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ABSTRACT 
 

 

ATTRIBUTION STANDARDIZATION FOR INTEGRATED  

CONCURRENT ENGINEERING    

 

Tyson Baker 

Department of Mechanical Engineering 

Master of Science 

 

 Product design is a creative process, often subject to rapid and numerous design 

change requirements.  To facilitate geometric redesign iterations, Parametric Computer-

Aided Design (CAD) systems were introduced.  To manage the numerous product design 

iterations produced by parametric CAD systems, Product Data Management (PDM) 

systems were developed to capture, document, and manage each product revision.  PDM 

has proved effective thus far at managing design history.  However, PDM is built upon 

database management systems (DBMS), which have the capability of doing far more than 

simply managing product revision history. 

 Product data consists not only of the physical geometry used to describe it, but 

also of a host of non-geometric data.  This non-geometric data is referred to as attributes.  

 



Examples of attributes include material properties, boundary conditions, finite element 

mesh information, manufacturing operations, assembly operations, cost, etc.  

Downstream Computer-Aided Engineering (CAE) applications apply attributes to 

(preprocess) the geometry to perform their respective operations.  These attributes are not 

permanently associated with the geometry and may have to be recreated each time the 

geometry changes.  Preprocessing for highly complex CAE analyses can sometimes 

require weeks of effort.  An attribution method is presented which addresses the creation, 

storage, and management issues facing attributes in the CAD and CAE environments. 

 The research conducted explores the use of database management systems for 

defining, instantiating, and managing attributes in the CAD environment.  Downstream 

CAE applications may then retrieve the attributes from the DBMS to automate 

preprocessing.  The attribution system results in standardized attribute definitions, which 

forms the basis for communicating attributes universally among different downstream 

CAE applications. 
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CHAPTER 1: INTRODUCTION 
 

 

Global competition and escalating market efficiency are driving engineering 

businesses to adopt design philosophies which reduce product design cycle time.  One 

such design philosophy is “Concurrent Engineering.”  Concurrent Engineering (CE) is 

“the systematic approach to the simultaneous, integrated design of products and their 

related processes, such as manufacturing, testing and support” (Gallagher et al., 1998).  

Conceptually, CE is intended to shorten the design cycle by allowing engineering 

processes to run in parallel, rather than in series. 

The product data model is central to CE and can be defined as the sum of all the 

information needed to define a product, consisting of both geometric and non-geometric 

information.  In order for CE to be possible, the product data model needs to be 

established at the beginning of the design cycle.  Geometric and limited non-geometric 

information are defined with Computer-Aided Design (CAD) tools.  Geometry defined in 

CAD can then be exported to downstream engineering applications, where additional non-

geometric information, called attributes, are instantiated and attached to the geometry 

before other engineering tasks are performed.  The process of mapping attributes onto 

geometry is often referred to as preprocessing.  Preprocessing is required for Computer-

Aided Engineering (CAE) applications such as Finite Element Analysis (FEA), 

Computational Fluid Dynamics (CFD), Computer-Aided Manufacturing (CAM), 
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Computer-Aided Process Planning (CAPP), Rapid Prototyping (RP), etc.  This research 

develops an approach to facilitate CE through CAD-centric attribute application 

(preprocessing). 

1.1 Problem Statement   

Considerable effort has been and is still being expended by the major CAD 

vendors to develop software capable of producing parametric, feature-based geometry.  

The objective of parametric modeling is to create geometry that can be easily morphed to 

a variety of shapes and sizes without having to start over each time a design change is 

recommended.  Thus, parametric solid modelers are capable of creating reusable designs.  

However, in order to get the CAD model into downstream CAE applications, the 

geometry typically gets translated into a neutral file format that the CAE application can 

process, such as IGES, STEP, DXF, etc.  These neutral file formats describe the geometry 

in terms of vertices, lines, areas, and volumes, and some contain sections where additional 

information about these objects can be written, such as the parametric relationships that 

exist among the objects.  However, the current generation of CAE applications does not 

have the modeling capabilities necessary to control the geometric objects based on the 

parametric rules written in those sections.  Therefore, engineers currently enjoy parametric 

solid modeling tools, but remain attached to non-parametric CAE tools.  This means that 

when a design change is recommended, it is a relatively simple task to open the existing 

CAD file and update geometry accordingly, but the CAE preprocessing must be 

performed anew, which can be a very time consuming process.   If the preprocessing for 

CAE applications could be performed in the CAD environment, the prospects for CAE 

automation and multi-disciplinary optimization (MDO) become more plausible. 
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The CAD environment is an ideal place to perform CAE preprocessing as it takes 

place early in the design cycle, has powerful geometry manipulation capability, and 

contains much of the original designer intent.  If attributes could be associated with 

parametric CAD geometry, then CAE preprocessing essentially becomes parametric as 

well.  For example, if the boundary conditions, meshing information, and material 

properties required by a FEA program could be mapped onto parametric geometric objects 

in the CAD environment, then every time the geometry gets passed into the FEA 

application the associated attributes would persist with the geometry.  Thus, CAE 

preprocessing would only need to be performed once per parametric product geometry 

definition.  The result of this is that by the time a product is imported into a CAE 

application, a solution can be obtained with a single operation.  In addition, because the 

attributes necessary for all desired CAE applications can be defined upstream in CAD, a 

host of other independent CAE applications could function simultaneously, which is the 

goal of CE.   

In order for the attributes to be recognized by downstream CAE applications, 

standards for attribute naming and management must be created.  In addition, to 

accommodate for changes in technology, the library of attribute definitions must be 

customizable, allowing users to create new attribute definitions dynamically.  These two 

ideologies, standardization and customization, are contradictory by nature.  For example, 

once a user defines a new attribute, it is not automatically recognized by the downstream 

application or even by other users, and thus, the standard set of recognizable attributes has 

changed. 
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1.2 Thesis Objective 

The objective of this research is to establish a method for applying attributes in the 

CAD environment in a standardized yet customizable manner, enabling automation of 

downstream CAE applications.  The following questions are addressed in this research: 

1.  Can a CAD-centric attribution tool be developed that achieves a level of 

attribute definition standardization, but also allows users to dynamically create 

new attribute definitions? 

2.  Can the attribute information be stored and managed externally from the CAD 

file in such a manner that allows for seamless integration with both CAD and 

CAE applications? 

3.  Can this process be demonstrated on commercially available CAD and CAE 

applications? 

1.3 Delimitation of the Problem 

 Due to the ever-expanding suite of CAE tools, this research does not attempt to 

create an attribute reader tool that will work for every CAE application available.  Such a 

task should be left to downstream application developers.  However, to demonstrate the 

principle, an attribute reader for a single CAE application, ANSYS, is developed.  It 

would be possible to create an attribution tool that works independent of choice of CAD 

software.  However, the scope of this research is to explore methods of attributing 

information in a customizable fashion and storing the information in an efficient database, 

not to create a CAD-independent attribution tool.  Thus, the attribution tool will be created 

for use with a single CAD program, the UGS incorporated graphics program, Unigraphics.  
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This will provide a road map for CAD-centric attribution that can then be applied on other 

CAD systems.   

 Much research has been performed investigating methods of handling CAD object 

name changes under topology changing operations.  Entity names are a type of product 

attribute, so the management of such names is related to the context of this research.  

Marcheix and Pierra (2002) present a survey of the existing approaches on persistent 

naming in parametric design and propose two criteria for persistent naming approaches.  

Such work is extensive and quickly diverges from the focus of this research.  For this 

work, a simplified approach is adopted in that certain attributes will be lost after topology 

changes and therefore must be interactively reapplied by the user.  To learn more about 

other techniques for handling the persistent naming problem, readers are encouraged to 

review Marcheix’s work. 

 It is logical to assume that if one can create and modify attributes stored in an 

external database via the CAD environment, the same functionality could be developed 

for downstream CAE applications.  That is, to create a bi-directional link allowing 

attributes to be created and modified from either the CAD environment or the downstream 

CAE application environment.  By design, attributes are naturally created and maintained 

within downstream applications.  However, this research will not be concerned with 

creating a bi-directional attribute link between the downstream application and the 

external database, although such a capability would inevitably result from an extension of 

this work.  The reason for the omission of such a link is that the focus of this work is to 

explore methods to automate downstream CAE applications.  Creating and modifying 

attributes in downstream applications impedes the automation process.  If one were to 
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imagine all the product information flowing from the CAD environment to downstream 

applications, then using downstream applications to create attributes could be compared to 

swimming upstream.  
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CHAPTER 2: LITERATURE REVIEW 
 

Reviewed herein are research publications that are most relevant to this research.  

The questions posed in chapter one lead to a review of the following topics: 

• Concurrent engineering (Section 2.1) 

• CAD Systems (Section 2.2) 

• Computer Aided Engineering (Section 2.3) 

• API Programming (Section 2.4) 

2.1  Concurrent Engineering 

Concurrent engineering has received considerable research attention over the past 

two decades as industry strives to shorten design cycles.  As researchers have sought to 

understand and extend concurrent engineering, it has presently come to be thought of as 

an umbrella spanning all of the processes related to a particular product, beginning with 

initial concept generation, to detailed design and analysis, process planning, 

manufacturing, and so on.  Concurrent engineering is not a new concept.  It gained 

popularity in industry briefly after World War II, but, due to technology limitations, was 

later replaced by a departmentalization scheme, often referred to as the “over the wall” 

approach (Prasad 1996).  This created a sequential design scheme that lengthened design 

time. 
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Gallagher et al. (1997) discuss the importance of establishing a complete product 

data model in order to integrate the processes of CE.  They use the Pro/ENGINEER 

application programming interface (API) to extract feature data from the CAD database 

and use that information in a cost analysis program.  While their work focused on 

integrating CE processes, their scope was limited to operating only upon the geometric 

entities created by CAD without concern for preprocessing for downstream applications.  

The research presented herein builds upon Gallagher’s methodology of defining the 

complete product data model within the CAD environment by extending the ability of the 

CAD program to define the non-geometric information required by downstream CAE 

applications.   

Jiang et al. (2002) present an integrated concurrent engineering approach to the 

design of complex components.  As a case study, they attempt to integrate the solid 

modeling of a scroll compressor with associated downstream applications such as FEA, 

CAM, and CAPP.  Their work relies heavily on the Pro/ENGINEER suite of integrated 

software such as Pro/MECHANICA, Pro/MANUFACTURE/, Pro/CMM, etc. to automate 

downstream processes.  There are inherent advantages and disadvantages to using a set of 

integrated software from a particular vendor.  Obviously, the advantages are seamless 

integration with downstream applications and conservation of product data model 

information.  The disadvantages are that the designer must use the downstream 

applications provided by the vendor, and thus lose the ability to choose a preferred 

downstream application.  This research has the same objective as Jiang’s, that is, to 

automate downstream applications; however it seeks a more robust approach that is not 

limited to a particular suite of interrelated software. 

 8



Ma and Tong (2003) present a modeling technique based on what they call 

“associative features.”  They use the CAD API to create a knowledge-oriented tool.  As a 

case study, they illustrate their techniques on the design of plastic injection molds.  They 

propose that CE becomes realistic through use of such modeling techniques as 

“associative features.”  This research follows a similar approach to realizing CE, which is, 

using the CAD API to automate redundant operations; however the objective of this 

research focuses on CAD-centric attribution whereas Ma and Tong limited their scope to 

defining new types of CAD features. 

Bailey et al. (1999) describe an environment based on the concept of an Intelligent 

Master Model (IMM) to foster concurrent engineering.  They describe work done at 

General Electric Aircraft Engines where changes in one discipline of engine design are 

communicated to the IMM, which in turn, communicates those changes to the rest of the 

associated disciplines.  For example, if the engine designer changed the flow rate through 

the engine in one program, that change would go through the IMM and the engine 

geometry would automatically update to compensate for the change.  Bailey’s work spoke 

in general terms about how the IMM can be used to reduce design cycles, however they 

did not demonstrate or prove their methods in their publication.  Hoffman et al. (1998) 

built upon Bailey’s concept of the IMM and developed an architecture to manage a 

product master model.  In their view, the CAD model and all downstream applications are 

clients of the master model, which is essentially a database containing all of the product 

information.  In their work, all the attributes associated with the product data model were 

defined in the respective downstream application where they had scope.  This research 
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differs in that all the desired attributes are assigned initially in the CAD environment, and 

stored in an external database for application in downstream applications.   

Concurrent engineering is a broad paradigm, allowing researchers an array of 

possible methods to further its application in industry.  While research in concurrent 

engineering is being conducted in many different fields, the research presented in this 

section focuses on the methods which are the most relevant to the methods used in this 

thesis, that of a CAD-centric approach to concurrent engineering.  The motivation for 

establishing a CAD-centric approach to concurrent engineering is due to the ability for 

CAD systems to not only store geometric information, but to allow that information to be 

passed and interact with other applications.  Custom applications designed for use within 

the CAD environment allow the CAD software to be extended from simply a geometry 

definition application to a tool driving parallel processing downstream CAE applications. 

2.2  CAD Systems 

While CAD began and was initially known as Computer-Aided Drafting in the 

1960’s, it rapidly evolved into a powerful engineering tool (Sutherland 1963).  Advances 

in computer hardware and software induced an evolution of CAD from 2D electronic 

drafting tools, to wireframe modeling systems, to surface modelers, and finally to the 

current generation of solid modelers.  Today’s high-level CAD packages are capable of 

producing parametric, feature-based solid geometry.  A review of CAD systems presents 

the basis upon which the attribution tool developed in this research is added. 

Wireframe modelers depict 3D geometry via creation of a series of vertices and 

connecting lines in 3D coordinates.  They were primarily used as 3D visualization tools 

and generated initial enthusiasm for the possibilities of CAD.  Wireframe modelers do not 
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contain any mathematical information about the surfaces of the model, nor can they 

adequately describe the interior of solids.  Such inadequacies led to the next logical step in 

CAD evolution, surface and solid modeling systems (Lee 1999). 

Surface modeling systems built upon wireframe modelers by including 

mathematical information about the surfaces created by the lines and points.  Surface 

modelers generate surfaces by interpolation of points or interpolation of curves through 

sweeping operations.  In addition, information about the connectivity of one surface to 

another could also be maintained by surface modelers.  In this manner, complex surface 

geometry could be generated (McMahon and Browne 1998). 

Solid modeling systems allow for creation of a closed body by recognizing the 

volume created by a series of connected points, lines, and surfaces.  Mathematical 

information stored in the CAD database allows the modeler to recognize the volume 

represented by the inside of the solid as opposed to the volume outside.  Today’s CAD 

systems are combination solid/surface modelers.  In the initial stages of development of 

solid modelers, two ideologies emerged for creating solids: Constructive Solid Geometry 

(CSG) and Boundary Representation (B-rep).  Most of today’s CAD systems are hybrid 

CSG/B-rep (Anderl and Mendgen 1996). 

The idea behind CSG is to create complex geometry by performing Boolean 

operations on a series of simpler volumes, called primitives, such as blocks, cylinders, 

cones, spheres, etc.  Figure 2.1 (King 2004) shows examples of Boolean operations typical 

of CSG.  
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Figure 2.1 Boolean Operations for CSG Primitives 

 

The primitives are created when the user inputs a required number of geometric 

parameters.  The creation order and relationship between primitives and their respective 

Boolean operations is maintained in a CSG tree (Shapiro and Vossler 1995).  Figure 2.2 

(Wilson 2004) demonstrates a typical CSG tree. 

 

Figure 2.2 CSG Tree 
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B-rep systems operate by storing topological information about the solid, i.e. vertices, 

edges, faces (Lee 1999).  By handling topology in such a manner, B-rep systems are able 

to perform more complex freeform surface operations than CSG systems.  Figure 2.3 

(Wilson 2004) shows a B-rep scheme for a simple solid.   

 

Figure 2.3 B-rep scheme for 3D volume 

 

Many current commercial CAD vendors include elements of both CSG and B-rep 

modeling in their systems.   

 Parametric solid modeling was a paradigm first introduced by Parametric 

Technology Corporation’s (PTC) Pro/ENGINEER in the 1980’s and has since been 

adopted by all the high level CAD packages (Hoffman and Kim 2001).  The parametric 

modeling paradigm uses geometric constraints, dimensions, and relationships to produce a 

system of equations.  Parametric modelers use an iterative, sequential approach to arrive at 
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a solution that satisfies the applied geometric constraints (Ault 1999).  Only uncoupled 

equations are allowed by parametric modelers and the entire set of equations must be 

satisfied before any subsequent operations may be performed.  Variational modelers, on 

the other hand, follow a similar paradigm as parametric modelers, but can solve coupled 

equations and solve the set of equations simultaneously.  Variational modelers may 

produce undesirable results, but allow for creation of any possible geometry.  Some CAD 

programs are combination parametric/variational systems. 

Feature-based modeling has gained prominence in commercial CAD software in 

concurrence with parametric modeling.  Similar to the CSG tree, in feature-based 

modeling the part creation history is maintained in a feature tree.  Features are named, 

typed geometric information structures (Shapiro & Vossler 1995).  Examples of features 

include the sketch, boss, fillet, blend, revolve, extrude, slot, hole, etc.  When a model 

update is necessary, the update begins with the first feature in the feature tree and 

progresses sequentially down to the last. 

The review of CAD systems provided herein provides the basis on which an 

attribution tool will be added.  The developed attribution tool communicates with the 

CAD system in order to gather and store information about geometric objects (vertices, 

lines, surfaces, volumes) and/or features of digital product geometry.  An understanding of 

how CAD systems handle geometric objects and features is essential for the developed 

attribution tool to be able to communicate with the CAD environment, and associate 

attributes with CAD geometry.  After a CAD-centric attribution foundation is established, 

the next step in the development of the developed attribution tool is the establishment of a 

connection between the attribution tool and downstream CAE applications. 
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2.3  Computer-Aided Engineering 

Computer-Aided Engineering applications are a key component in product design, 

giving businesses the ability to test products without developing costly prototypes.  Due to 

the complexity of many CAE applications, considerable effort is being expended to 

automate CAE, allowing engineers to analyze more designs in a shorter period of time.  

The lines between CAD and CAE applications are becoming increasingly blurred, as 

many CAD vendors now include CAE applications embedded within the overall package.  

CAE developers, in turn, are developing their systems to allow direct communication with 

CAD files from the major CAD packages, rather than converting the CAD files into a 

neutral file format.  Such steps have greatly increased the ability of engineers to use CAE 

applications in preliminary design.  However, given a glimpse of the power of CAE 

applications in preliminary design, researchers are now seeking to find new ways to allow 

CAE analysis to be a part of design optimization.  Optimization algorithms may need to 

analyze thousands of design iterations before finding an optimal solution.  For this reason, 

it is essential to automate CAE preprocessing, in addition to the automation of CAD-CAE 

integration that has already occurred between CAD and CAE developers.     

CAE applications have become increasing widespread as computational resources 

have grown over the past three decades.  CAE first gained popularity in the 1960’s in 

structural engineering and has since expanded to include heat transfer, computational fluid 

dynamics (CFD), and vibration analysis.  When properly applied, CAE applications can 

provide highly accurate predictions of a system’s response to a particular input.   

Most computer-aided analysis programs utilize the finite element method, or finite 

element analysis (FEA), to approximate a solution.  The finite element method operates by 
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discretizing complex geometries with simple shapes, such as squares or triangles in the 2D 

case, or cubes and pyramids respectively for 3D geometry.  The reason for discretization 

into simple shapes is that the complex equations for structural, thermal, fluid, and 

vibrational analysis can more easily be applied to simple geometry.  Because these simple 

shapes can only approximate the original geometry, the solution to finite element 

problems is always an approximation.  Thus, considerable effort is expended by FEA 

analysts to produce a high quality “mesh” of the original geometry, as it will affect the 

accuracy of the solution. 

2.3.1 CAE Geometry Import File Formats 

In order for CAE tools to perform their tasks, geometry must either be created or 

imported from a CAD model.  Most CAE applications have modeling capabilities that 

allow them to create basic geometry; however, for more complex geometry it is more 

practical to model the geometry in CAD and export it to the CAE application in a 

geometry neutral file format.  Some of the most popular neutral file formats include DXF, 

Parasolid, IGES, and STEP.  When CAD geometry is imported using these neutral 

formats, the parametrics governing the rules and relationships in the model are lost. This 

research seeks to eliminate this problem with the development of an attribution tool.  

