Brigham Young University

BYU ScholarsArchive

Theses and Dissertations

2005-06-27

A PAM Decomposition of Weak CPM

Mason B. Wardle
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

b Part of the Electrical and Computer Engineering Commons

BYU ScholarsArchive Citation

Wardle, Mason B., "A PAM Decomposition of Weak CPM" (2005). Theses and Dissertations. 570.
https://scholarsarchive.byu.edu/etd/570

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.


http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F570&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Fetd%2F570&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/570?utm_source=scholarsarchive.byu.edu%2Fetd%2F570&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

A PAM DECOMPOSITION OF WEAK CPM

by

Mason B. Wardle

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering
Brigham Young University

August 2005






Copyright(© 2005 Mason B. Wardle

All Rights Reserved






BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Mason B. Wardle

This thesis has been read by each member of the followingugtaccommittee and by
majority vote has been found to be satisfactory.

Date Michael D. Rice, Chair

Date Michael A. Jensen

Date A. Lee Swindlehurst






BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, | have feadhesis of Mason B. Wardle
in its final form and have found that (1) its format, citatipaad bibliographical style are
consistent and acceptable and fulfill university and depant style requirements; (2) its
illustrative materials including figures, tables, and thare in place; and (3) the final

manuscript is satisfactory to the graduate committee amdady for submission to the
university library.

Date Michael D. Rice _
Chair, Graduate Committee

Accepted for the Department

Michael A. Jensen
Graduate Coordinator

Accepted for the College

Alan R. Parkinson
Dean, Ira A. Fulton College of

Engineering and Technology






ABSTRACT

A PAM DECOMPOSITION OF WEAK CPM

Mason B. Wardle
Department of Electrical and Computer Engineering

Master of Science

The Enhanced Flight Termination System uses weak CPM a®isiiation scheme
and a limiter-discriminator as its demodulation scheme. AMRepresentation of weak
CPM was developed which representation provided the nagessmponenents to build a
simplified PAM-based receiver that outperformed the EFfgtér-discriminator, even in
the presence of phase noise. The PAM repriagem also provided a new perspiave into

the negative characteristics of weak CPM.
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Chapter 1

Introduction

Most range safety programs use a Flight Termination Syskers) to bring stray
airborne test vehicles to crash at a preselected locatjolribging the vehicle into a state
of zero lift and zero thrust. Methods used to meet this gadlioe parachute deployment
and detonation of explosive charges that destroy the téstlee[1]. The test range ini-
tiates flight termination by sending a radio signal on a detéid channel to the stray test
vehicle. The first FTS, brought into use in the 1950s, moeslat frequency modulation
(FM) carrier with different frequency audio tones [2]-[4]he aircraft completes the “arm”
and “terminate” commands after the arrival of a predefinepieace of these tones from
the ground-based transmitter [2]. The modified high-alghalystem [5] adds a security
feature by using a predefined sequence of fmaies to encode the commands.

With the increase in flight altitudes came an incident whieegdérminate signal sent
by one test range inadvertently terminated the flight of aclelat a nearby testrange [1, 6].
In response to this incident, the Range Safety Group of tg&&ommanders Council
created a committee in April 2000 to enumerate the requinésnef the next generation
FTS that would search for techniques to deal with the aforgimieed situation. In January
2002, this group chose bi-phase pulse-coded modulatemuéncy modulation (PCM/FM)
as the modulation for the next generation FTS, named Endafieght Termination Sys-
tem (EFTS) [7]. The justification behind this choice of matidn included the important
reason that the ground-based FTS transmitter (i.e., theruinardware infrastructure) re-
quired an AC-coupled input to the FM modulator [8]. The EFT&dard chose a more
“digital” route for the EFTS waveform which opened the door better security (3DES

encryption) and a higher level of reliability (Reed-Solameyror control coding).



The selection of bi-phase (also known as Manchester) PCM/&bb known as
continuous-phase modulation or CPM) included the assumjliat the airborne vehicle
would use a FM limiter-discriminator for a demodulator besathe FM limiter-discrimina-
tor has a history of reliability in aeronautical applicatso Unfortunately, this FM limiter-
discriminator detector, (i.e., a simple FM-demodulatdlofged by a comparator) has a
much poorer bit-error rate (BER) than an optimal receiven. ofstimum receiver, on the
other hand, requires a maximum-likelihood sequence datectd full phase coherency
which is difficult to attain in the presence of excessive amtswf phase noise resulting
from the high levels of shock and vibration typical in airbewehicles.

