cache results for the real trace. However, the trace with significant spatial

locality (i.e. the instruction trace of twolf) was not approximated well by the Stack

Model.

Interestingly enough, the errors for the Random Walk Model are very different
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Figure 8.19: Cache simulation results for the original instruction trace of twolf and
the references generated by the six studied models. The left-most bar in each group
indicates the real trace results, the next bar the IRM trace results, etc.

cache configuration IRM SM PM D DS RW

32K, 1-way 172% 167% 1,413% 513% 537% 648%
64K, 1-way 101% 226% 2,807% 1,077% 1,123% 503%
32K, 2-way 106% 210% 1,967% 738% 771% 851%
64K, 2-way 75% 204% 4,051% 1,580% 1,645% 409%
32K, 4-way 126% 428% 3,881% 1,511% 1,574% 1,373%
64K, 4-way 109% 207% 6,315% 2,496% 2,597% 361%
32K, 8-way 138% 469% 4,751% 1,863% 1,939% 1,537%
64K, 8-way 206% 429% 15,741% 6,310% 6,559% 627%

Table 8.1: Errors for the cache simulation results of the original instruction trace
of twolf versus the cache simulation results of the traces generated by each of the
six studied models. The error is calculated by taking the difference between the
model cache results and the real trace cache results and dividing the result by the
real trace cache results.
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Figure 8.20: Cache simulation results for the original data trace of twolf and the
references generated by the six studied models. The left-most bar in each group
indicates the real trace results, the next bar the IRM trace results, etc.

cache configuration IRM SM PM D DS RW

32K, 1-way 76.4% -3.0% 297% 236% 237% 147.9%
64K, 1-way 71.7% -17.4% 318% 254% 254% 88.4%
32K, 2-way 95.3% 0.7% 363% 278% 293% 172.9%
64K, 2-way 88.3% -15.2% 393% 317% 318% 90.8%
32K, 4-way 99.5% 0.6% 391% 316% 317% 178.7%
64K, 4-way 107.6% -7.7% 476% 388% 389% 98.7%
32K, 8-way 117.9% 9.8% 454% 370% 370% 207.4%
64K, 8-way 118.5% -3.5% 523% 428% 428% 99.2%

Table 8.2: Percent errors for the cache simulation results of the original data trace
of twolf versus the cache simulation results of the traces generated by each of the
six studied models. The error is calculated by taking the difference between the
model cache results and the real trace cache results and dividing the result by the
real trace cache results.
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from the errors reported by Thiebaut et al. in their paper [79]. Recall from Sec-

tion 7.5.2 that their reported maximum error for set associative caches was 25%. We

acknowledge that the difference in errors may be due to an error in our implemen-

tation of the Random Walk Model. However, we also notice that the single trace

used by Thiebaut et al. for set associative simulations was only 433,152 references

long [79]. This is significantly shorter than our 10,000,000 long traces. We think it

more likely that the difference in errors is attributable to the difference in traces;

perhaps the Random Walk Model has much smaller errors for shorter traces or the

particular trace chosen.

8.5 Synthetic Traces from the Locality Surface

It would be nice if we could develop a synthetic trace creation mechanism based on

the locality surface itself. If we could create a trace from a locality surface such that

the synthetic trace had the same locality surface, the synthetic trace would have

the same cache simulation results as the original trace. We could then store the

locality surface rather than the large trace for significant space savings. We could

also create traces of the future by creating locality surfaces that have the features

we believe will be on the locality surfaces of the next generation traces.

We have spent considerable time investigating probabilistic methods for using

the locality surface to create a synthetic trace. We have found that we can either

duplicate the temporal locality (as the Stack Model did) or the delay = 1 locality

(as the Distance Model did). The trick is to combine these two.

We believe the way to do this is to take advantage of the fact that temporal

locality does not involve the relative values of the elements in the trace, it only

considers the delay until each value is repeated. The delay = 1 locality slice does
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not consider when a value may be repeated, it only considers the difference between

the given value and the next value.

We assume that, in addition to the locality surface, we also know the length of

the desired trace. We first use the L(0, 1) entry on the locality surface to determine

how many immediately repeating elements there are in the trace and subtract this

from the length of the trace. We therefore create the base of the desired trace. This

simplifies many calculations. We know from Theorem 6.7 that the immediately

repeating elements may be added in at any place in the trace when we are done.

We let len represent the length of the trace base.

We know from the locality surface how many unique elements are in the trace

(see Equation 6.5) and call this uniq. We create uniq variables and rearrange them

in a list of length len until the temporal locality is correct. There may be many

arrangements that match the temporal locality.

We then take each arrangement and assign values to the variables such that the

resulting trace has delay = 1 locality that matches the desired delay = 1 slice. Note

that we must not allow any of the variables to be equal to any of the other variables

or the temporal locality is no longer correct. Note also that for a given arrangement

of uniq variables in a len long trace there may be no assignments of values such

that the result matches the delay = 1 data.

To reduce the time for this last step, we can extract the range between the largest

and smallest values in the trace from the locality data. We do this by finding the

largest absolute value stride in the locality data. The largest and smallest values in

the trace have a stride/delay relationship between them at some point in the trace.

This stride/delay relationship contains the largest absolute value stride. Using this

range, we can limit the number of values to attempt to assign each variable.

We can also reduce the number of values that need to be tried by deciding that
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we only need one string from each shift equivalence class. If we require the largest

or the smallest value to be a constant, then we reduce the number of values to be

tried and also reduce the number of shift equivalent strings found. For example, we

may require that the smallest value in the final string is 1.

At this point we should have a trace with length len that has temporal locality

and delay = 1 locality that matches the temporal and delay = 1 locality on the

original locality surface. The maximum absolute value stride should also match.

However, this is not sufficient to determine that all the locality data matches.

Example 8.1. Let v = 3, 5, 4, 1, 4, 2, 4, 1, 4, 1 and w = 3, 5, 2, 5, 2, 5, 3, 5, 4, 1.
Note that σs=0(B) represents the temporal locality in bag B and σd=1(B) represents
the delay = 1 locality in bag B.

For v and w above, σs=0(�(v)) = σs=0(�(w)) and σd=1(�(v)) = σd=1(�(w)). Also,
the minimum value in each string is 1 and the maximum value is 5.

Therefore, v and w have matching temporal locality, matching delay = 1 local-
ity, and equivalent maximum absolute value strides. However, �(v) �= �(w) since
(−3, 3) ∈ �(v) and (−3, 3) �∈ �(w). Also, (2, 3) ∈ �(w) and (2, 3) �∈ �(v).

As seen in Example 8.1, just because a string has the same temporal locality

and delay = 1 locality and has the same maximum absolute value stride does not

mean that the rest of the locality data on the string matches. Note also that in

Example 8.1 the two stride/delay relationships that are out of place would not be

assigned to the same bin when the binned histogram is created, so the mismatch

would also be present on the locality surface.

Therefore, all strings at this point should have the locality created for them and

compared with the desired locality surface. Obviously for many locality surfaces this

entire process would be extremely time consuming. However, since it is possible, it

merely remains to find methods to shorten the time necessary for each step. The

final result would be a synthetic trace that has the desired locality features and also

accurate cache simulation results.
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8.6 Summary

None of the models examined in this chapter were very accurate, as exhibited by

both the locality surfaces and the cache simulation results. However, the locality

surface also gave us information as to which models adequately reproduced what

they intended. In that respect, IRM, the Distance Model, and the Stack Model

all did well. The Distance-Strings Model lost the spatial locality accuracy of the

Distance Model without gaining any benefit. The Partial Markov Model relied

too heavily on random references and still did not produce a reasonable sequential

ridge. It especially failed to model the data of twolf, which did not have a significant

sequential ridge anyway. The Random Walk Model certainly reduced the original

trace to two parameters, as desired, however the errors in cache simulation are

unreasonable large.

We conclude that if the real trace has minimal spatial locality, it may be ap-

proximated fairly well by the stack model. In all other cases, none of these models

are adequate. Unfortunately, as seen in Chapter 3, most workloads have significant

spatial locality.

We also described a rough algorithm for using the locality surface itself to gener-

ate a synthetic trace. Due to the time involved, the algorithm is impractical at this

point, however it does give a starting place for researchers interested in using the

locality surface to create synthetic traces. We next discuss methods for improving

the time to compute the locality surface using a parallel algorithm. Such an im-

provement in the time to compute may help make creating a synthetic trace from

the locality surface more feasible.
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Chapter 9

Speeding Up the Locality Program

One of the biggest disadvantages of using the locality surface is the time necessary

to compute it. As mentioned in several places in previous chapters, computing

the locality data for some inputs takes an unreasonable amount of time. Some

of the traces used in this dissertation take many days, depending on the trace’s

locality. Traces with “good” temporal locality, i.e. most references are repeats of

recently used references, are computed quite quickly. For example, the locality data

for the instruction trace of mcf took less than 3 minutes to compute on a 2.2 GHz

machine. The locality surface for the instructions of mcf is shown in Figure 9.1. The

instructions of mcf have 57,174,298 references and only 16,170 unique references.

Workloads with poor locality, such as the data of wupwise, take weeks to com-

pute. The data of wupwise has 51,477,244 references and 8,404,245 unique references.