2.3.2 CAD-CAE Integration 

Generally speaking, the CAD to analysis step follows an “over-the-wall” 

approach.  For example, after a CAD designer has finished modeling a part, he or she may 

pass the model “over-the-wall” to a structural, thermal, or aero analyst (or even to all 

three) who will create a finite element mesh of the model for analysis.  After reviewing 

the analysis results, the analyst may suggest changes in the model geometry, thus 
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throwing the model back “over-the-wall” to the designer.  Significant effort has been 

spent exploring integration methods for CAD and analysis software to reduce the time 

required for such an iterative process.   

Automating the grid generation process for CAD-CAE integration is not a trivial 

task.  Samareh (1999) recognizes grid generation for analysis as “…the most labor-

intensive and time-consuming part of the computational aerosciences for analysis, design, 

and optimization.”  Research in CAD-CAE integration represents one of the most 

challenging and important aspects of the overall CE integration problem.  This research 

includes integration of analysis tools with the product data model along with other types 

of downstream applications with the vision of achieving CE.  Referring to the role of 

integrating analysis tools and CAD with respect to overall integration of the product data 

model, Arabshahi et al. (1993) state, “…it is clear that the analysis related tools will 

simply be part of a much broader based product information environment.”     

Gabbert and Wehner (1998) discuss CAD-FEA integration through managing the 

product data model in an object-oriented data structure and passing that data to FEA via 

the STEP (Standard for the Exchange of Product Model Data) exchange format.  They 

attempted to partially define the product data model by using object-oriented data storage 

methods in connection with the STEP data exchange format.  Agonafer et al. (1997) 

accomplished preprocessing for CFD in a commercial CAD program, CATIA.  They 

assigned all of the necessary CFD attributes in the CAD environment and then imported 

the attribute information into the built-in CATIA CFD tool for automated meshing and 

analysis.  Such a method enables automation of airsolid meshing and CFD analysis, but, 
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again, can only operate within the integrated set of CAD-analysis software of a particular 

vendor.   

 Samareh (1999) suggests that in an ideal design environment, a designer could use 

a parametric model to easily explore alternative designs and optimize the design based on 

a set of desired objectives and constraints.  In order to integrate and streamline multi-

disciplinary analysis and optimization of a parametric model, a fully automated, push-

button grid generation tool must be developed.  Samareh (1999) pointed out that for an 

automated MDO environment to function, a parametric CAD model must exist because 

the optimization routine will cause the model to morph into different shapes, which would 

exploit any weakness in the model’s parameterization scheme causing the model to fail to 

regenerate.  Hogge (2002) explored MDO of a parametrically defined turbine blade.  For 

his work, he created a parametric turbine blade and automated the FEA and CFD analyses 

within an optimization algorithm.  In order to perform these analyses in an optimization 

loop, he had to devise a method to automate the analyses and feed the results back to the 

optimization algorithm.  His method for automating the CAE applications is of particular 

interest to this research.  Although effective in its results, Hogge’s automation method was 

very labor intensive and required highly technical knowledge about how the downstream 

applications communicated with the CAD model.  This research builds upon Hogge’s 

work in that it facilitates the MDO process by creating a more intelligent link between the 

CAD tool and downstream applications via CAD-centric attribution. 

2.3.3 Use of CAD-centric Attributes for CAE Automation 

Researchers have recognized the need to apply non-geometric information to the 

CAD model to automate CAE applications.  The ability to apply attributes in the CAD 
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environment provides the most promising solution to CE integration.  For his work in 

CAD-FEA automation, Shepard (1988) defined the physical, non-geometric information 

as attributes and declared the necessity to define attributes with respect to the product 

geometry.  Along the same lines, Arabshahi et al. (1991) was able to apply attributes in 

the CAD environment through a process he called “attribution.”  Later, Arashahi et al. 

(1993) stated, “the ability to apply attributes, such as material properties, analysis type, 

loads, etc, to the solid model is one of the most fundamental steps along the road to 

integration of CAD and FEA.”  They developed an attribution tool that would map FEA 

specific attributes onto the solid model.  Around the same time, other researchers were 

investigating the implications of being able to apply attributes to the CAD model.  Stroud 

(1993) categorized the different types of information, both geometric and non-geometric, 

that can be handled in solid modeling.  He did not present a strategy for handling such 

information, but his objective was to call attention to application developers to implement 

strategies for handling non-geometric information.  Subrahmanyam et al. (1995) presented 

a conceptual framework for attribute-based mechanisms and outlined a basic taxonomy of 

attributes.  They also discuss attribute behavior under geometric transformations, shape-

changing and topology-changing operations.  They describe attributes as, “ideal 

candidates to store information relevant to a particular phase in the life-cycle of a product.  

For example: design, analysis, assembly, process planning, etc.”  In more recent efforts, 

Shepard (2000) addressed strategies for handling attributes when entities in the solid 

model are created, deleted, or modified.  O’Bara et al. (2002) implemented an object-

oriented, CAD-centric attribute management system for CAE automation.  He suggests 

that in order for CAE applications to reach their potential, an environment that supports 
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geometry-based specification of analysis attributes must exist.  His attribute management 

tool allowed the end user to associate geometric objects with attribute objects, which are 

C++ classes representing a specific type of attribute information structure.  The attributes 

associated with the geometry were then stored or retrieved in terms of file I/O.  O’Bara’s 

work is the most relevant to this research, however, important differences exist that 

require additional research.  The attribute types defined by O’Bara were hard-coded into 

the C++ workspace, and thus the library of attribute types could not be easily edited, while 

this research aims to make the attribute language user-customizable. 

This research builds upon the efforts made by the aforementioned researchers by 

creating a CAD-centric attribution tool to foster CE.  However, the philosophy of how the 

attributes are to be handled is fundamentally different.  Previous efforts in CAD-CAE 

integration developed attribution tools that catered to the information necessary for a 

single CAE discipline, such as structural analysis, for example.  In order for the parallel-

process paradigm of CE to operate, an attribution tool that can apply attributes to any 

discipline, not just FEA or CFD, is demonstrated in this research, creating a universal 

attribution tool for all disciplines and establishing a standard attribute language that can be 

interpreted by downstream CAE applications. 

2.4  API Programming 

CAD and CAE developers, recognizing that users would want to create custom 

applications for their programs, built their applications such that users can access a library 

of programming functions which can be used to control the application from a separate 

software program.  An Application Programming Interface, or API, is the library of 

functions allowing users to programmatically control of the functionality of a particular 
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software program.  The development of API’s is especially important to the attribution 

tool created in this research.  The API’s of the CAD and CAE applications allow the 

attribution tool to act as a bridge between the CAE and CAD applications.  Significant 

research has been performed involving the CAD API. 

Hogge (2002) classified API’s into three categories: macros, program-specific 

languages, and high-level programming language with program specific functions.  For 

example, the Unigraphics API, called UG/Open, is written in C, thus falling under the 

third category.  ANSYS, on the other hand, has created its own program-specific API 

language, called the ANSYS Parametric Design Language (APDL), and falls under the 

second API classification.  Development of a CAD-centric attribution tool requires the use 

of Unigraphic’s API.  In addition, use of the ANSYS API is necessary to interpret the 

attributes applied in CAD for this research.  Delap (2003) cites some of the features of an 

effective CAD API from Hoschek and Dankwort (1994): 

• Access to geometric elements in the CAD data structure 

• Support of program control mechanisms to effectively support non-linear design 

steps 

• Trace function for debugging, since the programs are getting large in industrial 

applications 

• Method for error handling in order to recover from user errors when using the 

parametric model 

• Possibility to request user input in order to program the interaction dialog for using 

the model to generate variants 

• Write and read data from file, e.g. to read predefined sets of dimension values 
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API programming can replace interactive operations performed in the software’s graphical 

user interface (GUI).  A well-designed API will allow access to all the same functionality 

found in the GUI.  API programs can be called interactively from within the software, or 

externally for batch mode operation. 

  Significant research has been performed exploring the use of programmatic CAD 

API’s in their work.  Ardelan (2000) used the SolidWorks API to develop a design 

“wizard” to guide the user through the steps for spacecraft component design.  The users 

were prompted to enter design information into a series of GUI’s that had design 

knowledge built into them.  The user input was then used to size predefined components 

and add them automatically to an assembly.  Tucker (2000) performed a study to explore 

the translation of API programs between different CAD systems.  His method would read 

in a program in the API of one CAD system and output a program in the API of another.  

There are inherent disadvantages to developing routines in API’s.  First, a CAD 

application developed in an API requires a considerable time investment.  Also, API 

development is not intuitive and requires training and experience on the part of the 

developer.  Rohm (2001) implemented a method that would eliminate these disadvantages 

by development of a system that would interpret user interactions in a graphical user 

interface and produce the API code to perform the same function.   

Shaw and Rangel (2002) integrated CAD with CAM/CAPP using a commercial 

CAD API (I-DEAS).  They employed user-defined attributes created with the I-DEAS 

API to help in feature recognition for generation of NC-toolpath generation.  The API 

requested model data and machine features, and would then generate toolpaths from that 

information.  

 22



Delap (2003) used the Unigraphics API to create a custom CAD application that 

would generate a 2D gas turbine engine flowpath geometry based on text input from a 

thermodynamic cycle analysis software program.  He was then able to perform 

optimization of the flowpath by running his custom application in batch mode.   

Recent efforts have been made exploring the ability to create CAD API utilities 

that operate independent of choice of CAD software.  Astle (2003) integrated a library of 

CAD-independent curve and surface functions with his custom flank-milling program.  

His work demonstrated the ability to separate CAD API dependent operations with data 

processing functions.  In a similar fashion, Wilson (2004) used the Unigraphics API to 

create a custom rapid-prototyping slicing application.  Wilson built upon Astle’s notion of 

separation of data processing and CAD API functions.  Although he demonstrated his 

software only in Unigraphics, the program architecture was developed so that the data 

processing algorithms could be reused for different CAD programs.   

Without the existence of API’s, none of the aforementioned research would have 

been possible.  This research uses the CAD API extensively to develop a method for 

performing CAE preprocessing in the CAD environment.  After the CAE preprocessing 

has been performed a single time within the CAD environment, it becomes possible to 

perform design optimization by iterating on geometric variations and quickly performing 

CAE analysis for each iteration.  The developed attribution tool is intended to provide a 

road-map for performing CAD-centric CAE attribution for any CAD and CAE package 

with its respective API.
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CHAPTER 3: BACKGROUND 
 

 

An overview of the background for the specific topics used in this research is 

presented in this chapter.  The following topics are addressed: 

• Mathematics of computer-aided geometric design 

• The finite element method 

• Object-oriented programming 

• Database Management Systems 

An understanding of the mathematics and algorithms used in the topics presented 

in this chapter will assist the reader in understanding the methods used to achieve the 

research objectives.  However, if the reader already posses sufficient understanding of the 

aforementioned topics, he or she is invited to proceed to chapter four, wherein the 

research method will be described.  

3.1 Mathematics of Computer-Aided Geometric Design 

Reviewed herein are some of the underlying principles relative to solid geometry 

and freeform surfaces.  An understanding of the principles and methods used in the 

creation of solids and freeform surfaces is necessary when developing CAD API 

programs. 
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3.1.1 Solid Modeling 

A solid model is a mathematically defined as a point set S in 3D Euclidian space 

(R3).  Referring to the interior and boundary of the set by iS and bS, respectively, the solid 

S can be defined as: 

S = iS ∪ bS               Equation 3.1 

Given the compliment of S, cS, then 

W = iS ∪ bS ∪ cS     Equation 3.2 

where W includes all possible points in R3.  Figure 3.1 graphically depicts this 

relationship (Zeid 2005).   

 

Figure 3.1 Mathematical definition of a solid 
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Mathematically, solids should possess the following properties: 

• Rigidity.  This means that the solid’s shape is invariant and independent of the 

model’s location or orientation in Euclidean space. 

• Homogeneous three-dimensionality.  Boundaries of solids must maintain contact 

with the interior.  No isolated or dangling boundaries should exist. 

• Finiteness and finite describability.  This implies that the size of the solid is not 

infinite, and that a limited amount of information can describe the solid. 

• Closure under rigid motion and regularized Boolean operations.   

• Boundary determinism.  The solid’s boundary must contain the solid and 

determine the interior of the solid distinctively (Zeid 2005).   

Because solid modelers contain information about the solid volume, CAE 

applications are able to discretize the volume into finite elements.  There is an inherent 

relationship between the volume of a solid and attributes applied to that volume.  For 

example, when applying a mesh element size it is important to know the volume of the 

solid.  Thus, intelligent attributes can be applied to solids based on its mathematically 

defined physical parameters. 

3.1.2 Bezier Curves 

The Bezier curve is central to freeform curves and surfaces.  Bezier curves are 

composed of at least two control points.  The linear segments joining the control points 

form the control polygon, which is not visible when the curve is plotted.  Bezier curves 

are classified according to the degree of the curve, n = m–1, where n is the degree and m 

is the number of control points.  Figure 3.2 shows the control points and control polygon 
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of a degree three Bezier curve.  If the control points of a Bezier curve are known, that 

curve can be exactly duplicated.   

 

 

Figure 3.2 Control polygon for Bezier curve 

Figure 3.3 shows examples of degree n = 1, 2, 3, and 4 Bezier curves respectively, along 

with their control points and control polygons. 

 

n = 1 

 

n = 2 

 

n = 3 

 

n = 4 

Figure 3.3 Degrees 1-4 Bezier curves 
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The general equation for a Bezier curve is defined as: 
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Among connecting Bezier curves, continuity constraints may exist.  Two types of 

continuities can exist between Bezier curves, geometric (Gi) and parametric (Ci).  

Sederberg (2002) explains that curves which are parametrically continuous are also 

geometrically continuous to the same degree, but the reverse is not always true.  Table 1 

summarizes the meanings of each type of continuity (Delap 2003). 
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Table 3.1 Definition of Bezier continuities 

Geometric Continuity Parametric Continuity 
Degree Description Degree Description 

G0
Curves share a common 
endpoint C0

Curves share a common 
endpoint 

G1 Curves are tangent C1 First derivative is identical 

G2 G1 and have same curvature 
at endpoint 

C2 Second derivative is identical 

Gn
Curves are Gn if the 
equations can be modified to 
be Cn

Cn nth derivative is identical 

 

 Bezier curves form the building blocks for B-splines and Bezier surfaces.  The 

integration of the mathematics of Bezier curves into modern CAD systems has greatly 

increased the ability of engineers to mathematically define and manipulate freeform 

surfaces.  When applying certain attributes to freeform curves or surfaces, an 

understanding of Bezier curves and surfaces is helpful in knowing how to apply them.  

For example, a FEA mesh attribute could be created for Bezier curves that apply nodes at 

certain intervals along the curve.  Because the governing equations for the curve are 

known, the designer can better decide how large the interval needs to be. 

3.2 The Finite Element Method 

One of the objectives of this research is to automate CAE applications via CAD-

centric preprocessing.  Thus, a brief overview of the finite element method is appropriate.  

Often times it is impossible to produce a solution to complex problems using analytical 

methods.  For such problems, numerical techniques can be used.  The finite element 

method operates by dividing a body or structure into smaller elements of finite dimensions 

called “finite elements.”  The collection of the finite elements is often referred to as the 
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“mesh,” or “grid.”  The original structure is then considered as a collection of these 

elements connected at a finite number of joints or “nodes.”  Figure 3.4 (King 2004)  

shows a 2D mesh of an area, and Figure 3.5 shows some of the commonly used elements 

in 3D FEA.   

Figure 3.4 Mesh for 2-dimensional area 

 

 

Figure 3.5 Common 3D FEA elements: 4, 6, 8, and 20 node elements 

 

The equations of equilibrium for the entire structure or body can be obtained by 

combining the equilibrium equation at each element such that the continuity is ensured at 

each node.  After the necessary boundary conditions are imposed, the equations of 
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equilibrium can be solved to obtain the desired variables throughout the body, such as 

stress, strain, flow velocity, or temperature distribution, depending upon the application.  

3.2.1 Mesh Generation 

Mesh generation for FEA presents a unique challenge to preprocessing.  In order 

to get the most accurate solution, the mesh must be fine enough to adequately represent 

the geometry of interest.  However, time constraints and computational resources limit the 

number of elements that can be used in the mesh.  For example, consider the simple case 

of a hole in a plate as shown in Figure 3.6. 

 

Figure 3.6 Effect of mesh density 

 
If the mesh is too coarse, the hole in the plate will not be accurately represented, 

appearing as a polygon.  With a finer grid, the hole is more accurately represented, but the 

element count has greatly increased, making the solution more computationally expensive. 
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Mesh generation algorithms can be divided into two groups: structured and 

unstructured.  A structured mesh is one whose interior nodes have an equal number of 

adjacent elements.  Unstructured mesh generation relaxes the node valence requirements, 

allowing any number of elements to meet at a single node. 

Producing a mesh that is highly representative of the original geometry, yet 

computationally economical is an area where CAD-centric attributes are highly useful.  

Very specific information about geometric objects applied by the attribution tool could be 

used to guide the meshing software.  After the geometry has been meshed, the next step is 

to define the boundary conditions and solve the problem according to the numerical 

approximations for the governing equations.  The attribution tool in this research was 

designed to be able to apply attributes relative to structural FEA, thermal FEA, and CFD. 

3.2.2 Numerical Analysis 

The finite element method is able to solve problems for discretized geometry by 

approximating the governing differential equations as a set of linear algebraic equations.  

King (2004) summarizes Balling (2001) in giving a brief explanation of how these 

equations are developed.  To demonstrate how the finite element method works, consider 

a thermal analysis for a solid slab of uniform thickness, t, shown in Figure 3.7. 
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Figure 3.7 Thermal analysis, uniform thickness 

 
To make the problem 2D, assume that all the heat flow is in the x1 and x2 

directions.  The governing differential equation for heat transfer in this example becomes: 

QkTkTTk −=+=∇ 2211
2 ,,                    Equation 3.3 

where T is temperature function, k is the coefficient of thermal conductivity, and Q is the 

heat radiation per unit volume.  The conductive heat fluxes q1 and q2 in the x1 and x2 

direction are derived from Fourier’s Law of heat conduction: 

2211 ,;, kTqkTq −=−=     Equation 3.4 

 After the domain is discretized, to produce the finite the finite element form of the 

governing equation, we can use  

( ) UNxxT Τ≈21 ,             Equation 3.5 

where N is the vector of shape functions and U is the vector of approximations to the 

nodal temperatures.  To construct the weighted integral, substitute equation 3.5 into 

equation 3.3 and integrate over the volume of the domain to obtain equation 3.6. 

( )∫ =++ ΤΤ

area

dAQUNkUNkNt 0,, 2211   Equation 3.6 
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Applying Green’s theorem (3.7) to the first two parts of equation 3.6 and invoking the 

finite element approximation (3.5) we obtain equation 3.8, which is the set of linear 

algebraic expressions: 

∫ ∫ ∫−=
area perimeter area

iii dAgfdPngfdAgf ,,  

Equation 3.7 

( ) ( )∫ ∫ =+++ ΤΤ

perimeter area area

dAQNtUdANkNNkNtdPnqnqNt 22112211 ,,,, ∫                                 

                                                                                                                        Equation 3.8      

From equation 3.8 we define the system stiffness matrix K and force vector F: 
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                                                                                                                          Equation 3.9 

( ) ∫∫∫∫ −=+−=
perimeter

out
areaperimeterarea

dPqNtQdANtdPnqnqNtQdANtF 2211  Equation 3.10 

Equation 3.11 is obtained after substituting equations 3.9 and 3.10 into equation 3.8, 

FUK =                  Equation 3.11 

Next the shape functions, NT, are specified for an element.  Shape functions are 

unique to the type of element used.  Consider a triangular element as shown in Figure 3.8. 
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Figure 3.8 2D triangular  element 

 
The shape functions in terms of nodal coordinates are: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

PC
x
x

xx
A

xx
A

xxxx
A

xx
A

xx
A

xxxx
A

xx
A

xx
A

xxxx
A

N =
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−

−−−

=

2

1

)1(
1

)2(
1

)2(
2

)1(
2

)1(
2

)2(
1

)2(
2

)1(
1

)3(
1

)1(
1

)1(
2

)3(
2

)3(
2

)1(
1

)1(
2

)3(
1

)2(
1

)3(
1

)3(
2

)2(
2

)2(
2

)3(
1

)3(
2

)2(
1 1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

  

Equation 3.12 

where the superscript denotes the node number for the element and A is the area of the 

triangle. Once these shape functions are determined it is possible to evaluate the element 

integrals given by equations (3.9) and (3.11).  At this point the element stiffness matrices 

(3.9) and force vectors (3.10) can be solved after providing the boundary conditions.  