In spite of this difficulty, consider such an optimum receiv®ne method for de-
signing an optimal receiver utilizes the Viterbi algoritim effect maximum likelihood
sequence estimation (MLSE). This approach yields a mucked®{ER at the expense of
increased complexity, which comprises part of the difficolt taking an optimal approach
in EFTS. Anderson, Aulin, and Sundberg suggested a hantifatbniques that facilitate
the construction of simplified receivers for CPM which reees have sub-optimal perfor-
mance [9, chapter 8]; however, they can perform better tinalf\ limiter-discriminator.
Pierre Laurent also presented a method for simplified recéigsign. He showed that CPM
can be reformulated as a sum of several PAM pulses [10]. @4iglts were later extended
to M-ary CPM by Mengali [11 and to multi-h CPM by Perrins and Rice [13].) Using all
of the pulses leads to MLSE detection; using fewer pulsadtes a simplified receiver,
but still with better expected performance than an FM dertaidu

The design of a simplified PAM receiver for EFTS-based CPM thaperforms,
and maintains roughly the same level of complexity of, theent EFTS receiver would
be possiblée;this design goal motivated my research. Before diving im@&xsplanation of

my research, a review of CPM and its PAM representation wilpkesented.

IMengali also developed a method to form a PAM representati@PM when the modulation index is
an integer. Another approach to forming a PAM representdtioan integer modulation index can be found
in[12]

2This assumes that full phase coherency is achievable inrdsepce of such severe phase noise as that
found in EFTS applications



1.1 Definition of CPM

The complex-envelope of the transmitted CPM sigrél), is defined as

s(t) = exp <j27rh /__ Z an)f(r —nT) d7‘> (1.1)

wheref(t) is termed the frequency pulse and has a region of supporigspainterval of
time) typically restricted t®) < ¢ < LT whereT is the symbol time and is the number

of symbol times spanned by the frequency pulse. Alge,) represents the-th binary
data symbol and the modulation indéx,which dictates how much the phase changes for
each symbol. (Note that the frequency pulse dictates hovirdggiency of the complex
exponential changes as a function of time.) Reversing theroof the integral and the

summation in (1.1) and performing integration yields

s(t) = exp(j - 2mh - ¢(t)) (1.2)
where

B(t) = ﬁ:QMMG—nT)tS(N+DT (1.3)

g&%:[;fﬁﬁh. (1.4)

Three design parameters available in CPM are the choiceeofréimuency pulse
and the choice of the symbol alphabet. The modulation intleis set depending on the
application. Henceforth, the alphabet will be assumed tuimery. The choice of frequency
pulse (or phase pulse, depending on the perspective), eamatically affect the behavior
of the CPM signal. The phase pulseis most often defined as:

0 t<0

g(t) = (1.5)
t> LT

N[

which implies that the phase pulse has an infinite lengthoalgh it is constant far > LT

Weak CPM In rare cases, the frequency pulse is defined such that tise phése has a
finite length (EFTS being one such case). Looking at (1.4)(arfs), one can see that the

3



Figure 1.1: The frequency and phase pulses for the EFTS wBak (Note: the pulses
have been normalized to unit peak amplitude for display.)

frequency pulse must integrate to zero in such a case. Treeghase is thus defined for
this case as
gt)y=0 t<Oandt> LT. (1.6)

Figure 1.1 presents the plot of one example of such a frequenlse/phase-pulse pair.

A frequency pulse of this type has been ternveelk [9, page 64]. Thus, from this
point forward, CPM based on such a frequency pulse will bm¢eiweakCPM, whereas
CPM based on the more common frequency pulse, whose phaseipulefined in (1.5),

will simply be termedCPM. The reason behind naming the frequency pulse weak comes
from the effect a weak frequency pulse has on the frequenegtepn and on the min-
imum Euclidean distance of the CPM signal; these effect$ vélinvestigated in Sec-
tions 2.4 and 3.1, respectively. References [14]-[22] gmesome of the limited research

completed for weak CPM.



1.2 PAM Decomposition of CPM

The PAM representation presented by Laurent facilitatesdésign of simplified
receivers since there has been extensive research pedfemiamea? modulations (mod-
ulations which include PAM); examples of this researchudel synchronization methods

and optimal receivers [23].

