Plants of Central Texas Wetlands by Scott B. Fleenor and Stephen W. Taber

Stephen L. Webb
Samuel Roberts Noble Foundation, Ardmore, OK, stephenwebb@hotmail.com

Krisan M. Webb
Ardmore, OK

Follow this and additional works at: https://scholarsarchive.byu.edu/wnan

Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons

Recommended Citation
Available at: https://scholarsarchive.byu.edu/wnan/vol72/iss1/19

This Book Review is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

Upon receiving Plants of Central Texas Wetlands, we were pleasantly surprised to realize that we have spent much time in Gonzales County, Texas, where the authors concentrated their field collections. There appear to be many similarities in plant composition and wetland characteristics between the authors’ study area and our leased property (also in Gonzales Co.), which lies on the Guadalupe River. We have identified and collected many of the same species that the authors detail in the guide, and we found the species in situations or habitats (e.g., seeps, springs, or areas occasionally flooded by the river) just as the authors describe.

The primary study area is referred to as the Ottine Wetlands, a “relict ecosystem” found along the floodplain of the San Marcos River. Collection (by permit) occurred on both private and public land (Palmetto State Park). Within the wetlands (e.g., swamps, marshes, ponds), the authors catalogued 524 species: 2 algae, 14 liverworts, 1 hornwort, 31 mosses, 13 ferns, 2 conifers, 125 monocots, and 336 dicots. The book contains photos and descriptions for 275 species; a checklist is provided for all species (Appx. 5).

Chapter 1 (“The Ottine Wetlands of Central Texas”) provides an introduction to the Ottine Wetlands. Other notable sections cover biotic regions, history of human interest, glacial history, recent history of the wetlands, geology, soils, climate, wetland classification, and Ottine Wetland-type localities. The wetland classification section is an important primer because it sets the stage for the reader’s understanding of the definitions and types of wetlands. The U.S. Fish and Wildlife Service (USFWS) defines wetlands as “lowlands covered with shallow and sometimes temporary or intermittent waters.” The Ottine Wetlands contained 7 of 9 classifications of wetlands (as outlined by USFWS), but the authors classified the Ottine Wetlands to 4 types (i.e., marsh, swamp, oxbow lake, and pond). The final section describes each of the 11 sites (5 public, 6 private) based on unique features, plants, and maintenance regime.

Chapters 2–7 provide the basis for identification of wetland plants. Plants are subdivided into trees and their epiphytes and parasites (Ch. 2); shrubs and vines (Ch. 3); grasses and grasslike plants (Ch. 4); wildflowers (Ch. 5); ferns and horsetails (Ch. 6); and duckweeds, bryophytes, and algae (Ch. 7).

For each species of the 275 species covered in the main text, the authors provide common and scientific names, family, a picture, field characteristics, a list of similar species, general remarks, and distribution. Most pictures were high quality, particularly those of wildflowers. However, the reader would have benefitted from multiple pictures of the same plant taken at different angles or showing multiple identifying characteristics.

The authors provide 5 appendixes to help the reader quickly access various useful plant lists. Appendixes included “Texas-Endemic Plants of the Ottine Wetlands” (Appx. 1), “Alien Plants of the Ottine Wetlands” (Appx. 2), “Previously Published, Untreated Species” (Appx. 3), “Previously Unpublished Species” (Appx. 4), and “Complete Checklist of Plants” (Appx. 5).

A glossary was provided but was limited in scope. The reader would have benefitted from additional entries because there are many new terms, especially related to wetlands, that a lay reader may not be familiar with. After the bibliography, there is a taxonomic summary, which lists the total number of plants catalogued within each group (e.g., trees, shrubs, wildflowers). The taxonomic summary would have been more useful if it had been included toward the beginning of the book.

In general, this book is a very useful field guide to plants found in mesic (wetland) areas around central Texas. However, the title was a bit deceiving because the focal area for
cataloging wetland species was confined to a relatively small area in south central Texas (Gonzales Co.). We expected a much broader geographic coverage but were quite surprised at the representation and diversity of plants found in such a small locale. *Plants of Central Texas Wetlands* fills a void in literature on wetland-associated plants with an easy-to-reference field guide. This book will be useful to a wide range of naturalists—both trained and novice—at an affordable price.

Stephen L. Webb, Ph.D.
Biostatistics Specialist
The Samuel Roberts Noble Foundation
Ardmore, OK 73401
E-mail: slwebb@noble.org

Krisan M. Webb, M.S.
Ardmore, OK 73401
E-mail: krisanmwebb@hotmail.com

CONTENTS

(Continued from back cover)

Obituaries

Obituary: Wilmer Webster Tanner, 1909–2011 ... 118

Book Review

Captured: Lessons from Behind the Lens of a Legendary Wildlife Photographer
by Moose Peterson ... Howard O. Clark Jr. 125

Plants of Central Texas Wetlands
by Scott B. Fleenor and Stephen W. Taber ... Stephen L. Webb and Krisan M. Webb 127