Finally, the system of equations are partitioned and solved.  Once the equations are 

solved, the element results can be calculated.  In this case, the FEA was for heat transfer, 

but the derived equations could also be applied to structural deflection or torsion, as well 

as to irrotational fluid flow.  For example, with irrotational flow the temperature term is 

replaced by a potential function φ, in which φ,i = vi, where vi is the xi component of 

velocity.  Additionally, heat flux, q, is equal to the velocity term, and qout is the equivalent 

 36



of vin. Certain attributes applied and managed by the developed attribution tool represent 

boundary conditions used for finite difference equations.   

3.3 Object-oriented Programming 

The attribution tool created for this research was created using C++ and takes 

advantage of the object-oriented nature of that programming language.  A brief overview 

of object-oriented programming basics will assist the reader in understanding the nature 

and development of the work done in this research.  Object-oriented programming (OOP) 

is based on the idea of using “objects.”  An object is a bundle of related functions and 

variables.  An object may be an instance of a structure, a class, or some other type of data 

structure.  The goal of OOP is to allow portability of large sections of code to other 

software programs.   

3.3.1 C++ Classes 

The C++ class is central to the idea of OOP.  A class is essentially a blueprint that 

defines the variables and methods common to all objects of a certain kind.  The variables 

belonging to a class (member variables) can be declared to be standard C variables, such 

as integer, float, double, etc., or they can be instances of other classes.  An example of 

how to create a class is shown below.  The name of the class is ExampleClass, and no 

member variables or member functions have been added to the class. 
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class ExampleClass 
{ 
public: 
 /*public member variables and functions go here*/ 
 
private: 
 /*private member variables here*/ 
 
protected: 
 /*protected members here*/ 
}; 

An instance of ExampleClass could then be made by declaring a variable as type 

ExampleClass.  In this manner, all of the functions and variables defined by ExampleClass 

become available to the newly declared instance.   

To better understand the motivation for using classes, a simple real world analogy 

is appropriate.  For example, a specific bicycle is one of many types of bicycles in the 

world.  It is inferred then that this bicycle object is an instance of the class of objects 

known as bicycles.  Bicycles have some variables (the current gear) and behavior (braking 

and changing gears) in common.  However, each bicycle’s variables are independent and 

may be different from that of other bicycles.  When designing bicycles, the manufacturers 

take advantage of the fact that bicycles share common behavior and variables, thus using a 

single blueprint for the basic shared characteristics.  Classes, then, are software blueprints 

for objects that share similar behaviors and variables.   

3.3.2 Class Inheritance 

Object-oriented systems have the ability to define classes in terms of other classes.  

A class may inherit behavior from a parent class. This characteristic is referred to as 

inheritance.  Going back to the bicycle example from section 3.3.1, mountain bikes, road 

bikes, and BMX bikes are all different kinds of bicycles.  In object-oriented terminology, 

these different bicycles are all subclasses of the parent class, bicycles.   
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Each subclass inherits variable and function declarations from the parent class.  

However, subclasses are not limited to the variables and functions defined by the parent 

class.  Subclasses can add to the variables and functions inherited from the parent class.  

Subclasses can also override inherited functions and provide specialized implementations 

of those functions.  Inheritance is not limited to one “generation.”  The inheritance tree, or 

class hierarchy, can extend as far as needed, allowing member functions and variables to 

be passed down many levels.  The farther down in the class hierarchy a class appears, the 

more specialized its behavior becomes.  The ability to pass functionality to other classes 

from a parent class allows programmers to reuse the code in the base class.  These 

methods and techniques will be used in the development and coding of the attribution tool 

presented in this thesis. 

3.4 Database Management Systems 

Database management systems (DBMS) are becoming increasingly important as 

engineering businesses are storing and retrieving more and more information in a digital 

format.  Access to a database is often referred to as a query, thus query languages have 

been created expressly for this purpose.  Many query languages have been created for 

DBMSs.  Among those languages, one in particular has become dominant, called 

Structured Query Language, or SQL.  Currently, SQL has become the standard database 

query language and is supported by most DBMSs.   

In the 1970’s DBMSs organized data into a hierarchy, and such systems were 

called hierarchical systems.  Hierarchical systems allowed fast access to stored data; 

however, they could not easily perform simple ad hoc queries and DBMS users demanded 

a simpler way to work with data.  This demand gave rise to another approach called 
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relational systems.  E.F. Codd developed the relational model in 1970.  Relational 

systems represent data as simply the contents of one or more tables.  Examples of the 

more popular relational DBMSs include IBM’s DB2, Microsoft’s SQL Server, 

Microsoft’s Microsoft Access, and Oracle Corporation’s Oracle DBMS.  SQL was 

developed for use with relational systems; therefore, most relational systems can be 

accessed via SQL (Chappell 2002).   

Relational databases store data in the form of tables.  A table is a collection of 

rows and columns.  Rows represent records in the table and columns represent fields.  

Relational systems allow the user to access any combination of rows and columns through 

the querying capability of SQL.  Figure 3.9 shows an example of a table found in 

relational systems. 

 

Figure 3.9 Relational database table 

 
 The attribution tool created for this research relies heavily on the capabilities of 

relational DBMSs and the querying capabilities of SQL.  There are several advantages to 
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using a DBMS over file I/O.  DBMSs are fast; query languages allow for rapid sorting and 

presentation of information.  They are centralized; all users have access to the same 

database over a network, rather than each user having individual copies of data files.  

They are easy to maintain, DBMS administrators can rapidly sort through information and 

eliminate old data, if necessary.  More will be discussed on how and DBMSs are used for 

this research in Chapter four.  
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CHAPTER 4: METHOD 
 

 

This chapter describes the method that was initially architected and proposed in 

the prospectus of this thesis.  The methods used to achieve the research objectives posed 

in Chapter one are discussed herein.  For convenience, the thesis objectives are repeated 

below. 

• Implement a method for CAD-centric attribution that establishes a 

standardized attribute definition, yet, allows for user-customization. 

• Develop a process for managing applied attributes in a manner that allows for 

seamless data exchange between both CAD and CAE applications. 

• Demonstrate that the attribution tool can be used to automate the preprocessing 

of downstream CAE applications. 

The general approach used to develop a CAD-centric attribution tool is discussed 

in this chapter and can be applied for any CAD system, programming language, database 

application, or CAE application.  However, for this research the attribution tool was 

created for use within a specific CAD system, the UGS graphics system, developed using 

the C++ and TCL programming languages, designed to interact with the MySQL DBMS, 

and demonstrated on ANSYS, a commonly used CAE application.  A discussion of how 

this tool was developed for use with the aforementioned applications will follow in 

Chapter five and will parallel the discussions of this chapter. 

The goals of this research were accomplished via the following steps: 
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• Creation of DBMS table structure for storage of attribute library 

definitions, as well as storage of object attributes applied in CAD.  

• Development of an object-oriented data structure that invokes the CAD and 

database API’s. 

• Development of an attribute translator to extract attributes from the DBMS 

and implement them in CAE preprocessing. 

• Demonstration of preprocessing automation in CAE applications. 

The attribution tool developed in this research is a collection of software programs 

including a series of DBMS tables, an object-oriented data structure, a graphical user 

interface, and an attribute translator program.  Figure 4.1 shows how the different 

components of the attribution tool are related. 

 

DBMS GUI/OODS CAD

 

Figure 4.1 Components of CAD-centric attribution tool 
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Attribute 
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CAE 
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The developed attribution tool acts as a bridge between the CAD and CAE 

environments. The attribution tool does not fundamentally alter the functionality of the 

CAD or CAE systems, but rather makes CAE preprocessing accessible from the CAD 

environment, and stores that information as attributes in an external database.  The 

attributes applied during the CAD-centric preprocessing then become part of the product 

definition data.  CAE attributes have previously enjoyed only temporary existence within 

the CAE application.  In many cases, attribute creation is duplicated because different 

CAE applications require the same attributes to be applied, but the attributes cannot be 

universally communicated between the different applications.  Each separate CAE 

application applies its particular set of attributes to the product geometry, and those 

attributes live only within the originator CAE application.  The paradigm shift in this 

research is that all the CAE attributes becomes consolidated into a central repository, 

where they can be universally passed around as needed to downstream applications.  This 

paradigm eliminates attribute duplication and allows the information to persist with the 

product throughout its lifecycle.  The approach used to create the components of the 

attribution tool is discussed in this chapter.   

4.1 Attribute Storage and Management  

When applying attributes in the CAD environment, it is important to determine the 

best method to store and manage them.  Several possibilities exist for attribute storage.  

Many CAD programs allow attributes to be created and stored within the CAD database.  

An alternative attribute storage method is file input/output (I/O).  Using a file I/O method, 

attributes would be written to and read from a text file.  The final alternative explored in 
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this research, and the one ultimately chosen, was to use a DBMS for attribute storage and 

management.  

Storing the attributes in an external database has several advantages over file I/O 

and CAD databases.  DBMSs are more flexible in the information they can hold.  Where 

traditional CAD attributes are created using a number of pre-defined fields, a DBMS table 

can be created allowing the user to enter more information about the attribute.  This 

feature becomes important when developing a method that allows for a standardized 

attribute language.  Typically, CAD attributes do not contain enough information to 

effectively communicate with downstream CAE applications.  Chapter five discusses how 

the method used in this research for storing additional attribute information in a DBMS 

enables a standardized attribute language to be developed. 

Another advantage of using a DBMS is that they are more centralized than file I/O 

or the CAD database.  When attributes are stored in a DBMS table, that information exists 

in a single location on a server that multiple users can access over a network.  Using a file 

I/O approach is cumbersome because a new text file containing attribute information 

would have to be created for every CAD part.  Using file I/O for attribute management, 

engineers would have to keep track of all the associated attribute text files in addition to 

the CAD files, instantly doubling the number of files to be concerned with.  For groups of 

engineers working together on the same part, everyone on the team would have to have a 

copy of the associated attribute text file, as well. 

DBMSs are more convenient and computationally efficient than file I/O and CAD 

databases.  Database query languages have been developed for DBMSs that are optimized 

for speed and efficiency.  One problem encountered with file I/O is that it is very difficult 
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to insert or delete lines in the middle of the text file.  To delete a line from the middle of a 

text file, an algorithm must be created that splits the file in half before and after the 

deleted line, then pastes them back together.  This process is an inefficient use of 

computational resources.  Using simple DBMS queries, a user can easily insert, delete, or 

edit records anywhere in a table.   

DBMSs are more user-friendly than file I/O and CAD databases.  An engineering 

analyst who is unfamiliar with a CAD program could open a DBMS table containing 

attributes and quickly sort through the records to find a desired attribute.  By contrast, 

attributes stored in the CAD database require the user to enter the CAD program and 

manually search for the attributes, which can be difficult to find a desired attribute when 

dealing with large, complex models.  Using the file I/O method, the engineer would have 

to sort through a text file to find a particular attribute, which can be tedious for large text 

files.  Simple DBMS queries can quickly present to the user the desired information, 

rather than manually searching for it.   

Aside from storing attributes applied to geometric objects, a DBMS can be used to 

manage a library of attribute definitions.  Attribute definitions stored in a DBMS table 

provide a solution to the research objective of developing a standardized attribute 

language.  Furthermore, storing attribute definitions in a DBMS rather than hard-coded in 

a software application enables users to easily access the attribute definitions, making them 

highly user customizable.  The development of the DBMS attribute architecture discussed 

in chapter five demonstrates how the method for attribute storage used in this research 

makes it possible for an attribution tool to establish a standardized, yet user-customizable 

attribute language. 
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4.2  An Object-Oriented Attribute Data Structure 

An object-oriented data structure was established to enable the DBMS attribute 

architecture to interface with CAD geometry.  The object-oriented data structure acts as a 

“bridge” between the DBMS attribute architecture and the CAD geometry.  Interaction 

between the DBMS and the CAD system is possible via access to their respective APIs 

within the data structure.  The data structure was developed using an object-oriented 

programming language because instances of attributes are treated as programming objects, 

each instance containing similar functionality and variables (see section 3.3 for OOP 

background).  The object-oriented data structure has several important responsibilities. 

• Dynamically extracts attribute definitions from the DBMS and puts them in the 

GUI menus.   

• When new attribute definitions are created using the GUI, it inserts the 

definitions into the DBMS and updates the attribute definition fields in the 

GUI. 

• Assigns unique names to geometric CAD objects whereupon attributes have 

been applied and stores the name both in the CAD database and in the attribute 

record in the DBMS. 

• Keeps track of all the attributes applied to a CAD part and ensures they are 

properly stored in the DBMS. 

• Controls the GUI functionality. 

 The object-oriented data structure and the DBMS have a bi-directional link, as 

shown in Figure 4.1.  Attributes and attribute definitions can be created, edited, or deleted 

from either the GUI or the DBMS.  The object-oriented data structure, through a series of 

 48



intuitive GUIs, allows the user to apply attribute definitions directly to the CAD geometry, 

whereas working from the DBMS does not.  In other words, a user cannot apply an 

attribute definition to a geometric object directly from the DBMS unless that object 

already has a unique name applied to it.   

4.3 A Graphical User Interface for CAD-centric Attribution 

The attribution tool developed for this research is intended to be a general purpose 

tool capable of applying any conceivable attribute definition to geometric objects in the 

CAD environment.  Thus, it was necessary to create a GUI that was sufficiently robust in 

its design as to accomplish this objective.  The GUI is activated via a user function called 

from the CAD program.  In order to be a generic attribution tool that can communicate 

with any downstream application, the GUI for the attribution tool should have the 

following qualities: 

• Include pull down menus containing the attribute definitions that are 

dynamically linked with the attribute definitions stored in the DBMS. 

• Allow the user to define new attribute definitions and store them in the 

Attribute Library table in the DBMS. 

• Allow the user to select objects from the CAD model on which to apply 

attributes.  If an object has no name, the GUI should force the user to apply a 

unique name to the object, storing the name in both the CAD file and DBMS. 

• When an attribute is applied, the attribute definition, value, and object name 

should be stored in the Object Attribute table in the DBMS.   
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• The GUI should display the attributes that have been applied to the CAD 

geometry.  This information should be dynamically linked to the data in the 

Object Attribute table of the DBMS. 

• The GUI should allow the user to edit or delete applied attributes.  This allows 

for a bi-directional link between the Object Attribute table in the DMBS and 

the GUI/object-oriented data structure. 

Developing a GUI in this manner ensures that the DBMS is always the central 

repository for attribute data, rather than hard-coding attribute definitions into the object-

oriented data structure.  After attribution has been completed in the CAD environment, the 

next step is to use the attributes stored in the DBMS to automate CAE applications.  In 

order to do this, intermediate applications must be developed to interpret attribute 

definitions and translate them into application specific commands.  These intermediate 

applications are referred to as attribute translators. 

4.4 CAE Attribute Translation 

After a product’s attributes are applied in CAD and stored in the DBMS, a 

common ground can be reached for communicating what the attribute definitions mean to 

CAE applications.  As part of this thesis, research was performed investigating the 

feasibility of creating programs that could read in all the attributes pertaining to a CAD 

file in the DBMS and automate the CAE preprocessing.  Such programs are referred to as 

“attribute translators”.  The objective of creating attribute translators is to eliminate CAE 

preprocessing and facilitate optimization processes involving CAE applications.  Aside 

from CAE preprocessing automation, another benefit of developing attribute translators is 

that many of the steps required for complex preprocessing procedures are contained in the 
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code and invoked when a certain set of attributes are detected, thus reducing the difficulty 

and/or tedium of CAE preprocessing. 

Prior to the work done in this thesis with attribute translators, a common method 

used to automate CAE preprocessing for optimization purposes was to access the 

commands recorded by the CAE application and then instruct the application to run the 

saved list of commands for every design iteration.  In such instances, in order to include 

CAE applications in optimization loops, the user must perform at least one CAE analysis 

manually in order for all the actions to be recorded properly.  This method enjoys a level 

of popularity due to its simplicity; however, it has several disadvantages.  First, it is CAD 

part specific, and must be performed anew for every different part.  Also, the attributes 

applied by the CAE application are not available to other CAE applications, reducing the 

feasibility of concurrent engineering.  Using attribute translation programs, CAD 

geometry and associated attributes can be shared among various CAE applications for 

multi-disciplinary optimization.  Attribute translators can be developed in any 

programming language; the only requirement for choosing a programming language is 

that it must be able to access the APIs of both the CAE program and the DBMS.  Scripting 

languages, such as Perl, TCL, Python, etc., are especially convenient in this regard.  

There are inherent disadvantages to using attribute translators.  First, attribute 

translators are CAE application specific; each CAE application must have its own unique 

translator.  Next, attribute translators are high maintenance.  Every time a user creates a 

new attribute definition in the Attribute Library table of the DBMS, the translator must be 

updated to recognize the new definition.  In addition, new software releases of CAE 

applications can introduce changes in the CAE API functions, which require changes in 
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the attribute translator functions.  Finally, the attribution tool as a whole requires 

significant development time.  If only a handful of analyses are required for a design, it is 

more effective to simply perform the preprocessing in the CAE applications.  The power 

of attribute translators coupled with the attribute library contained in the DBMS is most 

effectively realized during optimization procedures, where hundreds or thousands of 

design/analysis iterations occur. 

4.5 A Proof Case 

To test the feasibility of the developed attribution tool for optimization, a series of 

different geometries were created to test the robustness of the tool.  For each geometry, 

attributes were applied in the CAD system for subsequent analysis in ANSYS.  The design 

variables in optimization problems often involve topological and non-topological 

geometric variation.  Therefore, a series of dimensional iterations, similar to what would 

be experienced during an optimization routine, was performed for each geometry to test 

the response of the attribution tool in a downstream CAE application.  Some iterations 

involved non-topology changing operations, such as altering the values of defining 

dimensions.  Changes in topology were also performed on the different geometries, such 

as the creation or deletion of lines, faces, and/or vertices.  In order for optimization loops 

to work well, the attribution tool must be very robust when dealing with non-topology 

changing operations.  Topology changing operations are less likely to be included in 

optimization because they often produce undesirable results.  Also, topology changing 

operations result can encounter the persistent naming problem, which was delimited from 

this thesis in chapter one.  However, changes in topology can be handled by the attribution 

tool to a certain degree, as will be demonstrated in chapter six.   
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CHAPTER 5: DEVELOPMENT 
 

  

 The method described in chapter four was implemented for use on the following 

set of commercially available CAD, DBMS, and CAE software: Unigraphics, MySQL, 

and ANSYS, respectively.  The object-oriented data structure was developed using C++ 

and the attribute translator was created using the TCL/Tk scripting language.  This chapter 

discusses the development of the DBMS attribute architecture, the object-oriented data 

structure/GUI and attribute translator in conjunction with the aforementioned set of 

software programs.  

5.1 DBMS Attribute Architecture Development 

The DBMS attribute architecture was created using a free, SQL based DBMS 

called MySQL, and consists of three different tables used to store attributes and attribute 

definitions.  These tables are the Attribute Library table, the Part table, and the Object 

Attribute table, respectively.   

5.1.1 Attribute Library Table 

There are two purposes for creating an Attribute Library table in a DBMS.  The 

first is to establish a standardized set of attribute definitions that attribute translators can 

interpret.  The purpose for creating attribute translators is discussed in section 4.4.  The 

second purpose of the Attribute Library table is to provide a place to store additional 
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information about an attribute.  Many CAD systems have the built-in functionality that 

allows attributes to be applied to geometric objects.  CAD attributes consist of a title, 

value, and data type applied to a geometric object, which get stored in the CAD data file.  

However, in order for downstream CAE applications to use attributes, more information is 

required than is typically given by a CAD attribute.  The Attribute Library table builds 

upon the CAD attribute definition, allowing the necessary additional attribute information 

to be passed to the CAE application. The columns of the Attribute Library table are 

Domain, Sub Domain, Title, Type, and ID.  Once the user fills in these fields, an attribute 

definition is considered fully defined.  Every row in the Attribute Library table constitutes 

an attribute definition. 

The purpose for inclusion of the domain and sub domain columns is to help the 

attribute translator group sets of similar attributes.  These fields act as flags for the 

translator, instructing it how to sort the attributes.  These two fields are the most 

significant source of additional information not included by the traditional CAD attribute.  