1.2.1 Exact Representation

Laurent showed that a binary CPM signdl;), can be reformulated as

oo 2L-1_1

= > > ax(N)Ck(t— NT) (1.7)
N=—0co K=0
where
H u(t + [i + Bk (i) L]T) (1.8)
B sm[\If(t)]
u(t) = Sm(rh) (1.9)
(1) = 2mhg(t) t< LT (1.10)
wh —2mhg(t— LT) t> LT
ag(N) = JAxW) (1.11)
N L—1
Ax(N) = 3 a(m) =3 a(N =) Bk(i) (1.12)
K= izl‘—l Br() 0< K <287t 1 (1.13)
J =™ (1.14)

andgk (i) is thei-th coefficient for the radix-2 decomposition of an integer(Appendix A
presents a complete derivation of this PAM decompositiByation (1.7) contains a sum

of PAM pulses for eaclv. In Laurent’s derivation, the sums of PAM pulses are diviohol

3PAM representations of CPM transform the non-linear CPM tinear PAM modulation by pushing
the non-linearity out of the modulation into the data symsbolhe most important reason for making this
representation is that it allows the design of a demodulatgrerform sub-optimal detection as explained
later.



groups. Each group consists of all PAM pulses that stardnirtervalNT < t < (N+1)T
for a given value ofN. This grouping becomes useful in understanding the deévivaf

the PAM representation in Chapter 2.

1.2.2 Approximate Representation

Generally speaking, in a PAM decomposition, one pulse ongyes a few pulses
comprise most of the energy in the CPM signal. The use of drdynost energetic PAM
pulses provides a receiver with acceptable performances. €ése of approximation helps
the PAM representation finds its niche: the PAM represeamatpens up a path to build a
simplified receiver. (See reference [24].) The approxioragives a simple way to reduce
complexity, while limiting the inevitable increase in BERIative to that of an optimal
receiver. Simualtion results presented in Chapter 3 shdthetda simplified PAM-based

receiver greatly outperforms an FM demodulator.

1.2.3 PAM Representation of Weak CPM

In order to build a simplified receiver, a PAM representatitbmveak CPM, which
was not provided by Laurent, must be developed; my reseastidtused on such a de-
velopment. Weak CPM is shown to have a PAM representatieham CPM does. Such a
representation provided a new perspective to the failiiggeak CPM. Most importantly,
this PAM representation gave a way to build a simplified EF&&iver by following the
work of Ghassan Kaleh [24]; this simplified receiver perfedsignificantly better than an
FM limiter-discriminator, even in the presence of phasesadhat arises in EFTS applica-
tions.

Chapter 2 derives a PAM representation for weak CPM. Cha&ptdrows how to

build weak CPM receivers and presents simulation result& /@S PAM-based receivers.



Chapter 2

Weak CPM PAM Signal Representation

Laurent’s 1986 paper did not consider the rarely used wedk.GRe whole idea of
Laurent’s work aimed to find a linear PAM decomposition, batitent’s method applied
directly to weak CPM yields a non-linear PAM decompositidtiowever, my work has
derived a linear PAM representation for weak CPM using am@gagh to Laurent’s work
similar to that taken by Mengali and Morelli to create a PANynessentation for\/-ary
CPM [11].

Section 2.1 demonstrates the need for an approach diffgr@nthat of Laurent’s.
Section 2.2 derives the PAM representation of weak CPM; tideoéthis section presents a
summary of an approach to calculate a general PAM repragamfar weak CPM Finally,
Section 2.3 finds the PAM pulses for EFTS-based CPM, and@e2t#4 shows how discrete

lines surface in the spectrum of weak CPM.

2.1 The Need For a New Approach

A comparison of Laurent PAM decompositions of CPM and wealGlemon-
strates the need for a new approach in formulating a PAM semitation of weak CPM. An
extended example (used throughout this chapter) illestrttis need in a straightforward

way as well as logically develops a new approach.

Example for L=2 Part 1

Appendix A shows that

exp[jrha(n)g(t —nT)] = u(t+ [L —n]T) + JMy(t — nT), (2.1)



with «(t) defined in (1.9). Equation (2.1) allowst), the CPM signal, to be expressed by

the following equation:

L-1

s(t) = JZm= e T [u(t +[i+ L= NIT) + 7" Du(t + i = NIT) | (2.2)

=0
(For a full derivation, consult Appendix A). Using the tinervalNT < t < (N + 1)T
for N =0,1,2andL = 2, equation (2.2) becomes:

0<t<T: s(t)=JEn=M . [Cy(t+2T)
+ JENC(t+T) + JOOENCy () + J*O O (¢)]
T<t<2l: s(t)=J M. [JCDCE+T)
+ JoOFa=D o) 4 ge@+aOFa=D oy )
+ JoWFeED O (t - T)]
O <t <3T: s(t) = Jon—oe) . [ o0y (1)
+ JoreOralt=D o ¢ ) 4 je@ta)reOral=) o (1 — 9T
+ JoRTeOFet=0 oyt — 27)].
(2.3)
The coefficents of shifted versions 6f; terms for a given value oK are all the same.
For example, the coefficient f@ry(t) is J*©+2=1 for 0 < ¢ < 37 and the coefficient for
Co(t +T)is J*=H for 0 < t < 2T. (Co(t + T) is zero fort > 2T.) This characteristic

ultimately allows the reformation of CPM into linear PAM. iSieformation, found in (1.7)

and repeated here for convenience, expands (2.3) to inalude

S e |

= > Y ak(N)Ck(t—NT) (2.4)

N=—oo K=0
L-1
where Cj(t) Hu (t+ [i + Br(i)L]T) (2.5)
u(t) = % (2.6)
(1) = 27hg(t) t< LT 2.7)

wh —2rhg(t — LT) t> LT

8



ag(N) = JAxW) (2.8)

N L-1
Ag(N) = D" an) =Y a(N —i) - Bk(i) (2.9)
n=-—0o =1
L—-1
K=Y 2""fg(i) 0<K<2"'—1 (2.10)
J =™, (2.11)

On the other hand, applying weak CPM to (2.2) for= 0, 1, 2 yields:
0<t<T: st)=[Colt+2T)+ JNCo(t+T)+ JHOTENCy(¢)
+ J*O 0 (1)]
T<t<2l: s(t)=[Colt+T)+ JOCy(t)+ J VO Cy(t — T) 2.12)
+J°0C (¢t - T)]
2T <t <3T: s(t) = [Co(t) + J*VCo(t — T) + J*OTWCy(t — 2T)
+ J*A (¢ - 2T)].
Now in this case, unlike generic CPM shown in (2.3), the coeffits of theC'x terms
change with eacliv. For example, consider agairy(t). For0 < t < T, Cy(t) has a
coefficient of J*O+(=1: for T < ¢t < 2T, this coefficient becomeg*®). This makes
it impossible, using this form, to create a linear PAM expres for s(¢) for all t. Thus,
Laurent’s PAM approach applied to weak CPM does not yieldedr result, and so another

approach must be taken to find a linear PAM representatioreakuCPM.

2.2 General PAM Decomposition of Weak CPM

In order to derive a PAM decomposition for weak CPM, the sigvithbe splitinto
the product of two different CPM signals. This method of riéwg CPM as the product of

two CPM signals can also be found in [11].

2.2.1 Derivation of PAM Representation

Consider a frequency pulsé(t), of length LT, that integrates to zero. In calcu-

lating the PAM decomposition for CPM based on this frequepalge, the first step is to

9



divide the frequency pulse into two pulses:

f&)y =)+ (2.13)
where
=[O T >0
0 otherwise
) (2.14)
t t 0
o O fB<0
0 otherwise

The next step is to calculate the phase pulsgg) andg~(t), which are equal to
the integral off ™ (¢) and the integral of ~(¢), respectively. Thug(t), which is the integral

of f(t), as defined in (1.4), can be expressed as the sum of two stemtgh phase pulses:

g(t) = g*(t) + g7 (t). (2.15)

Clearly, if " (LT) = 1/2, theng=(LT) = —1/2, since for weak CPMy(LT") = 0. The
PAM representation of " (¢) can be formulated using (2.4) and assumjrig) is the same
length agy(t).

With a slight modification to Laurent’s original developniewe can in a similar
manner find the PAM representaion fgr(¢). To find the PAM representaion far (¢),
note that CPM based on a frequency pulse that integrated £a is just like CPM with
a frequency pulse that integratesAdout has eacly; negated. Making this modification
to (2.9), (2.4) becomes

oo 2L-1-1

s(t)=Y_ > a(N)Dg(t—nT) (2.16)

N=—co K=0
where* denotes complex-conjugation and the's are the PAM pulses for g~ (¢). (For
a derivation of this modification see Appendix A.)