A 2.2 GHz machine took over 47 days to compute the locality surface for the data

of wupwise, shown in Figure 9.2. This was the longest it took for any of the SPEC

traces we analyzed. (All our locality surfaces are listed in Appendix B.) However,

the randomly generated traces used in Section 5.3 would have taken even longer to

compute using the sequential algorithm, since it is much longer (500 million refer-
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Figure 9.1: The locality surface for the instruction trace of mcf. It took less than 3
minutes to compute the data for this surface.

ences) with more unique references (7.9 million unique references). Clearly, a faster

algorithm is necessary to make the locality techniques presented in this dissertation

feasable and other associated surfaces practical to compute.

9.1 Sequential Algorithm

The näıve method for calculating the locality surface uses an LRU stack based

algorithm as shown in the pseudo-code in Figure 9.3. The stack is ordered such that

the most recently seen reference is always on the top. Each reference is compared

with each element of the stack, beginning at the top of the stack. For each member of

the stack, the stride and delay are calculated and recorded. If the current reference

is discovered in the stack, the stack traversal finishes, no more strides and delays are

computed, and the reference is removed from its position in the stack and reinserted

at the top.
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Figure 9.2: The locality surface for the data trace of wupwise. It took over 47 days
to compute the data for this surface.

Calculating the locality surface in this manner is a sequential, O(mn) algorithm,

where m is the number of unique references and n is the total number of references.

We may also write it as O(na) where a is the average stack depth of the elements.

For traces with great locality, a is very small. For traces with poor locality, a

approaches m and the overall time is excessive. For random traces, not only does a

approach m, but m aproaches n making the sequential algorithm essentially O(n2).

Other researchers have made efforts to speed up stack based algorithms [11, 78,

80]. However, none of these methods help compute the locality surface since the aim

of such previous algorithms is merely to compute the stack depth of each reference.

The other algorithms create tricks for skipping the stack traversal step of the näıve

algorithm. Since the locality surface requires a calculation at each depth of the stack

before the current reference is discovered, we cannot shortcut the stack traversal.

The only way to speedup the time to compute the locality surface is to split the
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void main()

{
ulong addr = GetReference();

AddToStack(addr);

int uniques = 1;

int delay, stride;

while (MoreReferences())

{
addr = GetReference();

for (int i = 1; i <= uniques; i++)

{
stride = addr - stack[i];

delay = i;

MarkLocalityEvent(stride,delay);

if (stride == 0)

{
RemoveFromStack(i);

uniques--;

break;

}
}
AddToStack(addr);

uniques++;

}
}

Figure 9.3: Pseudo-code listing for the sequential locality algorithm. The function
GetReference() returns the next references from the input trace. The function
AddToStack(addr) pushes addr on the top of the stack. The variable uniques keeps
a count of the number of unique references seen, equivalent to the current depth
of the stack. The function MoreReferences() returns true if there are more refer-
ences to be read from the trace. The function MarkLocalityEvents(stride,delay)

records the input stride/delay relationship in either a histogram or binned histogram,
as desired. The function RemoveFromStack(delay) removes the value at depth
delay from the stack.
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stack among several processors. The trick is to figure out a method to split the

stack evenly such that each portion of the stack may be traversed simultaneously

and such that updating the stack is simple and fast.

9.2 The Parallel Algorithm

The obvious way to split the stack among p processors is to put the top 1/p references

in the stack on the first processor, the next 1/p references in the stack on the next

processor, etc. However, this method does not meet our requirements. When the

references are split among the processors according to location in the stack, it is

difficult to process all the sections of the stack at the same time. If, for example, a

reference was found halfway through the stack, then half the processors would need

to throw away the results they calculated.

More importantly, stack update would be tricky and time consuming. If, for

example, a reference was not in the stack, it would be added to the processor that

has the top section of the stack. If a reference was found in the stack, it would

be removed from that processor and reinserted on the processor containing the top

section of the stack. Basically, every reference processed would add another reference

to the processor containing the top of the stack. These added references would cause

an increasing unbalance of the processors and the stack would need to be periodically

resectioned and redistributed among the processors. This rebalancing would need

to occur frequently, and remove any benefit of using a parallel algorithm.

We need an algorithm that allows us to split up the stack arbitrarily among

the processors, i.e. an algorithm that does not require the processors to store the

stack in order. We do this by requiring each processor to store each of its assigned
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elements with the depth that element would be if an LRU stack were maintained.

Processing a new reference now takes two steps, or phases.

In Phase I, each processor reads the reference from the file and determines if

the reference is assigned to itself. If the reference belongs to that processor, the

processor looks up the stack depth of that reference and broadcasts the depth to the

other processors. If the reference has never been seen before, and hence no depth is

stored, then a depth of infinity is broadcast. See Figure 9.4.

In Phase II, every processor now knows both the reference value and the depth.

All the processors then simultaneously look at each reference it has stored. If the

depth of the stored reference is less than the depth of the new reference, the stride

and delay are computed and recorded and the stored depth is increased by one.

When the processor that has the new reference assigned to it comes across that

reference, the stride and delay are computed and stored and the stored depth is

assigned a value of 1. If the new reference has never been seen before, then the

processor that has it assigned adds the reference to its list with a depth of 1.

At the end of Phase II, the stack may be recreated by examining the references

stored by each processor and their depths. See Figure 9.5. Note that we have

achieved our goal. The stack elements may be stored on any processor, the section

of the stack on a given processor may be processed at the same time as the sections

on the other processors, and updating the stack is simple and fast.

9.2.1 Load Balancing

We wish to have the seen references evenly balanced across all the processors. How-

ever, the time to determine which processor has that reference assigned should be

short, since it is done by every processor for every reference. As discussed above, we
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void main() {
int myrank, numprocs, depth, stride, delay, myuniques = 0;
GetRankAndSize(&myrank,&numprocs);
int shift = FindBestShift(numprocs);
ulong addr = GetReference();
int proc = (addr >> shift) & (numprocs - 1);
if (proc == myrank) {

myrefs[myuniques] = addr;
mydepths[myuniques++] = 1;

}
while (MoreReferences()) {

addr = GetReference();
proc = (addr >> shift) & (numprocs - 1);
if (proc == myrank) {

depth = FindDepth(addr); // Phase I
SendBroadcast(depth);
for (int i = 0; i < myuniques; i++) { // Phase II

if (mydepths[i] < depth) {
stride = addr - myrefs[i];
delay = mydepth[i]++;
MarkLocalityEvent(stride,delay);

}
if (mydepths[i] == depth) {

MarkLocalityEvent(0,depth);
mydepth[i] = 1;

}
}
if (depth == INFINITY) {

myrefs[myuniques] = addr;
mydepths[myuniques++] = 1;

}
} else {

depth = ReceiveBroadcast(); // Phase I
for (int i = 0; i < myuniques; i++) { // Phase II

if (mydepths[i] < depth) {
stride = addr - myrefs[i];
delay = mydepth[i]++;
MarkLocalityEvent(stride,delay);

}
}

}
}
SumLocalityTables();

}

Figure 9.4: Pseudo-code listing for the basic parallel locality algorithm. The func-
tion GetRankAndSize retrieves the rank for this processor and the total number of
processors. The array myrefs contains all the references assigned to this processor
that have been seen. The array mydepth contains the stack depth of each reference.
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trace
..............................................
........
.........
........

t

47 47 38 31 37 36 36 28 30 33 38 38 31 36 37 47 48 49 49 · · ·

36 1
31 2
38 3
33 4
30 5
28 6
37 7
47 8

(a)

0: 33 4 1: none

2: 36 1
28 6
37 7

3: 31 2
38 3
30 5
47 8

(b)

Figure 9.5: Time t indicates just after the reference valued 36 is processed, but before the reference valued 37 is read.
Part (a) shows the LRU stack at time t during the sequential algorithm. Note that only the value of the reference is
stored; the depth of the stack can be calculated as the stack is traversed. Part (b) shows the stack at time t, split between
4 processors, in the parallel algorithm. Note that both the value of the reference and its depth in the LRU stack are
stored. In fact, the LRU stack can be recreated from the information stored in Part (b).
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cannot assign references to processors by location in the stack, since that changes

constantly. We decide to assign processors by performing a mod of the value of the

reference with the number of processors. We have determined that right shifting

the reference value one or more times changes the load balance.

For our input traces, it takes less than one or two minutes to read through the

entire trace and determine the optimal number of bits to shift to give the best load

balance. For some traces, the time saved is only ten to thirty minutes. However,

for other traces the parallel program ran over twice as fast with the better load

balancing. For example, the data trace of wupwise improved from 61+ hours with

zero shift to 28+ hours with the optimal shift, a savings of almost 33 hours.

When determining the best shift, we must remember that the processors only

store each reference once, so we want to balance the unique references rather than

the total references. For example, assume we are using two processors and our trace

consists of the numbers 1, 2, 1, 4, 1, 6, 1, 8, 1, 10, 1. If we load balance based on the

total number of references we decide to shift zero bits. But this assigns one value, 1,

to the first processor and five values to the second. When processing the last value

in the trace, the first processor only has one reference to compare it with during

Phase II, while the second processor is comparing five references. If we instead load

balance based on the unique references, then we decide to shift one bit. This assigns

three values to the first processor and three values to the second. The work of Phase

II is more evenly balanced.

We now look at each phase in more detail. We see how various implementation

choices affect the time involved for each phase, and discuss possible improvements.
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9.2.2 Phase I

For most of Phase I, only one processor is doing any work. It is looking up the stack

depth of the current reference. If we store the references and depths as a linked list,

sorted by depth, then fewer references must be visited when the depth is small. If

the locality is good, this is more likely to happen. However, if the locality is good,

then the sequential version of the locality program performs well and the parallel

version is not needed. If the parallel algorithm is being used, we assume that the

locality is poor. Storing the references and depths in an unsorted array may be

faster, since arrays are accessed faster than linked lists [59, page 96].