The title and type fields are common to both the CAD attribute and the Attribute Library 

table.  The title field acts as a keyword instructing the downstream CAE application how 

the attribute is to be applied.  The type field tells the CAE application what type of data 

the attribute contains, whether it is a real number, string, integer, etc.  The ID field is an 

auto-incrementing integer that is automatically created by the database for each new 

attribute definition.  Each record, or attribute definition, in this table has its own unique 

identification number.  The purpose for this will be explained in the section 5.1.3. 

It is important to note the fields that have been included in the Attribute Library 

table as well as those which have been notably excluded.  The Attribute Library table 

 54



excludes the value and object name fields, whereas CAD systems include them in their 

attribute definitions.  The purpose for their omission is to make attribute definitions 

independent of value or geometric object.  This is a significant paradigm shift from the 

attribution method used by CAD systems.  Before this research, it was impossible to 

communicate attributes to CAE applications in a standardized manner because the 

attributes were defined by their value and geometric object, making every attribute 

unique.  It is via an Attribute Library table that is value and geometric object independent 

that one of the most significant contributions of this research is possible, that of attribute 

standardization. 

5.1.2 Part Table 

The Part table is the simplest of the three tables.  It contains only two columns, or 

fields: Part Name and ID.  The Part Name field simply contains the name of the file where 

the CAD geometry resides.  The ID field is an auto-incrementing integer that provides a 

unique, numeric identification for each CAD file that has had attributes applied to it.  The 

purpose for the creation of this table is for convenience in development of the object-

oriented data structure and attribute translator.   

5.1.3 Object Attribute Table 

 The Object Attribute table contains instances of attribute definitions from the 

Attribute Library table for specified values and/or geometric objects.  The relationship 

between the Attribute Library table and the Object Attribute table is analogous to class 

inheritance in object-oriented programming.  Each entry in the Object Attribute table 

inherits all the information of an Attribute Library record, but also includes additional 
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information pertaining to the attribute definition, including the object name, value, and 

CAD part name.  The fields of the Object Attribute table are as follows: Object Name, 

Value, Library ID, Part ID, and ID.   

The Object Name field allows the user to define the geometric object whereupon 

an attribute definition is applied.  In order for an attribute definition to be applied to a 

geometric object, a unique name for that object must exist.  However, it is acceptable to 

apply an attribute without assigning it to a geometric object, leaving the field blank.  Such 

attributes are referred to as “part attributes,” where the attribute pertains to the CAD part 

as a whole.  Examples of part attributes are units of measure, or tolerances. 

The Value field allows the user to enter a value for the applied attribute.  It is 

possible that a particular attribute definition may not require any value; for such cases the 

Title field of the Attribute Library table and the Object Name field from the Object 

Attribute table may provide enough information for the CAE application.  For example, 

certain FEA mesh generation algorithms require definition of a “seed face” in order to 

sweep a mesh through a volume.  No value is required for this attribute, only the 

information telling the meshing program which face is the “seed face.”  Alternatively, 

some attributes may require more than a single value.  An example of this occurs when a 

force is applied at a point and the x, y, and z components of that force need to be stored as 

values.  To accommodate for such situations, an attribute definition for each different 

value required must be created in the Attribute Library table.  Figure 5.1 shows how the 

attribute definitions for an attribute requiring multiple values would appear in the 

Attribute Library table.   

 56



Table 5.1  Attribute definition for multi-component attributes 

 

 
The limitation of only being able to apply one value per attribute is certainly one of the 

weaknesses of the developed attribution tool.  However, the efficiency and speed at which 

DBMSs operate compensates for the lack of elegance of this solution.  The flexibility of 

the Value and Object Name fields of the Object Attribute table enable the attribution tool 

developed for this research to be a universal attribution tool, applicable to any conceivable 

attribute definition, value, and/or geometric object. 

 The Library ID and Part ID fields contain integers referring to the ID field from 

the Attribute Library table and Part table, respectively.  The purpose for their inclusion in 

this table is to allow the Object Attribute table to “inherit” information from the Attribute 

Library table and the Part table.  Figure 5.2 shows how the Object Attribute table inherits 

information from the other two tables via their respective ID fields. 
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Table 5.2  Inheritance in DBMS tables 

 

 

By including the ID from the Attribute Library table and the Part table, the Object 

Attribute table can easily access the information in the records of the respective tables 

based on the ID value through SQL queries.  It is appropriate, at this point, to make a 

distinction between attributes and attribute definitions as discussed in this thesis.  

Attribute definitions are the records of the Attribute Library table, while attributes are the 

records of the Object Attribute table.  The relationship between attribute definitions and 

attributes is analogous to object oriented programming and is unique to this research. 

5.1.4 Standardization and Customization 

As previously mentioned, an objective of this research is to develop an CAD-

centric attribution method that established a standardized attribute format, yet also 

allowed users to dynamically edit, delete, or create new attribute definitions as necessary.  
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The DBMS attribute architecture developed in this research achieves attribute 

standardization because the attribute definitions are created independent of geometric 

object or value.  It could be said that an attribute “language” has been created in this 

research because of the standardized nature of attribute definitions in the Attribute Library 

table.     

The DBMS attribute architecture constitutes one-third of an attribution tool 

developed for this research.  The DBMS is central to the attribution tool and its 

architecture establishes the attribution philosophy of defining attributes independent of 

object name or value.  The other two parts of this research are concerned with the 

application of that philosophy.  The second part of the attribution tool is an object-oriented 

data structure, which deals with the interaction between the DBMS and CAD.  The third 

part of the attribution tool is an attribute translator, whose purpose is to extract attributes 

from the DBMS and send them to CAE applications.  

5.2 Object-oriented Data Structure Development 

An object-oriented data structure was developed using the C/C++ programming 

language.  Access to the Unigraphics API and MySQL API is granted to the object-

oriented data structure via their respective header files.  The object-oriented data structure 

relays attribute information between the DBMS and the CAD attribute GUI.  During the 

initial stages of this research, it was planned to use the object-oriented data structure to 

use the Unigraphics and MySQL APIs to send commands to store attributes in both the 

CAD database and the DBMS.  However, during the development of the object-oriented 

data structure, it became obvious that such redundancy in data storage would not be 

necessary and only the DBMS needed to contain all the attribute information.  It was 
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discovered that only a single part of the attribute information must be stored in both the 

CAD database and the DBMS: the object name.  When an attribute is applied to a 

geometric object, the object-oriented data structure prompts the user to assign a unique 

name to the CAD object if one does not already exist.  That name is then stored both in 

the CAD file and in the DBMS.  The purpose for storing the object name in the CAD file 

is such that after the file is exported into CAE, the attribute translator can know which 

geometric object to apply certain attributes to.  The process of sorting attributes by object 

name after geometry import to CAE will be discussed in section three of this chapter.  

Another reason why the object-oriented data structure does not store attributes in the CAD 

database is because the traditional CAD attribute definitions are not compatible with the 

attribution method developed in this research.  Thus, it became clear that the Unigraphics 

API functions for programmatically applying CAD attributes would not be used as 

extensively as was initially thought because this research does not deal with traditional 

CAD attributes and there was no need to store the attributes in the CAD database.  Rather, 

the object-oriented data structure uses the Unigraphics API mainly to apply unique names 

to geometric objects, query the working CAD model for the file name, highlight geometric 

objects to facilitate object selection, and provide access to the GUI functions.  To manage 

attribute creation and storage, the object-oriented data structure uses functionality afforded 

by the MySQL API. 

 The object-oriented data structure is initialized from the CAD-environment from a 

user-function, which brings up a GUI.  During the initialization of the GUI, the object-

oriented data structure queries the Attribute Library table in the DBMS and fills up a 

series of menu items in the GUI containing the fields for attribute definitions.  In addition, 

 60



the data structure also queries the Object Attribute table in the DBMS, which fills up 

fields in the GUI displaying to the users the attributes that have already been applied to 

the specified CAD file.  If no attributes have been applied, the fields will be empty.  

Pseudo code showing how the data structure interfaces with the DBMS and the GUI 

during initialization is shown below. 

. 

. 

. 
connect to DBMS server 
get working part name from CAD, check to see if part name 

exists in Part table of DBMS 
 if (part name does not exist in DBMS) 

insert record into Part Table containing CAD part 
name 

 else  
do nothing 

query Attribute Library Table for unique domain fields, fill 
up array in data structure containing domains 

fill up domain pull-down menu in GUI with domain array from 
data structure 

query Object Attribute Table for any attributes already 
existing for part name, creating an array of object 
names on whom attributes exist 

check for consistency between object names in DBMS and CAD 
file 

 if (object name exists in DBMS but not in CAD file) 
delete all records in Object Attribute Table 
containing that object name 

 else 
  do nothing 
fill up fields in the GUI to display the existing attributes 

for that part 
. 
. 
. 
 

 Attributes and attribute definitions existing in the DBMS are retrieved and stored 

as instances of attribute “objects” in the data structure during initialization.  Class 

functions in the data structure are used to control how attributes are created and managed 

in conjunction with the DBMS.  In the development of the object-oriented data structure, 
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two classes were created to handle the attribute information: the Library class and the 

Attribute class.   

5.2.1 The Library Class 

The Library class is the base class upon which the Attribute class inherits.  The 

purpose of the Library class is to establish the state of an attribute (domain, sub domain, 

title, and type).  The Library class in the object-oriented data structure parallels the 

Attribute Library tables in the DBMS in that it contains information related to attribute 

definitions, effectively serving as a library for storing attribute definitions.  The Library 

class contains functions for extracting the attribute definitions from the DBMS, storing 

them in the data structure, and inserting them into the GUI.  In addition, the Library class 

contains functions for creating new attribute definitions in the DBMS.  The pseudo code 

for creating a new attribute definition is shown below. 

. 

. 

. 
open new attribute definition dialog  
get user input for domain, sub domain, title, and type 
store values as new attribute object definitions in data 

structure 
use DBMS query to create new record in Attribute Library 

table 
insert new attribute definition into domain, sub domain, 

title, type attribute definition fields 
. 
. 
. 
 

The ability to create new attribute definitions allows the attribution tool to fulfill the 

research objective of being user-customizable.   
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5.2.2 The Attribute Class 

 The Attribute class inherits from the Library class.  An instance of an attribute in 

the data structure will have all the information and functionality of its base class (the 

Library class), in addition to new functionality and variables.  The attribute class is the 

object-oriented data structure equivalent of the DBMS Object Attribute table in that it 

contains information about attributes, while the Library class contains information about 

attribute definitions.  The new variables used by the Attribute class include the object 

name of the attribute, the value given the attribute, and the name of the CAD file.  The 

Attribute class contains functions for inserting, deleting, and editing records in the Object 

Attribute table, as well as functions for applying names to geometric objects in 

Unigraphics.  

 Each time the user applies an attribute definition to an object and/or assigns a 

value to it, a new instance of the attribute class is created and stored in the data structure.  

At the same time, a new record is created in the DBMS containing the information and the 

field in the GUI is updated to include the newly applied attribute.  The following pseudo 

code demonstrates how instances of applied attributes are created. 

. 

. 

. 
obtain values for domain, sub domain, title, and type from 

GUI fields 
query DBMS and obtain ID of attribute defined by the domain, 

sub domain, title, and type 
obtain object name and value from GUI fields 
create new instance of attribute in data structure using 

attribute ID, value, object name, and part ID from user 
input 

insert newly created attribute from data structure into 
Object Attribute table in DBMS 
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add attribute to GUI field displaying attribute list for 
current CAD part 

. 

. 

. 
 

5.2.3 The Graphical User Interface 

The developed attribution tool’s graphical user interface gives the user access to 

the functionality of the object-oriented data structure, the data in the DBMS, and the 

geometry in the CAD system.  The GUI is an intuitive tool to walk the user through the 

process of applying attributes to CAD geometry.  The developed GUI was created using 

Unigraphics’ GUI development tool, UI Styler.  A priority in the GUI development was to 

make it as general an attribution tool as possible.  All of the specific attribute information 

must be independent of the GUI, and stored in the MySQL DBMS.  A result of the 

generalized nature of the GUI is that it appears simple and intuitive.  The complexity of 

the GUI lies in knowing what attributes exist in the DBMS and how they are intended to 

be used.  When the user invokes the compiled object-oriented data structure from 

Unigraphics’ user-function menu, the GUI is initialized and appears as a window in the 

Unigraphics.  Figure 5.3 shows the GUI upon initialization. 
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Figure 5.1 GUI for attribution tool 

 
The items listed in the pull-down menus for the Domain, Sub-Domain, Title, and 

Type fields are dynamically linked to the MySQL Attribute Library table and allow the 

user to choose which attribute definition he or she wishes to apply.  New attribute 

definitions can be created by clicking the ‘Create New Attribute Definition’ button, which 

brings up a new window as shown in figure 5.4 below.   

 

Figure 5.2 GUI window to create a new attribute definition 
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The user simply enters the information needed to create an attribute definition and the 

Attribute Library table will be dynamically updated to include the new definition.  The 

items in the Domain, Sub-Domain, Title, and Type fields are updated by clicking the 

‘Refresh’ button.   

If the attribute definition is of type double, integer, or string, the Value field 

becomes active and allows the user to enter in a value.  When the user clicks on the 

‘Select Object(s)’ button, the GUI hides itself and initializes another GUI window whose 

purpose is to help the user in geometric object selection.  This window allows the user to 

filter geometric objects for easier selection.  When all the desired geometric objects are 

selected, the user clicks ‘OK’ and is returned to the original GUI, whereupon a list of the 

geometric objects’ names appear in the window below the ‘Select Object(s)’ button.  If the 

user had selected an object that did not have a name applied to it yet, another window 

appears prompting the user to create a unique name to associate for that object.  Clicking 

‘Apply’ creates a record in the Object Attribute table in the DBMS containing the attribute 

definition and value for each geometric object selected.  It will also create a new instance 

of an attribute in the object-oriented data structure and will display all the attribute 

instances under the ‘View/Edit Attribute’ tab, as shown in figure 5.5 below. 
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Figure 5.3 View and edit applied attributes 

 
Double-clicking the values in the ‘Value’ column allows the user to edit the applied 

values.  Updates in the values occur dynamically in the MySQL database after the edit.  

Attributes can also be dynamically deleted from the object-oriented data structure and the 

MySQL database by selecting on an attribute and clicking the ‘Delete Attributes’ button.   

 The GUI provides access to the CAD-centric attribution method developed herein.  

It is controlled by functions in the object-oriented data structure, and is dynamically 

linked to attributes and attribute definitions contained within the MySQL DBMS.  It was 

designed to be used as an all purpose attribution interface, where all attribute knowledge is 

granted to the GUI by the DBMS.  A complete listing of the code used to develop the GUI 

and the object-oriented data structure is found in Appendix A and B. 
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5.3 CAE Attribute Translator Development 

The attribute translator constitutes the final part of the developed attribution tool.  

It can be thought of as the inverse of the object-oriented data structure.  Whereas the 

object-oriented data structure creates instances of attribute objects, the attribute translator 

extracts the information created by the object-oriented data structure and sends it to CAE 

applications.  Most CAE applications have APIs that allow the user to perform CAE 

operations programmatically.  The attribute translator developed herein exploits this 

characteristic of modern CAE applications by developing translation algorithms that uses 

the DBMS API to extract all the attributes pertaining to CAD geometry from the DBMS 

and the CAE API to perform specific commands in the CAE application.  The following 

pseudo-code demonstrates the algorithm for cycling through attributes in the DBMS and 

sending commands to the CAE application. 

. 

. 

. 
get CAD part name 
get list of object names from Object Attribute table where   

part name = CAD part name 
loop through list of object names 

get list of object attribute id’s of attributes for a 
given object name 

loop through list of Object Attribute id’s 
get domain_name, subdomain_name, title_name, and 
type of attribute id[j]’s library id 
if (domain == domain_name && subdomain == 

subdomain_name && title == title_name) 
get value of applied attribute 
apply value to object[i] 

. 

. 

. 
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This algorithm essentially cycles through all the attributes on an object name, one 

object name at a time, and sends commands to CAE based on a recognized set of domain, 

sub domain, and title names.  Figure 5.6 graphically depicts this algorithm. 

Figure 5.4 Attribute translator algorithm 

 
In order for this algorithm to operate, the user must tell the attribute translator the 

name of the CAD file in the DBMS on which to operate.  There are many possible 

methods to accomplish this.  The method used in this research is to designate the initial 

job name for the CAE application the same as that of the CAD file.  This allows for a 

simple command in the CAE API to ask the job name and compare it to names used in the 

Part table of the DBMS.  Using that Part name, the translator sends a query to the DBMS 

to obtain the list of object names for that part.  If a record exists where there is no object 
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name, it is recognized to be a part attribute by the translator, and a similar algorithm exists 

for handling them. 

The algorithm described above follows the same attribute philosophy as developed 

in the DBMS attribute architecture.  It treats object names and values separately from 

attribute definitions.  In this manner, an attribute translator can communicate with the 

attribute definitions contained within the Attribute Library table.  The algorithm described 

above may need to be performed multiple times in an attribute translator.  For example, a 

structural FEA program may require that the geometry be completely meshed before any 

loads are applied to it.  For such a case the algorithm would need to be performed once for 

the mesh attributes, then a second time for the structural load attributes.  In this manner 

the attributes can be processed in the correct order as the CAE application demands.    

The algorithm described in this section can be used to create translators for many 

different CAE applications.  The complete TCL code for the developed attribute translator 

can be found in Appendix C.  The attribute translator is the third and final piece of the 

attribution tool developed for this research.  The concurrent engineering paradigm, which 

calls for parallel engineering processes, becomes possible when attribute translators have 

been developed for multiple CAE applications. 
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CHAPTER 6: RESULTS   
  

 

The CAD-centric attribution tool developed in this research, consisting of the 

object-oriented data structure, GUI, external DBMS attribute architecture, and CAE 

attribute translator, was tested on a series of different geometric configurations.  The 

different geometric configurations chosen present unique tests of the attribution tool’s 

capabilities.  The attribution tool was tested for each geometric case study under changes 

in parametric and topologic data, as well as changes in applied attribute data. 

6.1 Results:  Case Studies 
 
 Three case studies were chosen to examine the capabilities of the attribution tool.  

For each case study, a unique set of parametric geometry was created and a series of 

attributes were applied using the developed attribution tool.  A structural FEA analysis 

was then automatically performed for the original geometry in ANSYS via the attribute 

translator program.  Changes in the parameters, topology, and attribute data were then 

imposed and the analysis performed anew.  The purpose for such iterations was to test the 

effectiveness of the attribution tool in an optimization routine.  This section will discuss 

the geometry used in the case studies and why it was chosen, as well as the attributes 

applied to the geometry. 
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6.1.1 Case Study 1:  Constructive Solid Geometry 

 The first case study involved geometry created by CSG primitives.  In this case, 

the CSG primitive was a simple block.  This geometry was chosen because CSG 

primitives maintain a strong presence in the current generation of solid modeling 

programs.  Figure 6.1 shows the geometry used in this case study. 

 

 

Figure 6.1 Case study 1 geometry 

 
Attributes were applied to the block such as to subject one of the faces to be constrained 

with respect to the X, Y, and Z-axes, while the opposite face was assigned a pressure load.  

Figure 6.2 shows the GUI of the attribution tool running natively in UG and the attributes 

that were applied to set up the subsequent FEA analysis. 
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R1CONST_FACE 

R1PRESSR_FACE 

Figure 6.2 Attribute application for case study 1 

 
Aside from the load and displacement constraints, additional attributes were also applied 

to the block.  Material properties and FEA mesh information were mapped to the solid 

volume of the block.  Table 6.1 summarizes the applied attributes for case study 1. 
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Table 6.1 Case study 1 attributes 

Domain Sub-Domain Title Value Object Name

Mesh Element type Tet10_92  R1BLOCK_VOL 

Mesh None Vol_smrt_elmnt_size 6 R1BLOCK_VOL 

material Str_lnr_elast_istrpc EX 60000 R1BLOCK_VOL 

material Str_lnr_elast_istrpc PRXY .33 R1BLOCK_VOL 

structural None Displacement 0 R1CNST_FACE 

structural None Pressure_load 30000 R1PRESSR_FACE 

   

The first attribute in Table 6.1 defines the type of FEA element used to mesh the block, 

while the second row tells ANSYS how to space the nodes along the solid edges.  The 

third and fourth attributes in Table 6.1 define the Modulus of Elasticity and Poisson’s 

Ratio of the volume, respectively.  The fifth attribute constrains face R1BLOCK_VOL in 

the X, Y, and Z directions, while the final attribute applies a pressure load of 30 ksi to the 

face R1PRESSR_FACE.  The object names and values were applied using the GUI, while 

the domain, sub-domain, and titles were predefined attribute definitions stored in the 

DBMS.  The second and third case studies are similar in nature to the first, in that they 

constrain one face as fixed in coordinate space and apply a pressure load to another face.  