Recalling (1.2) and using(¢) as defined in (2.14)(t) can now be rewritten as

(e} o0

s =exp [ S am)g ¢ —nD)-exp jI S am)g (t—nT).  (217)

n=—oo n=—oo

10



Applying Laurent's PAM decomposition to both terms in thrsguct yields

oo 2b-1-g 0o 9L-1_7
= > > ag(N)Ck(t—NT)- > Z @i (N') Do (t — N'T).  (2.18)
N=—oco0 K=0 N'=—0c0 K'=

Example for L = 2 Part 2

Consider an expansion of the product of sums in (2.18), wtiergroup of PAM
pulses that are nonzero in the interdak ¢ < T will be considered. Thus (2.18) for

0<t<Tis:

-1)Ch

(2.19)
—1) - ap(0)Co

)
-2)Cy
)
+ ao(=1) - a1(0)Co(t + T) D1 ()
+ao(—1) - aj(—1)Co(t + T)Do(t + T)
+ao(—1) - aj(—2)Co(t + T)Do(t + 2T)
+ ag(—2) - a3 (0)Co(t + 2T) Dy(t)
+ ag(—2) - aj(0)Co(t + T) D1 (t)
+ao(—2) - aj(—1)Co(t + 2T)Do(t + T)
+ao(—2) - a5(—2)Co(t + 2T)Do(t + 2T) .
The terms of (2.19) in bold face are shifted versions of gpiéses already presentin (2.19).
For example ifgy(t) = Co(t)Do(t) anddy(0) = ag(0)ag(0), thenag(—2) - af(—2)Co(t +
2T)Do(t + 2T) = do(—2)qo(t + 2T"). This term came into the picture in the time interval
—2T <t < —T. Any pulseq;(t + NT), where its region of support began in the interval

11



NT <t < (N +1)TN # 0, will be removed from this group and placed in the group
of pulses that also started in the intervél” < ¢t < (N + 1)T'N # 0. Thus the terms

in bold face belong in different groups; the first three bglamthe group of pulses that
start in the interval-7" < t < 0 and the fourth pulse belongs with pulses that start in the
interval —27" < t < T'. (Laurent also regrouped the PAM pulses along the same kees
Section 1.2.1 for further explanation.) Thus neglectingsthtermss(t) for the group of

PAM pulses for the interval < ¢t < T' can be written as:

s(t) = ao(0) - a3(0)Co(t) Do(t)
+ ag(0) - a*(0)Co(t) Dy (t)
+ ao(0) - a(—1)Co(t) Do(t + T)
+ag(0) - aj(—2)Co(t) Do(t + 2T)
+ a1(0) - a%(0)Cy(t) Dy (t)
+ a1(0) - a3(0)C1 () D (1) (2.20)
+ a1(0) - ay(~1)Cu(t) Do(t + T)
+a1(0) - ag(—=2)C1(t) Do(t + 2T)
+ap(—1) - a5(0)Col(t + T) Dy (t)
+ap(—1) - a(0)Co(t + T) Dy (1)
+ao(—2) - ag(0)Co(t + 2T) Do(t)
+ ao(~2) - af(0)Co(t + T)Du(1).

Thus, there are twelve unique PAM pulses in weak CPM With 2.
2.2.2 Simplifying the Exact Representation and Calculatig the Number of PAM
Pulses

At no pointin the preceding derivation were approximatioragle. Therefore, (2.20)
is an exact representation of weak CPM fo& 2, which equation can be simplified with-

out deferring to an approximate representation.

12



Example for L = 2 Part 3

An examination of (2.20) shows that some of the pseudo-syprbducts are equal.
Since these products are coefficients of the PAM pulses, engupts that are equal allow
the combining of the PAM pulses corresponding to these misdthus reducing the num-
ber of PAM pulses without compromising the exact PAM repnéstgon in (2.20). This
reduction will be performed using (2.8) which states thatN) = J4x(); this means the
simplification process will simply involve taking the difence between sums of various

combinations ofx(n). The pseudo-symbol products are:

ao(0) - a3(0) = 1 (2.21)
ap(0) - at(0) = Jo= (2.22)
ao(0) - aj(—1) = JO (2.23)
ao(0) - aj(—2) = JHO+e=D) (2.24)
a1(0) - ai(0) = J—o=D (2.25)
a1(0) - a}(0) = 1 (2.26)
a1(0) - aj(—1) = JoO—al=1) (2.27)
a1(0) - aj(—2) = JO (2.28)
ag(—1) - af(0) = J O (2.29)
ag(—1) - a}(0) = J-oO+al=1) (2.30)
ap(—2) - aj(0) = J—oO-al=1) (2.31)
ap(—=2) - at(0) = J O, (2.32)
Clearly
ao(0) - ag(0) = a1(0) - a1 (0) (2.33)
ao(0) - a5(—1) = a1(0) - a5(—2) (2.34)
ao(—1) - a3 (0) = ag(—2) - a%(0). (2.35)

13



This results in the simplification of(¢) for 0 < ¢t < T', where the newly combined pulses
are displayed in bold face:
s(t) = [Co(t) Do(t) + C1(t) D1 (2)]

+ JED O () Dy (1)

+ JYO[Cy(t) Do (t + T) 4+ C1(t) Do(t + 2T)]

+ JoO+a=D 0y (4 Dy (t + 2T)

+ J7EDEC (1) Do () (2.36)

+ JoO==D ey (1) Dy (t + T)

+ JO[Cy(t + T)Dy(t) 4+ Co(t + T) D4 ()]

+ JoO+e=D Ot 4 T Dy ()

X J_a(o)—a(—l)co(t + 2T Dy(t).

