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A dynamic optimal trajectory generator for Cartesian Path
following
Edward Red
Department of Mechanical Engineering, Brigham Young University, 435 CTB, P.O. Box 24201, Provo, Utah 84602-4201
(USA)

(Received in Final Form: January 12, 2000)

SUMMARY
This paper considers a dynamic and adaptive trajectory
generator for negotiating paths using S-curves. Applying
constant jerk transitions between the constant acceleration
and deceleration periods of the trajectory, the trajectory will
optimally transition to the desired speed setting. Optimal is
defined to be the minimum time to transition from the
current speed to the set speed for the move segment when
jerk and acceleration are limited. The S-curve equations will
adapt to instantaneous changes in speed setting and path
length. An integrated motion planner will determine allow-
able speeds and transitional profiles based on the remaining
move distance.

KEYWORDS: Trajectory generator; Cartesian path; S-curves;
Optimal time; Integrated motion planner.

INTRODUCTION
Motion planning and trajectory generation lie at the heart of
robotic and machine tool path control. New digital drive
technologies and computational speeds are changing motion
control paradigms that, in the past, relied on pre-processors
to descretize, shape and buffer moves into a series of micro
move segments passed to the controller. The path speeds
were limited by how fast the descretized move segments
could be processed by the controller, i.e. the block
processing speed.

Free-form shapes (NURBS, B-splines, etc.) now form the
core of most modern CAD/CAM systems. The current
movement is to develop dynamic interpolators that can
process object shapes directly, rather than decomposing
them into small linear segments.

The challenge of modern motion planning and trajectory
control is to process a series of macro moves dynamically
and smoothly, while applying a set of limiting conditions
such as speed, acceleration and jerk. This paper will show
how this might be accomplished by proper motion planning
and trajectory generation. An optimal approach is applied
that adapts to instantaneous speed changes and increases in
path length.

1. Historical perspective
In the past industrial trajectory generators (TG) used
constant acceleration trapezoidal profiles to move to a
desired speed setting. The simplicity of the profile shape

minimized the calculations for blending consecutive moves.
Unfortunately, as the speeds and accelerations of modern
robots and machine tools continued to increase, these
simple shapes begin to stress the mechanism drives because
of inherent acceleration discontinuities at the beginning and
end of the profile.

The industrial term S-curve or S-profile describes the
modern profile used to smooth the motion transitions,
Figure 1. This curve can simply be a second or higher order
polynomial in speed, with polynomial coefficients deter-
mined by transitional motion conditions. These profile types
are described in robotic texts by Craig1 and Parkin2.

To reduce mechanism jerkiness and noise, more sophisti-
cated polynomial profiles evolved. For example, Lloyd3

used a 5th order polynomial to blend two consecutive moves
that are not necessarily tangent and that may change
dynamically. This motion environment is representative of
telerobotics or sensor driven control moves. Rather than
examine speed optimality, Lloyd’s algorithms were directed
towards blending continuity and smoothness in the face of
motion uncertainty.

2. Dynamic considerations
The advent of free form surfaces has spawned the
development of curve interpolators. Wang4 describes a real-
time quintic spline interpolator that generates a set of spline
segments where du/ds = 1 over certain parameter ranges.
This means that quintic curves can be parameterized and

Fig. 1. S-curve profile.
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fitted to these segments based on arc length. Because the
curve parameterization methods apply numerical pre-
processing methods such as Newton’s method, they cannot
adapt to dynamic changes in speed or path length.

In contrast, Yang5 developed an on-line TG capable of
dynamically interpolating NURBS paths without shape pre-
processing. An efficient and bounded predictor-corrector
method uses finite difference theory to predict and correct
the parametric changes necessary to generate the desired
curvilinear distances along the trajectory.

Paper Function
This paper will demonstrate how motion planning can
adaptively apply an S-curve to smooth the motion when
both speed and move distance are changing dynamically,
and subject to the following constraints:

• acceleration and deceleration along the trajectory cannot
exceed max allowables;

• jerk is specified and limited;
• set speed can be attained if the remaining move distance

is sufficient;
• move distance can be dynamically increased during the

move when the move buffer detects a new tangent move.

This trajectory generator (TG) is quite low level since it
is not concerned with the type of curve (linear, circular,
NURBS, etc.) or space (Cartesian or joint) that defines the
move. Yang6 references a broad survey of papers that
consider task-level trajectory generation and motion plan-
ning, which is not the focus of this paper.

