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Abstract: A mathematical model to quantify greenhouse gases (GHG) (carbon dioxide, CO2 and 
nitrous oxide, N2O) for a membrane bioreactor (MBR) is presented. The model has been applied to a 
pilot plant with a pre-denitrification MBR scheme. The pilot plant was cyclically filled with real saline 
wastewater according to the fill-draw-batch operation. The model was calibrated by adopting a specific 
protocol based on extensive field dataset. Standardised Regression Coefficient (SRC) method was 
adopted to select the most influential model factors to be calibrated. Results related to SRC method 
show that among the important model factors a key role is played by the half saturation coefficients 
related with the nitrogen removal processes (kN2O, kNO) and by the model factors affecting the oxygen 
transfer rate in the aerobic and MBR tank (k2,2 and k2,3). In terms of uncertainty, it was found that for 
the gaseous model outputs (SGHG,N2O,1 and SGHG,N2O,2) only the 7% and the 12% of the measured data 
lays outside the bands showing an accurate model prediction in case a wide data set is available. 
 
Keywords: Uncertainty; greenhouse gases; wastewater; membrane.  
 
 
1 INTRODUCTION 

 
Greenhouse gases (CO2, N2O and CH4) can be directly and indirectly produced by wastewater 
treatment plants (WWTPs). Direct emissions are mainly debited to the biological processes (emissions 
of CO2 from microbial respiration, N2O from nitrification and denitrification, and CH4 from anaerobic 
digestion). Indirect emissions are mainly associated with the energy consumption. Among the GHGs 
produced by WWTPs, N2O is the most environmentally hazardous due to its strong global warming 
potential (GWP) (298 higher that CO2) and its capacity to deplete the stratospheric ozone layer (IPCC, 
2013). N2O can be produced both during nitrification and denitrification. During nitrification, ammonia 
oxidizing bacteria (AOB) have been recognized as the main contributor of N2O production 
(Kampschreur et al., 2007; Yu et al., 2010). Two different pathways are involved during N2O 
production by AOB: (i) the reduction of nitrite (NO2

-
) to N2O via nitric oxide (NO) (AOB denitrification) 

(Chandran et al., 2011) and (ii) N2O as a product of the incomplete oxidation of hydroxylamine 
(NH2OH) to NO2

-
(Chandran et al., 2011). Several studies have demonstrated that the N2O production 

is strongly depending on the plant operating conditions and on the influent wastewater features 
(Kampschreur et al., 2009; Peng et al., 2015). Therefore, a huge variations of N2O emissions can be 
obtained among different WWTPs and inside the same plant due to the different features of the 
influent wastewater over the day (dynamic conditions). Despite such a statement, the United Nation's 
Intergovernmental Panel on Climate Change (IPCC) proposes to adopt simple model, often based on 
simple emission factor, to estimate the amount of N2O produced by a WWTP. In this way the variability 
of the N2O production due to the dynamic operational conditions is completely neglected (Corominas 
et al., 2012). In order to overcome such a substantial contradiction between the real conditions 
affecting the N2O production in a WWTP and the suggestion to estimate their production, over the last 
years huge efforts have been performed by the scientific community in order to better quantify N2O (Ni 
and Yuan, 2015). Several mathematical models have been proposed, tested and compared in 
literature in order to establish a reliable model (Corominas et al., 2012; Ni et al., 2013; Spérandio et 
al., 2016). Corominas et al. (2012) demonstrated that the assessment of GHGs by empirical models 
(based on a single emission factor) can produce erroneous results as the formation of GHGs is not a 
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linear process. Therefore, mechanistic process-based dynamic models are required to obtain an 
accurate estimation of GHG emissions. Ni et al. (2013) have compared four mathematical models able 
to separately describe the N2O production by means of AOB as the final product of nitrifier 
denitrification or as a product of incomplete oxidation of hydroxylamine (NH2OH). By adopting short-
term batch experimental data Ni et al. (2013) found that none of the tested models was able to 
reproduce data. Moreover, the short term data should also be available for a good model 
calibration/validation (Ni et al., 2013). Very recently, Spérandio et al. (2016) adopted five activated 
sludge models describing N2O production by AOB and compared the results to four different long-term 
process data sets. Differently to previous studies where only shot-term data gathered during batch 
tests were employed, Spérandio et al. (2016) adopted for the first time long term database to calibrate 
an N2O models. Each model adopted by Spérandio et al. (2016) considers one of the two known N2O 
production pathways by AOB (denitrification pathway and the hydroxylamine oxidation). Similarly, to Ni 
et al. (2013), Spérandio et al. (2016) found that, despite at least one of the investigated model was 
able to reproduce the measured data, none of the tested models describe all the N2O data (obtained in 
the different systems) with a similar parameter set. To establish a reliable N2O model, long term 
dataset and by a detailed knowledge on the parameters describing the microorganisms behaviour are 
thus needed (Sperandio et al., 2016). Very recently, with the aim to improve the N2O quantification a 
new model combining two N2O emission pathways by AOB was proposed and calibrated (adopting 
long-term data) by Pocquet et al. (2016) which showed good adaptation between measured and 
modelled data. Overall, literature shows, that maturity achieved in N2O modelling has enabled the 
improvement of site-specific N2O emissions (Ni and Yuan, 2015). However, despite the useful insights 
derived by N2O mathematical models from WWTPs the derived results are likely to be subjected to a 
high degree of uncertainty (Sweetapple et al., 2013). Thus, the assessment of the uncertainty may 
improve the calibration process. With this aim the sensitivity and uncertainty analysis could help 
modeller to identify the key source affecting model outputs (Sweetapple et al., 2013). Despite the 
usefulness of uncertainty analysis only few studies have been performed in literature (Flores-Alsina et 
al., 2014; Sweetapple et al., 2013) mainly related to conventional activated sludge (CAS) system. Only 
recently, Mannina and Cosenza (2015) have presented a detailed uncertainty analysis of a new 
Activated Sludge Model (ASM2d) Soluble Microbial Product (SMP) – GHG model applied to a 
membrane bioreactor (MBR) University Cape Town (UCT) pilot plant. Mannina and Cosenza (2015) 
found that model factors related to the physical processes through the membrane could affect the 
GHG production. However, the study of Mannina and Cosenza (2015) have the limit of not being 
supported by GHG measured data.  
In order to detail the GHG modelling in MBR plant, in this work a new mathematical model is 
presented. The mathematical model has been applied to a sequential batch (SB) MBR pilot plant fed 
with real saline wastewater. The model has been calibrated by adopting a detailed protocol developed 
in a previous study (Mannina et al., 2011b). A long-term data base (for dissolved and gaseous N2O), 
acquired during an extensive gathering campaign, was adopted for the model calibration. Uncertainty 
analysis has also been performed.  
 