They also use the same meshing strategy and have similar material properties. 

6.1.2 Case Study 2:  B-Rep Geometry 

 The second case study examined the attribution tool’s interaction with B-rep 

geometry.  The B-rep geometry created for this case study consists of a 3rd degree Bezier 

curve revolved around an axis.  This case study presents an opportunity to explore the 

manner in which the developed attribution tool interfaces with the CAD system and the 
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complex, mathematically defined curves and surfaces of B-rep geometry.  Figure 6.3 

illustrates the B-rep geometry. 

  

 

 

 

 

 

 

 

 

  
Figure 6.3 Case study 2 geometry 

 In a similar manner to case study 1, a pressure load attribute was mapped to the 

visible planar face in Figure 6.3 and a displacement constraint applied to the opposite 

planar face.  The attributes for this case study are summarized in Table 6.2.   

 

Table 6.2 Case study 2 attributes 

Domain Sub-Domain Title Value Object Name

material Str_lnr_elast_istrpc EX 60000 BEZ_VOL 

material Str_lnr_elast_istrpc PRXY .33 BEZ_VOL 

Mesh None Vol_smrt_elmnt_sz 9 BEZ_VOL 

mesh Element type Element_type tet10_92 BEZ_VOL 

structural None Displacement 0 R2DISP_FACE 

structural None Pressure_load 70000 R2P_FACE 
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6.1.3 Case Study 3: Discrete Features 

 The final geometry tested using the developed attribution tool contains discrete 

features.  Discrete features are copies of a set of pre-existing features and they exist in an 

array defined by the user relative to the original set of defining features.  The discrete 

feature used in this case is an array of box shaped bosses on a flat rectangular geometric 

primitive.  Figure 6.4 shows the initial geometry used for this case study. 

 

Figure 6.4 Case study 3 geometry 

 
General FEA mesh and material related attributes were applied to the geometry.  A 

structural load was applied to a face on the boss, and the bottom face of the base was 

given a displacement constraint of zero, meaning the face is fixed in the X,Y, and Z 

directions.  The attributes applied for this initial geometry are summarized in Table 6.3.   
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Table 6.3 Case study 3 attributes 

Domain Sub-Domain Title Value Object Name

material Str_lnr_elast_istrpc EX 60000 DF_VOL 

material Str_lnr_elast_istrpc PRXY .33 DF_VOL 

mesh None Vol_smrt_elmnt_sz 9 DF_VOL 

mesh Element type Element_type tet10_92 DF_VOL 

structural None Displacement 0 R3DISP_FACE 

structural None Pressure_load 70000 R3P_FACE 

 

6.2 Results: FEA Automation and Design Iterations 
 
 This section discusses the performance of the developed attribution tool for the 

aforementioned case studies.  The test procedure for each case study consisted of the 

following process.  First, a set of attributes were applied to solid geometry in Unigraphics 

and subsequently stored in MySQL.  Next, an automated structural analysis was 

performed in ANSYS via the attribute translator macro.  Then, to simulate iterations in an 

optimization routine, the parametric geometry was altered and reanalyzed for several 

different configurations.  To judge the performance of the developed attribution tool, a 

series of questions were posed for the results of each case study.  The questions are as 

follows: 

1. Did the attributes map correctly between Unigraphics and MySQL? 

2. Did the translator program correctly automate the structural analysis in ANSYS? 

3. Were attributes lost after parametric changes in the geometry? 

4. Were attributes lost after changes in topology? 

5. Were changes in attribute values accurately passed to the structural analysis? 
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6. How long did the automated analysis require, including preprocessing, meshing, 

solution, and post-processing? 

6.2.1 Results Case Study 1:  CSG Primitive 

 Seven different configurations were tested using the CSG primitive block from 

case study 1.  Configurations 1-4 included modifications to the parametric geometry, 

while the configurations 5 and 6 incorporated changes in topology.  Configuration 7 is a 

special case and will be discussed separately.  Figure 6.5 shows configurations 1-6 with 

the resultant automated mesh and post-processing results for each. 
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Figure 6.5 Case study 1 results 

 
 The series of questions used to determine the performance of the developed 

attribution tool were applied to each case individually, as well as to the results of all six 

collectively.  The results for each configuration and are summarized in Table 6.4 below.  
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Table 6.4 Case study 1 performance characteristics 

Did the attributes map correctly between Unigraphics and MySQL? Yes 

Did the translator program correctly automate the structural analysis in ANSYS? Yes 

Were attributes lost after parametric changes in the geometry? No 

Were attributes lost after changes in topology? No 

Were changes in attribute values accurately passed to the structural analysis? Yes 

How long did each automated analysis require, including preprocessing, 

meshing, solution, and post-processing? 

~10 

sec. 

 

 In this case study, the attribution tool performed predictably and accurately.  

Attributes applied via the GUI in UG mapped correctly to the attribute tables in MySQL.  

Changes in parametric geometry and topology had no affect upon the attributes stored in 

MySQL.  The translator code executed to completion for each case study without error by 

importing the geometry, applying the pertinent boundary condition and mesh attributes, 

performing the solution, and displaying the post-processed results.  For configuration 3, 

the force applied to the pressure face was modified in the GUI in UG, and the value was 

correctly passed through the MySQL attribute tables into ANSYS.  The time required to 

perform the automated analysis was very low due to the simple geometry used and the 

relatively coarse mesh.   

 It should be noted that, for configurations five and six, there were no topological 

changes to two faces upon whom boundary conditions were applied.  Such a scenario 

pertains to the class of problems known as “the persistent naming problem,” as mentioned 

in Chapter 1.  The persistent naming problem was delimited in this research, but, for the 
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sake of completeness, configuration 7 included topological changes to faces whereupon 

attributes were applied.  The results for configuration 7 are displayed in Figure 6.6.   

 

Figure 6.6 Results case study 1, configuration 7 

  

 The results for this configuration were less predictable than the previous six 

configurations.  A slot feature on each end of the block divided the single faces of the 

pressure face and constraint face.  When the pressure face and the constrained face were 

split into three faces by a slot feature, Unigraphics was forced to create a new name for 

the two new faces, while assigning one of the three faces the name previously assigned to 

the single face.  The translator code still executed to completion without error for this 

configuration, but the user had no control over which of the three faces should inherit the 

attribute associated with the original entity name.  In addition, this problem is highly CAD 

system dependent.  For a given change in topology, different CAD programs will assign 

new names and transfer existing names to topological entities in different manners.  

Therefore, for configurations involving the persistent naming problem, caution should be 

exercised such that the user ensures the correct topological entities inherit the legacy 

attributes as the user intends.  Specifically, for problems involving the persistent naming 

problem, the user must open the GUI in the CAD environment and manually inspect that 

the attributes are applied properly.  Therefore, optimization procedures using the 
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developed attribution tool are not recommended for geometry involving the persistent 

naming problem 

6.2.2 Results Case Study 2: B-Rep Geometry 

 For this case study, 3 different geometric configurations were tested.  

Configuration 1 includes the base geometry described in section 6.2.1.  For configuration 

2, topology changes were introduced via a cylindrical boss cut out from the pressure face.  

Note that, once again, the persistent naming problem arises in this research for 

configuration 2.  Parametric changes were introduced to the base geometry for 

configuration 3.  The shape of the B-rep surface was modified via changes in the location 

of the control points used to define the Bezier curve.  In addition to modifying the 

geometry for configuration 3, it also underwent another test in which the value of its mesh 

density attribute was modified.  In complex analyses, mesh optimization is often just as 

important as geometric optimization.  Therefore, analysts will spend considerable 

resources modifying the mesh attributes without changing the geometry at all.  Thus arises 

the need to verify that the developed attribution tool can be used to modify attribute values 

in optimization loops.  The results for each of the 3 configurations tested for case study 2 

are graphically depicted in Figure 6.7.      
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Figure 6.7 Results case study 2 

 

 The attribution tool performed as expected for each of the configurations tested.  

For configuration 2, in similar fashion to case study 1 configuration 7, it was expected that 

the persistent naming problem would force the CAD system to automatically assign 

attribute names without user input.  For configuration 3, the attribution tool executed 

without error for both changes in the parametric geometry and changes in the mesh 

density attribute value.  The overall performance of the attribution tool for case study 2 

was evaluated by the aforementioned series of questions and the results are summarized in 

Table 6.5 below. 
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Table 6.5 Case study 2 performance characteristics 

Did the attributes map correctly between Unigraphics and MySQL? Yes

Did the translator program correctly automate the structural analysis in ANSYS? Yes

Were attributes lost after parametric changes in the geometry? No 

Were attributes lost after changes in topology? No 

Were changes in attribute values accurately passed to the structural analysis? Yes

How long did each automated analysis require, including preprocessing, 

meshing, solution, and post-processing? 

~10 

sec.

 

 For this case study, all of the attributes applied via the GUI in UG were correctly 

stored in the MySQL attribute tables.  The attribute translator program executed to 

completion for each configuration and no attributes were lost or incorrectly applied after 

changes in parametric geometry or topology.  Attribute values modified in UG were 

accurately modified in the MySQL tables and passed into ANSYS.  The time required to 

automatically perform the preprocessing, analysis, and post-processing was the same as 

that of the configurations used in case study 1.  This is not surprising because the number 

of attributes applied and the number of elements used in the mesh were similar for each 

case.   

6.2.3 Results Case Study 3: Discrete Feature Geometry 

 For this case study, two configurations were used to test the attribution tool’s 

ability to automate procedures where discrete features are involved.  Often times, when a 

user defines discrete features in CAD, he or she will want the same attributes applied to 

the parent discrete feature applied to the children discrete features.  For this case study, 
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attributes were applied to the parent discrete feature, and then the discrete feature was 

copied relative to itself in a 2 x 2 rectangular array.  The results of are graphically 

depicted in Figure 6.8 below.    

 

Figure 6.8 Results case study 3 

 
As can be observed from Figure 6.8, the attributes applied to the parent discrete feature 

were not applied to the children.  In order for the attributes to be copied to the children, 

functionality would have to be added to the GUI and object-oriented data structure that 

would query the CAD database for discrete features.  If discrete features were detected 

having attributes applied to them, the GUI would then query the prompt the user to decide 

whether or not to copy the attributes of the parents.   At the time this research was 

conducted, research was concurrently being conducted by King to explore methods of 

automatically applying attributes for discrete features from parent to child.  This research 
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is complementary to King’s work with discrete feature mapping and is complementary in 

nature.  The addition of King’s work to this work would certainly make the developed 

attribution tool more powerful when dealing with situations where there are large numbers 

of discrete features.  Conversely, this research would complement King’s work by 

bringing order through standardization to the attributes used in his work.  For more 

information on discrete feature attribute mapping, interested readers are encouraged to 

review King (2004).   

 While attributes were not automatically copied from parent to child discrete 

features, the attribution tool developed for this research still accomplished its objective of 

automating structural analysis using attributes stored in MySQL.  Table 6.7 summarizes 

the results of the questions posed to judge the performance of the attribution tool for this 

case study. 

Table 6.6 Case study 3 performance characteristics 

Did the attributes map correctly between Unigraphics and MySQL? Yes 

Did the translator program correctly automate the structural analysis in ANSYS? Yes 

Were attributes lost after parametric changes in the geometry? No 

Were attributes lost after changes in topology? No 

Were changes in attribute values accurately passed to the structural analysis? Yes 

How long did each automated analysis require, including preprocessing, meshing, 

solution, and post-processing? 

~10 

sec. 

 

In spite of the attribution tool’s inability to capture design intent regarding discrete 

features, it otherwise performed as expected, in similar fashion to case studies 1 and 2.   
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CHAPTER 7:  CONCLUSIONS AND RECOMMENDATIONS 
 

  

The objective of this research was to develop a method for applying and managing 

product attributes in the CAD environment in a standardized, customizable manner.  

Specifically, an entire CAD-centric attribution system was conceptually laid-out, 

including a hierarchal set of DBMS attribute tables, a code structure to manage attribute 

information between the DBMS tables and the CAD model, and a code structure to pass, 

translate, and automate attribute information from the DBMS to the CAE application.   

The developed attribution tool interfaces directly with Unigraphics and is capable 

of the following operations: 

• Application of attribute definition to specified CAD object and assign 

value if required 

• Creation of new attribute definitions from the CAD environment and 

subsequent storage in DBMS attribute definition table 

• Attribute extraction from DBMS to CAE application 

• Attribute translation into CAE application commands 

• Automation of CAE processing for all attributes pertaining to respective 

CAE application 

Results for CAE automation of three geometric case studies in an optimization 

environment were collected.  The completeness and validity of the CAD-centric attribute 
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application and CAE automation for several design iterations were assessed and reported 

for all tests performed.  Conclusions were drawn concerning the strengths and weaknesses 

of the attribution tool for CAE automation in an optimization environment.   

It was found that product attribute definitions can be stored in an external DBMS 

and applied directly to geometric entities in the CAD environment.  The storage of 

attributes in an external DBMS is the first step to the creation of a language to 

communicate product attributes universally among CAE applications.  With standardized 

attributes applied to parametric CAD geometry, the CAE applications themselves become 

parametric in nature.  That is, the labor performed for CAE preprocessing is not lost for 

each parametric geometry change; rather, it is reused.  For complex problems requiring 

analyses from several different CAE disciplines, reusable CAE preprocessing becomes 

extremely valuable.    

Through the centralized product data model contained in the CAD file and DBMS 

attribute tables, multiple downstream CAE applications can operate in parallel.  

Furthermore, design changes recommended by the results from one downstream CAE 

analysis can be applied to the CAD geometry without destroying the preprocessing of 

another CAE discipline.  The implications of this capability are twofold: 1. The concurrent 

engineering paradigm is achieved, and 2. Optimization and MDO can more readily 

become part of the design process.   

7.1 Future Work 

 This thesis advances concurrent engineering through attribute standardization, but 

further effort remains before the developed attribution tool fully matures.  Specifically, 

future solutions resulting from research of the persistent naming problem should be 
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integrated with the developed attribution tool.  Due to the persistent naming problem, the 

attribution tool should not be used for optimization procedures wherein topological 

changes are introduced to geometric objects upon which attributes exist.  In addition, 

integration of research done for the discrete feature problem would greatly enhance the 

power of the attribution tool.  Certain optimization problems might include the number of 

discrete features as a design variable.  Integration of the algorithms developed for discrete 

feature attributes would enable the attribution tool to automate optimization procedures 

for discrete features. 

 As mentioned in Chapter 5, the ability of the attribution tool to assign only a single 

value to an attribute is one of the weaknesses of the attribute table DBMS structure.  It 

may prove more useful for future applications to restructure the DBMS tables such that 

the value for each attribute definition could be a matrix of values.  This would make using 

the GUI more convenient as well as reducing the number of fields required to define a 

single attribute.   

The attribute translator code developed for this research is CAE application 

specific.  Development of a translator that is CAE application independent seems 

improbable at this point.  However, if a standardized attribute language were universally 

recognized, it would be a simple task for CAE application developers to include an 

attribute translator code as an accessory to their software. 
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Appendix A: UI Styler GUI Header Files and Source Code 

//File:  Attrdlg.hpp 
//Author: Tyson Baker 
//Date:  April 2004 
 
#ifndef ATTRDLG_H_INCLUDED 
#define ATTRDLG_H_INCLUDED 
  
#include <uf.h>  
#include <uf_defs.h> 
#include <uf_styler.h>  
 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
int CALL_ATTR_DLG(); 
 
/*------------------ UIStyler Dialog Definitions  ------------------- */ 
/* The following values are definitions into your UIStyler dialog.    */ 
/* These values will allow you to modify existing objects within your */ 
/* dialog.   They work directly with the UG/Open API,                 */ 
/* UF_STYLER_ask_value, UF_STYLER_ask_values, and UF_STYLER_set_value.*/ 
/*------------------------------------------------------------------- */ 
  
#define ATTR_PAGE_BEG_0                ("PAGE_BEG_0") 
#define ATTR_OPTION_DOMAIN             ("OPTION_DOMAIN") 
#define ATTR_ACTION_NEW_DOMAIN         ("ACTION_NEW_DOMAIN") 
#define ATTR_ACTION_REFRESH            ("ACTION_REFRESH") 
#define ATTR_OPTION_SUB_DOMAIN         ("OPTION_SUB_DOMAIN") 
#define ATTR_OPTION_TITLE              ("OPTION_TITLE") 
#define ATTR_STR_TYPE                  ("STR_TYPE") 
#define ATTR_ACTION_HELP               ("ACTION_HELP") 
#define ATTR_STR_VALUE                 ("STR_VALUE") 
#define ATTR_ACTION_MULTIOBJECTS       ("ACTION_MULTIOBJECTS") 
#define ATTR_ACTION_CLEAR_OBJ          ("ACTION_CLEAR_OBJ") 
#define ATTR_LIST_MULTIOBJS            ("LIST_MULTIOBJS") 
#define ATTR_PAGE_END_1                ("PAGE_END_1") 
#define ATTR_PAGE_BEG_2                ("PAGE_BEG_2") 
#define ATTR_RC_BEG_19                 ("RC_BEG_19") 
#define ATTR_LABEL_25                  ("LABEL_25") 
#define ATTR_LABEL_26                  ("LABEL_26") 
#define ATTR_LABEL_TITLE               ("LABEL_TITLE") 
#define ATTR_LABEL_VALUE               ("LABEL_VALUE") 
#define ATTR_LABEL_OBJ_NAME            ("LABEL_OBJ_NAME") 
#define ATTR_LIST_DOMAIN               ("LIST_DOMAIN") 
#define ATTR_LIST_SUB_DOMAIN           ("LIST_SUB_DOMAIN") 
#define ATTR_LIST_TITLE                ("LIST_TITLE") 
#define ATTR_LIST_VALUE                ("LIST_VALUE") 
#define ATTR_LIST_OBJ_NAME             ("LIST_OBJ_NAME") 
#define ATTR_RC_END_20                 ("RC_END_20") 
#define ATTR_ACTION_DELETE             ("ACTION_DELETE") 
#define ATTR_PAGE_END_3                ("PAGE_END_3") 
#define ATTR_DIALOG_OBJECT_COUNT       ( 28 ) 
  
  
 
/*---------------- UIStyler Callback Prototypes --------------- */ 
/* The following function prototypes define the callbacks       */ 
/* specified in your UIStyler built dialog.  You are REQUIRED to*/ 
/* create the associated function for each prototype.  You must */ 
/* use the same function name and parameter list when creating  */ 
/* your callback function.                                      */ 
/*------------------------------------------------------------- */ 
 
int ATTR_constructor_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data); 
 
int ATTR_destructor_cb ( int dialog_id, 
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             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data); 
 
int ATTR_ok_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data); 
 
int ATTR_apply_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data); 
 
int ATTR_cancel_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data); 
 
int ATTR_domain_list_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data); 
 
int ATTR_new_domain_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data); 
 
int ATTR_refresh_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data); 
 
int ATTR_sub_domain_list_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data); 
 
int ATTR_title_list_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data); 
 
int ATTR_help_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data); 
 
int ATTR_action_multiobjs ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data); 
 
int ATTR_Clear_Obj_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data); 
 
int ATTR_value_edit_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data); 
 
int ATTR_value_highlight_obj_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data); 
 
int ATTR_delete_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data); 
 
 
 
 
} 
#endif 
 
 
 
#endif /* ATTRDLG_H_INCLUDED */ 
#ifdef __cplusplus 
 
 
 
 
//File:  Attrdlg.cpp 
//Author: Tyson Baker 
//Date:  April 2004 
 
 
 
/* These include files are needed for the following template code.            */ 
#include "UGOpenMaster.hpp" 
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#include "Attrdlg.h" 
#include "UIStylerFuncs.hpp" 
#include "Library.hpp" 
#include "Utilities.hpp" 
#include "Newdomain.h" 
#include <mysql.h> 
#include "Attr.h" 
 
 
Library glib; 
Attribute gatt; 
extern MYSQL *conn; 
//extern vector<double> dbvals; 
 
/* The following definition defines the number of callback entries */ 
/* in the callback structure:                                      */ 
/* UF_STYLER_callback_info_t ATTR_cbs */ 
#define ATTR_CB_COUNT ( 16 + 1 ) /* Add 1 for the terminator */ 
  
