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Toward Automated Abstraction for 
Branching Networks 
Michael Jones, Ganesh Gopalakrishnan 

School of Computing, University of Utah 
mjones,ganesh@cs.utah.edu 

Protocols on 

Abstract- We have used various manual abstraction tech- 
niques to formally verify a transaction ordering property for 
an IO protocol over bus/bridge networks. In the context 
of network protocol verification, an abstraction is needed 
to reduce the unbounded number of network configurations 
to a small number of representative networks that can be 
checked using algorithmic methods. The manually derived 
abstraction was both brittle and difficult to validate. In this 
report, we discuss the need for abstraction techniques in the 
formal verification of protocols over networks and present 
our recent efforts to create an automatic abstraction tech- 
nique for network protocols using predicate abstraction as 
a starting point. 

Keywords- Formal verification methods, parameterized 
systems, predicate abstraction 

We address the problem of abstraction in the formal veri- 
fication of safety properties at the bus/bridge level for pro- 
tocols defined over acyclic branching networks. Abstrac- 
tion is needed in this context because formal methods ap- 
plied directly to protocols over networks are either not ap- 
plicable, or at best difficult and time-consuming. The main 
source of difficulty is the unbounded nature of branching 
networks. Because there are an unbounded number of con- 
figurations that must be checked, tt is not possible to apply 
algorithmic methods, such as model checking, to all pos- 
sible network configurations. We have found [MHJGOO] 
that it is prohibitively difficult to apply interactive theorem 
proving in the context of protocols on branching networks. 

In this report, we discuss our recent efforts to increase the 
amount of automation available for creating and reasoning 
about abstractions of protocols defined over branching net- 
works. The problem with manually derived abstractions is 
that they need to be validated. Validating an abstraction 
is the process of showing which properties are preserved by 
the abstract model. We have found [JGOO] that building 
a validation proof for a manually derived abstraction for 
protocols over networks is also difficult. 

The significance of this work is that it will provide a tech- 
nique for creating abstractions of protocols over branching 
networks such that certain properties of the protocol can be 
checked with minimal manual effort. The novel feature of 
this work is a predicate abstraction technique suitable for 
use on protocols which are defined over networks in which 
the states and connectivity of intermediate nodes affect the 
property being checked. 

We begin by reviewing relevant results from predicate ab- 
straction and parameterized system verification. Section I1 
contains a detailed presentation of the abstraction scheme. 
The formal presentation in section I1 is closely patterned 
after the presentation in [GS97]. Section 111 gives an ex- 

ample, and we close with our thoughts on abstractions for 
networks in the final section. 

I. RELATED WORK 

The ideas presented here are an extension of predicate 
abstraction as described in [GS97]. Predicate abstraction is 
a form of abstraction in which the reduction is constructed 
manually but the validation and checking tasks are auto- 
mated. To create a predicate abstraction, the user specifies 
a set of predicates which are used to divide the abstract 
state space depending on the truth , or falsity, of the pred- 
icates. Given the predicates, an abstract transition relation 
is constructed such that the original infinite state model is 
a refinement of the abstract finite state model. In practice, 
predicate abstraction requires several rounds of verification 
in which the user adds invariants to eliminate false nega- 
tives between rounds. The PVS theorem prover contains 
support for predicate abstraction and invariant strength- 
ening [SS99]. Predicate abstraction has been applied to 
limited forms of networks [LS97] in which the particular 
shape of the network is unimportant to  the property be- 
ing verified. A form of predicate abstraction using BDDs 
to represent sets of reachable states has been implemented 
using the Murd, model checker [DDP99]. It is difficult to 
apply predicate abstraction to parameterized systems due 
to the quantification required to describe arrays of pro- 
cesses. Quantification makes predicate abstraction difficult 
because determining if a transition is enabled for a state 
description containing quantification is either undecidable 
or requires a complex decision procedure. We address the 
quantification problem by introducing a second variable for 
each predicate that encodes whether or not a node exists 
in the array that satisfies the predicate. 

