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Abstract: Conventional tools to analyze regime shifts in ecosystems, e.g. stable state and bifurcation 
analyses, are increasingly adapted to investigate social-ecological systems. The challenge lies in 
combining the analysis of system dynamics with the analysis of transient dynamics emerging from 
adaptive and heterogeneous agents. A typical question is, to which extent do micro level interactions 
contribute to a macro level outcome? We demonstrate the application of a new tool, equation-free 
analysis, for evaluating the state space from an agent-based model (ABM) on lake restoration. By 
sidestepping the requirement of an equation describing a systems macroscopic behavior, equation 
free analysis enables system level tasks (such as bifurcation analysis) to be performed on micro level 
models. This is particularly beneficial for agent-based models that aim to explain macro level patterns 
and include more parameters than one can feasibly analyze by simulation experiments alone. In our 
example on lake restoration, the macro scale pattern is the ecological regime shift between the clear 
and turbid water state. This regime shift can be influenced by micro level decisions from lake users 
affecting the main driver through alternative strategies. To find out which strategies are more effective 
to restore the lake into the desired clear state, we linked the resulting bifurcation diagram from the 
equation-free analysis to simulation experiments along the alternative trajectories. Concluding, we 
describe suitable steps for integrating the equation-free analysis with more traditional agent-based 
model analyses and discuss the difficulties and advantages therefrom.  
 
Keywords: social-ecological interaction; equation-free; steady state analysis; regime shifts; shallow 
lake restoration;  

1 UNDERSTANDING REGIME SHIFTS 

Non-linear transitions in ecosystems were often described as regime shifts by identifying dominant 
reinforcing feedbacks for alternative stable states (Scheffer 2009). A regime shift is a macroscopic 
pattern where the system’s state variable undergoes a non-linear, persistent change while the driver 
changes relatively little. One example for this phenomenon is the ecological regime shift in shallow 
lakes where a slight increase in nutrient concentration can cause a drastic shift from clear to turbid 
water which affects the whole lake ecology in terms of plankton and fish assemblages (Scheffer 
1989). The behavior of regime shifts is conventionally modelled by differential equations. While 
ecological shifts have been investigated a lot through modelling but also empirical methods (Biggs et 
al. 2012), the dynamic interaction of humans with ongoing regime shifts has received little attention in 
models so far (Lade et al. 2013). One potential reason for this unbalanced representation of human-
environmental interaction is the difficulty to represent human decision-making which is partly 
addressed by agent-based models. But until today, this approach had the drawback that it was 
impossible to analyze macroscopic patterns, such as stable states, without running large sets of 
simulations covering all suitable parameter variations and combinations. To overcome this barrier, we 
present a new tool here, the equation-free analysis.  
 
Treating the model as a black-box, the equation-free analysis is capable to derive system scale 
patterns that are represented e.g. in bifurcation diagrams. We introduce in the following section how it 
works and then exemplify its applicability by the analysis of a coupled agent-based, system dynamics 
model. In this case study, we look at shallow lake restoration and how individual agent traits may 
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influence the state of the lake. Finally, we discuss the difficulties and advantages for analyzing ABM’s 
with the equation-free analysis.  

2 A NEW WAY TO ANALYSE ABM’S MACROSCOPIC BEHAVIOR 

2.1 Path following 

Path following and bifurcation analysis are well 
established mathematical tools for analyzing non-linear 
system dynamics (Seydel and Hlavacek 1987, Doedel 
et al. 1991). From a known steady state in a system, 
i.e. a stationary or periodic solution, these techniques 
analyze how these states respond with changes to a 
driver parameter in the system. As the parameter is 
varied the previous solutions are ‘followed’, providing a 
much more efficient method for analysis than 
repeatedly computing the steady state from arbitrary 
initial conditions as the driver parameters is varied. 
The basis of path following techniques is a two-step 
process, prediction and correction. Firstly, from a 
known steady state, which can be obtained from an 
initial simulation, a prediction is made for the steady 
state under some small variation to the driver 
parameter. Secondly, this prediction is improved upon 
using standard corrector or root-finding algorithms such 
as Newton-Rhapson (Ryaben’kii and Tsynkov 2006). 
This framework provides a simple and efficient way of 
analyzing non-linear systems and is illustrated in 
Figure 1. The steady state of a model described by 
𝐹(𝑥, 𝜃) for variable(s) 𝑥 and parameter(s) 𝜃, is 
computed by obtaining the 𝑥1 that, for 𝜃1, satisfies 