Rather, the focus is moving smoothly along a sequence of
path segments subject to limiting motion conditions. The
motion planner should determine the move length, speed
setting, and the length of contiguous tangent moves.

The approach outlined minimizes the time to change
speeds under constant jerk transitions and linear accel/decel
periods, i.e. it is time optimally smooth. It is adaptive
because it responds immediately to dynamic changes in
speeds and distance. And the TG can be applied in both
Cartesian space and joint space.

S-CURVE REVIEW
The motion conditions that determine the polynomial
coefficients for a typical S-curve are zero acceleration at the
transitional endpoints, the desired starting and ending
speeds, and transitional time and/or distance. Other limiting
conditions may be applied such as maximum jerk and
acceleration.

For comparison Figure 1 includes a trapezoidal ramp with
ar < am that will accomplish the same speed change in time
T. Obviously then, polynomial transitions require more time
than a trapezoidal transition when both use the same
limiting acceleration. This is the price that you pay for
smoothness.

Referencing Figure 1, we consider a pure S-curve (no
linear transition) applied to the rise period from initial speed
vo to the set speed vs. The form assumed for the S-curve
speed profile is

v(t) = co + c1t + c2t2 (1)

giving the acceleration and constant jerk equations:

a(t) = c1 + 2c2t (2)

j(t) = 2c2 = const (3)

The rise motion can be divided into 2 periods — a concave
period followed by a convex period.

1. Concave period
The concave motion conditions are v(0) = vo; a(0) = 0;
a(T/2) = am; and j(0) = jm, where jm is the maximum jerk
allowed for the mechanism, and am is the maximum
acceleration encountered at the S-curve inflection point.

Applying these conditions to solve for the unknown
constants in (1) and (2), we get co = vo; c1 = 0; and c2 =
jm/2 = am/T. We note the important relation

jm = 2am/T (4)

Equation (4) is important because it shows that the profile
time, maximum acceleration, and maximum jerk are not
independent of each other. If jerk is limited to the value jm,
then am and T must be chosen such that 2am/T ≤ jm.

The equations for s (position), v (speed), and a (accelera-
tion) along the concave portion of the S-curve become

s(t) = vot + jmt3/6 (5)

v(t) = vo + jmt2/2 (6)

a(t) = jmt (7)

These equations apply for 0 ≤ t ≤ T/2. Note also that at t =
T/2,

v(T/2) = (vs + vo)/2 (8)

s(T/2) = sh = [vo + am
2/(6jm)]am/jm (9)

where sh is the distance to the inflection point. This distance
is expressed in terms of vo, am and jm,and not T.

2. Convex period
The convex period applies for T/2 ≤ t ≤ T. Letting time be
zero as measured from the beginning of the convex period
(0 ≤ t ≤ T/2), the pertinent motion conditions are
v(0) = vh = (vm + vo)/2; a(0) = am; a(T/2) = 0; and j(0) = � jm.

Applying the motion conditions to solve for the unknown
coefficients in (1)–(3), we get the equations for s, v, and a
along the convex portion of the S-curve:

s(t) = vht + amt2/2� jmt36 (10)

v(t) = vh + amt� jmt2/2 (11)

a(t) = as � jmt (12)

Over the time period T/2 the distance change measured
from the halfway point to the ending point of the S-profile
is

s(T/2) = [vh + am
2/(3jm)]am/jm (13)

Adding in the distance at the halfway point gives the total
distance traversed in the S-curve, including both concave
and convex sections. This simplifies to the total distance

S = (vs
2 �vo

2)/am (14)
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3. Max jerk considerations
The S-curve cannot be ideally fitted between all speed
changes if the acceleration and jerk are maintained at their
allowable limits. Given jerk jm, starting speed vo, and ending
speed vs, we determine speeds that respectively end the
concave transition and begin the convex transition for an
ideal S-curve:

v1 = vo + am
2/(2jm) (15)

v2 = vs �am
2/(2jm) (16)

By setting v1 = v2, we calculate the jerk that would fit the S-
curve between the speed change �v = vs �vo:

jf = as
2/�v (17)

The jerk computed in (17) may be less than allowable and
thus sub-optimal, or exceed the allowable.

If we use the max allowable jerk, then it is possible for
some �v’s that the ending and beginning speeds overlap
(v1 > v2). This will call for an acceleration transition to be
made as described later in the paper.

If v1 < v2, then to minimize the time for a speed change
we incorporate a linear transition at constant acceleration
am. In the max jerk formulation the length of the linear
transition is determined by the speed changes spent in the
max jerk concave and convex periods. Once these changes
in speed have been subtracted from the total �v, the
remaining speed change is left for a linear transition.