The proposed abstraction scheme applies to branching 
parameterized systems. While the verification problem for 
parameterized systems is in general undecidable [.4K86], 
methods for reasoning about limited classes of protocols 
and properties have been developed. Other methods for 
reasoning about parameterized systems are based on reg- 
ular expressions [KMM+97], [SG89], [CGJ95], rather than 
abstract state variables. While regular expression based 
techniques have found success primarily in linear or ring 
shaped topologies (see [BJNTOO], [PSOO] for recent results), 
the early papers consider extensions to  include reasoning 
about branching topologies. Despite the ability of regu- 
lar expression representations to describe and reason about 
branching topologies, no results for complex protocols have 
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yet appeared in the literature. By using a different rep- 
resentation and abstraction scheme over a limited class 
of properties, we hope to derive an abstraction scheme 
that can be applied to larger examples such as commer- 
cial multi-bus IO protocols. The added restriction in our 
work is that we consider only safety properties defined over 
a constant number of terminal nodes rather than safety 
properties in general. 

11. PREDICATE ABSTRACTION FOR NETWORKS 

The idea behind the abstraction scheme is project the 
subnetwork containing the terminal nodes in the property 
being checked then model the state of each network seg- 
ment using a variant of predicate abstraction. The variant 
of predicate abstraction uses an additional boolean vari- 
able for each predicate to indicate whether or not a node 
exists which satisfies the predicate represented by the state 
variable. The additional existence variable is used to en- 
code quantification which is required to model parameter- 
ized systems using predicate abstraction. In the remainder 
of this section we formally define the model of computa- 
tion and abstraction scheme. The next section contains 
an example of the abstraction scheme applied to a trivial 
property on a simplified version of the PCI protocol 

A network of processes is created by instantiating a pa- 
rameterized finite state protocol p a  at each node. -4 routing 
table defines the connectivity in the network. 

Definztzon 1. Network of nodes. A network of nodes is a 
six-tuple ( N ,  A, R, X ,  T ,  13) where: 

N = 1.. .n, a list of node indices. 
A C N ,  a list of agent, or terminal, nodes. 
R = {(Aa,  -4,, n1,n2 . . . n,)l for agents A,, A, in A}, a 
routing table in which agent A, is connected to agent 
A, by the path through nodes n1 through 12%. 

-‘z = XI, X2 .. . X,, the network state formed by tak- 
ing the state of each node, X,. 
T = Tl,  T2 . . . Tn, the set of network transitions formed 
by the transitions, T,, from p ,  at each node. 
I ,  = I:, I; . . .I;, the j t h  initial network state formed 
by taking the initial state of each node, I:. 

The first three elements of a network, N ,  A, R, define the 
global network structure. N and A define the interior and 
exterior nodes of the network while R defines the connec- 
tions between exterior nodes using paths of interior nodes. 
The latter three elements, X ,  T ,  13, define the state and 
transition relation of the network in a per-process fashion. 
Each of X ,  T ,  I3 are defined using the state, transitions and 
initial state of each node. The state, transitions and ini- 
tial state of each node are all parameterized definitions, as 
given next. 

Definztzon 2: Parameterized Protocol. A finite state pa- 
rameterized protocol, p ,  is a triple (X , ,  T,, I,) where 

X ,  = xi : t l ,  xi : t 2  . . . xX : tk ,  a list of declarations in 
which each variable xcj at node i has type t,. 
T, = T;, ri . . . TL, a list of transitions for process I, 

in which each 7;” has the form r; = g,(z, R, X) ct 
asgn(i, R,  X ) .  