/*-------------------------------------------------------------------------- 
The following structure defines the callback entries used by the        
styler file.  This structure MUST be passed into the user function,     
UF_STYLER_create_dialog along with ATTR_CB_COUNT.                        
--------------------------------------------------------------------------*/ 
static UF_STYLER_callback_info_t ATTR_cbs[ATTR_CB_COUNT] =  
{ 
 {UF_STYLER_DIALOG_INDEX, UF_STYLER_CONSTRUCTOR_CB  , 0, ATTR_constructor_cb}, 
 {UF_STYLER_DIALOG_INDEX, UF_STYLER_DESTRUCTOR_CB   , 0, ATTR_destructor_cb}, 
 {UF_STYLER_DIALOG_INDEX, UF_STYLER_OK_CB           , 0, ATTR_ok_cb}, 
 {UF_STYLER_DIALOG_INDEX, UF_STYLER_APPLY_CB        , 0, ATTR_apply_cb}, 
 {UF_STYLER_DIALOG_INDEX, UF_STYLER_CANCEL_CB       , 0, ATTR_cancel_cb}, 
 {ATTR_OPTION_DOMAIN    , UF_STYLER_ACTIVATE_CB     , 0, ATTR_domain_list_cb}, 
 {ATTR_ACTION_NEW_DOMAIN, UF_STYLER_ACTIVATE_CB     , 1, ATTR_new_domain_cb}, 
 {ATTR_ACTION_REFRESH   , UF_STYLER_ACTIVATE_CB     , 0, ATTR_refresh_cb}, 
 {ATTR_OPTION_SUB_DOMAIN, UF_STYLER_ACTIVATE_CB     , 0, ATTR_sub_domain_list_cb}, 
 {ATTR_OPTION_TITLE     , UF_STYLER_ACTIVATE_CB     , 0, ATTR_title_list_cb}, 
 {ATTR_ACTION_HELP      , UF_STYLER_ACTIVATE_CB     , 0, ATTR_help_cb}, 
 {ATTR_ACTION_MULTIOBJECTS, UF_STYLER_ACTIVATE_CB   , 1, ATTR_action_multiobjs}, 
 {ATTR_ACTION_CLEAR_OBJ , UF_STYLER_ACTIVATE_CB     , 0, ATTR_Clear_Obj_cb}, 
 {ATTR_LIST_VALUE       , UF_STYLER_ACTIVATE_CB     , 0, ATTR_value_highlight_obj_cb}, 
 {ATTR_LIST_VALUE       , UF_STYLER_DOUBLE_CLICK_CB , 1, ATTR_value_edit_cb}, 
 {ATTR_ACTION_DELETE    , UF_STYLER_ACTIVATE_CB     , 0, ATTR_delete_cb}, 
 {UF_STYLER_NULL_OBJECT, UF_STYLER_NO_CB, 0, 0 } 
}; 
 
/*-------------------------------------------------------------------------- 
UF_MB_styler_actions_t contains 4 fields.  These are defined as follows: 
  
Field 1 : the name of your dialog that you wish to display. 
Field 2 : any client data you wish to pass to your callbacks. 
Field 3 : your callback structure. 
Field 4 : flag to inform menubar of your dialog location.  This flag MUST   
          match the resource set in your dialog!  Do NOT ASSUME that changing  
          this field will update the location of your dialog.  Please use the  
          UIStyler to indicate the position of your dialog. 
--------------------------------------------------------------------------*/ 
static UF_MB_styler_actions_t actions[] = { 
    { "Attrdlg.dlg",  NULL,   ATTR_cbs,  UF_MB_STYLER_IS_NOT_TOP }, 
    { NULL,  NULL,  NULL,  0 } /* This is a NULL terminated list */ 
}; 
 
 
/*---------------- MENUBAR HOOKUP HELP Example ------------------- 
 
------------------------------------------------------------*/ 
#ifdef MENUBAR_COMMENTED_OUT 
extern void ufsta (char *param, int *retcode, int rlen) 
{ 
    int  error_code; 
  
    if ( (UF_initialize()) != 0)  
          return; 
                                                  
    if ( (error_code = UF_MB_add_styler_actions ( actions ) ) != 0 ) 
    { 
          char fail_message[133]; 
           
          UF_get_fail_message(error_code, fail_message); 
          printf ( "%s\n", fail_message );  
    } 
                                                  

 99



    UF_terminate();                              
    return; 
} 
#endif /*MENUBAR_COMMENTED_OUT*/ 
 
 
/*-------DIALOG CREATION FROM A CALLBACK HELP Example ---------- 
 
--------------------------------------------------------------*/ 
 
//#ifdef DISPLAY_FROM_CALLBACK 
extern int CALL_ATTR_DLG ( ) 
{ 
    int  error_code = 0; 
    int response; 
    if ( ( error_code = UF_initialize() ) != 0 )  
           return (0) ; 
 
    //string dialog = get_comb_dialog_dir("Attrdlg.dlg"); 
 
    if ( ( error_code = UF_STYLER_create_dialog ( "C:\\Attribution\\Attrdlg.dlg", 
           ATTR_cbs,      /* Callbacks from dialog */ 
           ATTR_CB_COUNT, /* number of callbacks*/ 
           NULL,        /* This is your client data */ 
           &response ) ) != 0 ) 
    { 
          char fail_message[133]; 
 
          /* Get the user function fail message based on the fail code.*/ 
          UF_get_fail_message(error_code, fail_message); 
          UF_UI_set_status (fail_message); 
          printf ( "%s\n", fail_message );  
    } 
 
 
    UF_terminate();                              
    return (error_code); 
} 
//#endif /* DISPLAY_FROM_CALLBACK */  
 
 
 
 
/*-------DIALOG CREATION FROM A USER EXIT HELP Example -------- 
 
--------------------------------------------------------------*/ 
 
#ifdef DISPLAY_FROM_USER_EXIT 
extern void <enter a valid user exit here> (char *param, int *retcode, int rlen) 
{ 
    int  response   = 0; 
    int  error_code = 0; 
  
    if ( ( UF_initialize() ) != 0 )  
           return; 
 
    if ( ( error_code = UF_STYLER_create_dialog ( "Attrdlg.dlg", 
           ATTR_cbs,      /* Callbacks from dialog */ 
           ATTR_CB_COUNT, /* number of callbacks*/ 
           NULL,        /* This is your client data */ 
           &response ) ) != 0 ) 
    { 
          char fail_message[133]; 
 
          /* Get the user function fail message based on the fail code.*/ 
          UF_get_fail_message(error_code, fail_message); 
          UF_UI_set_status (fail_message); 
          printf ( "%s\n", fail_message );  
    } 
 
 
    UF_terminate();                              
    return; 
} 
 
 
/*-------------------------------------------------------------------------- 
 
--------------------------------------------------------------------------*/ 
 
extern int ufusr_ask_unload (void) 
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{ 
     /* unload immediately after application exits*/ 
     return ( UF_UNLOAD_IMMEDIATELY ); 
 
     /*via the unload selection dialog... */ 
     /*return ( UF_UNLOAD_SEL_DIALOG );   */ 
     /*when UG terminates...              */ 
     /*return ( UF_UNLOAD_UG_TERMINATE ); */ 
} 
 
/*-------------------------------------------------------------------------- 
 
--------------------------------------------------------------------------*/ 
extern void ufusr_cleanup (void) 
{ 
    return; 
} 
#endif /* DISPLAY_FROM_USER_EXIT */  
 
 
 
 
 
/***************************************************************************/ 
/***************************************************************************/ 
/*-------------------------------------------------------------------------*/ 
/*---------------------- UIStyler Callback Functions ----------------------*/ 
/*-------------------------------------------------------------------------*/ 
/***************************************************************************/ 
/***************************************************************************/ 
 
/* ------------------------------------------------------------------------- 
 * Callback Name: ATTR_constructor_cb 
 * -----------------------------------------------------------------------*/ 
int ATTR_constructor_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data) 
{ 
     /* Make sure User Function is available. */   
     if ( UF_initialize() != 0)  
          return ( UF_UI_CB_CONTINUE_DIALOG ); 
 
  /* ---- Enter your callback code here ----- */ 
 
  char path_and_name[257]; 
  tag_t part = UF_PART_ask_display_part ( ); 
  UF_CALL(UF_PART_ask_part_name (part, path_and_name)); 
 
  char file_name[132], file_path[132]; 
  FilestringDecomp(path_and_name/*257*/, file_name/*132*/, file_path/*132*/); 
 
  cout<<"\n\nfile_name: "<<file_name<<"\nfile_path: "<<file_path<<endl; 
 
  char* slashes = add_slashes((char*)path_and_name);   
  gatt.SetPartName(file_name); 
 
  cout<<"after ask and set part name..."<<endl; 
   
 
//connect to sql server using "attributes" database (check utilities.cpp for more info) 
  sql_connect(); 
  printf("\nYou are currently connected to MySQL server version: %s\n", 
        mysql_get_server_info(conn)); 
 
//get the domains column 
  vector<string> domainAll = select_string_query("select domain from library"); 
 
//erase the repeated domains 
  vector <string> domainsOne = singlize(domainAll); 
//set vector of domains for library data structure 
  glib.setDomainsList(domainsOne); 
 
//fill up the UIS option box with the values in domainsOne 
  UIS_setListString(dialog_id, "OPTION_DOMAIN", glib.getDomainsList(), 0, true); 
 
//insert the part into the parts table using a query 
  vector<string> parts = select_string_query("select part_name from parts"); 
  char whatever[222]; 
  sprintf(whatever, "insert into parts values ('', '%s')", file_name); 
  cout<<"whatever: "<<whatever<<endl; 
  int numrepeat=0; 
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  //check and make sure the part isn't already in the table 
  for (int i=0; i<parts.size(); i++) 
  { 
   if(parts[i]==file_name) 
   { 
    numrepeat++; 
   } 
  } 
  
  //if part name is not already in the parts table, then add it 
  if (numrepeat==0) 
  { 
  int check = mysql_query(conn, (char*)whatever);   //0=success, 1=failure 
  } 
 
   
//if any attributes exist for this part, get them from the database and store them in the 
data structure 
  string query2 = "select parts.id from parts where part_name ='"; 
  query2.append(gatt.GetPartName());  //gatt.GetPartName() set above in this 
function 
  query2.append("'"); 
  vector<int> partid = select_int_query((char*)query2.c_str()); 
  gatt.SetPartID(partid[0]); 
 
  //check for consistency in the object names in the sql database and in the CAD 
database 
  char what[133]; 
  sprintf(what, "select object_name from part_attributes where part_id = %d", 
gatt.GetPartID()); 
  vector<string>objnames = select_string_query(what); 
 
  for (i=0; i<objnames.size(); i++) 
  { 
   tag_t objtag = NULL_TAG; 
   int check = UF_OBJ_cycle_by_name((char*)objnames[i].c_str(), &objtag);   
     
   if(objtag==0)  //if objtag==0, then there's no object w/ that name, thus DELETE 
entry from sql database 
   { 
     sprintf(what, "delete from part_attributes where object_name = '%s'", 
(char*)objnames[i].c_str());  //SQL DELETE 
    cout<<what<<endl; 
    mysql_query(conn, what); 
   } 
  } 
 
  //fill up vectors containing libid, value, object_name 
 
  objnames.clear(); 
  vector<string> values, libids; 
 
  sprintf(what, "select object_name from part_attributes where part_id = %d", 
gatt.GetPartID()); 
  objnames = select_string_query(what); 
  gatt.SetObjNames(objnames); 
   
   
  sprintf(what, "select lib_id from part_attributes where part_id = %d", 
gatt.GetPartID()); 
  libids = select_string_query(what); 
  gatt.SetLibids(libids); 
 
  sprintf(what, "select value from part_attributes where part_id = %d", 
gatt.GetPartID()); 
  values = select_string_query(what); 
  gatt.SetValues(values); 
 
 
  //fill up the UIS fields on page 2 
  UIS_setListString(dialog_id, "LIST_VALUE", gatt.GetValues(), 0, TRUE); 
  UIS_setListString(dialog_id, "LIST_OBJ_NAME", gatt.GetObjNames(), 0, TRUE); 
   
  vector<string> xdomains, ydomains, xsubs, ysubs, xtitle, ytitle; 
  
  for(i=0; i<libids.size(); i++) 
  { 
   sprintf(what, "select domain from library where library.id = %s", 
(char*)libids[i].c_str()); 
   xdomains = select_string_query(what); 
   ydomains.push_back(xdomains[0]); 
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   sprintf(what, "select subdomain from library where library.id = %s", 
(char*)libids[i].c_str()); 
   xsubs = select_string_query(what); 
   ysubs.push_back(xsubs[0]); 
   sprintf(what, "select title from library where library.id = %s", 
(char*)libids[i].c_str()); 
   xtitle = select_string_query(what); 
   ytitle.push_back(xtitle[0]); 
  } 
 
  UIS_setListString(dialog_id, "LIST_DOMAIN", ydomains, 0, TRUE); 
  UIS_setListString(dialog_id, "LIST_SUB_DOMAIN", ysubs, 0, TRUE); 
  UIS_setListString(dialog_id, "LIST_TITLE", ytitle, 0, TRUE); 
 
  gatt.SetDomains(ydomains); 
  gatt.SetSubdomains(ysubs); 
  gatt.SetTitles(ytitle); 
 
 
 
     UF_terminate (); 
   
    /* Callback acknowledged, do not terminate dialog */ 
    return (UF_UI_CB_CONTINUE_DIALOG);  
    /* A return value of UF_UI_CB_EXIT_DIALOG will not be accepted    */ 
    /* for this callback type.  You must continue dialog construction.*/ 
 
} 
 
 
/* ------------------------------------------------------------------------- 
 * Callback Name: ATTR_destructor_cb 
  
 * -----------------------------------------------------------------------*/ 
int ATTR_destructor_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data) 
{ 
     /* Make sure User Function is available. */   
     if ( UF_initialize() != 0)  
          return ( UF_UI_CB_CONTINUE_DIALOG ); 
 
     /* ---- Enter your callback code here ----- */ 
 
     UF_terminate (); 
 
    /* Callback acknowledged, do not terminate dialog.              */ 
    /* A return value of UF_UI_CB_EXIT_DIALOG will not be accepted  */ 
    /* for this callback type.  You must continue dialog destruction*/ 
    return (UF_UI_CB_CONTINUE_DIALOG);  
 
} 
 
 
/* ------------------------------------------------------------------------- 
 * Callback Name: ATTR_ok_cb 
  
 * -----------------------------------------------------------------------*/ 
int ATTR_ok_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data) 
{ 
     /* Make sure User Function is available. */   
     if ( UF_initialize() != 0)  
          return ( UF_UI_CB_CONTINUE_DIALOG ); 
 
     /* ---- Enter your callback code here ----- */ 
 
  mysql_close(conn); 
     UF_terminate (); 
 
    /* Callback acknowledged, terminate dialog             */ 
    /* It is STRONGLY recommended that you exit your       */ 
    /* callback with UF_UI_CB_EXIT_DIALOG in a ok callback.*/ 
    /* return ( UF_UI_CB_EXIT_DIALOG );                    */ 
    return (UF_UI_CB_EXIT_DIALOG);                            
 
} 
 
 
/* ------------------------------------------------------------------------- 
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 * Callback Name: ATTR_apply_cb 
 
 * -----------------------------------------------------------------------*/ 
int ATTR_apply_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data) 
{ 
     /* Make sure User Function is available. */   
     if ( UF_initialize() != 0)  
          return ( UF_UI_CB_CONTINUE_DIALOG ); 
 
     /* ---- Enter your callback code here ----- */ 
 
//get the values from domain, subdomain, title and type fields 
  int whichsub = UIS_getIntValue(dialog_id, "OPTION_SUB_DOMAIN"); 
  int whichdom = UIS_getIntValue(dialog_id, "OPTION_DOMAIN"); 
  int whichtitle = UIS_getIntValue(dialog_id, "OPTION_TITLE"); 
  string title = glib.getTitleList()[whichtitle]; 
  string domain = glib.getDomainsList()[whichdom]; 
  string subdomain = glib.getSubDomainList()[whichsub]; 
  char* type = UIS_getStringValue(dialog_id, "STR_TYPE"); 
 
  vector<string> monames = gatt.GetMultiObjNames(); 
     //run a loop to create an attribute for every object name in mMultiObjNames 
  for (int i=0; i<monames.size(); i++) 
  { 
       //get the lib_id of the selected attribute 
    string query = "SELECT library.id FROM library where subdomain = '"; 
    query.append(subdomain); 
    query.append("' and type = '"); 
    query.append(type); 
    query.append("' and domain = '"); 
    query.append(domain); 
    query.append("' and title = '"); 
    query.append(title); 
    query.append("'"); 
 
    vector<int> libid = select_int_query((char*)query.c_str()); 
    gatt.SetLibID(libid[0]); 
 
 
       //insert record into part_attributes (id, part_id, lib_id, value, 
object_name) 
    string query3 = "insert into part_attributes values(NULL, "; 
     
    char charpid[66]; 
    char charlid[66]; 
    itoa(gatt.GetLibID(), charlid, 10); 
    itoa(gatt.GetPartID(), charpid, 10); 
    query3.append(charpid); 
    query3.append(", "); 
    query3.append(charlid); 
     
    if (glib.getType()=="string" 
||glib.getType()=="integer"||glib.getType()=="double") 
    { 
     query3.append(", '"); 
     char* vstr =  UIS_getStringValue(dialog_id, "STR_VALUE"); 
     gatt.SetValue(vstr); 
 
     query3.append(vstr); 
     query3.append("', '"); 
    } 
 
    else 
    { 
     query3.append(",'', '"); 
     gatt.SetValue(""); 
    } 
     
    query3.append(monames[i]); 
    query3.append("')"); 
 
    cout<<query3<<endl; 
    mysql_query(conn, (char*)query3.c_str());//***************** DO QUERY - 
with object name 
    
 
    
    //add the applied attribute to the list of attributes on page 2 
    vector<string> ydomains = gatt.GetDomains(); 
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    vector<string> ysubs = gatt.GetSubdomains(); 
    vector<string> ytitles = gatt.GetTitles(); 
    vector<string> yvalues = gatt.GetValues(); 
    vector<string> yobjnames = gatt.GetObjNames(); 
 
    //add the new attribute to the vectors in the data structure 
    ydomains.push_back(domain); 
    ysubs.push_back(subdomain); 
    ytitles.push_back(title); 
    yvalues.push_back(gatt.GetValue()); 
    //yobjnames.push_back(gatt.GetObjectName()); 
    yobjnames.push_back(monames[i]); 
 
    //set the values in the data structure 
    gatt.SetDomains(ydomains); 
    gatt.SetSubdomains(ysubs); 
    gatt.SetTitles(ytitles); 
    gatt.SetValues(yvalues); 
    gatt.SetObjNames(yobjnames); 
 
    //fill in the selection boxes 
    UIS_setListString(dialog_id, "LIST_DOMAIN", ydomains, 0, TRUE); 
    UIS_setListString(dialog_id, "LIST_SUB_DOMAIN", ysubs, 0, TRUE); 
    UIS_setListString(dialog_id, "LIST_TITLE", ytitles, 0, TRUE); 
    UIS_setListString(dialog_id, "LIST_VALUE", yvalues, 0, TRUE); 
    UIS_setListString(dialog_id, "LIST_OBJ_NAME", yobjnames, 0, TRUE); 
 
   } 
 
   
     UF_terminate (); 
 
    /* Callback acknowledged, do not terminate dialog                 */ 
    /* A return value of UF_UI_CB_EXIT_DIALOG will not be accepted    */ 
    /* for this callback type.  You must respond to your apply button.*/ 
    return (UF_UI_CB_CONTINUE_DIALOG);  
 
} 
 
 
/* ------------------------------------------------------------------------- 
 * Callback Name: ATTR_cancel_cb 
 
 * -----------------------------------------------------------------------*/ 
int ATTR_cancel_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data) 
{ 
     /* Make sure User Function is available. */   
     if ( UF_initialize() != 0)  
          return ( UF_UI_CB_CONTINUE_DIALOG ); 
 
     /* ---- Enter your callback code here ----- */ 
 
  mysql_close(conn); 
     UF_terminate (); 
 