𝐹(𝑥1, 𝜃1) = 0. This solution can be ‘followed’ as 𝜃 

changes by predicting 𝑥2 based on the value 𝑥1 (white 

circle in Figure. 1). The prediction yields 𝐹(𝑥2, 𝜃2) ≈ 0 
which is then corrected using the root-finder algorithm 
until 𝐹(𝑥2, 𝜃2) = 0. Repeating this process enables the following of unknown steady states (blue line in 
Figure. 1).Typically a secant or gradient-based method is used to extrapolate a prediction based on 
two previous steady states 𝑥𝑖 and 𝑥𝑖−1 using a small step in the parameter 𝛿𝑠, 
 
Equation 1 

𝑥𝑖+1 = 𝑥𝑖 +
𝑥𝑖 − 𝑥𝑖−1

√𝑥𝑖
2 − 𝑥𝑖−1

2
𝛿𝑠. 

 

Here √𝑥𝑖
2 − 𝑥𝑖−1

2 is the Euclidean distance between 𝑥𝑖 and 𝑥𝑖−1. The initial two points can be 

obtained from simulation then all successive points can be obtained from correcting steady state 
predictions. For a small step parameter 𝛿𝑠, predictions are sufficiently close to converge within a few 
iterations of the root-finding algorithm and is thus much more efficient than computing the steady state 
for 𝑥𝑖+1 directly. Furthermore, this method can follow both stable and unstable paths, which may not 
be possible with simulation of the micro level model. The presence of any unstable states is essential 
in understanding transient dynamics and any regime shifts that occur in the system. This framework 
can be coupled with other standard algorithms for detecting bifurcations, such as tipping points or the 
emergence or disappearance of steady states. Understanding how a system responds to changes in 
a driver parameter can improve our knowledge of its behavior and can aid decision-making. 

 
Figure 1 Path Following Framework. 
Using previously obtained steady states 
(black) a prediction can be made for the 
steady state at a new parameter value 
(white).  Coupling this with a standard 
root-finding algorithm enables this 
prediction to be iteratively improved 
upon until it converges to the unknown 
steady state path (blue). This method 
can be used to efficiently ‘follow’ the 
steady state of a system under the 
variation of a driver parameter.  
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2.2 Equation-free analysis 

Section 2.1 outlines the benefits and methodology for the use of path following and bifurcation 
analysis for non-linear systems. Although well established in their use, their application is limited to 
deterministic systems where the macro level equations are known. The development of equation-free 
(EF) analysis Theodoropoulos et al. (2000) has side stepped these limitations. By replacing the macro 
level equation, 𝐹(𝑥, 𝜃), with an ensemble of appropriately initialized micro level models, the 
requirement of an explicit equation has been avoided, hence the name equation-free.  
 
On the macro level, a separation of time scales 
between variables causes a bottleneck where 
the fast, high order, variables are bound by the 
slow, low order, ones. This allows the macro 
behavior to be characterized by a few low order 
variables (Kevrekidis and Samaey 2009). Often 
this is much less than the number of 
dimensions in the micro level model and 
reduces the system to its core dependencies. 
Typically EF methods involved three steps, 
Lifting, Evolving, and Restricting illustrated in 
Figure 2.  
 