I,? = asgnXi, the j t h  initial state for process i in which 

Both the guard and the assignment in each transition take 
the routing table and network state as parameters. Includ- 
ing the network state and routing tables as parameters al- 
lows the guard and assignment to access the states of other 
nodes. For example, the guard in transition rj can use the 
state of an adjacent node to determine if 7; is enabled. Sim- 
ilarly, the presence of the routing table and network work 
state in the update expression allows the transition at a 
node to modify the states of other nodes in the network. 
Transitions need to modify the state of adjacent nodes if 
the transition moves a message between two nodes. 

We now define the semantics of a network of processes 
over a state graph. 

Definition 3: Parameterized State Graph. Given a net- 
work of processes: and a routing table R, the parameterized 
state graph, S“ is a three-tuple, (QR,  PR, I R )  where 

each variable in Xi  is assigned a value. 

. .  
QR = x:, xi.. .xi, x:, X; . . .xi.. .xi, xi.. . X: 
P R  = u~=,(u~=lrf(q) where 

if g:(q,  R , X )  = F 
‘f(q) = {l asgn;(q, R, X )  otherwise 

0 IR = {qlinit(q)} 
In the definition of SR,  QR is a graph node representing 
a global network state, P R  represents the transitions en- 
abled for a graph node and I R  is the set of initial states. 
The entire state graph, S ,  for a protocol defined over a 
network of processes is created by taking the union of all 
state graphs over all routing tables. For networks with un- 
boundedly large network topologies, S contains a finite but 
unbounded number of states. Since the unboundedness of 
S stems from the unbounded number of unique valid rout- 
ing tables, the crux of the abstraction is creating a model 
which contains a bounded number of network topologies 
and using predicate abstraction to model the unbounded 
number of states in each topology. Each topology has an 
unbounded number of states because there may be an un- 
bounded number of nodes in each edge of a given network 

We now define the abstraction of a state graph given the 
abstraction of a routing table. This part of the abstrac- 
tion uses predicate abstraction to represent the unbounded 
number of states in a topology. The abstraction of routing 
tables will be discussed later. We begin with preliminary 
definitions and results for predicate transformers. 

Definition 4: Strongest Postcondition. For a parameter- 
ized transition rr and a set of states characterized by a 
predicate cp ,  the strongest postcondition of cp by rp is de- 
fined as: 

topology. 

POSt[7inl(P) = 37’.rin(q‘, 4 )  A d 4 ’ )  
Definition 5: Weakest Precondition. For a parameter- 

ized transition r? and a set of states characterized by a 
predicate cp ,  the weakest precondition of cp by 7: is defined 
as: 

Intuitively, post[rF]((p) is the smallest set of successors of cp 
reachable by rp and jKG[rp](cp) is the largest set of states 

F[7inI((P) = Vq’.qYq, 9’) * (P(4’) 
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that map to cp by r,". As reported in [GS97], we can rewrite 
Eb3 (9) and POSt[T,"I (cp) as 

E[.r,nl(P) = 

pos t[CI(cp)  * P'iff cp * E[7,nI(cp') 

( g : ( 4  =+ cF:[wn:(n, R, W l ( n ,  R,  X)l) 

Definztzon 6: Abstract State Graph. Given a state graph 
S R  = ( Q R , U ; . I n )  for a network of nodes and routing 
table R with abstracted routing table RI (as will be defined 
later), let QZ' be a lattice of abstract states with 5'2' = 
( Q ~ ' , U ~ , I " ' )  and (a : 2QR cs QZ',yQf' c) 2QR). Then 
Sf is an abstraction of S R  iff 

I R  C y(If), and 
Vn.Vi.VqA E QZ'. 

path(n) ( q A ) )  Post[T,"l(?'(qA)) y(.f, 
R G y(R')  

Intuitively, 5'2' is an abstraction of S R  if for every transi- 
tion at every node in S R ,  the strongest postcondition of the 
concrete states in ' y (qA) is a subset of the concrete states in 
'y(,i,p"th'n'(qA)). In short, for every move T at every node 
in SR,  there is a move ? in Sz' that does as much or more 
than 7. 