The equations that describe the concave and convex
profiles are the same as (5)–(7) and (10)–(12), except that
(5)–(7) applies for t ≤ t1, where t1 is the time to complete the
concave S-rise. In (10)–(12) vh is replaced by v2.

The linear period is described by:

s(t) = v1t + amt2/2 (18)

v(t) = v1 + amt (19)

where jerk is zero and 0 < t ≤ T�2t1.

ADAPTIVE S-CURVE
The adaptive S-curve must respond immediately to speed
changes or to changes in path length. For example, a
machine operator may increase or decrease the feedrate
during a face milling opertion using a thumbwheel. The path
length may increase because a motion buffer frees a slot for
a move that is tangent to the move currently being
processed.

To adapt to these changes the algorithms must allow for
non-zero initial speed, jerk, and acceleration and also for the
possibility of a set speed change during the move, Figure 2.
Continuity in position, speed, and acceleration must be
maintained, but discontinuity in jerk is allowed. Note that
jerk discontinuity is built into the S-curve profile when
transitioning to or from any period spent in constant
acceleration. This includes the linear ramps and the constant
speed periods.

1. Adaptive algorithm
To make the ideal S-curve both adaptive and responsive
when the set speed changes during a move, we apply the

motion conditions v(0) = vo; v(Tc) = vs; a(0) = ao; and
a(Tc) = 0. Given the entry conditions, Tc becomes the time to
complete the transition to the new set speed. To evaluate the
transition requirements, we force a convex profile and
determine the jerk required to complete the transition
without considering any bounds on the jerk value. We then
compare this jerk value to the maximum jerk as follows.

Applying the motion conditions leads to these equations:

v(t) = vo + aot�aot2/(2Tc) (20)

a(t) = ao �aot/Tc (21)

Applying the condition v(Tc) = vs leads to the following
equation for Tc:

Tc = 2�v/ao (22)

where �v = vs �vo.
If �v > 0, there will be a real positive solution for Tc, but

if �v = 0 and ao ≠ 0, then Tc = 0 would specify an infinite
jerk. Thus, a speed change can cause an undesirable jerk
situation. The response to the speed change must not exceed
the maximum acceleration or maximum jerk.

For �v > 0 the jerk is calculated from

j(Tc) = �ao/Tc (23)

If the absolute value of (23) exceeds the maximum jerk
allowed (ao/Tc > jm), then a transition must be made to an
intermediate speed using the maximum jerk.

Figure 3 shows how the transition must be made to new
set speeds, when the jerk is limited and where vs� is the old
set speed and vs is the new set speed.

In 3a) the jerk is not exceeded in moving to the new set
speed. In 3b) and 3c) the maximum jerk is exceeded and the
transition to the new set speed will require a transition to an
intermediate speed vi. At this intermediate speed the
acceleration is zero. This profile can then be followed by a
normal S-curve transition to the new set speed indicated by
vs.

The transition to the new set speed is thus broken into two
phases:

• jerk transition to speed vi where the acceleration is zero.
• normal S-curve transition from vi to vs.

The next few sections will consider the transitional cases
that must be handled by the adaptive generator in more
detail.

Fig. 2. Adaptive S-curve profile.
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2. Transitions where �v > 0 and j(Tc) < jm

Figure 3 presents a number of subtleties. If �vs > 0, we
apply the check ao/Tc < jm to see if the maximum jerk is
exceeded. If so, we transition to vi and call this case a speed
transition.

If the maximum jerk is not exceeded, then we must
determine how to transition to the new set speed. The
transition possibilities vary, depending on whether we are
initially in a concave period or convex period and the
relative difference in the set speed.

In the optimal sense we choose a set of moves that always
uses the maximum jerk. To determine the proper transition,
we note that equation (16) determines the speed that begins
a max jerk convex transition to the new set speed. We let this
initial speed be represented as vc and thus repeat an earlier
equation as vc = vs–am

2/(2jm).
We also note that the time to complete the convex

transition is Tc = am/jm. At Tc the distance change required
for the convex transition is s(Tc) = [vc + am

2/(3jm)]am/jm.

3. Transitions where vo < vs < vs� and vo on concave profile
The problem is to make a constant jerk transition from a
concave profile when the set speed is reduced below the old
set speed but exceeds the current speed vo. To resolve this
problem, we compare vc to the speed that ends the concave
portion of the current transition, given the current entry
conditions.