Other ways to improve the speed-up of Phase I are to store the references in

sorted structures, where the worst-case lookup is O(log n) or O(1) rather than O(n).

Examples include AVL trees [23] and hash tables [46]. However, such structures

make it more difficult for Phase II to operate easily. One option is to use the tree or

hash table and have each entry point to the reference and depth stored in the array

or linked list.

Another idea that may improve the speed of Phase I is to overlap the two phases

together. If we know the next reference as well as the current one, then while

traversing the array or linked list during Phase II we may record the new depth of

the next reference. This also avoids the problem of one processor doing work while

the others wait.

9.2.3 Phase II

As with Phase I, this phase may be faster with a linked list sorted by depth. In

Phase II we only wish to calculate strides and delays and update depths when the

current depth is less than the broadcast depth. If a linked list is used, then once
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the stored depth is greater than the broadcast depth we may discontinue traversing

the list. Since we are usually just adding 1 to each depth in the list, there is usually

no need to reorder the list. The only exception occurs when the current reference is

discovered in the list. In this case, the reference must be removed from the list and

re-inserted at the top with a depth of one.

Again, if the locality of the input trace is good, then we may save significant

amounts of time by using a linked list and only traversing some of the stored ref-

erences. However, the poor locality traces that are more in need of speed-up may

often traverse most of the list, meaning that the periodic updating of the list and

the slower nature of linked lists may not be worth it.

Another way to optimize Phase II is to notice that when the depth of the current

reference is one, the current reference is an immediately recurring element. In this

situation, the only stride/delay combination that needs to be recorded is a stride

of zero and delay of one (see Theorem 6.7). In addition, the stack does not need

to be changed. So whenever the broadcast depth is 1, then the processor with the

reference assigned to it records a stride/delay of (0,1) and all the other processors

do nothing. No stack traversal is needed.

Combining this optimization with the overlap optimization of Phase I is some-

what tricky but can be done. When the next reference is the same as the current

one, then we know the next reference has a depth of one. The assigned processor

records the stride/delay of (0,1) and all the processors then read another reference

and use it as the next reference. The complexity of making this work may remove

some of the benefits of overlapping the two phases.
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workload type total unique i.r.e. weight

wupwise D 57,464,980 8,588,924 2,341,977 473,447
swim D 42,031,084 7,988,204 2,298,995 317,388
*lucas D 38,488,490 2,712,775 3,650,248 94,508

perlbmk D 37,370,781 1,840,857 3,422,644 62,494
*mcf D 34,938,679 1,386,300 1,665,496 46,127
bzip2 D 36,776,336 766,146 4,626,989 24,631
*gcc D 40,662,494 265,933 4,365,358 9,653
*gcc I 51,067,057 77,404 19,954,787 2,408

wupwise I 34,931,332 79,684 14,127,065 1,658
lucas I 55,170,861 33,077 20,600,033 1,144

perlbmk I 54,061,602 33,803 21,887,304 1,088
swim I 50,749,935 27,389 17,904,937 900
mcf I 57,174,298 16,170 23,960,306 537

*bzip2 I 54,240,485 15,421 19,960,745 529

Table 9.1: The traces that we used in this chapter. The workloads were chosen to
give a variety of weights and to represent the distribution of weights among all our
SPEC traces. The starred workloads were used with all four versions of the parallel
program with 2, 4, 8, 16, 32, and 64 processors.

9.3 The Experimental Platform

The traces used in this chapter are shown in Table 9.1 along with whether they are

the instructions or the data, the total number of references in the trace, the number

of unique references in the trace, the number if immediately repeating elements in

the trace, and the weight of the trace. All of our traces are from the Spec 2000

suite. Four are SPEC CINT and three are SPEC CFP.

The weight of the trace is a metric we have defined that is intended to be relative

to the time to compute the locality of the trace using a stack based algorithm. The

equation for the weight is

weight =
(total − ire) ∗ unique + ire

1, 000, 000, 000
, (9.1)

where total is the total number of references in the trace, ire is the number of

immediately repeating elements, and unique is the number of unique references
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in the trace. Note that the weight is different depending on the granularity the

trace is processed at. All weights shown in this dissertation were computed with a

granularity of 8 bytes.

We developed this weight equation based on the big O notation for the stack

based locality algorithm when we know total, unique, and ire. At its simplest level,

the stack based algorithm is O(total2). When we also know unique for the given

trace, the algorithm becomes O(total ∗ unique).

We discovered, however, that this does not sufficiently represent our traces. A

few traces have many more immediately repeating elements than the other traces

and hence are much faster to compute than other traces that have the same value for

total∗unique. Since ire is almost as simple to calculate as total, we make use of the

knowledge that all immediately repeating elements only access the stack once, and

require no reordering of the stack. Therefore the time to process an immediately

repeating element is constant and should not be multiplied by unique. The final

order is O
(
(total − ire) ∗ unique + ire

)
.

We divided this equation by 1 billion to reduce the values of all our traces to

a reasonable range. The final result is Equation 9.1, which we decided to name

the weight of the trace. Smaller weights indicate better locality, and faster stack

based computaton. We hope to see a trend that as the weight increases, the value of

using the parallel algorithm increases. Hopefully we can pick a cut-off point where

traces with smaller weights perform better in the sequential, stack based program

and traces with larger weights perfrom better with the parallel version.

Our parallel cluster is comprised of 32 dual processor Opteron systems running

at 2.2 GHz. Each processor has 1 Mbyte of L2 cache. Each system has 4 Gbytes of

physical memory and is connected to the others via switched Gigabit Ethernet. We

used MPI when programming for this machine.
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We tested four versions of our parallel locality program using the above machine

and the starred traces in Table 9.1. All four versions use the depth one shortcut.

Version AR stores the references in unsorted arrays with no other optimizations,

Version LL stores the references in linked lists with no other optimizations, Version

ARol stores the references in unsorted arrays and uses overlap, Version LLol stores

the references in linked lists and uses overlap. We now present our results.

9.4 Results

We first ran the starred traces in Table 9.1 through the stack based, sequential

locality program as well as all four versions of the parallel program using 2, 4, 8, 16,

32, and 64 processors. After selecting the best parallel version, we ran each of the

traces in Table 9.1 through the sequential locality program and the parallel locality

program using 2, 4, 8, 16, 32, and 64 processors. We did not run our parallel locality

program on one processor; whenever we refer to the one processor results, we are

referring to the sequential version of the locality program.

We ran all versions of the program on the same machine so timing comparisons

are fair. When running the parallel version of the program, we always used both

processors on each node used. When running the sequential version on one processor,

we made sure that the other processor on the same node was unused. This may have

given a slight advantage to the sequential version of the program, meaning that our

speedups may be pessimistic.

9.4.1 Comparing Versions

Figure 9.6 shows the time to compute the locality data of the data trace of lucas

across the range of number of processors for all four versions of the parallel locality
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Figure 9.6: A comparison of the time (in hours) to compute the locality data for
the data trace of lucas using all four versions of the parallel locality program.

program. Figure 9.7 shows the same thing for the instruction trace of gcc with the

scilab input. These two graphs are representative of the results we found for the

starred traces in Table 9.1. Figure 9.6 represents the traces with larger weights

and worse locality. Figure 9.7 represents the traces with smaller weights and better

locality.

First, let us examine how the four versions of the parallel locality program com-

pare for traces with worse locality, represented by Figure 9.6. The version that

performs best over our range of number of processors is AR, i.e. array without the

overlap. Next best is ARol, i.e. array with the overlap. Next is LL, i.e. linked list

without the overlap. All three of these versions are quite close together. Significantly

worse is LLol, i.e. linked list with overlap.

We can see that the advantage of using a linked list (i.e. not having to traverse all

the references stored on a particular processor) does not outweigh the disadvantage
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Figure 9.7: A comparison of the time (in hours) to compute the locality data for
the instructions of gcc with the scilab input using all four versions of the parallel
locality program.

that a linked list takes longer to traverse than an array. The linked list version with

overlap performs significantly worse because the overlap lessens the advantage of

the linked list. When traversing a list looking for two items simultaneously, one is

more likely to traverse deeper in the list.

It is interesting to note that adding overlap to the array version does not improve

the results. Without overlap, the assigned processor first does Phase I by searching

through its array for the reference and retrieving its depth. If the reference has

already been seen, then only part of the array is traversed, with a compare at each

point. With overlap, this compare is done by the assigned processor for the next

reference at the same time as the stride/delay relationships for the current reference

are computed. In this case, the entire array is traversed, with a Phase I compare at

each point. We speculate that this is why overlap takes slightly longer than without

overlap. The advantage of traversing only part of the array an extra time for the
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compare outweighs the advantage of piggy-backing the compare on another traversal

of the entire array.

The timing results for other large weight, poor locality, traces are similar. On

average, the AR version of the program performs best, even though sometimes not

overwhelmingly better. We therefore conclude that for poor locality traces, the best

version of the parallel locality program is AR.

It is perhaps not surprising to see that the versions of the program perform dif-

ferently in relation to each other for traces with better locality, as seen in Figure 9.7.

In this case, the best version of the program is LLol, with ARol second best. The

worst performer is AR, with LL only slightly better.

Again, these results make sense. For traces with good locality, the disadvantages

of the overlap method are minimized. In addition, the advantage of the linked list

is maximized, since good locality means less of the list needs to be traversed each

time. Therefore, we conclude that for traces with good locality LLol is perferred.