Maximum Number of PAM Pulses Just as done in transforming (2.3) into (2.4), (2.36)

can be generalized to include all time as follows:

[e.9]

st = 3 3 die(N)auelt - NT) 237)

N=—o00 K=0
where P = 32, dy(N) represents the new pseudo-symbols, aa¢t) is defined as the
products ofCk (t) and Dk (t), each shifted by various amounts. As an example.dt),
one might define the following:
Qo (t) = Co(t)Do(t) + C1(t) D1 (1)
q1(t) = Co(t)Da(2).

(In actuality, go(t) and ¢, (t) will be assigned different pulse-product combinationsitha

(2.38)

those in (2.38); criteria for such assignment will be givetan.)
The pseudo-symbols in (2.36) are functions only of the curasmd previous data

symbols and their coefficients:

dg(N) = Jrmem+vin=tan-1) (2.39)

wherea(i) represents the binary data symbols and the coefficigntss {+1,0} are taken

from a ternary alphabet. This giv8$ possible data-symbol combinations (as opposed to
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the number of different values the pseudo-symbols can assihich is much smaller). If
an example were completed fér = 3, similar to the example just worked, the pseudo-

symbols would end up being
dK<N) _ Jy(n)a(n)—i-u(n—1)a(n—1)+u(n—2)a(n—2) (240)

yielding 33 possible pseudo-symbols. For gendragach of the pseudo-symbols are of the

general form

L-1
di(N) = [ vV =0e0v=0, (2.41)
=0

It can thus be seen that there afepossible pseudo-symbols since there Ardifferent
binary data symbols in the product in (2.41) and sin¢g are taken from a ternary al-
phabet. Therefore, weak CPM requires no more thaiPAM pulsedor an exact PAM

representation.

2.2.3 PAM Representation of a Special Important Case

The foregoing development uses a generic weak frequensg pGlreater reduction

in the number of pulses arises when the weak frequency paisafimportant case is used.

Pulses That are Zero

Many of the PAM pulses become zero if the frequency pufge), is defined in a
way that represents an important case of weak CPM. In thewiolly derivation, only the
intervals to which each pulse is time-limited will be coresield as opposed to the actual
behavior of the pulse during that interval.

Consider a definition of a frequency pulsét), of length LT, that integrates to

Zero:

f(t)>0 0<t<kLT (2.42)

f(t) <0 kLT <t< LT,

where0 < xk < 1. Referring to (2.14) it is seen thgt (¢), which integrates td /2, is zero
for kLT <t < LT, andf~(t), which integrates tol/2, is zero for0 < ¢t < kLT. g*(¢)
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andg~(t) thus become:

/

0 t<0
g (t) =
% t> kLT
) (2.43)
0 t < wLT
g (t) = :
—3 t>LT

\

With ¢ (¢) and g~ (¢) in hand, V" (¢) and ¥~ (¢) can both be determined which in turn

determines. (t) andu~ ().

ut(t)£0 0<t< (kL+L)T (2.48)
u (t) #0 kLT <t <2LT.

The latter equation will ultimately show that some PAM pulsee zero.

PAM pulse lengths Using (2.44) and (2.5) (the latter repeated in (2.45) fovenience),
the length of eaclt'x () and D (¢) can be calculated.

Ok (t) = 1:[ wt(t+ [i + B () L)T) (2.45)
Dy (t) = f[ w™(t+[i + B () L)T) (2.46)

1=0

L—-1
K= 2""fg(i) 0<K<2"'—1 (2.47)
=1

For general, consider the intervals to whiatix (¢) and D (¢) are time-limited:

Co#0 0<t<(kL+1DT (2.48)

Dy #0 kLT <t < (L+1)T (2.49)

Cy #0 0<t<(kL—-—1T (2.50)

Di#0 kLT <t<(L-1T (2.51)
Cy,C340  0<t< (kL —2)T (2.52)

Dy, Dy #0 kLT <t < (L—2)T (2.53)
Cy,C5,C6,C7 #£ 0 0<t<(kL—-3)T (2.54)
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Dy, Ds, Dg, D7 7& 0 KLT <t < (L — 3)T (255)