The time, speed, and distance required to complete the
concave transition are

t1 = (am �ao)jm (24)

v1 = vo + (am
2 �ao

2)/(2jm) (25)

S1 = vot1 + aot1
2/2 + jmto

3/6 (26)

If vc ≥ v1, then the transition to the new set speed occurs in
one of two ways:

• If vc = v1, we complete the current concave transition to
speed v1, then follow it with a convex transition from v1 to
the new set speed. This is referred to as a jerk transition.

• If vc > v1, then we complete the current concave transition,
follow it with a linear transition between v1 and vc, and
then, beginning at vc, complete a new convex transition to
the new set speed. This is referred to as a linear
transition.

If vc < v1, then the Figure 4 case emerges. This case, referred
to as an acceleration transition, can be solved by noting that
the speed and acceleration for the previous concave curve
and the new convex curve must be equal at Tt where the
speed is vt.

In this case the speed change is sufficiently small that we
cannot reach the maximum acceleration. Nevertheless, there
exists a point where the concave profile from the previous
condition will be tangent to the convex profile from the new
transition. This point will lie between vo and vs. At this point
the acceleration and speed of both profiles are the same,
although there will be a sign change in the jerk.

The pertinent equations are:

vo + aoTt + jmTt
2/2 = vs � jm(T�Tt)

2/2 (27)

ao + jmTt = jm(T�Tt) (28)

Solving these equations, we get:

T = [�ao + sqrt(2 ao
2 + 4 �v jm) ] / jm (29)

Tt = (jm T�ao) / (2 jm) (30)

4. Transitions where v0 < vs� < vs and vo on convex profile
We take the initial conditions and determine the speed v1

that would conclude a concave transition. We again
calculate vc, and then compare vc to v1. If vc ≥ v1, then the
transition to the new set speed occurs as either a jerk or
linear transition.

5. Transitions where vo < vs� < vs and vo on linear profile.
We again calculate vc then compare vc to vo. If vc > vo, then
the transition to the new set speed is attained by a linear
transition from vo to vs. If vc = vo, then we apply a jerk
transition to vs.

Fig. 3. Adapting to changing speeds.

Fig. 4. Acceleration transition.
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6. Speed transition
In a speed transition any entry state is immediately
converted to a convex profile with jerk – jm. This minimizes
the time for the transition.

The motion conditions are v(0) = vo; v(Ti) = vi; a(0) = ao;
a(Ti) = 0; and j(0) = � jm. These conditions lead to the
equations:

s(t) = vo t + ao t2/2� jmt3/6 (31)

v(t) = vo + ao t� jm t2/2 (32)

a(t) = ao � jm t (33)

where s is interpreted as a position change. Applying
a(Ti) = 0 leads to the solution for the transition time:

Ti = ao/jm. (34)

Substituting Ti into (31) and (32) gives the solutions for Si

and vi at Ti. The transitional modes to get from vi to the new
set speed now depend on the speed difference.

7. Deceleration transitions
We have not examined all possible dynamic move situa-
tions. In the cases considered thus far, the set speed is either
greater than the entry speed and/or the entry acceleration is
positive.

When the new set speed is less than the entry speed and/
or the entry acceleration is negative, transitional
requirements will be applied that are similar to those already
considered. For brevity we will not examine these cases
directly, although the next section indirectly considers
deceleration situations when the move is to be ended with
non-zero speeds and accelerations. This is the case where a
tangent move enters the buffer and the motion type is
continuous path, i.e. it is desired to maintain the speed
across contiguous moves.

8. Non-zero terminal conditions
The function of the Motion Planner (MP) is to accumulate
the length of the tangent moves in the buffer that follow the
current move. Yang6 shows that length computations are not
computationally intensive and can be made dynamically,
providing accurate estimates even for moves along para-
metric curves. As the planner updates the tangent distance
they are made available to the TG.

When the current move is followed by one or more
tangent moves, the MP must provide continuity across the
boundary between the current move and the next move. This
means that the move will terminate with non-zero speed.
The ending acceleration and profile type will depend on the
desired speed and the remaining distance of the contiguous
tangent moves.

MOTION PLANNING
It is the purpose of the motion-planning algorithm to
determine if an increased speed can be reached in the time
and distance available. If not, the MP must set a speed that
can be attained. The Motion Planner (MP) then supplies the
time step to the TG and returns the state at the completion
of this step.