Next we identify an abstraction scheme for SR.  We con- 
sider the abstract state lattice 0,"' induced by the pred- 
icates cp;, cp;, . . . cp: parameterized by each node n. For 
each predicate in 9% and abstract path j in R' we define 
two abstract state variables ai@:. 

Given the set of 
monomials over 19: and 8 for an abstract routing table 
R' and glb operator A (boolean conjunction) with lub op- 
erator (weakened form of disjuction), the abstract state 
lattice 6fR'  is defined to be (f i ,  A, U) 

Each monomial in MR' represents a set of concrete states 
described by a conjunction of quantified predicates as given 
in Figure 1. As shown in the figure, an abstract mono- 
mial represents the set of concrete states which contain 
sequences of nodes that may contain a node that satisfies 
a predicates (P, depending on the values of i$i and I9; in 
the monomial. 

We now define the abstract transition relations parame- 
terized by paths using monomials over abstract state vari- 
ables. For a given abstract state 7F1 we compute the ab- 
stract transition ?," corresponding to transition 7," for some 
n E IC using the equation shown in Figure 2. The equation 
states that the next state of ?: ( f i )  is F if ' y (7 jz)  always fails 
to  satisfy the guard for transition r: for any n E k ;  but that 
+: (m) includes any disjunction over a!@!, 8f-+!, ~ 8 f @ f  
and -a!-@: for next states that may or may not have 
nodes in path k that may or may not satisfy cp;. Note 
that each (y(7E1) A 9:) + ~cp,"[asgn:(3?)/3?] is simply the 
quantifier free form of p o s t [ r ; ] ( y ( h ) )  + p,". 

As mentioned before, the crux of the abstraction is re- 
ducing the potentially unbounded number of routing tables 
over an unbounded set of terminal and non-terminal nodes 
to a bounded number of small abstract routing tables that 

Definztzon 7: Abstract state lattice. 

represent all possible network configurations. If we restrict 
the set of invariants to safety properties over a constant 
number of terminal nodes, then we can enumerate all pos- 
sible (up to path length) acyclic configurations, R,, on 
n terminal nodes. The class R, of networks corresponds 
to the class of unique Steiner topologies over n terminals 
where each terminal has degree one (see [HRS%'92] for a dis- 
cussion of Steiner topologies). This correspondence gives 
an upper-bound on the number of unique acyclic network 
configurations over n nodes. 

Given a concrete routing table R, we construct a corre- 
sponding abstract routing table R' by first labeling n of the 
terminal nodes (as required to check a property on n termi- 
nal nodes). The abstract routing table R' is then created 
by projecting only the n labeled nodes and the paths be- 
tween them. The final step is to replace the nodes in each 
unique path segment between the n labeled nodes with a 
single path variable. An example of creating an abstract 
routing table can be found in Section 111. An important 
property of the routing table abstraction is that all net- 
works with the same topology on the n labeled nodes are 
reduced to the same abstract routing table. 

Given an abstract routing table R' E R, we construct 
the concretization of RI, y(R') ,  as follows. The set R, = 
r(R')  is thc set of concrete routing tables such that: 

Every terminal node t ,  in R' also appears in every R,. 
If R'( i , j )  = pl ...p,, then R(i , j )  = y(p1)  ...y(p,) 
where y(p) is the smallest set of nodes that appears in 
every entry of R which corresponds to an entry in R' 
containing p .  