 
2 MATERIAL AND METHODS 
 
 
2.1 The mathematical model 
 
The proposed model couples the ASM1 model (Henze et al., 2000) and the N2O modelling production 
according to the approach of Hiatt and Grady (2008). The model has the peculiarity of including the 
SMPs modelling (formation/degradation of both utilisation associated products and biomass 
associated products) in order to take into account their influence on membrane fouling.  
The mathematical model is divided into two sub-models: a biological sub-model and a physical sub-
model. The physical sub-model simulates the main physical processes through the membrane: rate of 
sludge attachment and sludge detachment on the membrane surface during suction and backwashing 
phase, the solid mass deposition on the membrane surface, the thickness of the cake layer and the 
pore fouling by adopting the resistance in series model. The physical sub-model involves 6 model 
factors. For sake of conciseness for a detailed description of the physical sub-model the reader is 
referred to the literature (Mannina et al., 2011a). The biological sub-model involves: 16 biological 
processes (aerobic and anoxic); 19 state variables, which include dissolved N2O and CO2 (SN2O and 
SCO2, respectively) and 68 model factors. In the Appendices A and B, the Gujer Matrix and the process 
rate equations of the biological model are reported, respectively. The model also includes the stripping 
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processes for N2O and CO2 in order to evaluate the gaseous N2O and CO2 (SGHG,N2O and SGHG,CO2). 
According to the Hiatt and Grady (2008) approach the nitrogen removal process is described as a two 
steps nitrification and four steps denitrification processes. With this regard the autotrophic biomass is 
modelled as ammonia-oxidising biomass (XAOB) and nitrite oxidising biomass (XNOB). In order to model 
the SMP formation/degradation the aerobic and anoxic hydrolysis processes related both to the UAP 
(SUAP) and BAP (SBAP) have been added in the ASM1 (see Appendix B). The rate of the anoxic 
hydrolysis of SBAP is provided in Equation 1.  
 

HBAP

3NOHYD,3NO

3NO

2OHYD,2O

HYD,2O

HYD,3NOBAP,h XS
SK

S

SK

K
k (1) 

 
Further, the hydrolysis processes of Xs have also been added in the model.  
 
Detailed description will be provided in the extension version of the manuscript.  The biological model 
takes into account the influence of the salinity both for the autotrophic and heterotrophic biomass 
according to Park and Marchland (2006). More precisely, the maximum growth rate of both autotrophic 
and heterotrophic biomass has been reduced of the Is coefficient. This latter coefficient has been 
evaluated according to the Equation 2. 
 

