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Abstract- In today’s Internet, demand is increasing for 
guarantees of speed and efficiency.  Current routers are very 
limited in the type and quantity of observed data they can 
provide, making it difficult for providers to maximize 
utilization without the risk of degraded throughput. This 
research uses statistical data currents provided by router 
vendors to estimate the impact of changes in network 
configuration on the probability of link overflow.  This allows 
service providers to calculate in advance, the effect of grooming 
on a network, eliminating the conservative trial-and-error 
approach normally used.  These predictions are made using 
Large Deviation Theory, which focuses on the tails of the 
distribution, giving a better estimate than average and peak 
values. 

 
 

I. INTRODUCTION 
 
In today’s Internet, demand is increasing for guarantees 

of speed and efficiency.  Service providers are motivated to 
find a way to multiplex as much traffic as possible without 
breaking any service guarantees and to also find a way to 
charge for the guaranteed bandwidth they are providing.  The 
Theory of Effective Bandwidth is designed to accurately 
estimate the resources that a particular source requires and 
the degree of statistical multiplexing that can occur while 
maintaining a reasonable packet drop probability.   

This research uses traces from AT&T frame relay trunks 
to determine the effective bandwidth of individual 
connections through the network.  Individual connections 
can be moved to new routes within the network in order to 
increase traffic balance.   The principle metric used is the 
probability of overflow for each link, computed from the 
effective bandwidth equations. 

Large trunk routers are limited in the amount of trace 
data that they can practically obtain and maintain.  Much of 
this research has focused on using data that routers currently 
provide, rather than making optimal calculations with data 
that is not generally available.  Much of this research focuses 
on converting gross trace data from several thousand trunks 
and several hundred thousand circuits in the AT&T network 
into detailed traces for each circuit. 

 

II. EFFECTIVE BANDWIDTH 
 
Using Large Deviation Theory (which focuses on the 

impact of the tails of a distribution), Effective Bandwidth 
computes a bandwidth that is a better estimate than just 
average and peak values.  The Effective Bandwidth is 
computed by using source characteristics along with the link 
through which it is passing.   

The effective bandwidth of a source given the operating 
point of a link is given by the following equation. 
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In the equation for Effective Bandwidth, the two most 
enigmatic variables are the ‘s’ and ‘t’ parameters.  One 
source states, “Particular values of (s,t) can be taken to 
characterize the operating point of a link,” [1].  This same 
source characterizes the ‘s’, or space, parameter as the 
degree of statistical multiplexing potential of a link.  A large 
value of ‘s’ indicates that a low degree of statistical 
multiplexing can be performed, whereas a small value 
indicates a large degree of potential statistical multiplexing.  
It should be noted that the ‘s’ parameters is in units of kb-1.   

The ‘t’ parameter is used to characterize the most 
probable duration of the buffer busy period prior to 
overflow and also represents the minimum granularity 
necessary for traces to capture the statistical properties that 
affect buffer overflow [1].  It should be noted that the ‘t’ 
parameter is in units of milliseconds. 

Taken together, these parameters form the ‘st’ 
parameter which is in units ms/kb.  Conceptually, this 
represents the amount of multiplexing that can happen in a 
period prior to overflow.  These two parameters are 
dependent on all of the characteristics of the link:  buffer, 
capacity, QoS and scheduling.  It is also interesting to note 
that they are dependent (also) on the sources, but with a 
large degree of multiplexing, this definition ‘loop’ is broken 
[1]. 

Taking ‘s’ and ‘t’ into account, the effective bandwidth 
equation begins to become clear.  The Effective Bandwidth 
of a source is characterized by the number of cells that it 
produces divided by the ‘st’ parameter.  It should be noted 
that the number of cells produced by the Effective 
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Bandwidth is computed using a logarithmic moment 
generating function [2].  A moment generating function 
produces the ‘central moments’ about a probability density 
function.  The first moment is the mean.  In this equation, the 
moment generating function assumes that the distribution of 
cells of a source follows some probability density function or 
some random variable X[0,t] where [0,t] is the time interval 
in which the cells are produced.  A logarithmic moment 
generating function is used as opposed to a moment 
generating function because it allows for better estimates in 
the tails of the distribution, or in the peaks.  Once this 
logarithmic moment value has been computed, it is divided 
by the ‘st’ parameter.  Basically, this means that effective 
bandwidth is equal to the most probable number of cells 
produced in a given [0,t] time period divided by the amount 
of multiplexing that can be performed in the same time 
period. 

Of course, it is difficult to know the particular 
probability density function of your cell distribution.  
Fortunately, we can obtain an estimate using empirical data.  
The modified Effective Bandwidth equation is defined using 
an average of the production of cells in various time periods 
[1].  Using this equation, the logarithmic moment generating 
function can be computed using trace files.  The empirical 
form of the Effective Bandwidth bears a strong resemblance 
to research into Self-Similarity.  For a given value of ‘t’, all 
of the data sent during the time interval between ti )1( −  

and it  is aggregated into a single value.  A search can then 
be made for the interval that produces the most likely buffer 
utilization prior to overflow.  The empirical form for the 
effective bandwidth equation [5] is  
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At this point, we integrate the Effective Bandwidth of 

the sources into a link with a capacity C and a buffer B.  The 
sup-inf formula (3) is used to estimate the values of ‘s’ and 
‘t’ given empirical data.     