Two observations are useful here:

• A set speed that is reduced from the previous value will
result in the TG attaining satisfactory terminal conditions.
Thus, speed can be reduced without a speed check.

• A set speed that is increased from the previous setting
may result in unsatisfactory terminal conditions. Thus, the
set speed will have an upper bounds based on the current
motion state.

1. Planning approach
The normal approach for a Motion Planner (MP) is to
determine a feasible upper bound to the set speed, given the
remaining move distance, and other terminal motion
conditions. Unfortunately, a closed-form solution proves
intractable, given the practical constraints of a real-time
TG.

The complexity arises because we are never sure what
form the S-curve will take as the set speed is changed.
Without knowing whether the S-curve can attain its max
acceleration, trapezoidal profiles cannot be used to estimate
the top set speed that can be reached within the remaining
move distance.

The solution is to make a max jerk step to increase the
entry speed towards the new set speed. In effect, we
incrementally adjust the speed up, but within the bounds of
remaining distance and other motion conditions. We only
increase the speed if we can meet the terminal conditions.

We do not predict analytically the max speed attainable at
each step, but instead predict a set speed that is attainable
under the current state, given the remaining distance and
other motion conditions. This approach is incrementally
optimal.

2. Planning algorithm
The MP considers the entry state (vo, ao, Lo) and the desired
set speed (vs). The other important parameters that are used
to make transitional decisions are:

Lm = total distance of the current move

LR = remaining distance to complete the move = Lm �Lo

(calculated at entry)

Lf = distance of following tangent moves. For point to
point moves this parameter will be passed into the TG
with a 0 value.

La = available distance to complete decel to 0 speed from
current motion state = LR + Lf

There are numerous transition possibilities depending on
the entry state and the set speed (see Table I). States 1–7 are
self-explanatory, while 8–13 need further explanation.
CONVEX INT and CONCAVE INT refer to an entry state
where the new set speed calls for a speed transition to an
intermediate speed (vi).

The defined constants that include PARTIAL in their
name refer to an entry state and speed change that require an
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acceleration transition because we cannot reach the max-
imum acceleration am.

To accommodate the transition through the various states,
we define

np = number of profiles traversed

P = vector of profile types

Lp = distance vector

Vp = speed vector

Ap = acceleration vector

T p = time vector

where each vector is of size 7. There are never more than 7
transitional states for any entry state.

P is a vector that stores the profile type for each segment
in sequence. The remaining vectors store the boundary
values necessary to transition each intermediate profile
given the remaining move distance and desired set speed.
For example, we could enter on a CONST SPD transition,
then have the speed increased, requiring an order
P = [1,2,3,4,5,6,7].

One trajectory step in time is then used to step through
the profiles, occasionally moving through more than one
profile type in the P sequence.

3. MP transitions
The algorithms presented here step into Case 1 or 2 when
the set speed is non-zero, depending on the entry state. Case
3 considers the special case where the set speed is zero
(abort, stop mechanism in middle of move):

Case 1: If the entry state is CONST SPD (ao = 0) and
vo = vs, then determine whether immediate decel is to begin
or a time step at constant speed can be made, given the
remaining distance. Enter TG and take a time step based on
distance left and transition as needed through profiles. Exit
the TG and MP.

Case 2: For entry rise or fall states take the desired set
speed and other entry conditions, and determine whether the
set speed can be attained, given the available distance La. If
so, take a normal time step and exit the TG and MP. If the
conditions are such that you cannot reach the desired set
speed, then apply a max jerk step to increase the speed and
exit the TG and MP.

Case 3: If set speed is zero and current speed is non-zero,
then decelerate to zero speed. In these cases zero speed may
be attained before the end of the move is reached.

Case 4: If the entry conditions reflect a quiet state
(previously aborted or attained zero speed before move
distance reached), simply return.

Case 2 incorporates the incrementally optimal move
described earlier when the desired set speed cannot be
attained. By applying the transitional steps properly in each
step, Case 2 conditions will always permit a max jerk step
to increase the speed. But how well we approach the max
possible set speed depends on the time steps being much
less than the time to make speed changes. It is recom-
mended that these methods only be applied at trajectory
rates that exceed 100 Hz. Note that the higher the rate, the
closer the incremental optimal speed will approach the max
possible speed.

To transition the profiles, the entry time step is compared
to the ending and beginning times for the sequence of
profiles stored in P. We thus establish the profile that bounds
this step in time. Once established we apply the appropriate
equations presented earlier to determine the terminal
conditions and then return.