As mentioned before, we desire to focus on optimizing our parallel locality pro-

gram for traces with poor locality. Therefore, we use the AR version of the parallel

locality program from now on.

9.4.2 Speedups

After picking the AR version of our program, we recorded the time to compute

the locality data across the range of number of processors for each of the traces

in Table 9.1. Table 9.6 shows the timing results for all these runs. We now show

graphs for the results of six of the traces. We use the sequential version of the

locality program as our basis. The goal is to significantly improve that time.

First we look at several traces with large weights and poor locality. Figure 9.8
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Figure 9.8: Run times on various numbers of processors for the data of wupwise and
the data of swim using the AR version of the parallel locality program.

shows the results for the data trace of wupwise and the data trace of swim. Figure 9.9

shows the results for the data trace of lucas and the data trace trace of mcf. Notice

that the maximum number of hours on the y-axis is different for each graph. We

show the data of wupwise because it had the worst time on the sequential version

of all our SPEC traces. We show the data of mcf because it had the worst time on

the sequential version of all our integer traces.

Let us look at the results for the data trace of wupwise first. Using the sequential

version, it took over 1141 hours (47+ days) to calculate the locality data. Switching

to the AR version of the parallel program, using just two processors, it only takes

633 hours (26+ days), a speedup of 1.8 times. We see similar speedups as we increase

the number of processors. Using 64 processors, it only takes 28 hours to compute

the locality data, an overall speedup of 40.7 times.

It should be no surprise to see similar speedups for the data trace of swim. It
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Figure 9.9: Run times on various numbers of processors for the data of lucas and
the data of mcf using the AR version of the parallel locality program.

took almost 706 hours (29+ days) to calculate the locality data using the sequential

version. Using two processors, the time was already reduced to almost 374 hours

(15+ days), a speedup of 1.9 times. Using all 64 processors, it only took 17.6 hours

to compute the locality data for the data trace of swim, an overall speedup of 40.2.

The results for the data traces of lucas and mcf in Figure 9.9 are not as smooth

as the results in Figure 9.8. We believe this is because the traces in Figure 9.9 have

significantly fewer unique references than the traces in Figure 9.8 and therefore the

load is less likely to be equitably distributed. Regardless, the overall speedup is still

significant.

It took almost 96 hours (4 days) to compute the locality data using the sequential

algorithm for both the data trace of lucas and the data trace of mcf. Switching to

the AR parallel locality program, using just two processors, we see improvements,

but not as dramatic as seen in Figure 9.8. Specifically, it took over 76 hours (3+
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Figure 9.10: Run times on various numbers of processors for the instructions of mcf
and the data of gcc with the scilab input using the AR version of the parallel locality
program.

days) to compute the locality data for the data trace of lucas and over 58 hours (2+

days) for the data trace of mcf. The speedups were 1.2 and 1.6 times respectively.

The parallel program appears to reach a knee in its curve when 16 processors

are used for both the traces in Figure 9.9. Using 16 processors, it took 12.7 hours

to compute the locality data for the data trace of lucas for an overall speedup of 7.6

and 10 hours to compute the locality data for the data trace of mcf for an overall

speedup of 9.6. The overall speedups using 64 processors for lucas and mcf are

only 11.6 and 13.0, respectively. For these traces, there is little further performance

improvement when moving from 16 to 32 to 64 processors.

Now we look at workloads where the weight is small and the locality is quite

good. Figure 9.10 shows the results for the instruction trace of mcf and the data

trace of gcc.scilab using the AR version of the parallel locality program. Again,

when comparing with Figures 9.8 and 9.9, note the difference in scale.
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The results for the instruction trace of mcf are representative of all the instruction

traces in Table 9.1. The sequential locality program took less than one hour to

compute the locality data for each of the seven instruction traces listed. The time

to compute using the parallel program took hours at best. For example, it took

2.9 minutes to compute the locality data for the instruction trace of mcf using the

sequential program. The best results obtained using the parallel program was when

using 16 processors, which took 6.13 hours, a slowdown of 127 times.

The results for the data trace of gcc.scilab are a good example of how the parallel

program responds to data traces that have mid-ranged weights, i.e. good locality

for a data trace. It takes 2.19 hours to compute the locality data for the data trace

of gcc.scilab using the sequential program. This is not as quick as the 3 minute

time for the instruction trace of mcf, however using the parallel algorithm does not

improve on this time for any number of processors.

We conclude that for traces where the weight is larger than 10,000, or where it

takes longer than about 5 hours to compute the locality data using the sequential

program on our 2.2 GHz processor, it is advantageous to use the parallel program.

There may be little further improvement in speedup after 16 processors, however.

For traces where the weight is larger than about 100,000, and it takes longer than

a week to compute the locality data using the sequential program on our 2.2 GHz

processor, we expect to see significant speedups as the number of processors is

increased to at least 64. Obviously, more work could be done to find more precise

values for drawing these lines. In addition, it would be interesting to determine

why the knee of the curve is at 16 processors. Is the knee location related to our

particular parallel machine, or the number of unique references in the trace, or some

other factor?
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9.5 Cache Characterization Surfaces

Recall in Chapter 5 that we discussed creating cache characterization surfaces using

random data and briefly mentioned the time involved. The random trace we actually

used was created using the Laplacian distribution with λ = 600, 000 and was 500

million references long. Computing just the locality for this random trace using

our parallel algorithm took over 14 days on 64 processors. We did not compute the

locality data using fewer processors, or the sequential algorithm, for obvious reasons.

When creating cache characterization surfaces, we modified the locality program

to incorporate the cache simulations necessary. In addition, we computed multiple

cache characterization surfaces simultaneously. When doing this with the parallel

locality algorithm, we assigned a cache simulator to each processor, rather than writ-

ing a parallel cache simulator. Our particular machine is made up of 32 nodes, with

two processors on each node. Since we created less than 32 cache characterization

surfaces at any time, we assigned cache simulators to only the odd numbered nodes.

This spread out the calculations more evenly among the nodes, allowing each node

to maximize its processor and memory sharing. The basic parallel multiple cache

characterization surface algorithm is shown in Figure 9.11.

We can see a general trend that as the weight increases and locality diminishes the

overall speedups increase and the advantage of moving to more processors continues

with larger numbers of processors. We can use this to speculate how long it would

take to process the random trace used in Section 5.3 using the sequential algorithm.

As mentioned previously, there were 500 million references, of which 7,931,968 were

unique and 192 were immediately repeating elements for a weight of 3,965,982.

Obviously, this weight is much greater than for either the data trace of wupwise

or swim. Therefore, we use the overall speedup for the data trace of wupwise as a
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void main() {
.

.

int misses[numcaches];

int cachenum = MyCacheAssignment(myrank);

.

.

ulong addr = GetReference();

if (cachenum >= 0) {
SubmitToCache(addr);

}
proc = (addr >> shift) & (numprocs - 1);

.

.

while (MoreReference()) {
addr = GetReference();

ClearMisses(misses);

if (cachenum >= 0) {
misses[cachenum] = SubmitToCache(addr);

}
AllReduce(misses);

proc = (addr >> shift) & (numprocs - 1);

.

.

}
SumMissTables();

SumLocalityTables();

}

Figure 9.11: Pseudo-code listing for the basic parallel multiple cache characteriza-
tion surface algorithm. See Figure 9.4 for the · · · portions of the algorithm. The
variable numcaches holds the number of caches for which cache characterization
surfaces are being created. The array misses stores whether or not each reference is
a miss in each cache. The function MyCacheAssignment(myrank) returns the index
of the cache assigned to this processor, or −1 if no cache is assigned. The function
SubmitToCache(addr) returns 1 if addr is a miss in the assigned cache and 0 other-
wise. The function ClearMisses(misses) assigns a 0 to every entry in misses. The
function AllReduce(misses) adds the values from all the processors and distributes
the results back to all the processors. In this situation, it effectively informs each
processor which caches have misses. The function MarkLocalityEvent, although
not shown, involves marking locality events in miss tables for which the current
reference missed in the given cache.
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best-case scenario.

It took 14 days, 10.2 hours to compute the locality for the random trace from

Section 5.3 on all 64 processors. Assuming an overall speedup of 40.7, we estimate

that it would take 587 days, or 1.6 years, to compute just the locality data for

the random trace. This does not take into consideration the time to do the cache

simulation calculations necessary to create cache characterization surfaces. Recall

that it took over 7 weeks to compute 24 cache characterization surfaces in parallel

on all 64 processors, 3.5 times as long as it took to do the locality alone.

In addition, this is a best-case scenario estimate. We speculate that the overall

speedup is actually much better, and the sequential time much longer, since the

random trace weight is significantly larger than for the data trace of wupwise. We

therefore conclude that the cache characterization surfaces used in Section 5.3 would

not have been computed if we did not have a parallel version of the locality program

available.

9.6 Summary

In this chapter, we have presented a new parallel algorithm that signficantly de-

creases the time necessary to compute the locality data for many traces. We can

use either the weight or the time to compute using the sequential algorithm on our

2.2 GHz processor to determine when the parallel algorithm would improve run

times versus destoying run times. Specifically, if the weight is greater than 10,000,

or if the time to compute using the sequential program on our 2.2 GHz processor

is greater than 5 hours, then it is probably advantageous to use the parallel version

of the program on up to 16 processors. If the weight is greater than 100,000 or the

time to compute using the sequential program on our 2.2 GHz processor is greater
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than 1 week, then it is probably advantageous to use the parallel program on as

many processors as you can.