Ibctstsnst

NnNbNcQ
N

N

j
jj

st

N

−=







+−= ∑

=

∞→

1

)(),(infsup

),,(log
1

lim

α
         (3) 

 
This formula integrates the effective bandwidths of the 

various sources being multiplexed and evaluates them using 
the capacity and buffer of the link.  This equation is equal to 
-I and the Probability of Overflow is equal to e-NI + o(N) and 
o(N) goes to 0 as N is large [5]. 

It should be noted that N represents the number of 
combined sources that are entering the link.  That is, if the 

link has three types of sources, source A, B anc C, and A 
comprises 20% of the flow, B comprises 40% and C 
comprises 40%, then nA = .2, nB = .4 and  nC = .4 and N is the 
number of these streams entering the system. 

Once the ‘s’ and ‘t’ parameters are computed from the 
sup-inf formula (3), the effective bandwidth equation (2) 
can be completed.  It has been shown through theoretical 
and empirical studies that changes in traffic mix have a very 
light impact on these parameters.  Once they have been 
computed, as long as the traffic mix does not change 
drastically, new sources’ bandwidth could be easily 
computed without re-computing the entire sup-inf (which 
would require trace files and some computational time).   

As an aside, the sup-inf formula (3) requires that the 
formula be computed using two optimizations.  First, for 
each ‘t’, an ‘s’ is found that minimizes the inside of sup-inf.  
The largest value resulting from each of these ‘t’s is the 
result of the function.  Remember that ‘t’ represents the 
most probable time of the buffer being busy prior to 
overflow and ‘s’ represents multiplexing.  In searching for a 
smallest ‘s’ we are actually searching for a worst case 
scenario: the smallest value of ‘s’ that will still cause 
overflow for that value of ‘t’.  The sup-inf formula 
effectively looks at the tail of the distribution rather than in 
the center.  This allows for greater protection against over 
optimistic appraisals of link utilization.  On the down side, 
these equations have been found to calculate cell loss rates 
and probability of overflow higher than in practice or 
simulation.  In their defense, you probably will never loose 
a customer because you allow him too much bandwidth. 

The ‘s’ parameter can be found because of the 
convexity of the equation.   The Effective Bandwidth 
equation is determined by ‘s’ in a logarithmic manner and 
has a slow increase.  The ‘s(b+ct)’ is determined by ‘s’ but 
is constantly increasing.  The minimal value of the 
difference between the effective bandwidth and the  
‘s(b+ct)’  terms can be computed using a Golden Section 
Search. 

Java code has been written to take a trace file and 
generate the effective bandwidth and the ‘s’ and ‘t’ 
parameters.  These values can then be used to predict 
overflow probabilities and to perform other modeling tasks.  
We have tested the code on existing traces and have been 
able to calculate similar values to other researchers in order 
to verify our techniques.   

 
III. TRACE DATA 

 
Before the effective bandwidth of sources can be 

determined, trace data must be available. Chris Chase from 
AT&T provided us with a large quantity of trace data 
summarizing several thousand trunks and several hundred 
thousand connections.  The trace data contains hourly 
averages and 5 minute peak values for each of the trunks.  
Given this data, we had to derive specific connection values 
from those gross trunk values. 

120



 

 

 

 
 

Fig. 1. Traffic Engineering overview. 
 
Fig. 1 provides an overview of the trace generation 

process.  First we extracted trunk statistics and circuit 
information from the statistic files.  We then use Gaussian 
elimination and Linear Programming to calculate individual 
circuit values from the trunk statistics. This results in per-
circuit trace files.  These files can be used to compute the 
effective bandwidth contributions of each circuit.  The 
circuits can then be moved to a different path and the new 
effective bandwidth can be predicted.  It is hoped that this 
technique can be used to come up with a more balanced 
network load across all of the trunks. 

 

  
Fig. 2. Example network with 4 trunks with current 

throughput values of 20,25,10,15 and 5 circuits A, B, C, 
D. 
 
 
 

 
Fig. 3.  Network in fig. 2 represented as a matrix. 
 

IV. DERIVING CONNECTION DATA 
 
In order to derive connection data from trunk data, the 

contributions of each circuit must be determined from trunk 
statistics.  Fig 2 shows a hypothetical network with trunk 
throughput shown in the links and five circuits (A,B,C,D,E).  
We must estimate the throughput contribution of each 
circuit given only trunk values. 

  For example, only paths E and D cross the section of 
weight 10 so we know that E+D=10.  Paths C and B cross 
the section of weight 20 so C+B=20.  Paths A+B+C = 25 
and paths D+B+E=15.  With these 4 equations and 5 
unknowns we are able to solve for all but E and D.  
Although this simple example can be solved by observation, 
a mechanized approach must be developed for systems with 
5,000 equations and 400,000 unknowns 

The most plausible algorithm we’ve found is Gaussian 
elimination.  Fig. 2 can be represented as a matrix with 
trunks as rows, circuits as columns and a 1 in the matrix if 
the circuit passes through the given trunk (fig. 3).  