4. Cubic solution
When speed is to be maintained across contiguous tangent
moves, the TG encounters the problem of determining the
time to complete the current move given the remaining
distance LR. This occurs because it is possible that the
current move may complete within a profile rather than at
the profile endpoint. And it is critical that the time step to
complete the current move never be less than the entry
value.

The profile transitions must compare the distance that
ends the profile to the distance remaining for the current
move. The remaining distance can be used to calculate the
time to complete the move. The MP then makes a terminal
time step that is never less than the entry step.

Reviewing the previous equations it is evident that many
of the profile types will require a cubic solution for time in
terms of the remaining current move distance. This time can
then be compared to the trajectory step to determine how
and when to complete the current move. The cubic solutions
implemented in the MP can be found at http://www2.
hawaii.edu/suremath/jrootsCubic.html. Picking the correct
solution is simply selecting the minimum real time from the
three possible solutions.

Table I. Profile numbers for each transitional state

Transitional State State Number Transitional State State Number

S RISE CONCAVE 1 CONVEX INT 8
S RISE LIN 2 CONCAVE INT 9
S RISE CONVEX 3 PARTIAL CONCAVE RISE 10
CONST SPD 4 PARTIAL CONVEX RISE 11
S FALL CONVEX 5 PARTIAL CONVEX FALL 12
S FALL LIN 6 PARTIAL CONCAVE FALL 13
S FALL CONCAVE 7
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DEMONSTRATIONS
These algorithms have been programmed and tested in C
and are being used in university and commercial trajectory
motion applications.

Figures 5–7 show the adaptive characteristics of the MP/
TG combination for a case where the length of the original
move is 400 mm. The set speed is changed several times
throughout the move. At 300 mm into the move, another
tangent move enters the move buffer of length 100 mm. The
MP immediately knows to generate a continuous path
profile transition.

The maximum acceleration is set to 4000 mm/2 and the
maximum deceleration is set to 3000 mm/s2 in each case,
while the jerk maximum is increased by � 10 in each case.

The acceleration values are comparable to those of commer-
cial robots.

Given a low jerk value of 5000 mm/s3, Figure 5 shows an
expected sloppy response to the dynamic speed changes. A
jerk value of 50000 mm/s3 improves the velocity response
markedly in Figure 6. And this value of jerk should be
reasonable for many mechanisms.

When the jerk is set high to simulate infinite jerk, the S-
curve in Figure 7 approximates a trapezoidal response
profile. Thus, the max jerk TG can closely approximate a
trapezoidal profile generator, if necessary.

Obviously, the jerk value becomes critical in the trade-off
between mechanism responsiveness and smoothness. Ulti-
mately, the mechanisms’s design characteristics will decide

Fig. 5. S-curve response to changing Vs and Lf for jerk = 5000 mm/s3.

Fig. 6. S-curve response to changing Vs and Lf for jerk = 50000 mm/s3.
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what is acceptable. Smoothness of motion verus responsive-
ness is a trade-off that can be easily made using these
algorithms. Designers can always test the mechanism with
different jerk values to get the correct blend of responsive-
ness and smoothness.

Although this example illustrates Cartesian path follow-
ing, these methods extend just as well to joint moves by
ensuring the parameters are in radians.

In some Cartesian moves, the tool control frame may
experience more orientation change than position change,
e.g. when a screw vector is used to represent tool orientation
change. The MP/TG will accomodate orientation change if
the motion parameters are entered in radians.

1. Computational speed
Placed into a large computational loop and tested over a
variety of profile shapes, these algorithms required less than
40 �s per trajectory step. These algorithms were run under
Windows NT 4.0 on an IBM 300 MHz PC.

CONCLUSIONS
Applying constant jerk transitions between the constant
acceleration and deceleration periods of the trajectory, the
trajectory generator will transition to the desired speed
setting in the minimum time, when jerk and acceleration are
limited.

Equations are derived that make the S-curve adaptive to
dynamic changes in speed setting and to increases in path
length. If the desired set speed cannot be attained, then a
max jerk acceleration is used to increase the set speed by an
incrementally optimal amount.

A dynamically integrated motion planner determines
allowable speeds and transitional profiles based on the
remaining move distance. In some cases the transitions
require an intermediate constant acceleration period.

The methods apply to Cartesian moves and joint moves
equally well. In addition, the algorithms are very fast,
averaging less than 40 �s per trajectory step.
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Fig. 7. S-curve response to changing Vs and Lf for jerk = 500000 mm/s3.
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