   (2) 

 
Where I*s represent the inhibition factor evaluated and %NaCl is the percentage of salinity expressed 
as NaCl content. 
 
 
2.2 The case study 
 
An SB-MBR pilot plant consisted of two reactors in-series, one anoxic (volume 45 L) and one aerobic 
(volume 224 L), according to a pre-denitrification scheme (Figure 1) was monitored for three months. 
The pilot plant was equipped with an hollow fiber membrane module (Zenon Zeeweed, ZW10) 
installed into a separate aerated compartment (volume 50 L) for the solid liquid separation. An oxygen 
depletion reactor (ODR) was placed in the recycling line in order to ensure anoxic conditions inside the 
anoxic reactor despite the intensive aeration in the aerobic tank. The aerobic, anoxic and MBR 
reactors were equipped with specific covers that guaranteed the gas accumulation in the headspace. 
 
 

 
Figure 1. Layout of the SB-MBR pilot plant (where VIN = 40 L = influent wastewater volume; ODR = 

Oxygen Depletion Reactor; MBR = membrane Bioreactor; QRAS = 80 L h
-1

 = recycled sludge from MBR 
to ODR; QR1 = 80 L h

-1
 = sludge feeding from aerobic tank to MBR; QOUT = 20 L h

-1 
(only during the 

MBR filtration phase = effluent flow rate) 
 
The SB-MBR pilot plant was discontinuously fed with real domestic wastewater (stored in a feeding 
tank of 320 L volume) according to fill-draw-batch operation approach. More in detail, 40 L of 
wastewater (VIN) (previously mixed inside the mixing tank with salt, in order to meet the design salinity 

QRAS

VIN

QOUT

QR1

MBR

ODRFeeding tank

Mixing tank Anoxic

Aerobic

Salt dosing
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concentration) were cyclically fed in, whereas the permeate was extracted at 20 L h
-1

 (QOUT). Each 
cycle had the duration of 3 hours that were split into 1 hour of biological reaction and 2 hours of MBR 
filtration. During the biological reaction time the permeate extraction pump was turned out, thus QOUT 
was equal to zero. During the cycle, 80 L h

-1
 (QR1) were continuously pumped from the aerobic to the 

MBR tank. Furthermore, a recycling activate sludge stream (QRAS), equal to 80 L h
-1

 during the 
reaction period and to 60 L h

-1
 (QR1-QOUT) during the filtration phase, was recycled from the MBR to 

the anoxic tank via the ODR tank. The experimental campaign was divided into six phases each 
characterized by a specific salt concentration from 0 up to 10 g NaCl L

-1
. The NaCl concentration in 

the influent was increased at step of 2 g NaCl L
-1

 on a weekly basis. The Phase VI had a duration of 
26 days. During the experimental campaign, gaseous and dissolved N2O from the aerobic and anoxic 
tank were measured by using a Gas Chromatograph (Thermo Scientific™ TRACE GC) equipped with 
an Electron Capture Detector. Sample were withdrawn during an entire cycle (every 15 min for the 
gaseous sample and every 60 min for the liquid sample) at fixed salinity. During plant operations, the 
influent wastewater, the mixed liquor inside the anoxic and aerobic tank and the effluent permeate 
have been sampled and analyzed for total and volatile suspended solids (TSS and VSS), total 
chemical oxygen demand (CODTOT), supernatant COD (CODSUP), ammonium nitrogen (NH4-N), nitrite 
nitrogen (NO2-N), nitrate nitrogen (NO3-N), total nitrogen (TN), phosphate (PO4-P), total carbon (TC) 
and inert carbon (IC). Further details can be drawn from previous studies (Mannina et al., 2016b). 
 