More formally, we define y(R') as 

concretization of a routing table R' is 
Definztzon 8: Concretization of a Routing Table. The 

{ R  I t ,  E R' + t, E RA 
R'(i,j) = ~ i . . . ~ r n  * R(i , j )  = y ( ~ ~ ) . . . y ( ~ m ) }  

where y ( p )  = {ni ... nmlVk,Z.p E R'(k,l) + n1 ... nm E 
R ( k  0) 

111. TUTORIAL EXAMPLE 

We give a simple example of checking a property on a 
simplified version of the PCI protocol [PC195], called PCI,, 
including only posted messages. In PCI, a posted message 
is an unacknowledged message which can be neither deleted 
nor reordered. The property we wish to check is: "if two 
agents send a posted message to a single destination, then 
one of the messages always reaches the destination first." 
The property is not true for PCI, so we expect to find a 
violation. 

There is only one topologically unique way to connect 
three nodes in an acyclic network, so there is only one ab- 
stract routing table to consider in the construction of the 
abstract state graph. Although all networks over three ter- 
minal nodes have the same abstraction, we provide an ex- 
ample of constructing the abstract routing table. Suppose 
we have a PCI, network containing three terminal nodes 
with the following routing table: 
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.ii" (m) = 

Fig. 1. Sets of concrete states represented by a monomial over the abstract state variables. 

Fig. 2. Computing the abstract transition relation for a concrete transition T: 

9,8,12,11 

We chose to  mark nodes 1,2 and 3 as the terminal nodes 
in the property being checked; that means that node 10 will 
be eliminated in the abstraction. After eliminating termi- 
nal node 10, we replace the nodes in each non-branching 
sub-path in the remaining network with a single path. For 
example, all paths to and from node 1 include nodes 4 and 
5 .  This means that nodes 4 and 5 form a non-branching 
sub-path, which we represent as path A in the abstract 
routing table. Note that the abstract routing table RI is 
defined such that R C y (R ' ) :  

A PCI, message is written as a tuple (s ,d)  which indi- 
cates a message from agent s to agent d. We begin with 
the definition of the state and transitions at a PCI, node, 
parameterized by node address i. 

X, = q:Array[2] of PCI, message, opposite-q: Array[2] 
of PCI, message. 
Transition r: with 

g; = X,.q[O] = (1,3) A next(i, 3) # 3A 

asgn; = delete(0,i); append((l,3), next(i, 3)) 

g; = Xz.q[O] = (2,3) A next(i, 3) # 3A 

asgn; = delete(0, i); append((l,3), next(i, 3)) 

lf~11(Xnext~a,3) .q) 

Transition 7-l with 

+WXnext(,,3) .q) 

1; with d.q[O]  = (1,3), s2.q[O] = (2,3) and sJ .q [k ]  = 

Each node contains two arrays which each contain a max- 
imum of two messages. Transition 7-i moves message (1,3) 
from node a to the next node on the path from i to agent 
3-if the queue in the next node is not full. Similarly, tran- 
sition r: moves message (2,3) to the next node on the path 
from i to agent 3. 

empty for every other j ,  k.  

The property we want to check asserts that the message 
from agent 1 to agent 3 arrives at agent 3 first. This is 
property is expressed by the following predicate: 

cph = ( i  = 3) 3 a2.q[O] = ((1,3) V empty) 

We use cpb and the additional predicates 

cp; = g; = X,.q[O] = 

cp; = g; = X,.q[O] = 
(123) A next(i, 3) # 3 A lfull(xnext(,,a) 

(273) A next(i, 3) # 3 A l f~ l l (Xnext (a ,3~  

to define the abstract state space. Given the initial state 11 
and the predicates yb, cp;, 9; we have the following initial 
abstract state: 

il = -+@," 18fl@Af 4F1@," 
l^Y1 1 Y1 lflP@P 

17Y;+; 6f@? '6g@ 
' A  - A  -,dB - B  

The initial abstract state represents all concrete states 
which contain message (1,3) in path A and message (2,3) 
in path B. 