We further pointed out that without this parallel algorithm it would have taken

years to compute the cache characterization surfaces shown in Section 5.3 and used

in Chapter 7. Future work could be done to investigate other ways to further

optimize the time for the parallel program. In addition, more work could be done to

determine more specifically the point at which it would be better to use the parallel

program.
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workload type weight sequential 2 procs 4 procs 8 procs 16 procs 32 procs 64 procs
wupwise D 473,447 1141.611 633.19 326.40 177.30 85.41 45.96 28.04
swim D 317,388 705.898 373.69 201.44 111.43 51.21 27.86 17.57
lucas D 94,508 95.812 76.67 46.84 37.90 12.68 9.16 8.24

perlbmk D 62,494 45.182 48.88 35.50 33.83 9.19 7.49 7.32
mcf D 46,127 95.688 34.15 38.93 34.29 9.96 7.73 7.38
bzip2 D 24,631 6.396 17.66 22.05 20.07 5.22 5.54 6.22
gcc D 9,653 2.189 9.51 20.85 31.19 4.99 5.71 6.81
gcc I 2,408 0.772 27.55 23.63 28.45 5.64 6.92 8.54

wupwise I 1,658 0.278 19.23 13.98 19.30 3.78 4.71 5.87
lucas I 1,144 0.085 25.57 22.90 28.56 5.86 7.37 9.32

perlbmk I 1,088 0.290 15.95 24.54 27.66 5.82 7.26 9.02
swim I 900 0.087 26.21 19.11 24.26 5.50 6.83 8.48
mcf I 537 0.048 28.64 21.29 27.14 6.13 7.68 9.50
bzip2 I 529 0.113 21.00 20.05 24.59 5.94 7.28 9.00

Table 9.2: Table reporting actual times, in hours, to compute the locality for all the traces used in this chapter on a
variety of number of processors using the AR version of the parallel program.
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Chapter 10

Conclusion and Future Work

In this dissertation we have reintroduced our improved locality surface. Our surface

is a significant improvement over Grimsrud’s original locality surface because it is

better tailored to LRU cache performance and has a strong mathematical descrip-

tion. In Chapter 2 we described our definition of locality using the mathematics of

bags and sets. We also wrote the equations that allow us to view the locality data

as the locality surface. We now discuss the various ways we used the locality surface

throughout this dissertation and then discuss how our locality principles may be

applied to caches.

Throughout the dissertation, we have shown a number of applications for the

new locality surface. In Chapter 3 we explained the underlying patterns that create

several common features on the locality surface. We then characterized a number of

real workloads from the SPEC C2000 benchmark suite based on these features. The

locality surfaces for all the traces from the SPEC C2000 benchmark suite are found

in Appendix B. In Chapter 4 we qualitatively predicted cache performance using

the locality surface. We later performed some limited quantitative predictions in

Chapter 7. We also used the locality surface, in Chapter 8, to evaluate the accuracy
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of a number of previous synthetic trace models.

In addition to describing traces in terms of locality, we described caches in terms

of locality. In Chapter 5 we first used mathematics to describe when a given trace

reference is a hit or a miss in four different types of caches. We then created the

miss surface, the miss rate surface, and the cache characterization surface. This

last surface helps us understand how caches and locality relate and gives us a better

picture of why the qualitative and quantitative cache predictions work as they do. In

Chapter 6 we mathematically proved a number of ways that two different strings may

have the same locality. For some caches, this allowed us to prove why the locality

data predicts cache performance with 100% accuracy. For other caches, we proved

why the locality data is insufficient to quantitatively predict cache performance.

Finally, we discussed the time necessary to compute the locality data in Chapter 9

and presented a new, parallel algorithm. The parallel version of the locality program

significantly improved the time to compute the locality data and made the creation

of cache characterization surfaces possible.

We believe the locality surface, as here presented, to be a significant contribution

to the study of caches and workload behavior. In fact, the locality surface could be

used to examine any level of the memory hierarchy that uses a LRU replacement.

We acknowledge that there are other locality metrics that are essentially subsets of

our locality surface, such as reuse distance [16, 88]. There may be times when a

researcher desires to focus exclusively on only one aspect of locality. For example,

when a cache line size is unchangeable, there may be no need to study spatial locality.

Or when focusing on prefetching, there may be little interest in temporal locality.

However, the locality surface is available for whenever the overall picture is desired.

Depending on the circumstances, a subset of the locality surface may be of more

use for a specific application than the entire surface. For example, Chilimbi and
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Hirzel wrote a dynamic prefetching tool that involved computing some aspects of

spatial locality on the fly [20]. Obviously the locality surface would involve too

much processing for it to be useful in such a tool. However, it would be informative

to use the locality surface to evaluate the original memory reference locality versus

the memory reference locality with the tool running. Such a study would help

researchers understand how the tool works, how it changes the locality, and if it

adversely impacts other aspects of locality.

We can now use locality to describe both workloads and caches, visually and in-

dependently. We can also predict cache performance for a given workload and cache.

Finally, the locality surface is a powerful metric for evaluating any methodology that

involves locality. We now discuss some directions for future work.

10.1 Future Work

A number of areas for future work were discussed throughout the dissertation. As

previously mentioned, further optimizations may be possible for the parallel algo-

rithm. There is room for improvement of the Case Two cache simulation prediction

method in Chapter 7. There may also be methods that use the results of Theorem

6.19 to better predict Case Three cache results. As mentioned in Section 7.5, it

would be interesting to perform a study of all cache simulation prediction methods

using the same traces.

A more detailed workload characterization study than done in Chapter 3 is

always possible, especially as new and improved benchmark suites are adopted. In

addition, we mentioned in Chapter 3 that it would be useful to determine exactly

what patterns in a trace cause various other features on the locality surface.

As mentioned in Chapter 5, it would be interesting to create cache characteri-
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zation surfaces for other types of caches, such as column-associative [6] and skewed

associative [68]. If a new synthetic trace generation method is proposed, it would

be valuable to evaluate it as we did for other synthetic trace models in Chapter 8.

It may even be possible to use the locality surface itself to generate synthetic traces.

Our general algorithm, suggested in Chapter 8, may prove useful, or there may be

another method. It may help to figure how the shape of a loop structure relates to

the loop contents, as discussed in Chapter 3.

The locality surface could be used to evaluate various solutions in a number of

areas such as tracing methods [83], compilers [54], prefetching [87], and operating

systems [22]. For example, what causes the jut discussed in Section 3.1.6? Is it

a feature of the compiler, or the operating system? We already used the locality

surface to see how the locality changes for the same workload in different operating

systems. Other researchers have suggested numerous methods for improving the

locality of workloads [26, 36]. How do they affect the overall locality? Perhaps

the spatial locality is improved, as measured by the researchers, but the temporal

locality worsens.

Other locality researchers have noticed varying phases of locality throughout the

life of a benchmark [25, 29, 69]. The locality surface may be useful for determing

locality phases in a workload. Different phases may have very different locality

features. Comparing the locality surfaces created in each phase may help understand

how the phases of a workload affect performance.

Other researchers have used various forms of locality to characterize locality in

the world wide web [12] and to create synthetic web proxy cache traces [61]. The

locality surface may add additional insights into any area, such as these, where

previous locality metrics have proved useful in the past. In addition, it may be

useful to apply the locality surface to such areas as file systems, disk caching, and
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network traffic.

The purpose of the locality surface is to unify temporal and spatial locality.

However, there are other types of locality that may be of interest, such as multi-

processor locality. Agarwal and Gupta [4] and Johnson [52] have both suggested

multiprocessor locality metrics. Perhaps there is a way to combine one of these

metrics with the locality surface to provide better understanding of locality with

yet another dimension.

In short, we believe there are numerous possible applications for the locality

surface. Some areas extend work begun in this dissertation; other areas apply the

locality surface in a completely new way. In any area where there is temporal and

spatial locality, our locality surface provides a useful and accurate visual represen-

tation of the locality.
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Appendix A

Trace Details

This appendix contains the trace details for all the SPEC CPU 2000 traces from

the BYU trace library [1]. For each trace we list the workload name, the input file

(if necessary), whether the workload is from the Integer or Floating Point sub-suite,

whether the trace is an instruction trace or data trace, which operating system the

trace was taken under (Linux, Windows NT, or Windows 2000), the number of ref-

erences in the trace, the number of unique references in the trace, and a description

of the workload. In this appendix the traces are listed in alphabetical order by

workload.
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workload input suite type OS total unique description

L 54,110,139 38,803
ammp FP I NT 54,439,604 63,108 Computational Chemistry

2k 53,891,043 63,277
L 36,931,208 872,932

ammp FP D NT 38,247,667 294,750 Computational Chemistry
2k 37,200,232 256,603
L 47,149,788 29,212

applu FP I NT 58,372,015 47,895 Parabolic/Elliptic Partial Differential Equations
2k 55,905,014 102,310
L 46,261,474 1,524,041

applu FP D NT 33,520,025 896,819 Parabolic/Elliptic Partial Differential Equations
2k 34,799,526 1,398,494
L 46,328,675 44,585

apsi FP I NT 47,758,143 76,545 Meteorology: Pollutant Distribution
2k 49,285,073 82,669
L 45,049,441 1,891,123

apsi FP D NT 43,989,817 1,842,030 Meteorology: Pollutant Distribution
2k 42,048,040 1,677,317
L 54,174,676 31,616

art FP I NT 54,953,387 49,929 Image Recognition / Neural Networks
2k 55,101,665 62,842
L 36,731,239 829,413

art FP D NT 37,215,208 707,587 Image Recognition / Neural Networks
2k 35,663,815 782,518
L 54,692,291 13,652

bzip g7 INT I NT 57,163,419 47,644 Compression
2k 57,035,030 38,050
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workload input suite type OS total unique description