 
2.3 Calibration protocol and uncertainty estimation 
 
Model calibration has been performed by adopting the calibration protocol as proposed by Mannina et 
al. (2011b). After a first trial and error calibration, the aforementioned protocol takes into account the 
selection of model factors of being calibrated for the model outputs of interest. Further, important 
model factors are calibrated on the basis of the measured data. More precisely the protocol takes into 
account the adoption of the generalized likelihood uncertainty estimation (GLUE) methodology (Beven 
and Binley, 1992); based on Monte Carlo simulations: a large number of model parameter sets are 
generated from the multidimensional parameter space, each with random parameter values selected 
from uniform probability distributions for each parameter in order to explore the whole confidence 
region. The acceptability of each set is assessed by comparing predicted to observed data throughout 
a chosen likelihood measure/efficiency. In this study the same likelihood measure as adopted by 
Mannina et al. (2011b) was used. The standardized regression coefficient (SRC) method has been 
adopted to select important model factors (1500 simulations were performed to adopt SRC) (Saltelli et 
al., 2004). The SRC method consists of a Monte Carlo simulation (with random sampling of the model 
factors) and a multivariate linear regression between the model output and the considered model 
factors. The absolute value of the standardised regression slopes of the regression (SRC or βi) 
represents the measure of sensitivity. The sign of βi indicates if the model factor “i” has positive (+) or 
negative (-) influence on the considered model output.  
Regarding the uncertainty analysis, non important parameters are fixed to their default or trial and 
error calibration value. Further, only the model factors classified as important are considered to be 
uncertain and varied in the uncertainty range according to a random sampling.  
The results of the Monte Carlo simulations were interpreted by evaluating the cumulative distribution 
function (CDF) for each model output. The 5

th
 and 95

th
 percentiles were also evaluated.   

 
 
3 RESULTS AND DISCUSSION 
 
For sake of conciseness in the following sections only the results related to the dissolved and gaseous  
N2O (SN2O and SGHG,N2O) model output will be discussed. In detail, results relate to both anoxic (section 
1) and aerobic (section 2) tank will be considered.  
 
 
3.1 Sensitivity analysis  
 
Figure 2 shows the results related to the important model factors at least for one of the model outputs 
considered: SN2O,1 (a), SGHG,N2O,1 (b), SN2O,2 (c) and SGHG,N2O,2 (d). For the meaning of the symbols 
reported in Figure 2 the reader is referred to the literature (Mannina and Cosenza, 2015). Among the 
important model factors, some merit to be discussed in detail. The group of half saturation coefficients 
(kN2O, kNO3, kALK) (related with the SN2O, SNO3 and SALK) have a great influence on all the model outputs 
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considered. Such a result corroborates the literature findings, which indicate an high degree of 
uncertainty of the half-saturation coefficient related to the nitrogen transformation processes 
(Sweetapple et al., 2013). Therefore, when possible it is suggested to experimentally quantify these 

factors. The model factors AUT,AOB and AUT,NOB mostly affect (positively) the SN2O,1 and SGHG,N2O,2. 
Such a result shows an indirect effect for SN2O,1. Indeed, with the increasing of the autotrophic 
maximum specific growth rate the availability of nitrate inside the aerobic tank increases with a 
consequent increase of SN2O,1 produced during the denitrification for example due to the scares 

availability of substrate. The importance of the factors g3 and g4 for SGHG,N2O,1 is of relevant interest. 
Indeed, these latter factors control the rate of the heterotrophic anoxic processes on the substrate (SS) 

when SNO2 (nitrite) is reduced to SNO ( g3) and when SNO ( g4) is reduced into SN2O. Thus, consequently 
influence the amount of gaseous N2O emitted from the anoxic tank (SGHG,N2O,1). The influence of k2,2 

and k2,3 (coefficients for oxygen transfer of the aerobic tank and MBR tank, respectively) have both 
positive effect on SN2O,1. Such a result is mainly debited to the fact that with the increasing of the 
oxygen concentration inside the aerobic and MBR tanks both the amount of nitrate and dissolved 
oxygen recycled into the anoxic tank increase. Therefore, the N2O can be also produced due to the 
AOB contribution inside the anoxic tank (in case the environment become aerobic).  
 

 
 

Figure 2. Results related to the SRC application for SN2O,1 (a), SGHG,N2O,1 (b), SN2O,2 (c), SGHG,N2O,2 (d) 
model outputs. 

 
Thus, the role of k2,2 and k2,3 on SN2O,1 is mainly indirect. Indeed, with the increase of k2,3 the amount of 
the available oxygen inside the aerobic tank increases with a consequent complete nitrification. 
Therefore, the amount of nitrate to be denitrified in the anoxic tank increases; nitrate could not be 
completely denitrified due to the scarse availability of carbon. On the other hand, with the increase of 
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k2,3 the amount of mass oxygen recycled from the MBR to the anoxic tank (through the ODR) 
increases. The importance of the factors affecting the oxygen transfer rate in the aerated tank 
suggests that in order to better predict N2O emissions of a WWTP a detailed knowledge on the oxygen 
transfer has to be acquired. 
Results of Figure 2, shows that the autotrophic salinity inhibition coefficient (Is,H) positively influences 
the N2O production inside the aerobic tank. Indeed, several studies have demonstrated that the 
salinity could promote the N2O production during the nitrification (Zhao et al., 2014). It is interesting to 

note that factors related to the physical model (  and , representing the stickiness of the biomass 
particles and the screening parameter, respectively) affect both SN2O,1 (Figure 2). Such a result is 
mainly debited to the role of the membrane in retaining the substrate that will be or not available for 
the nitrate denitrification.   
 