We compute the next states for f1 under the transitions 
7-i and r;. We begin with .i;'. First, we check 

y(f1) + Vn E A.lgF 

that the concretization of the abstract initial state does not 
satisfy g r  for every node n in ?(A). We check the negated 
form of the previous equation: 

~ ( f i )  =+ 3n E A.  g r  

Since f l  includes 8t@f we have that 3n E A.pT and from 
the definition of cp? we have 

3n E A.gF =+ 3n E A.g; 

which is trivially true. This gives us that +: # F and 
we compute the values of the state variables for the other 
predicates and network paths. We compute the effects of 
+! by considering the effects of applying rr to any node 
n in the concretization of A. We present in detail how the 
values of 8f@f are computed and summarize the values 
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for the other state var!ables. 

state of ?:(fl). We add 8f@f if 
First, we check if Sf@ should be added to the next 

3n E A.3m E A. (y(f1) A 9:) + cpy[asgn;(Z)/%] 

It is possible to pick a node n in ?(A) such that p;". Sup- 
pose n is not the last node in y(A) and m is the next node 
after n in y(A), then asgnF(5) moves PI from node n to 
node m. In this case, if node m is empty before appending 
PI then cp? is true of m after asgnF(Z)/%. 

Next, we check if 8f-yf should be added to the next 
state of ?f(il). We add 19f+f if 

377. E A.3m E A. (y( f~)  A g: + -p;"[asgn;(%)/%] 

Which is also true. If we pick n and m to be the same node 
in ?.(A), then after [asyn?(Z)/%] PI is no longer in m so 
3m E A.~(p;"[asgn;(3!/%] and we add 8f+f to .i,"(fl). 

Now we check if -8f@q should be added to the next 
state of ?f(fl). We add +f@;' if 

37~ E .4.-3m E A.(y(Il) A 9: + ~ ~ ? [ U S ~ T L ; ( % ) / % ]  

Which is true if we pick n t o  be the last node in ?(A) .  
In this case, [asgnF(%)/%] moves PI out of the last node in 
y(A) so that 4 m  E A.cp;"[asgn;(%)/Z]. So we add 18f+f 

Finally, we check if 18fl@f should be added to the next 

3n E -4.13m E A.(y(il) Agy + -yy[asgn;(%)/%] 

Which is not true because PI is in at most one node in ?(A) 
before and after [asgnF(%)/%] and PI is in different nodes 
before and after the transition. Consequently, PI can not 
be in all nodes of ?(A)  after the transition. 

We now have that 8f@f', @+f and -8pp;" are in 
?:(il). We have now computed the values of 8 1  and $1 

for path A. We next perform a similar analysis for paths B 
and C 

to ?f(il). 

state of f,"(fl). We add i8fi$f if 

For path B, only -8F@F is in ?t(fl). This is because 
[asgn;(%)/%] can not move message (1,3) to a bridge 
in path B sirice riext(i,3) is never a bridge in B for all 
bridges i in path ,4. 
For path C, we find that the following terms for 7-1" are 
in Ft(f1): 8f'@f', 8f'l@f and 18FGf. These terms 
are included because [asgn;(%)/%] can, but is not re- 
quired to, move message (1,3) to a bridge in path C 
from a bridge in path A. 

Next, we need to determine which state variables for pred- 
icates po and p2 fo,r bridges in paths A, B and C need to 
be included in ??(Il). 

For predicate cpo, F e ( f 1 )  has no effect on cpo because 
[asgn;(%)/%] can not violate the invariant. Suppose 
[asgn;(Z)/s] moves (1,3) into the head of agent 3. 
Then if pi was true before [asgn?(%)/%] then cp; is still 
true after [asgn;(%)/Z]. Suppose [asgnF(%)/%] does 
not move (1.3) into the head of agent 3. Similarly, if 
pz was true before [asgnF(3)/%] then pz is still true 
after [asgny(%)/%J. 

For predicate 9 2 ,  ?,"(f1) has no effect on cp2 either. 
This is because [asgnF(Z)/%] does not affect message 
(2,3). While [asgn;(%)/%] does move message (1,3), 
the location of message (2,3) has no bearing on the 
value of p2. 