The Lifting step is where the state of the macro 
system is Lifted to the micro level models. 
Lifting requires that all parameters, variables, 
and any dependencies between them are 
initialized in accordance with the macro state 
as in Figure 2. The Lift step is problem 
dependent as it requires the model to be 
initialized to a specific state equivalent to 
𝐹(𝑥, 𝜃) in Section 2.1. The Evolve step is 
simply running the micro level simulations 
forward in time for some small time window. In 
general this time window is significantly shorter 
than running the simulation from an arbitrary initialization, in (Thomas et al. 2016) authors required 
less than 1% of the simulation time for in the Evolve step compared to direct simulation in some 
cases. This highlights the computational efficiency of this method, in addition to the analytical benefits 
that are not possible with direct simulation. Generally, an ensemble of independent micro models is 
used to account for variability in the outcomes through stochasticity in the system or varying initial 
conditions. The Restrict step estimates the macro state from the distribution of the ensemble of micro 
models, i.e. the state of the ensemble of micro states is restricted to the core dependencies on the 
macro level. The separation of time scales (fast high orders and slow low orders) means that the 
macro state can be characterized by a slow manifold of the low orders and the high orders can be 
ignored. Therefore the micro state (also with high and low order variables) can be 'Restricted' to only 
the low orders to described the macro state - i.e. we can use the low order to make an approximation 
of the state and ignore the high order terms. Likewise we can 'Lift' the fewer orders (only low) of the 
macro state to the micro state. It is possible that some systems may have the same number of orders 
in both the micro and macro levels (i.e. all low orders characterizing the slow manifold), but there will 
never be more on the macro level than the micro level. The choice of macro variable(s) is problem 
specific, however the mean of the ensemble results can be used in some cases (Thomas et al. 2016). 
The Lift, Evolve and Restrict operators replace 𝐹(𝑥, 𝜃) in Section 2.1 and enable path following by 
varying 𝑥 until we have 𝐹(𝑥, 𝜃, 𝑡 = 𝑡 + 𝑑𝑡) − 𝐹(𝑥, 𝜃, 𝑡 = 𝑡 ) ≤  𝜖, where 𝜖 is some small level of 
tolerance due to the stochasticity in the system.  
 
EF analysis has provided significant insight into the macro level behavior of systems where only a 
micro level simulation, such as agents, rules or a probabilistic model, exists. Analysis with EF 
methods has been applied to problems in a diverse areas including; stochastic systems (Barkely et al. 
2006); bio-chemical and engineering systems (Kevrekidis and Samaey 2009); civil violence (Zou et al. 
2012); model validation (Tsoumanis et al. 2012); biological system (Erban et al. 2006); traffic flows 
(Marschler et al. 2014); infections and disease (Gross and Kevrekidis 2008); social networks 

Figure 2 The Equation-free framework. The 

macro state 𝑿(𝒕) is Lifted to the micro level 
𝒙(𝒕) which is simulated forward in time for 

some small time window 𝜹𝒕 (Evolve). 
Typically an ensemble of independent 
micro models is used and the macro state 
at 𝑿(𝒕 + 𝜹𝒕) is then estimated from the 

distribution of microstates at 𝒙(𝒕 + 𝜹𝒕) 
(Restrict). This framework bypasses the 
need for equations to govern how the 

system varies from𝑿(𝒕) to 𝑿(𝒕 + 𝜹𝒕) 
explicitly.  
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(Tsoumanis et al. 2010) and consumer lock-in (Avitabile et al. 2014). This type of analysis is 
completely generic and has even been applied to physical experiments where input parameters are 
much more constrained than in computational studies (Sieber 2008).  
 
With EF analysis it is now possible to perform system level tasks where the macro behavior is 
unavailable explicitly (Kevrekidis et al. 2003). As such we can now perform statistical, equilibrium, 
tipping point, regime shift and dynamical analysis directly to microscopic models to extract insight into 
the macro dynamics. One significant barrier for this type of analysis is the lack of a general tool for 
application to problems. To date applications are implemented specifically for the problems under 
investigation. Recently, an open-source algorithm has been developed that can apply EF analysis to 
any external simulator (Thomas et al. 2016). In their paper, the authors apply their EF tool to a 
number of agent-based models to demonstrate its ability to extract insight from models without 
knowledge of the underlying dynamics or internal workings.     

3 CASE STUDY: SHALLOW LAKE RESTORATION 

Alternative stable states in a shallow lake are characterized by either clear or turbid water driven by 
the concentration of nutrients in the lake. The main anthropogenic drivers are nutrient flows from 
overabundant fertilizers in agriculture, insufficient, municipal sewage treatment, but also insufficient 
private sewage treatment. Shallow lakes can be restored towards a clear state by effectively reducing 
the inflow of nutrients (Jeppesen et al. 2005), however, in many cases the nutrient reduction is 
insufficient (Søndergaard et al. 2007). While there is plenty of ecological and technical knowledge 
available, we address the gap of integrating human-lake interactions that may slow down or reinforce 
restoration processes.   