3.3     Calibrated model 
 
Table 1 summarizes the results related to the model efficiency. By analysing Table 1 one can observe 
that an acceptable adaption (the efficiency was almost always greater than 0.45; with exception of the 
model output related to the MBR tank) between measured an modelled data was obtained. The lower 
efficiency for the model output related to the MBR tank can be likely debited to the lower number of 
measured data with respect to the other sections.  
 

Table 1. Synthesis of efficiency for each measured state variable 

Section Anoxic tank 

Model output CODTOT,1 CODSUP,1 XTSS,1 SNO3,1 SGHG,N2O,1 SN2O,1 

Efficiency 0.42 0.52 0.31 0.44 0.47 0.34 

n° data 14 14 16 17 65 15 

Section Aerobic tank   

Model output CODTOT,2 CODSUP,2 XTSS,2 SGHG,N2O,2 SN2O,2 
 

Efficiency 0.46 0.52 0.46 0.49 0.39 
 

n° data 14 14 14 65 15 
 Section MBR tank     

Model output CODTOT,3 CODSUP,3 SNH4,3 SNO3,3 
  

Efficiency 0.25 0.29 0.31 0.28 
  

n° data 8 8 8 8 
  Section Permeate     

Model output CODTOT,4 SNH4,4 SNO3,4 TN,4 
  

Efficiency 0.35 0.34 0.36 0.3 
  n° data 15 17 17 12     

 
3.2     Uncertainty analysis  
 
In Figure 3 the CDF of calibrated, measured, 5

th
 and 95

th
 percentiles for SGHG,N2O,1 (a), SN2O,1 (b), 

SGHG,N2O,2 (c) and SN2O,2 (d) are reported.  
By analysing data reported in Figure 3 one can observe that the uncertainty band width (as average 
difference between 95% and 5% percentile) changes with the model outputs in the different plant 
sections (e.g., greater for SGHG,N2O,1 and SN2O,2). Such a result is mainly due to the fact that some 
model outputs entail different level of complexity in terms of involved phenomena in the different plant 
sections. Further, the variation of some factors could make more uncertain the N2O production in a 
certain section due to the overlapping effects among different processes. For example the increase of 
k2,2 and k2,3 could make the environment aerobic in a certain time during the cycle inside the anoxic 
tank. Therefore, both aerobic and anoxic N2O formation could occur inside the anoxic tank.  
By analysing data of Figure 3 it is possible to observe that for the model outputs for which a greater 
number of measured data was available (SGHG,N2O,1 and SGHG,N2O,2) a more accurate prediction can be 
obtained by adopting model. Indeed, for SGHG,N2O,1 and SGHG,N2O,2 only the 7% and the 12% of the 
measured data lays outside the band width. Such a result is of paramount interest, suggesting that 
long extensive data base are required to set up accurate model and to reduce the model uncertainty 
associated with the model predictions. Indeed, the 60% and the 46 % of the measured data lays 
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outside the band width for SN2O,1 and SN2O,2, respectively. More precisely, the measured data lower 
than 0.01 mgN L

-1 
and 0.025 mgN L

-1
  lays outside the band for SN2O,1 and SN2O,2, respectively.  

   

 
Figure 3. CDF related to the measured data, calibrated model, 5% and 95% percentiles for SGHG,N2O,1 

(a), SN2O,1 (b), SGHG,N2O,2 (c) and SN2O,2 (d). 
 

3 CONCLUSIONS 
 
The main conclusions from this study can be drawn: 

 An accurate knowledge on the model factors related to the oxygen transfer, in the aerated 
tanks, and on the half-saturation coefficients related to the nitrogen removal could improve the 
model predictions. Therefore, lab tests to acquire these data are suggested. 

 Factors related to the membrane solid-liquid separation can indirectly affect N2O production 
due to their capability to influence the higher or lower availability of the substrate during the 
denitrification. 

 Model outputs for which a greater number of measured data was available (SGHG,N2O,1 and 
SGHG,N2O,2) a more accurate model prediction occurred, thus suggesting that a long term 
extensive database has to be required for the setting up of an accurate model to predict N2O. 
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Appendix A: Gujer Matrix of the SB-MBR biological sub-model; ; in grey the new hydrolysis processes added with respect to ASM1 
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Appendix B: Process rate equations of the biological sub-model; in grey the rate related to the new hydrolysis processes 
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