This concludes the computation of ff(f1). We have that ?e (f1) includes the following boolean expression over the 
abstract state variables: 

ff(f1) = ~ d t ~ $ t  A -8 f i@f A T~~T@~JI 

(8t@f V 8fi@f V -8 fGf )A 
i d F @ f A  
(8F@f V 8p-@f V 1 8 f G f ' ) A  
~8,"@," A a$@$ A i8$& 

Next, we perform the same analysis for ?y(fl) and 
?f(fl). We begin by checking that 

y(f1) 3 Vn E B.-g; and y(f1) * Vn E C.ig: 

Both of these implications are true because i@@? and 
~ 8 ? @ f  are in 1 1 .  For +y(fl), we then have that 

-3m E B.qY A y(f1) + Vn E C.lgr 

and cp? = 9;". Because no nodes in paths B and C satisfy 
the guard on T~ in state il, both ?,"(fl) and ?f(j1) equal 
F .  

Having determined the abstraction of all possible effects 
of qA on all network nodes of all concrete states represented 
by 11, we now analyze the effects of r2 on all nodes in 
all states represented by 11. The effects of 7-2 are similar 
to the effects of 71 except r2 moves message (2,3) rather 
than message (1,3). We will compute the next state set 
for ??(fl) and find a violation of the invariant. To make 
the example complete, we first check that the transition in 
enabled by attempting to disprove 

$12)  + Vn E B.-g; 

Since 8,"@," is in f1, we have that 

3m E B.& A y ( & )  3 Vn E B.lg," 

which is false since cp2 = g2. Since ?,"(il) is enabled, we 
next computeAwhich abstract state variables are in the next 
state for ??(I1), 

We will start with 8$&' because it will yield a violation 
of the form 8:7@g. To include dg-~@t in the next state 
of f.f(il) we need to prove that 

3n E B.3m E C.(y(Ii) A g; =+ ~ c p ~ [ ~ ~ g $ ( % ) / P ]  

If we pick n t o  be the last bridge in B and let m be bridge 3 
in path C (implying that C has only one bridge, which is an 
acceptable assumption) then [asgna(%)/%] moves message 
(2,3) into the head of the queue in m. Bridge m now 
violates 

x3.q[o] = (2,3) A (i = 3) + xz.q[O] = ((1,3) V empty) 

so we add 8$-@g to ?F(il) and find that a node exists in 
path C which violates 90. 

151 



Predicate abstraction is conservative, rather than exact, 
so this violation does not necessarily imply that a violation 
exists in the concrete model. However, in this case, the 
violation can be translated into a violating trace. The vi- 
olating PCI, trace allows the message (2,3) to reach agent 
3 before the message (1,3). 

IV. CONCLUDING REMARKS 

By restricting the class of properties that can be checked 
and using a representation based on predicate abstraction, 
we have created an abstraction method which is intended to 
extend parameterized system verification to complex pro- 
tocols over branching networks. At present, our predicate 
abstraction technique for networks exists only as “paper- 
ware.” That is, predicate abstraction for networks has been 
worked out on paper and pencil, and paper examples have 
been completed; but that we have not yet built a tool which 
incorporates these techniques and applies them systemati- 
cally. 

Before building a tool based on these ideas, we plan to 
extend the paper-ware version to include other network 
classes, apply to distributed shared memory systems and 
provide conservative support for reasoning about VCTL* 
properties. We anticipate that the most difficult aspect 
of the implementation will be providing reasoning support 
for deciding if the set of concrete states represented by a 
monomial 
transition 

[AK86] 

[BJNTOO] 

[CGJ95] 

[DDPSS] 

[ESOO] 

[Gru97] 

[GS97] 

[HP991 

[HRW92] 

[JGOO] 