L 34,797,524 194,560
bzip g7 INT D NT 33,362,067 380,062 Compression

2k 33,692,972 266,911
L 54,328,616 12,065

bzip g9 INT I NT 57,261,444 20,252 Compression
2k 57,228,352 30,799
L 34,986,924 197,783

bzip g9 INT D NT 33,475,441 258,483 Compression
2k 33,121,679 263,571
L 54,934,099 12,882

bzip p7 INT I NT 57,036,806 32,346 Compression
2k 57,203,371 36,746
L 34,682,234 207,637

bzip p7 INT D NT 33,504,682 529,882 Compression
2k 33,376,219 282,698
L 54,464,929 12,531

bzip p9 INT I NT 57,421,280 22,012 Compression
2k 57,189,236 28,210
L 34,851,024 206,136

bzip p9 INT D NT 33,044,045 268,291 Compression
2k 33,403,255 263,229
L 54,240,485 15,421

bzip s7 INT I NT 57,115,923 35,567 Compression
2k 55,950,719 84,807
L 35,075,864 765,288

bzip s7 INT D NT 33,387,007 368,984 Compression
2k 34,415,506 415,114
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workload input suite type OS total unique description

L 54,617,083 13,354
bzip s9 INT I NT 57,043,696 24,318 Compression

2k 57,516,624 31,105
L 34,847,007 195,971

bzip s9 INT D NT 33,070,833 271,923 Compression
2k 33,165,965 266,720
L 50,020,348 30,338

crafty INT I NT 56,719,324 70,458 Game Playing: Chess
2k 57,310,437 143,196
L 41,984,531 209,783

crafty INT D NT 33,880,040 376,469 Game Playing: Chess
2k 32,679,125 41,1496
L 48,100,350 29,999

eon cook INT I NT 48,334,172 107,674 Computer Visualization
2k 49,080,139 93,327
L 41,085,829 183,524

eon cook INT D NT 42,113,950 645,576 Computer Visualization
2k 41,383,193 324,466
L 48,518,645 28,220

eon kajiya INT I NT 47,558,117 90,371 Computer Visualization
2k 48,328,083 62,011
L 40,792,089 70,798

eon kajiya INT D NT 42,921,271 435,957 Computer Visualization
2k 41,922,762 155,186
L 48,298,304 28,451

eon rushmeier INT I NT 47,822,625 48,211 Computer Visualization
2k 48,934,723 51,327
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workload input suite type OS total unique description

L 42,559,400 74,821
eon rushmeier INT D NT 42,668,076 129,109 Computer Visualization

2k 41,370,463 134,926
L 52,044,863 33,454

equake FP I NT 54,834,756 42,752 Seismic Wave Propagation Simulation
2k 53,919,336 45,261
L 39,217,825 931,276

equake FP D NT 37,119,678 710,110 Seismic Wave Propagation Simulation
2k 36,476,868 653,057
L 52,220,409 31,009

facerec FP I NT 51,968,858 53,539 Image Processing: Face Recognition
2k 53,075,767 63,073
L 38,875,071 832,050

facerec FP D NT 39,744,298 660,967 Image Processing: Face Recognition
2k 38,161,823 654,788
L 55,003,830 36,674

fma3d FP I NT 55,815,847 67,928 Finite-element Crash Simulation
2k 56,278,892 93,482
L 36,103,933 886,284

fma3d FP D NT 35,516,833 236,101 Finite-element Crash Simulation
2k 35,075,417 266,182
L 55,581,541 98,670

galgel FP I NT 57,102,958 46,894 Computational Fluid Dynamics
2k 55,885,798 71,442
L 37,070,561 1,255,136

galgel FP D NT 34,551,638 219,845 Computational Fluid Dynamics
2k 34,141,440 268,778
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workload input suite type OS total unique description

L 57,785,246 24,749
gap INT I NT 57,162,970 51,269 Group Theory, Interpreter

2k 56,764,700 65,462
L 31,714,213 923,381

gap INT D NT 33,386,414 1,093,040 Group Theory, Interpreter
2k 33,242,917 991,604
L 52,326,567 66,312

gcc 166 INT I NT 55,292,634 116,096 C Programming Language Compiler
2k 55,138,518 165,735
L 37,437,695 594,109

gcc 166 INT D NT 35,475,013 791,696 C Programming Language Compiler
2k 35,900,408 749,043
L 51,927,541 82,148

gcc 200 INT I NT 54,910,021 132,755 C Programming Language Compiler
2k 56,280,796 163,170
L 37,928,447 308,257

gcc 200 INT D NT 35,700,888 592,878 C Programming Language Compiler
2k 34,776,185 514,472
L 51,080,978 87,479

gcc expr INT I NT 54,409,170 133,173 C Programming Language Compiler
2k 55,773,523 181,518
L 38,525,253 343,258

gcc expr INT D NT 36,374,683 528,816 C Programming Language Compiler
2k 35,487,393 529,068
L 51,853,273 86,076

gcc integ INT I NT 55,362,847 149,913 C Programming Language Compiler
2k 56,370,127 166,250
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workload input suite type OS total unique description

L 37,809,982 283,785
gcc integ INT D NT 35,418,273 508,906 C Programming Language Compiler

2k 34,806,677 499,236
L 51,067,057 77,404

gcc scilab INT I NT 54,310,833 130,187 C Programming Language Compiler
2k 55,353,106 152,097
L 40,662,494 265,933

gcc scilab INT D NT 36,231,831 469,809 C Programming Language Compiler
2k 35,759,696 442,530
L 53,182,990 16,158

gzip graphic INT I NT 57,740,299 28,859 Compression
2k 58,643,949 48,624
L 38,939,980 210,952

gzip graphic INT D NT 33,312,091 615,246 Compression
2k 32,482,459 376,181
L 58,889,532 15,954

gzip log INT I NT 61,289,408 30,348 Compression
2k 62,397,552 41,156
L 33,229,137 348,452

gzip log INT D NT 32,501,419 686,829 Compression
2k 31,262,262 530,226
L 54,666,119 14,773

gzip program INT I NT 58,773,335 26,218 Compression
2k 59,598,864 58,438
L 37,279,953 230,374

gzip program INT D NT 32,266,912 444,425 Compression
2k 31,704,715 410,063
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workload input suite type OS total unique description

L 53,169,428 14,600
gzip random INT I NT 58,530,581 46,915 Compression

2k 59,110,732 45,370
L 38,850,318 226,258

gzip random INT D NT 32,559,692 522,397 Compression
2k 31,828,600 435,771
L 54,496,031 20,448

gzip source INT I NT 59,161,078 29,290 Compression
2k 59,111,271 86,664
L 37,405,566 1,046,032

gzip source INT D NT 31,863,296 522,016 Compression
2k 31,950,755 558,298
L 55,170,861 33,077

lucas FP I NT 51,969,949 43,100 Number Theory / Primality Testing
2k 53,600,277 53,536
L 38,488,490 2,712,775

lucas FP D NT 39,645,156 2,473,766 Number Theory / Primality Testing
2k 37,693,515 2,507,487
L 57,174,298 16,170

mcf INT I NT 57,454,830 36,004 Combinatorial Optimization
2k 56,785,344 103,422
L 33,151,617 1,385,873

mcf INT D NT 33,007,536 1,700,815 Combinatorial Optimization
2k 33,315,357 1,413,240
L 52,720,098 62,555

mesa FP I NT 52,772,340 51,609 3-D Graphics Library
2k 52,590,461 93,010
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workload input suite type OS total unique description

L 38,044,541 1,601,370
mesa FP D NT 39,012,417 1,144,253 3-D Graphics Library

2k 37,612,889 1,288,752
L 54,059,465 74,843

mgrid FP I NT 50,006,445 54,919 Multi-grid Solver: 3D Potential Field
2k 51,326,288 50,638
L 37,351,118 5,598,803

mgrid FP D NT 41,755,272 5,570,840 Multi-grid Solver: 3D Potential Field
2k 39,023,447 5,090,300
L 52,386,657 24,577

parser INT I NT 53,267,547 54,023 Word Processing
2k 53,331,009 61,794
L 37,342,215 555,962

parser INT D NT 37,126,856 883,206 Word Processing
2k 36,692,403 754,238
L 54,083,478 34,648

perlbmk diffmail INT I NT 51,700,137 74,055 PERL Programming Language
2k 52,069,217 80,692
L 35,496,885 1,875,818

perlbmk diffmail INT D NT 38,707,764 2,384,882 PERL Programming Language
2k 38,193,865 2,345,393
L 52,443,672 20,671

perlbmk makerand INT I NT 50,920,100 56,390 PERL Programming Language
2k 51,364,794 63,642
L 37,210,340 1,663,964

perlbmk makerand INT D NT 39,605,675 2,019,494 PERL Programming Language
2k 38,965,905 1,962,578
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workload input suite type OS total unique description

L 51,230,726 34,191
perlbmk perfect INT I NT 51,911,857 62,228 PERL Programming Language