3.1 Model description 

We use a coupled social-ecological simulation model that links the system dynamics in a lake to the 
social system consisting of a regulating municipality and individual house owners (Figure 3, Martin & 
Schlüter 2015). The lake system is a reimplementation of a minimal model of differential equations by 
Scheffer (1989) that allow regime shifts between the clear and turbid state driven by the nutrient 
concentration. The clear state is characterized by a low nutrient level with few planctivorous fish 
(bream) and abundant piscivorous fish (pike). This relation switches to the opposite in the turbid state. 

 

Figure 3 Coupled social-ecological model with three alternative social mechanisms to reduce 
nutrient outflow from private sewage: social pressure or central enforcement. Boxes in the 
lake system denote stocks (Scheffer 1989) and boxes in the social system describe processes 
carried out by the ‘house owner’ agents or the ‘municipality’ respectively. 
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For the social system, we assume that nutrient levels increase through insufficient private sewage 
systems. This may cause harmful algae blooms and pike levels drop while bream become abundant. 
So together, the nutrient and the pike level serve as suitable indicators for the municipality to decide 
on thresholds that, in case they are crossed, require a response. Beyond monitoring, the municipality 
is responsible for legislation and informing private house owners on requirements for upgrading their 
on-site sewage systems. House owners are then in a high-cost and low-benefit situation (Wallin et al. 
2013), so their general willingness to upgrade (wtu) is assumed to be low. We implemented two 
scenarios to improve their willingness to upgrade the sewage system, namely through ‘social 
pressure’ and ‘central enforcement’, to eventually reduce the nutrient flow into the lake. Simulations 
run with annual time steps for the social system and daily steps for the ecological system in NetLogo. 

3.2 Simulation experiments 

First, we start with no social-ecological feedback and use the equation-free analysis to extract the 
macro level dynamics of the isolated lake system. This not only provides verification of the model 
implementation, but also provides a based line from which we can assess the impact of house owners 
and scenarios. Without any social influences (nutrients = constant) the equation-free method 
determines, and follows, the steady states in the levels of bream, pike and vegetation as the level of 
the initial nutrient concentration is varied. The so-called lifting operator here is simply defined as 
initializing the level of each of the populations as there are no other variables in the isolated lake 
system. The work-flow for the equation-free analysis of the lake model is as follows: for a given level 
of initial nutrients, perform the lift operation to initialize the population levels for N independent 

microscopic models (the ABM) at time 𝑡 = 𝑡0, perform the evolve operation and run each simulation 

for some small time window 𝑡 = 𝑡𝑤, estimate the macro state at time 𝑡 = 𝑡𝑤by performing the restrict 
step. In this specific case, it is sufficient to take the mean of the N independent ABM simulations at 

𝑡 = 𝑡𝑤. Note, this mean is calculated using the bootstrap method (Efron and Tibshirani 1993) so it 
does not require any assumptions of normality across the N simulation outcomes.  
 
For the second experiment, we look at the coupled social-ecological system and address the question 
which of the two social scenarios is more effective in restoring the lake to the clear state. Now the 
initial nutrient concentration is at the level of a turbid lake and it is reduced to an intermediated level 
depending on how fast house owners respond. The two scenarios are evaluated at three different 
values of the willingness-to-upgrade with the equation-free analysis to determine whether the social 
responses are sufficient to reach the clear state. 

4 RESULTS 

4.1 Bifurcation analysis from ABM simulations 

Combining the in section 3.2 described process with a root finding algorithm enables the computation 
of steady states in the system. That is, we evaluate if the macro state at 𝑡 = 𝑡0 is (approximately – due 

to noise) the same as the macro state at 𝑡 = 𝑡𝑤. Once a steady state has been obtained, for a small 
perturbation to the driver parameter, here initial nutrient level, we use the predictor discussed in 
section 2.2 to efficiently 'follow' how the steady state changes with this driver. This enables efficient 
computation of the steady states and additionally enables the analysis of unstable states. Obtaining 
the steady states using equation-free analysis required a simulation time (𝑡𝑤) of a few 10's of ticks 
due to the predictor-corrector procedures. In contrast, running a single ABM simulation directly 
requires a few 1000's ticks to converge to a steady state. Clearly if one is running a large number of 
independent simulations to alleviative noise, or analyzing a large parameter range, equation-free 
analysis will be significantly faster than performing batch simulations.  
 