[KMILlf97] 

of abstract state variables satisfies a guard to a 

REFERENCES 
Krzysztof R. Apt and Dexter C. Kozen. Limits for auto- 
matic verification of finite-state concurrent systems. In- 
formation Processing Letters, 22(6):307-309, May 1986. 
Ahmed Bouajjani, Bengt Johnsson, Marcus Nilsson, and 
Tayssir Touilli. Regular model checking. In Emerson and 
Sistla [ESOO], pages 403-418. 
E. M. Clarke, 0. Grumberg, and S. Jha. Verifying pa- 
rameterized networks using abstraction and regular lan- 
guages. In 6th International Conference on Concurrency 
Theory (CONCUR’95),  Philadelphia, PA, August 1995. 
Satyaki Das, David L. Dill, and Seungioori Park. Ex- 
perience with predicate abstraction. In Halbwachs and 
Peled [HP99]. 
E. Allen Emerson and A. Prasad Sistla, editors. 
Computer-Aided Verification, CAV ‘00, volume 1855 of 
Lecture Notes in Computer Science, Chicago, IL, July 
2000. Springer-Verlag. 
Orna Grumburg, editor. Computer-Aided Verification, 
CAV ’97, volume 1254 of Lecture Notes in Computer 
Science, Haifa, Israel, June 1997. Springer-Verlag. 
Susanne Graf and Hassen Saidi. Construction of abstract 
state graphs with PVS. In Grumburg [Gru97]. 
Nicolas Halbwachs and Doron Peled, editors. Computer- 
Aided Verification, CAV ’99, volume 1633 of Lecture 
Notes an Computer Science, Trento, Italy, July 1999. 
Springer-Verlag. 
F. K. Hwang, D. S. Richards, and P. Winter. The Steiner 
%e Problem, volume 53 of Annals of Discrete Mathe- 
matics. North-Holland, Amsterdam, Netherlands, 1992. 
h4ichael Jones and Ganesh Gopalakrishnan. Verifying 
transaction ordering properties in unbounded bus net- 
works through combined deductive/algorithmic meth- 
ods. In Formal Methods i n  Computer-Aided Design: 
FMCAD’OU, November 2000. To appear. 
Y. Kesten, 0. Maler, M. Marcus, A Pnueli, and E. Sha- 
har. Symbolic model checking with rich assertional lan- 
guages. In Grumburg [Gru97]. 

[LS97] 

[MHJGOO] 

[PC1951 

[PSOO] 

[SG89] 

[SS991 

David Lesens and Hassen Saidi. Automatic verification 
of parameterized networks of processes by abstraction. 
In 2nd International Workshop on the Vemfication of 
Infinite State Systems: INFINITY’97, July 1997. 
Abdel Mokkedem, Ravi Hosabettu, Michael D. Jones, 
and Ganesh Gopalakrishnan. Formalization and proof 
of a solution to the PCI 2.1 bus transaction ordering 
problem. Formal Methods in Systems Design, 16( 1):93- 
119, January 2000. 
PCISIG. PCI Special Interest Group-PCI Local Bus 
Specification, Revision 2.1, June 1995. 
Amir l‘nueli and Elad Shahar. Liveness and accelera- 
tion in parameterized verification. In Emerson and Sistla 
[ESOO], pages 328-343. 
Z. Shtadler and 0. Grumberg. Network grammars, 
communication behaviors and automatic verification. 
In Workshop on Automatic Verification Methods for 
Fmzte-State Systems, volume 407 of Lecture Notes 
in  Computer Science, Grenoble, France, June 1989. 
Springer-Verlag. 
Hassen Sddi  and N. Shankar. Abstract and model check 
while you prove. In Halbwachs and Peled [HP99]. 

152 


	Toward Automated Abstraction for Protocols on Branching Networks
	Original Publication Citation
	BYU ScholarsArchive Citation

	Toward automated abstraction for protocols on branching networks - High-Level Design Validation and Test Workshop, 2000. Proceedings. IEEE International