2k 52,582,143 67,731
L 38,424,060 97,950

perlbmk perfect INT D NT 38,469,188 271,664 PERL Programming Language
2k 37,713,204 191,588
L 54,061,602 33,803

perlbmk splitmail INT I NT 51,629,893 61,207 PERL Programming Language
2k 52,263,141 67,949
L 35,421,140 1,840,653

perlbmk splitmail INT D NT 38,912,111 2,312,410 PERL Programming Language
2k 38,161,405 2,206,257
L 54,108,893 32,353

sixtrack FP I NT 52,874,057 59,219 High Energy Nuclear Physics Accelerator Design
2k 52,657,642 79,652
L 37,130,406 784,656

sixtrack FP D NT 39,257,889 456,331 High Energy Nuclear Physics Accelerator Design
2k 38,489,357 473,085
L 50,749,935 27,389

swim FP I NT 53,856,645 52,375 Shallow Water Modeling
2k 54,208,799 42,249
L 42,031,084 7,988,204

swim FP D NT 40,635,716 6,939,791 Shallow Water Modeling
2k 38,038,018 5,674,829
L 50,191,887 21,988

twolf INT I NT 55,570,914 45,100 Place and Route Simulator
2k 54,416,626 107,710
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workload input suite type OS total unique description

L 39,611,264 332,193
twolf INT D NT 34,760,706 677,984 Place and Route Simulator

2k 35,924,405 720,157
L 46,981,702 42,786

vortex one INT I NT 46,654,977 83,431 Object-oriented Database
2k 47,839,598 137,684
L 42,578,602 1,108,348

vortex one INT D NT 43,766,489 2,001,326 Object-oriented Database
2k 42,503,602 2,057,004
L 46,799,080 39,218

vortex three INT I NT 45,753,225 81,955 Object-oriented Database
2k 47,663,631 87,136
L 42,862,138 848,432

vortex three INT D NT 44,743,960 2,014,335 Object-oriented Database
2k 42,813,966 1,904,491
L 46,692,130 39,420

vortex two INT I NT 46,753,160 87,012 Object-oriented Database
2k 47,925,284 90,117
L 42,882,191 835,303

vortex two INT D NT 43,622,475 1,887,022 Object-oriented Database
2k 42,611,646 1,801,499
L 50,443,903 20,493

vpr place INT I NT 53,924,388 40,117 FPGA Circuit Placement and Routing
2k 54,238,720 96,574
L 39,367,649 343,223

vpr place INT D NT 36,982,683 565,457 FPGA Circuit Placement and Routing
2k 36,905,248 580,306
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workload input suite type OS total unique description

L 51,471,889 39,543
vpr route INT I NT 56,190,947 40,157 FPGA Circuit Placement and Routing

2k 57,364,826 63,990
L 38,269,566 376,602

vpr route INT D NT 34,426,469 634,162 FPGA Circuit Placement and Routing
2k 33,748,586 580,783
L 34,931,332 79,684

wupwise FP I NT 54,807,649 43,292 Physics / Quantum Chromodynamics
2k 54,098,822 119,619
L 57,464,980 8,588,924

wupwise FP D NT 36,672,267 936,409 Physics / Quantum Chromodynamics
2k 36,316,042 874,529
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Appendix B

Locality Surfaces

This appendix contains the locality surfaces for all the SPEC CPU 2000 traces from

the BYU trace library [1]. All the traces taken under Linux are listed first, then

the traces taken under Windows NT, and lastly the traces taken under Windows

2000. Within each operating system, the traces are listed in alphabetical order by

workload name. For traces with multiple inputs, the input used for the particular

trace is listed after the workload name with a dot between. For example, the trace

of eon with the rushmeier input is labeled eon.rushmeier.
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Instruction trace of ammp under Linux.

Instruction trace of applu under Linux.

Data trace of ammp under Linux.

Data trace of applu under Linux.
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Instruction trace of apsi under Linux.

Instruction trace of art under Linux.

Data trace of apsi under Linux.

Data trace of art under Linux.
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Instruction trace of bzip2.g7 under Linux.

Instruction trace of bzip2.g9 under Linux.

Data trace of bzip2.g7 under Linux.

Data trace of bzip2.g9 under Linux.
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Instruction trace of bzip2.p7 under Linux.

Instruction trace of bzip2.p9 under Linux.

Data trace of bzip2.p7 under Linux.

Data trace of bzip2.p9 under Linux.
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Instruction trace of bzip2.s7 under Linux.

Instruction trace of bzip2.s9 under Linux.

Data trace of bzip2.s7 under Linux.

Data trace of bzip2.s9 under Linux.
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Instruction trace of crafty under Linux.

Instruction trace of eon.cook under Linux.

Data trace of crafty under Linux.

Data trace of eon.cook under Linux.
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Instruction trace of eon.kajiya under Linux.

Instruction trace of eon.rushmeier under Linux.

Data trace of eon.kajiya under Linux.

Data trace of eon.rushmeier under Linux.
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Instruction trace of equake under Linux.

Instruction trace of facerec under Linux.

Data trace of equake under Linux.

Data trace of facerec under Linux.
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Instruction trace of fma3d under Linux.

Instruction trace of galgel under Linux.

Data trace of fma3d under Linux.

Data trace of galgel under Linux.
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Instruction trace of gap under Linux.

Instruction trace of gcc.166 under Linux.

Data trace of gap under Linux.

Data trace of gcc.166 under Linux.
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Instruction trace of gcc.200 under Linux.

Instruction trace of gcc.expr under Linux.

Data trace of gcc.200 under Linux.

Data trace of gcc.expr under Linux.
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Instruction trace of gcc.integ under Linux.

Instruction trace of gcc.scilab under Linux.

Data trace of gcc.integ under Linux.

Data trace of gcc.scilab under Linux.
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Instruction trace of gzip.graphic under Linux.

Instruction trace of gzip.log under Linux.

Data trace of gzip.graphic under Linux.

Data trace of gzip.log under Linux.
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Instruction trace of gzip.program under Linux.

Instruction trace of gzip.random under Linux.

Data trace of gzip.program under Linux.

Data trace of gzip.random under Linux.
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Instruction trace of gzip.source under Linux.

Instruction trace of lucas under Linux.

Data trace of gzip.source under Linux.

Data trace of lucas under Linux.
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Instruction trace of mcf under Linux.

Instruction trace of mesa under Linux.

Data trace of mcf under Linux.

Data trace of mesa under Linux.
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Instruction trace of mgrid under Linux.

Instruction trace of parser under Linux.

Data trace of mgrid under Linux.

Data trace of parser under Linux.
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Instruction trace of perlbmk.diffmail under Linux.

Instruction trace of perlbmk.makerand under Linux.

Data trace of perlbmk.diffmail under Linux.

Data trace of perlbmk.makerand under Linux.
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Instruction trace of perlbmk.perfect under Linux.

Instruction trace of perlbmk.splitmail under Linux.

Data trace of perlbmk.perfect under Linux.

Data trace of perlbmk.splitmail under Linux.
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Instruction trace of sixtrack under Linux.

Instruction trace of swim under Linux.

Data trace of sixtrack under Linux.

Data trace of swim under Linux.
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Instruction trace of twolf under Linux.

Instruction trace of vortex.one under Linux.

Data trace of twolf under Linux.

Data trace of vortex.one under Linux.
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Instruction trace of vortex.three under Linux.

Instruction trace of vortex.two under Linux.

Data trace of vortex.three under Linux.

Data trace of vortex.two under Linux.

297



Instruction trace of vpr.place under Linux.

Instruction trace of vpr.route under Linux.

Data trace of vpr.place under Linux.

Data trace of vpr.route under Linux.
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Instruction trace of wupwise under Linux. Data trace of wupwise under Linux.
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Instruction trace of ammp under Windows NT.

Instruction trace of applu under Windows NT.

Data trace of ammp under Windows NT.

Data trace of applu under Windows NT.
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Instruction trace of apsi under Windows NT.

Instruction trace of art under Windows NT.

Data trace of apsi under Windows NT.

Data trace of art under Windows NT.
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Instruction trace of bzip2.g7 under Windows NT.

Instruction trace of bzip2.g9 under Windows NT.

Data trace of bzip2.g7 under Windows NT.

Data trace of bzip2.g9 under Windows NT.
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Instruction trace of bzip2.p7 under Windows NT.

Instruction trace of bzip2.p9 under Windows NT.

Data trace of bzip2.p7 under Windows NT.

Data trace of bzip2.p9 under Windows NT.

303



Instruction trace of bzip2.s7 under Windows NT.

Instruction trace of bzip2.s9 under Windows NT.

Data trace of bzip2.s7 under Windows NT.

Data trace of bzip2.s9 under Windows NT.
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Instruction trace of crafty under Windows NT.

Instruction trace of eon.cook under Windows NT.

Data trace of crafty under Windows NT.

Data trace of eon.cook under Windows NT.
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Instruction trace of eon.kajiya under Windows NT.

Instruction trace of eon.rushmeier under Windows NT.

Data trace of eon.kajiya under Windows NT.

Data trace of eon.rushmeier under Windows NT.
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Instruction trace of equake under Windows NT.

Instruction trace of facerec under Windows NT.

Data trace of equake under Windows NT.

Data trace of facerec under Windows NT.
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Instruction trace of fma3d under Windows NT.

Instruction trace of galgel under Windows NT.

Data trace of fma3d under Windows NT.

Data trace of galgel under Windows NT.
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Instruction trace of gap under Windows NT.

Instruction trace of gcc.166 under Windows NT.

Data trace of gap under Windows NT.

Data trace of gcc.166 under Windows NT.
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Instruction trace of gcc.200 under Windows NT.

Instruction trace of gcc.expr under Windows NT.

Data trace of gcc.200 under Windows NT.

Data trace of gcc.expr under Windows NT.
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Instruction trace of gcc.integ under Windows NT.

Instruction trace of gcc.scilab under Windows NT.

Data trace of gcc.integ under Windows NT.