The location and response of an unstable state to a driver parameter is vitally important to understand 
the dynamics of the system. Unstable states indicate a separation between the basins of attraction of 
the stable states and can provide insight into how likely a transition is to occur in a particular regime. 
In Figure 4 the unstable state in the pike population (center) shows the turbid state (lower red line) 
has a much larger proportion of the parameter space compared to the clear state (upper red line). 
This indicates that the clear state is much more sensitive to changes from noise or external influence, 
than the turbid state. 
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Figure 4 Bifurcation diagrams for three lake state variables. Here stable states are given as 
solid red lines and unstable states are dashed blue lines.  

By looking at the distance between the stable and unstable states, in both the clear and turbid 
regimes, it is possible to assess the resilience of a state towards a transition to the other state through 
a 'shock' rather than via crossing the tipping point. We normalize these distances to the maximum 
population level over the nutrient ranges in Figure 4 and show how the separation between the stable 
and unstable state varies for each regime in the bi-stable region (where two stable states can occur at 
the same nutrient value).  
 
In Figure 5, we observe that the pike 
population is the least resilient in the clear 
state, i.e. the pike population is much more 
sensitive to change in the clear state than 
the other populations. Moreover, this 
sensitivity (lack of resilience) increases as 
it approaches the tipping point. The bream 
and vegetation stocks have approximately 
the same sensitivity in the clear state, and 
although pike is initially more resilient, it 
quickly decays to a low level of resilience. 
What is also striking is the extremely high 
resilience of the pike population in the 
turbid state. This indicates that in a clear 
state the population of pike is very 
sensitive to changes through external 
influence and is easily pushed to the turbid 
state without going over the tipping point. 
Furthermore, once in the turbid state, the 
population of pike becomes extremely 
resilient to changes. This means it will require an enormous influence to move the system back to the 
clear state, i.e. restoration. It is worth highlighting that as the system of bream, pike and vegetation is 
coupled, if one population transitions to another state (i.e. crosses the blue line in Figure 4), then it 
causes the other two populations – and therefore the whole system – to transition into the other state.  

4.2 Social processes and agents driving macroscopic behavior 

Coupling social responses to the isolated lake dynamics opens a new perspective to analyze state 
transitions independent of whether they are accidentally or intendedly driven by actors. Integrating 
solely the house owners influence by increasing the nutrient inflow to the lake will always lead to a 
turbid state. But, using strategies such as central enforcement or social pressure to motivate sewage 
system upgrades helps to restore the lake, or prevent it from transition to the turbid state after the 
tipping point was crossed. Prior to any upgrades, the level of nutrients in the lake will increase and the 
lake will move to the turbid state – assuming it begins in a clear state. At some stage it becomes 
impossible to restore the lake (the point of no return) as the level of nutrients is too high and the lake 
momentum of transition is already too strong. Therefore as long as the house owners upgrade before 

Figure 5 Resilience, here in terms of a normalized 
distance to the alternative state, for each population 
from Figure 4. The clear state’s resilience is given by 
solid lines and the turbid state’s resilience is given 
by dashed lines. 
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this point then the lake can be restored. Due to the probabilistic nature of upgrades, the time taken to 
upgrade varies across simulations. Using equation-free analysis, we assess the effects of the 
willingness to upgrade (wtu) and the emerging ability to restore the lake to the clear state.  
 
From Figure 6 we see that all scenarios are well described by a sigmoid function showing a reduction 
of the percentage of lake restorations with increasing levels of initial nutrients. The more to the right a 
curve lies, the higher are the tolerated nutrient levels from which a restoration back to the clear state 
is possible and the more time house owners have before implementing the upgrade. As the 
willingness to upgrade is increased, the lake can be restored from a higher initial nutrient level. This 
may not be surprising as higher wtu values shorten the time frame for all house owners to upgrade 
and enable a sufficient, accumulative nutrient reduction before the point of no return.  
 
For a low wtu value, we see little difference between the social pressure and central enforcement 
scenarios with a slight advantage from the enforced scenario. However, as wtu is increased the order 
of the two curves switches and social pressure enables restoration at higher nutrient values. 
Moreover, the steepness of the central enforcement curves are approximately the same, whereas 
they vary in the social pressure case when comparing wtu=0.2 and wtu=0.3. This indicates a 
decreasing sensitivity of restoration success towards the nutrient level at higher wtu values, hence 
social responsiveness on the individual level can to some degree compensate for time lags in 
communal regulation.  
 