(2.56)
Corijgy,Cori 1 0 0<t< (kL —(L—1)T (2.57)
Dyiijgye.,Dori 1 #0  KLT <t < (L—(L—1)T. (2.58)
Example for L = 2 Part 4
Consider once again the example foe= 2 by recalling (2.36):
s(t) =[Co(t) Do(t) + C1(t) D1 (1))
+ JCD O (1) Dy ()
+ JYOCH () Do(t + T) 4 Cy(t)Do(t + 2T)]
+ JoO+a=D 0y () Dy (t + 2T)
+ J7CDCO (#) Dy (t) (2.59)

+ JO=ED e (Dot + T)

+ JO(Cy(t + T) Do (t) + Co(t + T) Dy (1))
+ JoO+eED Ot 4 TYDy ()

+ JO=a=D 0 (t 4 2T) Do (t).

At this point (2.48) is used to find PAM pulses that are zerdiridey the weak phase pulse

as found in (2.43), it can be shown that

Co#0 0<t<(2k+1)T
(2.60)

Dy #0 2RT <t < 3T
Cy #0 O<t<(2xk—1T

(2.61)
D1 #0 2k <t <T.
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The results in (2.60) and (2.61) cause many of the pulses®)go to zero thus reducing

the number of pulses in (2.36) to 4:

Co(t)Do(t +T) + C1(t)Do(t + 2T) # max|0, (2k — 1)T] < t < min[(2x + 1)T, 2T
Co(t)Do(t +2T) # 0<t<T
Co(t)Do(t) + C1(t) D1 (t) # 2kT <t < 26+ 1)T
Co(t)Dy(t) # 2T <t < T.
(2.62)
Thus the final PAM pulses for this special case of weak CPM sifellws:
qo(t) = Co(t)Do(t + T') + C1(t)Do(t + 2T)
q1(t) = Co(t)Dyo(t + 2T) (2.63)
q2(t) = Co(t) D1(2)
q3(t) = Co(t) Do(t) + Ci(t) Di(t).

It can be seen from (2.36) that the pseudo-symbols correlspgio these PAM pulses
in (A.73) are

ag(n) = Jom
al(n) _ Ja(n)+a(n—1)
(2.64)
as(n) = Jer=1
az(n) =J" =1

A similar process can be applied whénis larger which will yield a similarly
extensive reduction in the number of pulses. It turns out thiathis special case, the
number of pulses reduces 2d. if Kk = % (a common occurrence), which is comparable
to the number of PAM pulses in the PAM decomposition of bin@BM which is equal
to 21—, Thus the number of PAM pulses increases linearly witfor weak CPM but
increases exponentially with for CPM. Indeed2L = 2~ for L = 4 but2L < 2%~ for
L >4l
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2.2.4 Method for Forming a PAM Representation of Weak CPM

Considerable ground has been covered in order to arrive AiVarBpresentation
for weak CPM. The final results are summarized in this sectidre general PAM repre-

sentation is virtually identical to Laurent’s orginal PAMpession:

o0

s(ty=> Z_dK(N)gK(t—NT). (2.65)

=—o0 K=0

A substantial amount of work has been put into finding a cldseoh for the pseudo-
symbols/x(N), and the PAM pulseg. (t). For example, Mengali presented an extensive
algorithm used to calculate the pseudo-symbols and PAMepuls the case of weak CPM
this algorithm, which was used to derive the PAM repres@tateaves open the question
of the length of each pulse and of the form of the pseudo-sysnbbhis extra level of
complexity beyond that required to form Laurent’'s PAM depasition, is no greater than
the complexity required to calculate the pulses by hand. ppr@ach to computing the
PAM pulses and pseudo-symbols of a complexity comparabMenogali’s algorithm is
therefore a brute-force approach. Once the pulses ardai@dusimplification of the exact
representation can then be completed.