    /* Callback acknowledged, terminate dialog             */ 
    /* It is STRONGLY recommended that you exit your       */ 
    /* callback with UF_UI_CB_EXIT_DIALOG in a cancel call */ 
    /* back rather than UF_UI_CB_CONTINUE_DIALOG.          */ 
    return ( UF_UI_CB_EXIT_DIALOG );                        
 
} 
 
 
/* ------------------------------------------------------------------------- 
 * Callback Name: ATTR_domain_list_cb************************************* 
 
 * -----------------------------------------------------------------------*/ 
int ATTR_domain_list_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data) 
{ 
     /* Make sure User Function is available. */   
     if ( UF_initialize() != 0)  
          return ( UF_UI_CB_CONTINUE_DIALOG ); 
 
     /* ---- Enter your callback code here ----- */ 
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  vector <string> domains, subdomains; // domains initially set in constructor_cb 
  domains = glib.getDomainsList(); 
   
   
//get the int associated w/ the selected domain option 
  int which = UIS_getIntValue(dialog_id, "OPTION_DOMAIN"); 
  string query = "select library.subdomain from library where library.domain = '";   
  query.append(domains[which]); 
  query.append("'"); 
 
// get the list of all the subdomains from the subdomain column in the library table 
  vector<string> subdomainAll = select_string_query((char*)query.c_str()); 
   
  //throw away the repeated subdomains 
  vector<string> subdomainOne = singlize(subdomainAll); 
 
  glib.setSubDomainList(subdomainOne); 
 
  UIS_setListString(dialog_id, "OPTION_SUB_DOMAIN", glib.getSubDomainList(), 0, true); 
   
 
     UF_terminate (); 
 
    /* Callback acknowledged, do not terminate dialog */ 
    return (UF_UI_CB_CONTINUE_DIALOG);  
     
    /* or Callback acknowledged, terminate dialog.    */ 
    /* return ( UF_UI_CB_EXIT_DIALOG );               */ 
 
} 
 
 
/* ------------------------------------------------------------------------- 
 * Callback Name: ATTR_new_domain_cb================================>>>>>> 
  
 * -----------------------------------------------------------------------*/ 
int ATTR_new_domain_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data) 
{ 
     /* Make sure User Function is available. */   
     if ( UF_initialize() != 0)  
          return ( UF_UI_CB_CONTINUE_DIALOG ); 
 
     /* ---- Enter your callback code here ----- */ 
    
  CALL_NEWDOMAIN_DLG(); 
   
     UF_terminate (); 
 
    /* Callback acknowledged, do not terminate dialog */ 
    return (UF_UI_CB_CONTINUE_DIALOG);  
     
    /* or Callback acknowledged, terminate dialog.    */ 
    /* return ( UF_UI_CB_EXIT_DIALOG );               */ 
 
} 
 
/* ------------------------------------------------------------------------- 
 * Callback Name: ATTR_refresh_cb 
 
 * -----------------------------------------------------------------------*/ 
int ATTR_refresh_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data) 
{ 
     /* Make sure User Function is available. */   
     if ( UF_initialize() != 0)  
          return ( UF_UI_CB_CONTINUE_DIALOG ); 
 
     /* ---- Enter your callback code here ----- */ 
 
//get the domains column 
  vector<string> domainAll = select_string_query("select domain from library"); 
 
//erase the repeated domains 
  vector <string> domainsOne = singlize(domainAll); 
//set vector of domains for library data structure 
  glib.setDomainsList(domainsOne); 
 
//fill up the UIS option box with the values in domainsOne 
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  UIS_setListString(dialog_id, "OPTION_DOMAIN", glib.getDomainsList(), 0, true); 
 
 
     UF_terminate (); 
 
    /* Callback acknowledged, do not terminate dialog */ 
    return (UF_UI_CB_CONTINUE_DIALOG);  
     
    /* or Callback acknowledged, terminate dialog.    */ 
    /* return ( UF_UI_CB_EXIT_DIALOG );               */ 
 
} 
 
 
/* ------------------------------------------------------------------------- 
 * Callback Name: ATTR_sub_domain_list_cb************************************ 
  
 * -----------------------------------------------------------------------*/ 
int ATTR_sub_domain_list_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data) 
{ 
     /* Make sure User Function is available. */   
     if ( UF_initialize() != 0)  
          return ( UF_UI_CB_CONTINUE_DIALOG ); 
 
     /* ---- Enter your callback code here ----- */ 
 
  int which = UIS_getIntValue(dialog_id, "OPTION_SUB_DOMAIN"); 
  int whichdom = UIS_getIntValue(dialog_id, "OPTION_DOMAIN"); 
  vector <string> domains, subdomains, titles; 
         
  domains = glib.getDomainsList(); 
  subdomains = glib.getSubDomainList(); 
     
  string query = "select title from library where domain = '"; 
  query.append(domains[whichdom]); 
  query.append("' and subdomain = '"); 
  query.append(subdomains[which]); 
  query.append("'"); 
 
  titles = select_string_query((char*)query.c_str()); 
 
  glib.setTitlesList(titles); 
   
  UIS_setListString(dialog_id, "OPTION_TITLE", glib.getTitleList(), 0, true); 
 
     UF_terminate (); 
 
    /* Callback acknowledged, do not terminate dialog */ 
    return (UF_UI_CB_CONTINUE_DIALOG);  
     
    /* or Callback acknowledged, terminate dialog.    */ 
    /* return ( UF_UI_CB_EXIT_DIALOG );               */ 
 
} 
 
 
/* ------------------------------------------------------------------------- 
 * Callback Name: ATTR_title_list_cb 
 * -----------------------------------------------------------------------*/ 
int ATTR_title_list_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data) 
{ 
     /* Make sure User Function is available. */   
     if ( UF_initialize() != 0)  
          return ( UF_UI_CB_CONTINUE_DIALOG ); 
 
     /* ---- Enter your callback code here ----- */ 
  int whichsub = UIS_getIntValue(dialog_id, "OPTION_SUB_DOMAIN"); 
  int whichdom = UIS_getIntValue(dialog_id, "OPTION_DOMAIN"); 
  int whichtitle = UIS_getIntValue(dialog_id, "OPTION_TITLE"); 
  vector <string> domains, subdomains, titles; 
   
  domains = glib.getDomainsList(); 
  subdomains = glib.getSubDomainList(); 
  titles = glib.getTitleList(); 
  
  string query = "select type from library where domain = '"; 
  query.append(domains[whichdom]); 
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  query.append("' and subdomain = '"); 
  query.append(subdomains[whichsub]); 
  query.append("' and title = '"); 
  query.append(titles[whichtitle]); 
  query.append("'"); 
 
  vector<string> types = select_string_query((char*) query.c_str()); 
  glib.setType(types[0]); 
 
 
  //UIS_setStringValue(dialog_id, "STR_TYPE", (char*)types[0].c_str()); 
  UIS_setStringValue(dialog_id, "STR_TYPE", (char*)glib.getType().c_str()); 
 
  //set the sensitivity of the values based on type 
  string type = glib.getType(); 
  if (type == "integer") 
  { 
  UIS_setSingleSens(dialog_id, "INT_VALUE", 0); 
  UIS_setSingleSens(dialog_id, "STR_VALUE", 1); 
  UIS_setSingleSens(dialog_id, "REAL_VALUE", 0); 
  } 
  else if (type == "string") 
  { 
  UIS_setSingleSens(dialog_id, "STR_VALUE", 1); 
  UIS_setSingleSens(dialog_id, "REAL_VALUE", 0); 
  UIS_setSingleSens(dialog_id, "INT_VALUE", 0); 
  } 
  else if (type == "double") 
  { 
  UIS_setSingleSens(dialog_id, "REAL_VALUE", 0); 
  UIS_setSingleSens(dialog_id, "INT_VALUE", 0); 
  UIS_setSingleSens(dialog_id, "STR_VALUE", 1); 
  } 
  else 
  { 
   UIS_setSingleSens(dialog_id, "REAL_VALUE", 0); 
  UIS_setSingleSens(dialog_id, "INT_VALUE", 0); 
  UIS_setSingleSens(dialog_id, "STR_VALUE", 0); 
  } 
 
     UF_terminate (); 
 
    /* Callback acknowledged, do not terminate dialog */ 
    return (UF_UI_CB_CONTINUE_DIALOG);  
     
    /* or Callback acknowledged, terminate dialog.    */ 
    /* return ( UF_UI_CB_EXIT_DIALOG );               */ 
 
} 
 
 
 
/* ------------------------------------------------------------------------- 
 * Callback Name: ATTR_Clear_Obj_cb 
  
 * -----------------------------------------------------------------------*/ 
 
int ATTR_Clear_Obj_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data) 
{ 
     /* Make sure User Function is available. */   
     if ( UF_initialize() != 0)  
          return ( UF_UI_CB_CONTINUE_DIALOG ); 
 
     /* ---- Enter your callback code here ----- */ 
   
  vector<string> junk = gatt.GetMultiObjNames(); 
  junk.clear(); 
  gatt.SetMultiObjNames(junk); 
  UIS_clearList( dialog_id, "LIST_MULTIOBJS"); 
 
     UF_terminate (); 
 
    /* Callback acknowledged, do not terminate dialog */ 
    return (UF_UI_CB_CONTINUE_DIALOG);  
     
    /* or Callback acknowledged, terminate dialog.    */ 
    /* return ( UF_UI_CB_EXIT_DIALOG );               */ 
 
} 
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/* ------------------------------------------------------------------------- 
   Callback Name:  ATTR_value_edit_cb   
 * -----------------------------------------------------------------------*/ 
int ATTR_value_edit_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data) 
{ 
     /* Make sure User Function is available. */   
     if ( UF_initialize() != 0)  
          return ( UF_UI_CB_CONTINUE_DIALOG ); 
 
     /* ---- Enter your callback code here ----- */ 
 
  //on double-click, bring up a box that allows you to change the value 
  vector <int> which = UIS_getListInt(dialog_id, "LIST_VALUE"); 
  vector<string> values = gatt.GetValues(); 
 
  vector<string> domains = gatt.GetDomains(); 
  vector<string> subdomains = gatt.GetSubdomains(); 
  vector<string> titles = gatt.GetTitles(); 
  vector<string> objnames = gatt.GetObjNames(); 
 
  char libidquery[222]; 
  sprintf(libidquery, "select id from library where domain = '%s' and subdomain = '%s' 
and title = '%s'", 
   (char*)domains[which[0]].c_str(), (char*)subdomains[which[0]].c_str(), 
(char*)titles[which[0]].c_str()); 
  //cout<<"libidquery: "<<libidquery<<endl; 
 
  vector<int> id = select_int_query(libidquery); 
  //cout<<"id[0]: "<<id[0]<<endl; 
 
  char paidquery[222]; 
  sprintf(paidquery, "select id from part_attributes where object_name = '%s' and 
lib_id = %d and value = '%s' and part_id = %d", 
   (char*)objnames[which[0]].c_str(), id[0], (char*)values[which[0]].c_str(), 
gatt.GetPartID()); 
  vector<int> paid = select_int_query(paidquery); 
  //cout<<"paid[0]: "<<paid[0]<<", paid.size: "<<paid.size()<<endl; 
   
  int ir3=0; 
  char ca1[144]; 
  sprintf(ca1, "Enter new value"); 
  string ca2 = values[which[0]]; 
  int resp = UF_CALL(uc1600 (ca1,  (char*)ca2.c_str(), &ir3 )); 
  cout<<"ca2new: "<<ca2<<endl; 
  values[which[0]]=ca2; 
  gatt.SetValues(values); 
  UIS_setListString(dialog_id, "LIST_VALUE", gatt.GetValues(), 0, TRUE); 
 
  char valquery[222]; 
  sprintf(valquery, "select value from part_attributes where lib_id = %d and 
object_name = '%s' and part_id = %d", 
   id[0], (char*)objnames[which[0]].c_str(), gatt.GetPartID()); 
  //cout<<"valquery: "<<valquery<<endl; 
  char valupdate[222]; 
  sprintf(valupdate, "update part_attributes set value = '%s' where id=%d", 
(char*)ca2.c_str(), paid[0]); 
  mysql_query(conn, (char*)valupdate); 
 
 
  vector<string> value = select_string_query(valquery); 
  cout<<"dbvalue: "<<value[0]<<endl; 
 
     UF_terminate (); 
 
    /* Callback acknowledged, do not terminate dialog */ 
    return (UF_UI_CB_CONTINUE_DIALOG);  
     
    /* or Callback acknowledged, terminate dialog.  */ 
    /* return ( UF_UI_CB_EXIT_DIALOG );             */ 
 
} 
 
/* ------------------------------------------------------------------------- 
 * Callback Name: ATTR_value_highlight_obj_cb 
 * -----------------------------------------------------------------------*/ 
int ATTR_value_highlight_obj_cb ( int dialog_id, 
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             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data) 
{ 
     /* Make sure User Function is available. */   
     if ( UF_initialize() != 0)  
          return ( UF_UI_CB_CONTINUE_DIALOG ); 
 
     /* ---- Enter your callback code here ----- */ 
  vector <int> which = UIS_getListInt(dialog_id, "LIST_VALUE"); 
  cout<<"which highlight: "<<which[0]<<endl; 
  vector<string> objnames = gatt.GetObjNames(); 
  cout<<"hightlight objname: "<<objnames[which[0]]<<endl; 
 
  vector<string> sobjnames = singlize (objnames); 
  for (int i=0; i<sobjnames.size(); i++) 
  { 
   if (sobjnames[i]==objnames[which[0]]) 
   { 
    //highlight that object 
    tag_t object_id = NULL_TAG; 
    UF_OBJ_cycle_by_name ((char*)objnames[which[0]].c_str(), &object_id ); 
    UF_DISP_set_highlight (object_id, 1 ); //0=off, 1=on 
   } 
   else 
   { 
    //turn off highlight 
    tag_t objectoff_id = NULL_TAG; 
    UF_OBJ_cycle_by_name ((char*)sobjnames[i].c_str(), &objectoff_id ); 
    UF_DISP_set_highlight (objectoff_id, 0 ); 
   } 
  } 
   
 
     UF_terminate (); 
 
    /* Callback acknowledged, do not terminate dialog */ 
    return (UF_UI_CB_CONTINUE_DIALOG);  
     
    /* or Callback acknowledged, terminate dialog.    */ 
    /* return ( UF_UI_CB_EXIT_DIALOG );               */ 
 
} 
 
 
 
/* ------------------------------------------------------------------------- 
 * Callback Name: ATTR_delete_cb 
 * -----------------------------------------------------------------------*/ 
int ATTR_delete_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data) 
{ 
     /* Make sure User Function is available. */   
     if ( UF_initialize() != 0)  
          return ( UF_UI_CB_CONTINUE_DIALOG ); 
 
     /* ---- Enter your callback code here ----- */ 
 
  //int which = UIS_getIntValue(dialog_id, "LIST_VALUE"); 
  vector<int> which = UIS_getListInt(dialog_id, "LIST_VALUE"); 
  cout<<"which: "<<which[0]<<endl; 
 
  vector<string> ydomains = gatt.GetDomains(); 
  vector<string> ysubs = gatt.GetSubdomains(); 
  vector<string> ytitles = gatt.GetTitles(); 
  vector<string> yvalues = gatt.GetValues(); 
  vector<string> yobjnames = gatt.GetObjNames(); 
 
  
  //give a warning before you delete it 
  /*char* title_string = "WARNING"; 
  UF_UI_MESSAGE_DIALOG_TYPE dialog_type = UF_UI_MESSAGE_WARNING; 
  char* messages = "Delete the attribute?"; 
  UF_UI_message_buttons_t  buttons = { TRUE, TRUE, FALSE, "YES", "NO", NULL, 1, 2, 0 
}; 
  int response; 
  UF_CALL(UF_UI_message_dialog (title_string, dialog_type, &messages, 1, FALSE,  
&buttons, &response ));*/ 
 
  //if(response==1) 
  //{ 
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  if(yvalues.size()>0) 
  { 
   //delete it from the sql database 
   char what[222]; 
   sprintf(what, "select library.id from library where domain='%s' and 
subdomain='%s' and title='%s'",  
    (char*)ydomains[which[0]].c_str(), (char*)ysubs[which[0]].c_str(),  
    (char*)ytitles[which[0]].c_str()); 
 
   cout<<"what1:   "<<what<<endl; 
    
   vector<int> libids = select_int_query(what); 
 
   sprintf(what, "delete from part_attributes where object_name = '%s' and value = 
'%s' and lib_id = %d and part_id = %d",  
    (char*)yobjnames[which[0]].c_str(), (char*)yvalues[which[0]].c_str(), 
libids[0], gatt.GetPartID());   
 
   cout<<"what2:  "<<what<<endl; 
 
   mysql_query(conn, what); 
 
    
   //delete the 'which' from the vectors 
   ydomains.erase(ydomains.begin() + which[0]); 
   ysubs.erase(ysubs.begin() + which[0]); 
   ytitles.erase(ytitles.begin() + which[0]); 
   yvalues.erase(yvalues.begin() + which[0]); 
   yobjnames.erase(yobjnames.begin() + which[0]); 
   
   //set the values in the data structure 
   gatt.SetDomains(ydomains); 
   gatt.SetSubdomains(ysubs); 
   gatt.SetTitles(ytitles); 
   gatt.SetValues(yvalues); 
   gatt.SetObjNames(yobjnames); 
 
   //fill in the selection boxes 
   if(yvalues.size()>1) 
   { 
    cout<<"Size>1"<<endl; 
    UIS_setListString(dialog_id, "LIST_DOMAIN", ydomains, 0, TRUE); 
    UIS_setListString(dialog_id, "LIST_SUB_DOMAIN", ysubs, 0, TRUE); 
    UIS_setListString(dialog_id, "LIST_TITLE", ytitles, 0, TRUE); 
    UIS_setListString(dialog_id, "LIST_VALUE", yvalues, 0, TRUE); 
    UIS_setListString(dialog_id, "LIST_OBJ_NAME", yobjnames, 0, TRUE); 
   } 
   else 
   { 
    cout<<"Size=1"<<endl; 
    UIS_removeListItem( dialog_id, "LIST_DOMAIN", 0); 
    UIS_removeListItem( dialog_id, "LIST_SUB_DOMAIN", 0); 
    UIS_removeListItem( dialog_id, "LIST_TITLE", 0); 
    UIS_removeListItem( dialog_id, "LIST_VALUE", 0); 
    UIS_removeListItem( dialog_id, "LIST_OBJ_NAME", 0); 
   } 
  } 
    
  //} 
 
     UF_terminate (); 
 
    /* Callback acknowledged, do not terminate dialog */ 
    return (UF_UI_CB_CONTINUE_DIALOG);  
     
    /* or Callback acknowledged, terminate dialog.    */ 
    /* return ( UF_UI_CB_EXIT_DIALOG );               */ 
 
} 
 
 
/* ------------------------------------------------------------------------- 
 * Callback Name: ATTR_action_multiobjs 
 
 * -----------------------------------------------------------------------*/ 
int ATTR_action_multiobjs ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data) 
{ 
     /* Make sure User Function is available. */   
     if ( UF_initialize() != 0)  
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          return ( UF_UI_CB_CONTINUE_DIALOG ); 
 
     /* ---- Enter your callback code here ----- */ 
  tag_t *objects; 
  int cnt =  select_class_dialog("Select Objects", &objects); 
  cout<<"cnt: "<<cnt<<endl; 
 
  char name[133]; 
  int check = 7; 
  vector<string> objnames; 
  for (int i=0; i<cnt; i++) 
  { 
  check = UF_OBJ_ask_name (objects[i], name); 
  if(check == 0) 
  { 
   cout<<"name: "<<name<<endl; 
   objnames.push_back(name); 
  } 
  else 
  { 
   cout<<"obj "<<i<<" has no name"<<endl; 
   int ir3=0; 
   char ca1[144]; 
   sprintf(ca1, "Enter OBJECT %d name", i); 
   char ca2[133]; 
   sprintf(ca2,"Enter_obj%d_name_no_spaces", i); 
   int resp = UF_CALL(uc1600 (ca1,  ca2, &ir3 )); 
   tag_t obj_tag = NULL_TAG;  
   UF_CALL(UF_OBJ_cycle_by_name (ca2, &obj_tag )); 
 
   if(obj_tag==0) 
   { 
    UF_CALL(UF_OBJ_set_name (objects[i], ca2 )); 
    char capsname[33]; 
    UF_OBJ_ask_name (objects[i], capsname); 
    //objnames.push_back(ca2); 
    objnames.push_back(capsname); 
    //gatt.SetObjectName(ca2); 
   } 
   else 
   { 
     
    char* title_string = "WARNING"; 
    UF_UI_MESSAGE_DIALOG_TYPE dialog_type = UF_UI_MESSAGE_WARNING; 
    char* messages = "Non-unique object name!  Object name will not be 
set.\nTry again with a different name."; 
    UF_UI_message_buttons_t  buttons = { TRUE, FALSE, FALSE, "OK", NULL, 
NULL, 1, 0, 0 }; 
    int response; 
    UF_CALL(UF_UI_message_dialog (title_string, dialog_type, &messages,  
     1, FALSE,  &buttons, &response )); 
 