 

Figure 6 Restoration of the lake under different values for the willingness to upgrade (wtu) and 
social strategies. The y-axis shows what percentage of ABM simulations are converging to the 
clear state (restored) under the wtu and nutrient level for the social or enforced scenarios. 
Note 0 indicates a turbid end state in all simulations.  

5 DISCUSSION 

5.1 Lessons learned  

In this paper, we have demonstrated how equation-free analysis can be used to provide insight into 
the behavior of complex ABMs. We show how this technique can extract bifurcation curves from 
ABMs without requiring an equation to describe them. Beyond insight, this can also be used for model 
validation and implementation verification by comparison to observations in the real-world or previous 
studies. We stress that the results of equation-free analysis are based on the model they are applied 
to – if there is a problem in the results it indicates that there is a problem in the model or its 
implementation. We therefore suggest this method as a means of analysis alongside the model 
development to ensure that it is behaving as one expects or observes in the real world. We also 
analyze the bifurcation diagram of the isolated lake system as a means to determine the resilience of 
the clear and turbid states to external influences or system 'shock'. These results clearly show that in 
our example case of shallow lakes, the predatory fish population is the least resilient in the clear state 
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but also the most resilient in the turbid state. This implies that lake degradation, from clear to turbid, is 
achieved through small external influences far from the tipping point, whereas lake restoration, from 
turbid to clear, requires larger efforts even near the lipping point.  
 
Adding a social interaction, we examine the dependence of lake restoration on the willingness to 
upgrade (wtu) and two reinforcement scenarios in the model. These results illustrate that with high 
wtu values, social pressure to upgrade is more effective than central enforcement by the municipality. 
Our results also indicate that social pressure is increasingly more effective in enforcing upgrades as 
wtu increases, though more experimentation is required to verify this. The percentage of restored 
lakes as a function of initial nutrient level is well described by a sigmoid curve in all cases. In this 
model, as with many ABMs, equation-free analysis provides access to tools such as bifurcation 
analysis that can provide insight in to the behavior of a model. Moreover, as we have seen in this 
work, probabilistic rule based models can have a response or dependence that can be captured 
mathematically.  

5.2 Ways forward to analyze complex ABM’s 

As we mentioned in section 5.1, we suggest that equation-free analysis can be used in parallel to 
model development as a means of verification and validation. This has the potential to save the ABM 
programmer a lot of time by spotting errors early in the code development. Moreover, equation-free 
analysis can be used in a number of ABMs to understand the behavior, identify drivers, provide 
baseline comparisons for different scenarios, or provide insight in some other way. The algorithm 
used in this work can be applied to generic ABM as was developed by Thomas et al. (2016) and 
details of its open-source release are given in their paper. Currently a user interface for the equation-
free program is under development to make it easy to use by non-experts. Although applicable to any 
ABM is possible in principle, in practice there are some limitations. Firstly some kind of steady state 
behavior needs to be observable in some dimension, such as a stable state or oscillation. Models with 
qualitative outcomes are not suitable for this analysis in general, though specific cases may be 
feasible. Second, the definition of the lifting operator is non-trivial and may be difficult to obtain for 
complex model. Many efforts in the equation free community are attempting to develop an automated 
method for determining this operation. The use of equation-free methods to analyze ABMs is in its 
infancy and requires much more investigation. By demonstrating its use, alongside Thomas et al. 
(2016) open-source program with model repository, we hope to incorporate this technique as a 
standard ABM analysis tool.  

5.3 Conclusion 

Slow processes such as human-driven eutrophication in shallow lakes, if remain unmanaged, have 
the unintended consequence of a regime shift that makes it difficult or even impossible to turn the 
ecosystem to its original favorable state (Biggs et al. 2009). Here, we presented for the first time, how 
human responses to regime shifts can be modeled explicitly in an agent-based model and analyzed 
the macroscopic behavior therefrom using the equation-free analysis. It proved to be useful for 
systems with clearly defined response variables exhibiting stable states and enables to link micro 
level processes and agent traits to macro level outcomes. 
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