Through Gaussian elimination, we can create an upper 
diagonal matrix where the diagonal is all ones and anything 
below the diagonal is zero (fig. 4).  

Using back substitution, we can entirely solve the 
system of equations, once the bottom row has been satisfied.  
In our small example, D and E can be set to 5 since D + E = 
10.  If there were static constraints (D is a T1 connection 
and E is a DS3) we could make better estimates for these 
unconstrained variables.  We then proceed to previous row 
where C – D – E = 5.  Since D + E = 10, we know that C = 
15.  Row 2 indicates that B + C = 20.  Since C = 15, we 
know that B = 5.  On the top row, A+B+C=25.  Since B+C 
= 20 we know that A = 5.   

This is the basic algorithm.  The two keys are providing 
good estimates for unconstrained variables and resolving 
inconsistencies.  Estimates are made using static constraints 
for the connections in connection with linear programming.  
This gives us a proven statistical basis for our estimates.   

A 

B 

C 

D 
E 

20 25 

10 

15 C+B=20
A+B+C=25 --- A=5 
D+E=10 
D+E+B=15 --- B=5, C=15 
Any values for D and E that satisfy 
 D+E=10 and static constraints   
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Fig. 4. Network matrix after Gaussian Elimination. 
 
For example, an OC-3c connection will have a much 

higher possible value than a T1 circuit.  An inconsistency 
occurs when it is impossible to solve one of the rows in the 
matrix while satisfying the static constraints.  For example, if 
a row required a 56k connection to be 64k we have an 
inconsistency.  In order to deal with this problem, we 
backtrack to the point where the other parameters were set 
and change them by raising or lowering them as well as all 
other nodes on the line so that each solution still works.  We 
then work the changes into each proceeding row and repeat 
this process until the system of equations is solved.   

 By setting the trunk values on the right to the 
contents of the traces and making each row a connection with 
a weight that depends on its speed, we can create trace files 
for each of the 400,000 connections.  The size of the 
individual trace depends on the number of samples in the 
original trace.  Since our current files contain 24 
measurements * 4 days, we can generate trace files with 96 
values.  From these trace files we can compute the effective 
bandwidth and determine probabilities of overflow.  We can 
also get an idea of the traffic flows that can be expected in 
the network.   

Our next task is to use linear programming to determine 
the statistically best solutions to the problem.  We will use 
the 5-minute peak values to help determine the contribution 
of each circuit to trunk statistics. 

 
 

V. RESULTS 
 
We performed some experiments to determine the 

potential of this approach in traffic grooming.  In order to do 
this we picked a trunk from the trace data and moved a T1 
circuit into the trunk and out of the trunk to determine the 
impact as measured by effective bandwidth.  These statistics 
can be used to determine the appropriate balance between 
loading on different trunks.   

Effective Bandwidth analysis provides information on 
the probability of packet loss given a specified number of 
buffers and line capacity.  The roughly translates into queue 
length and delay for each circuit.  If the aggregate probability 
of loss is minimized across the network, then delay will also  
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Fig. 5. The T parameter is the most probable period 

of buffer utilization prior to overflow.  When a T1 line 
is removed, the T parameter is higher for a given Buffer 
Size showing that there is a longer buffer busy period 
prior to overflow. 

 
be minimized [3].  Delay and jitter are usually seen as 
important values to optimize in making traffic grooming 
choices [4]. 

Fig 5 shows the impact of adding and removing a T1 
line on the T parameter.  When a T1 line is removed, the T 
parameter is higher for a given Buffer Size showing that 
there is a longer buffer busy period prior to overflow.  For a 
buffer size of 50 packets, the original trunk had a T value of 
16.  When the T1 was removed, the T parameter increased 
to 40 showing that the busy period prior to overflow was 
higher due to decreased utilization.  When a T1 was added, 
the T parameter dropped to 7 indicating that the busy period 
prior to overflow was lower, roughly indicating that the 
probability of loss is greater with the additional T1 line. 

 

 
Fig. 6. The probability of overflow for different 

Buffer sizes as traffic is groomed. 
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Fig. 7. Overflow probability for larger buffer sizes. 

 
When a T1 line connection is added to a trunk, the 

probability of overflow increases.  The effect is non-linear 
though, and is dependent on the buffer size and the burstiness 
of the traffic.  Several examples of this effect are shown for 
different buffer sizes in Fig 6. (Fig 7 shows an expanded 
view of the overflow probability for larger buffer sizes.) 

 
VI. CONCLUSION 

 
Traffic Engineering and grooming are difficult to 

perform without tools to provide predicted results for 
potential changes.  This research uses trace data that is 
readily available from trunk routers to determine the impact 
of routing changes on network balance.  Large Deviation 
theory is used to examine the impact of changes on overflow 
probability, allowing a much more detailed analysis than 
mean values would provide. 

Application of this research should allow traffic 
engineers to increase the utilization of their trunks without 
degrading Quality of Service for their customers.   
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