   } 
  } 
  } 
 
 
  UIS_setListString(dialog_id, "LIST_MULTIOBJS", objnames, 0, TRUE); 
  gatt.SetMultiObjNames(objnames); 
   
 
     UF_terminate (); 
 
    /* Callback acknowledged, do not terminate dialog */ 
    return (UF_UI_CB_CONTINUE_DIALOG);  
     
    /* or Callback acknowledged, terminate dialog.    */ 
    /* return ( UF_UI_CB_EXIT_DIALOG );               */ 
 
} 
 
 
/* ------------------------------------------------------------------------- 
 * Callback Name: ATTR_help_cb 
 * -----------------------------------------------------------------------*/ 
int ATTR_help_cb ( int dialog_id, 
             void * client_data, 
             UF_STYLER_item_value_type_p_t callback_data) 
{ 
     /* Make sure User Function is available. */   
     if ( UF_initialize() != 0)  
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          return ( UF_UI_CB_CONTINUE_DIALOG ); 
 
     /* ---- Enter your callback code here ----- */ 
 
     UF_terminate (); 
 
    /* Callback acknowledged, do not terminate dialog */ 
    return (UF_UI_CB_CONTINUE_DIALOG);  
     
    /* or Callback acknowledged, terminate dialog.    */ 
    /* return ( UF_UI_CB_EXIT_DIALOG );               */ 
 
} 
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Appendix B: Attribute and Library Class Headers and Source  

 
//File:  Attr.hpp 
//Author:  Tyson Baker 
//Date:  April 2004 
 
#include "UGOpenMaster.hpp" 
 
class Attribute 
{ 
 public: 
 
  Attribute(); 
  ~Attribute(void); 
 
  void SetObject(tag_t object); 
  void SetObjectName(string objectname); 
  void SetPartName(string name); 
  void SetLibID(int libid); 
  void SetPartID(int partid); 
  void SetValues(vector<string> values); 
  void SetLibids(vector<string> libids); 
  void SetObjNames(vector<string> objnames); 
  void SetDomains(vector<string> domains); 
  void SetSubdomains(vector<string> subdomains); 
  void SetTitles(vector<string> titles); 
  void SetValue(string value); 
  void SetMultiObjNames(vector<string> monames); 
 
  tag_t GetObject(){return mObject;} 
  string GetObjectName(){return mObjectName;} 
  string GetPartName(){return mPartName;} 
  int  GetLibID(){return mLibID;} 
  int  GetPartID(){return mPartID;} 
  vector<string> GetValues(){return mValues;} 
  vector<string> GetLibids(){return mLibids;} 
  vector<string> GetObjNames(){return mObjNames;} 
  vector<string> GetDomains(){return mDomains;} 
  vector<string> GetSubdomains(){return mSubdomains;} 
  vector<string> GetTitles(){return mTitles;} 
  string GetValue(){return mValue;} 
 
  vector<string> GetMultiObjNames(){return mMultiObjNames;} 
 
 
  
 private: 
   
  string mPartName; 
  tag_t mObject; 
  string mObjectName; 
  string mValue; 
  vector<string> mValues; 
  vector<string> mLibids; 
  vector<string> mObjNames; 
  vector<string> mDomains; 
  vector<string> mSubdomains; 
  vector<string> mTitles; 
 
  vector<string> mMultiObjNames; 
 
  int  mPartID; 
  int  mLibID; 
   
 
};  

 

//File:  Attr.cpp 
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//Author:  Tyson Baker 
//Date:  April 2004 
 
#include "Attr.h" 
 
Attribute::Attribute() 
{ 
 
} 
 
 
Attribute::~Attribute() 
{ 
 
} 
 
void Attribute::SetPartName(string name) 
{ 
 mPartName = name; 
} 
 
void Attribute::SetObject(tag_t object) 
{ 
 mObject = object; 
} 
 
void Attribute::SetObjectName(string objectname) 
{ 
 mObjectName = objectname; 
} 
 
void Attribute::SetLibID(int libid) 
{ 
 mLibID = libid; 
} 
 
void Attribute::SetPartID(int partid) 
{ 
 mPartID = partid; 
} 
 
void Attribute::SetValues(vector<string> values) 
{ 
 mValues.clear(); 
 mValues = values; 
} 
 
void Attribute::SetLibids(vector<string> libids) 
{ 
 mLibids.clear(); 
 mLibids = libids; 
} 
 
void Attribute::SetObjNames(vector<string> objnames) 
{ 
 mObjNames.clear(); 
 mObjNames = objnames; 
} 
 
void Attribute::SetDomains(vector<string> domains) 
{ 
 mDomains.clear(); 
 mDomains = domains; 
} 
 
void Attribute::SetSubdomains(vector<string> subdomains) 
{ 
 mSubdomains.clear(); 
 mSubdomains = subdomains; 
} 
 
 
void Attribute::SetTitles(vector<string> titles) 
{ 
 mTitles.clear(); 
 mTitles = titles; 
} 
 
void Attribute::SetValue(string value) 
{ 
 mValue = value; 
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} 
 
void Attribute::SetMultiObjNames(vector<string> monames) 
{ 
 mMultiObjNames = monames; 
} 
 
 
 
//File:  Library.hpp 
//Author:  Tyson Baker 
//Date:  April 2004 
 
#include "UGOpenMaster.hpp" 
 
class Library 
{ 
public: 
 Library(); 
 ~Library(void); 
 
 vector <string> getDomainsList(){return mDomainsList;} 
 vector <string> getTitleList(){return mTitleList;} 
 vector <string> getSubDomainList(){return mSubDomainList;} 
 //vector <string> getTokens(){return mTokens;} 
 string   getTitle(){return mTitle;} 
 string   getDomain(){return mDomain;} 
 string   getSubdomain(){return mSubdomain;} 
 string   getType(){return mType;} 
  
 
 //void setTokens(vector<string> tokens); 
 void setDomainsList(vector<string> domains); 
 void setSubDomainList(vector<string> subdomains); 
 void setTitlesList(vector<string> titles); 
 void setTitle(string title); 
 void setDomain(string domain); 
 void setSubdomain(string subdomain); 
 void setType(string type); 
 
  
 
 
private: 
 //vector <string> mTokens; 
 vector <string> mDomainsList; 
 vector <string> mTitleList; 
 vector <string> mSubDomainList; 
 
 string   mTitle; 
 string   mDomain; 
 string   mSubdomain; 
 string   mType; 
  
}; 
 
 
//File:  Library.hpp 
//Author:  Tyson Baker 
//Date:  April 2004 
 
#include "Library.hpp" 
 
Library::Library() 
{ 
 
} 
 
Library::~Library() 
{ 
 
} 
 
 
void Library::setDomainsList(vector <string> domains) 
{ 
 mDomainsList.clear(); 
 for (int i=0; i<domains.size(); i++) 
  mDomainsList.push_back(domains[i]); 
} 
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void Library::setSubDomainList(vector<string> subdomains) 
{ 
 mSubDomainList.clear(); 
 for (int i=0; i<subdomains.size(); i++) 
  mSubDomainList.push_back(subdomains[i]); 
} 
 
 
void Library::setTitlesList(vector<string> titles) 
{ 
 mTitleList.clear(); 
 for (int i=0; i<titles.size(); i++) 
  mTitleList.push_back(titles[i]); 
 
} 
 
void Library::setDomain(string domain) 
{ 
 mDomain = domain; 
} 
 
void Library::setSubdomain(string subdomain) 
{ 
 mSubdomain = subdomain; 
} 
 
void Library::setTitle(string title) 
{ 
 mTitle = title; 
} 
 
void Library::setType(string type) 
{ 
 mType = type; 
} 
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Appendix C: Attribute Translator Code 

proc loadmysqltcl { dir } { 
    set oldcwd [pwd] 
    cd $dir 
    load mysqltcl[info sharedlibextension] 
    cd $oldcwd 
} 
 
puts "<<<-------------IT STARTS HERE--------------->>>" 
 
set dir "c:/windows/system32" 
loadmysqltcl $dir 
package ifneeded mysqltcl 2.50 [list loadmysqltcl $dir] 
 
#----------------------------------------------- 
#connect to the sql database, use attibutes 
#----------------------------------------------- 
 
set db [mysqlconnect -host localhost -user root -db attributes] 
 
 
#----------------------------------------------- 
#get the jobname, which should be the same as the 
#part name, and (for now) can only be 8 characters 
#------------------------------------------------ 
 
set jobnamejunk [ans_getvalue active,,jobnam,,start,0] 
set ljn [string length $jobnamejunk] 
#puts "jobname length = $ljn" 
set trimjn [string trimright $jobnamejunk " "] 
set ljn2 [string length $trimjn] 
#puts "trimmed jobname length = $ljn2" 
#puts "$jobnamejunk.***" 
#puts "$trimjn.***" 
set jobname $trimjn 
#puts "$jobname.*** at last!!!" 
 
#if there are already some volumes, clear and start new 
if {[catch { 
 set Vcnt [ans_getvalue volu,,count] 
 if {$Vcnt > 0} { 
  puts "volumes already existing" 
  ans_sendcommand "fini" 
  ans_sendcommand "/cle" 
 } 
} catchresult]} { 
 global errorInfo 
 puts $catchresult 
 puts "***Tcl TRACE***" 
 puts $errorInfo 
} else { 
 puts "command ok" 
} 
 
#-------------------------------------------------------- 
#query SQL to get part_id and list of object names  
#-------------------------------------------------------- 
 
set idquery [format "select id from parts where part_name = '%s'" $jobname] 
puts $idquery  
set id [mysqlsel $db $idquery -list] 
puts "id = $id" 
 
set objquery [format "select object_name from part_attributes where part_id =%d" $id] 
puts $objquery 
set objnames [mysqlsel $db $objquery -list] 
puts $objnames 
set objnames_size [llength $objnames] 
 
set part_id [mysqlsel $db "select parts.id from parts where part_name = '$jobname'" -list] 
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#-------------------------------------------------------- 
#import the UG part 
#-------------------------------------------------------- 
 
catch { 
ans_sendcommand "~UGIN, $jobname, prt,,all,1-256,0" 
} 
 
#---------------------------------------------------------------------- 
#parse the *.tbl file to create Ansys objects associated w/ the UG/SQL obj names 
#---------------------------------------------------------------------- 
 
set pathname "c:/attribution/ansystuff/$jobname.tbl"  
puts "pathname: $pathname" 
 
if [catch {open $pathname r} fileID] { 
 puts stderr "Can't open $fileID" 
 #puts "CAN'T open $fileID" 
}  else { 
 #read and process the file 
 puts "***FILE OPENED SUCCESSFULLY!***\n" 
 set contents [split [read $fileID] \n] 
 set contents_size [llength $contents] 
 #puts "contents_size = $contents_size" 
 
 for {set i 0} {$i < $contents_size} {incr i} { 
  set temp_line [lindex $contents $i] 
  set temp_line_size [llength $temp_line]  
 
  for {set j 0} {$j<$temp_line_size} {incr j} { 
   set temp_word [lindex $temp_line $j] 
 
   for {set k 0} {$k < $objnames_size} {incr k} { 
    set objnametemp [lindex $objnames $k] 
    if {$objnametemp == $temp_word} { 
     set temp_type [lindex $temp_line 1] 
     set temp_ansysid [lindex $temp_line 2] 
     puts "$temp_word : $temp_type : $temp_ansysid" 
 
     if {$temp_type == "LINE"} { 
      ans_sendcommand "lsel,s,,,$temp_ansysid" 
      ans_sendcommand "cm,$temp_word,line" 
     } elseif {$temp_type == "AREA"} { 
      ans_sendcommand "asel,s,,,$temp_ansysid" 
      ans_sendcommand "cm,$temp_word,area" 
     } else { 
      ans_sendcommand "vsel,s,,,$temp_ansysid" 
      ans_sendcommand "cm,$temp_word,volu" 
     } 
    } 
   } 
  } 
 } 
 
close $fileID 
} 
 
#----------------------------------------------------------------------------------------- 
#perform attribute operations 
#----------------------------------------------------------------------------------------- 
 
set single_objnames [mysqlsel $db "select object_name from part_attributes where part_id = 
$part_id group by object_name" -list] 
 
set smobjnames_size [llength $single_objnames] 
puts "smobjnames: $single_objnames" 
 
 
 
set etypenum [expr 2] ;#used to increment the element type number 
set esizeflag "luke" 
set etypeflag "duke" 
 
#set tet10_92 to be the default element 
ans_sendcommand "ET,1,SOLID92" 
 
for {set i 0} {$i < $smobjnames_size} {incr i} { 
 set temp_objname [lindex $single_objnames $i] 
 set temp_paids [mysqlsel $db "select part_attributes.id from part_attributes where 
object_name='$temp_objname'" -list] 
 set temp_paids_size [llength $temp_paids] 
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 #puts "temp_paids: $temp_paids" 
 
 #loop thru all the attributes.id's of objname [i] for the desired part.id 
 for {set j 0} {$j<$temp_paids_size} {incr j} { 
  set temp_pa_id [lindex $temp_paids $j] 
  set temp_libid [mysqlsel $db "select lib_id from part_attributes where id = 
$temp_pa_id" -list] 

set temp_domain [mysqlsel $db "select domain from library where library.id 
= $temp_libid" -list] 

 
set temp_subdomain [mysqlsel $db "select subdomain from library where 
library.id = $temp_libid" -list] 

 
set temp_title [mysqlsel $db "select title from library where library.id = 
$temp_libid" -list] 

 
set temp_value [mysqlsel $db "select value from part_attributes where id = 
$temp_pa_id" -list] 

 
  #puts "temp_objname: $temp_objname" 
  #puts "temp_domain= $temp_domain, temp_subdmn: $temp_subdomain, temp_title:     
$temp_title" 
 
 
 

#---------------------------------------------------------------------------------- 
#perform mesh operations 
#---------------------------------------------------------------------------------- 

 
  if {$temp_domain == "mesh" && $temp_subdomain == "element_type"} { 
   #puts "element type found" 
   set etypeflag "true" 
 
   if {$temp_title == "brick8"} { 
    ans_sendcommand "ET,$etypenum,SOLID45" 
    ans_sendcommand "TYPE, $etypenum" 
    set etypenum [expr $etypenum + 1] 
   } 
   if {$temp_title == "tet10_92"} { 
    ans_sendcommand "TYPE, 1" 
   } 
  } 
  if {$temp_domain == "mesh" && $temp_subdomain == "none"} { 
   #set global volume element size 
   if {$temp_title == "volume_element_size"} { 
    set esizeflag "true" 
    ans_sendcommand "esize,$temp_value,0,"    
   } 
   if {$temp_title == "vol_smrt_elmnt_sz"} { 
    ans_sendcommand "smrt, $temp_value" 
    set esizeflag "true" 
   } 
  } 
  puts "etypeflag: $etypeflag, esizeflag: $esizeflag" 
 
 #element type and size must be defined before the mesh command should be called 
 
  catch { 

 if {$etypeflag == "true" && $esizeflag == "true"} { 
   ans_sendcommand "cmsel,s,$temp_objname" 
   ans_sendcommand "vclear,$temp_objname" 
   ans_sendcommand "vmesh,$temp_objname" 
   set etypeflag "bo" 
   set esizeflag "duke" 
  } } 
 

#---------------------------------------------------------------------------------- 
#end mesh operations 
#---------------------------------------------------------------------------------- 
} 

} 
 
#check if meshed 
ans_sendcommand "allsel,all,volu" 
set volcnt [ans_getvalue volu,,count] 
puts "volcnt: $volcnt" 
for {set k 1} {$k<= $volcnt} {incr k} { 
 set ismeshed [ans_getvalue volu,$k,attr,type] 
 puts "vol $k ismeshed= $ismeshed" 
 catch { 
 if {$ismeshed == 0} { 
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  puts "vol$k isn't meshed" 
  ans_sendcommand "smrt,10" 
  ans_sendcommand "type, 1" 
  ans_sendcommand "vmesh,$k" 
 } 
 } 
} 
 
#----------------------------------------------------------------------------------------- 
#perform material operations 
#----------------------------------------------------------------------------------------- 
 
set exflag "false" 
set prxyflag "false" 
set matnum [expr 1] ;#used to control which material number to work with 
 
for {set i 0} {$i < $smobjnames_size} {incr i} { 
 set temp_objname [lindex $single_objnames $i] 
 set temp_paids [mysqlsel $db "select part_attributes.id from part_attributes where 
object_name='$temp_objname'" -list] 
 set temp_paids_size [llength $temp_paids] 
 puts "objname: $temp_objname" 
 #puts "temp_paids: $temp_paids" 
 
 #loop thru all the attributes.id's of objname [i] for the desired part.id 
 for {set j 0} {$j<$temp_paids_size} {incr j} { 
  set temp_pa_id [lindex $temp_paids $j] 
  set temp_libid [mysqlsel $db "select lib_id from part_attributes where id = 
$temp_pa_id" -list] 
 
  set temp_domain [mysqlsel $db "select domain from library where library.id 
= $temp_libid" -list] 
 
  set temp_subdomain [mysqlsel $db "select subdomain from library where 
library.id = $temp_libid" -list] 
 
  set temp_title [mysqlsel $db "select title from library where library.id = 
$temp_libid" -list] 
 
  set temp_value [mysqlsel $db "select value from part_attributes where id = 
$temp_pa_id" -list] 
 
  #puts "temp_objname: $temp_objname" 
  #puts "temp_domain= $temp_domain, temp_subdmn: $temp_subdomain, temp_title: 
$temp_title" 
 
  #-------------------------------------------------------------------------- 
  #perform material operations 
  #-------------------------------------------------------------------------- 
 
  puts "------------------ Start of Material Operations ------------------" 
 
  if {$temp_domain == "material" && $temp_subdomain == 
"str_lnr_elstc_istrpc"} { 
 
   catch { 
   puts "matnum = $matnum" 
   if {$temp_title == "EX"} { 
    ans_sendcommand "mp,ex,$matnum,$temp_value" 
    set exflag "true" 
   } 
   if {$temp_title == "PRXY"} { 
    ans_sendcommand "mp,prxy,$matnum,$temp_value" 
    set prxyflag "true" 
   } 
 
   #selects the working volume 
   if {$exflag == "true" && $prxyflag == "true"} { 
    ans_sendcommand "vsel,s,volu,,$temp_objname" 
    puts "vsel,s,volu,,$temp_objname" 
    puts "matnum = $matnum" 
    ans_sendcommand "allsel,belo,volu" 
    #modify the material number of the elements in the working 
volume 
 
    ans_sendcommand "emodif,all,mat, $matnum" 
    set matnum [expr $matnum + 1] 
    set exflag "false" 
    set prxyflag "false" 
    ans_sendcommand "allsel,all" 
   } 
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   } ;#end catch 
 
  } 
  puts "------------------ End of Material Operations ------------------" 
 
  #-------------------------------------------------------------------------- 
  #perform load operations 
  #-------------------------------------------------------------------------- 
 
  puts "------------------ Start of LOAD Operations ------------------" 
  catch { 
  if {$temp_domain == "structural" && $temp_subdomain == "none"} { 
   if {$temp_title == "displacement"} { 
    #set the displacement value for the temp_objname 
    ans_sendcommand "DA,$temp_objname,ALL,$temp_value" 
    puts "DA,$temp_objname,ALL,$temp_value ---> ;)" 
   } 
 
   if {$temp_title == "pressure_load"} { 
    #set the pressure load on the temp_objname 
    ans_sendcommand "SFA,$temp_objname,1,PRES,$temp_value" 
    puts "SFA,$temp_objname,1,PRES,$temp_value ---> ;)" 
   } 
 
  } } 
 
  puts "---------------END OF LOAD OPERATIONS--------------------" 
 
 } 
} 
 
#------------------------------------------------------ 
#perform solution operations 
#------------------------------------------------------ 
 
 
puts ">>>---------------------THE END---------------------<<<" 
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