Data trace of gcc.scilab under Windows NT.
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Instruction trace of gzip.graphic under Windows NT.

Instruction trace of gzip.log under Windows NT.

Data trace of gzip.graphic under Windows NT.

Data trace of gzip.log under Windows NT.
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Instruction trace of gzip.program under Windows NT.

Instruction trace of gzip.random under Windows NT.

Data trace of gzip.program under Windows NT.

Data trace of gzip.random under Windows NT.
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Instruction trace of gzip.source under Windows NT.

Instruction trace of lucas under Windows NT.

Data trace of gzip.source under Windows NT.

Data trace of lucas under Windows NT.
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Instruction trace of mcf under Windows NT.

Instruction trace of mesa under Windows NT.

Data trace of mcf under Windows NT.

Data trace of mesa under Windows NT.
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Instruction trace of mgrid under Windows NT.

Instruction trace of parser under Windows NT.

Data trace of mgrid under Windows NT.

Data trace of parser under Windows NT.
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Instruction trace of perlbmk.diffmail under Windows NT.

Instruction trace of perlbmk.makerand under Windows
NT.

Data trace of perlbmk.diffmail under Windows NT.

Data trace of perlbmk.makerand under Windows NT.
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Instruction trace of perlbmk.perfect under Windows NT.

Instruction trace of perlbmk.splitmail under Windows NT.

Data trace of perlbmk.perfect under Windows NT.

Data trace of perlbmk.splitmail under Windows NT.
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Instruction trace of sixtrack under Windows NT.

Instruction trace of swim under Windows NT.

Data trace of sixtrack under Windows NT.

Data trace of swim under Windows NT.
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Instruction trace of twolf under Windows NT.

Instruction trace of vortex.one under Windows NT.

Data trace of twolf under Windows NT.

Data trace of vortex.one under Windows NT.
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Instruction trace of vortex.three under Windows NT.

Instruction trace of vortex.two under Windows NT.

Data trace of vortex.three under Windows NT.

Data trace of vortex.two under Windows NT.
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Instruction trace of vpr.place under Windows NT.

Instruction trace of vpr.route under Windows NT.

Data trace of vpr.place under Windows NT.

Data trace of vpr.route under Windows NT.
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Instruction trace of wupwise under Windows NT. Data trace of wupwise under Windows NT.
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Instruction trace of ammp under Windows 2000.

Instruction trace of applu under Windows 2000.

Data trace of ammp under Windows 2000.

Data trace of applu under Windows 2000.
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Instruction trace of apsi under Windows 2000.

Instruction trace of art under Windows 2000.

Data trace of apsi under Windows 2000.

Data trace of art under Windows 2000.
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Instruction trace of bzip2.g7 under Windows 2000.

Instruction trace of bzip2.g9 under Windows 2000.

Data trace of bzip2.g7 under Windows 2000.

Data trace of bzip2.g9 under Windows 2000.
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Instruction trace of bzip2.p7 under Windows 2000.

Instruction trace of bzip2.p9 under Windows 2000.

Data trace of bzip2.p7 under Windows 2000.

Data trace of bzip2.p9 under Windows 2000.
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Instruction trace of bzip2.s7 under Windows 2000.

Instruction trace of bzip2.s9 under Windows 2000.

Data trace of bzip2.s7 under Windows 2000.

Data trace of bzip2.s9 under Windows 2000.
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Instruction trace of crafty under Windows 2000.

Instruction trace of eon.cook under Windows 2000.

Data trace of crafty under Windows 2000.

Data trace of eon.cook under Windows 2000.
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Instruction trace of eon.kajiya under Windows 2000.

Instruction trace of eon.rushmeier under Windows 2000.

Data trace of eon.kajiya under Windows 2000.

Data trace of eon.rushmeier under Windows 2000.
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Instruction trace of equake under Windows 2000.

Instruction trace of facerec under Windows 2000.

Data trace of equake under Windows 2000.

Data trace of facerec under Windows 2000.

331



Instruction trace of fma3d under Windows 2000.

Instruction trace of galgel under Windows 2000.

Data trace of fma3d under Windows 2000.

Data trace of galgel under Windows 2000.
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Instruction trace of gap under Windows 2000.

Instruction trace of gcc.166 under Windows 2000.

Data trace of gap under Windows 2000.

Data trace of gcc.166 under Windows 2000.
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Instruction trace of gcc.200 under Windows 2000.

Instruction trace of gcc.expr under Windows 2000.

Data trace of gcc.200 under Windows 2000.

Data trace of gcc.expr under Windows 2000.
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Instruction trace of gcc.integ under Windows 2000.

Instruction trace of gcc.scilab under Windows 2000.

Data trace of gcc.integ under Windows 2000.

Data trace of gcc.scilab under Windows 2000.
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Instruction trace of gzip.graphic under Windows 2000.

Instruction trace of gzip.log under Windows 2000.

Data trace of gzip.graphic under Windows 2000.

Data trace of gzip.log under Windows 2000.
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Instruction trace of gzip.program under Windows 2000.

Instruction trace of gzip.random under Windows 2000.

Data trace of gzip.program under Windows 2000.

Data trace of gzip.random under Windows 2000.
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Instruction trace of gzip.source under Windows 2000.

Instruction trace of lucas under Windows 2000.

Data trace of gzip.source under Windows 2000.

Data trace of lucas under Windows 2000.
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Instruction trace of mcf under Windows 2000.

Instruction trace of mesa under Windows 2000.

Data trace of mcf under Windows 2000.

Data trace of mesa under Windows 2000.
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Instruction trace of mgrid under Windows 2000.

Instruction trace of parser under Windows 2000.

Data trace of mgrid under Windows 2000.

Data trace of parser under Windows 2000.
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Instruction trace of perlbmk.diffmail under
Windows 2000.

Instruction trace of perlbmk.makerand under
Windows 2000.

Data trace of perlbmk.diffmail under
Windows 2000.

Data trace of perlbmk.makerand under
Windows 2000.
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Instruction trace of perlbmk.perfect under
Windows 2000.

Instruction trace of perlbmk.splitmail under
Windows 2000.

Data trace of perlbmk.perfect under
Windows 2000.

Data trace of perlbmk.splitmail under
Windows 2000.
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Instruction trace of sixtrack under Windows 2000.

Instruction trace of swim under Windows 2000.

Data trace of sixtrack under Windows 2000.

Data trace of swim under Windows 2000.
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Instruction trace of twolf under Windows 2000.

Instruction trace of vortex.one under Windows 2000.

Data trace of twolf under Windows 2000.

Data trace of vortex.one under Windows 2000.
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Instruction trace of vortex.three under Windows 2000.

Instruction trace of vortex.two under Windows 2000.

Data trace of vortex.three under Windows 2000.

Data trace of vortex.two under Windows 2000.
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Instruction trace of vpr.place under Windows 2000.

Instruction trace of vpr.route under Windows 2000.

Data trace of vpr.place under Windows 2000.

Data trace of vpr.route under Windows 2000.
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Instruction trace of wupwise under Windows 2000. Data trace of wupwise under Windows 2000.
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Appendix C

Cache Characterization Surfaces

This appendix contains all the cache characterization surfaces created for this dis-

sertion. They were created using the method described in Section 5.3 and using the

parallel multiple cache characterization surface algorithm outlined in Figure 9.11.

The surfaces are ordered by cache case. (See Section 5.1 for a description of each

of the cache cases.) First are the Case One caches, ordered by cache size. Next

are the Case Two caches, ordered primarily by line size. Next are the Case Three

caches, ordered by associativity. Lastly are the Case Four caches, also ordered by

associativity.

As discussed in Section 5.3.2, the cache size and line size for these surfaces are

actually relative to the granularity. For example, the first cache characterization

surface in this appendix is labeled as a surface for an 8 Kbyte fully associative cache

with 8 byte lines. In reality, it is a cache characterization surface for a cache where

the cache line size matches the input trace granularity and the cache size is 1024

times the granularity. All of these surfaces are labeled as if the input trace has an

8-byte granularity.
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A 8 Kbyte fully associative cache with 8-byte lines.

A 16 Kbyte fully associative cache with 8-byte lines.
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A 128 Kbyte fully associative cache with 8-byte lines.

A 1 Mbyte fully associative cache with 8-byte lines.
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A 2 Mbyte fully associative cache with 8-byte lines.

A 128 Kbyte fully associative cache with 16-byte lines.
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A 8 Kbyte fully associative cache with 32-byte lines.

A 16 Kbyte fully associative cache with 32-byte lines.
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A 32 Kbyte fully associative cache with 32-byte lines.

A 64 Kbyte fully associative cache with 32-byte lines.
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A 128 Kbyte fully associative cache with 32-byte lines.

A 256 Kbyte fully associative cache with 32-byte lines.
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A 512 Kbyte fully associative cache with 32-byte lines.

A 1 Mbyte fully associative cache with 32-byte lines.
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A 2 Mbyte fully associative cache with 32-byte lines.

A 128 Kbyte fully associative cache with 64-byte lines.
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A 128 Kbyte direct mapped cache with 8-byte lines.

A 128 Kbyte 2-way associative cache with 8-byte lines.
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A 128 Kbyte 4-way associative cache with 8-byte lines.

A 128 Kbyte 8-way associative cache with 8-byte lines.

359



A 128 Kbyte direct mapped cache with 32-byte lines.

A 128 Kbyte 2-way associative cache with 32-byte lines.
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A 128 Kbyte 4-way associative cache with 32-byte lines.

A 128 Kbyte 8-way associative cache with 32-byte lines.
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