As discussed in the process of the derviation, at most, thidrbe 3© PAM pulses
for a given representation. A further reduction in the nunddeulses comes when weak
CPM uses an important common form of weak frequency pulseslistussed in Sec-
tion 2.2.3. Indeed, all indications suggest that the nunob&AM pulses for weak CPM
can be reduced to as few a8, which is comparable to (and less than for larger values of
L) the number of pulses in Laurent’s PAM representations dfiCP

The algorithm chosen is as follows. First, calculate the RANSe 'k (¢) (based on
g™ (t)) andDg(t) (based on-g~(t)). This requires thag™ (¢) andg~(¢) be calculated first,
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and therefore also requires formation/of(¢) and f~(¢), using the following equations:

t t)>0
S ECIN(C
0 otherwise
; (2.66)
t t 0
o [JO T <
\0 otherwise
gE(t) = /_ fE(r) dr. (2.67)

This allows the calculation o¥*(¢) and U~ (¢) and subsequently™(¢) andu~(¢), the

latter two functions being the basis of the PAM representati

gt (t) 0<t< LT
Ut(t) = (2.68)
2th —whgt(t) LT <t <2LT
and
—g (1 0<t< LT
U (t) = (®) (2.69)

2rth+mhg=(t) LT <t <2LT

_ sin[W ()]

ut(t) = () (2.70)
_ sin[W ()]
u(t) = Sl (2.71)
Finally, the PAM pulses based a1 (¢) andu~(t) can be formed:
L-1
Cr(t) = [[u™(t+ [i + B (1) LIT) (2.72)
1=0
L-1
Dy (t) = [ u(t+ [i + B (i) LT). (2.73)
=0

Bk (i) is thei-th coefficient for the radix-2 decomposition of an intedéras seen in the

following:

L—-1
K=> 27"B(i) 0<K<2" (2.74)
=1
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Next, the product of the PAM representations of two CPM dgimaformed and

expanded:
oo 2011 oo 2L-1-1
= > > ax(N)Cx(t—NT)- Y Z @i (N")Dy:(t — N'T). (2.75)
N=—oco K=0 N'=—oc0 K'=

New pulses are thus formed as product§'@fit + N7T') and Dy (t + N'T) for all possible
permutations of<, K’, N, and/N’, as demonstrated in (2.19). A particular bit time is cho-
sen and any pulses whose region of support began in previtdimés will be discarded, as
explained in Section 2.2.1 in conjuction with (2.19). Pslggth identical pseudo-symbol
coefficients are grouped to effect simplifications possibtgrdless of the frequency pulse
used in defining the weak CPM signal. At this point, there téino more thas” unique
PAM pulses.

If f(¢)is as defined in (2.42), further simplification is possiblaeTime-limited na-
ture of C'k (t) andDg (t), as shown in (2.48), can be examined along with (2.42) taaisc

and eliminate pulses that are zero; these two equationgpeated here for convenience:

Co#0 0<t<(kL+1)T
Dy #0 kLT <t < (L+1)T
Ci#0  0<t<(kL—1T
Dy #0 RLT <t < (L—-1)T
Cy,C3#40  0<t<(kL—2)T
Dy,D3#0 kLT <t<(L—-2)T (2.76)
Cy,C5,C4,Cr #0 0<t<(kL-3)T
Dy, D5, Dg,D: 40 kLT <t < (L—3)T

C2L71/2,...,02L—1_1 %0 0<t< (K,L— (L—l))T
D2L71/27 ey D2L—1_1 % 0 KJLT <t< (L - (L - 1))T
f(t) >0 0<t<kLT

(2.77)
f(t)y <0 kLT <t<LT.
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This elimination results in limiting the number of PAM pussi® as few a8 where2L is

reached whem = 1/L.

2.3 Application to EFTS

The EFTS signal has the following design requirements. Tdak frequency de-
viation, f,, is 60 kHz. The bit rateR;, is 7200 bits per second (bps). The modulation
type is continuous-phase modulation, using a Manchestquéncy pulse. Before the fre-
guency pulse train is input into an FM modulator to createGR&M signal, EFTS dictates
the frequency-pulse train is to be filtered by a 4-pole lowspBessel filter with cut-off
frequencyF,. = 15 kHz.

These parameters need to be converted into the model usedigating the CPM
modulator modeled in Chapter 1. The model requires the natidalindex,h, defined in
[23, section 4.3.3] as

h=2fT (2.78)

whereT" is the symbol time, which for a binary modulation is equalte bit time,T},. The

bit time can be calculated as

1 bitb | 1
Rb (secltc;snd) Rb
therefore, = 16.666. (2.80)

The model chosen to represent the low-pass Bessel filter Wsiasian low-pass
filter with F, = 15 kHz. This choice was made for two reasons. First, the Gaussve
pass filter is used as the pre-modulation filter for GMSK [26pne GMSK is CPM based
on an NRZ frequency pulse, filtered by a low-pass Gaussian filith a time-bandwidth
BT, and withh = % This is interesting because GMSK provides approximatedysame
spectral shaping as the recommended EFTS pre-modulatien f8econd, the Gaussian
low-pass filter produces a somewhat more tractable matheahakpression for the fre-

guency, and phase pulses, compared to when using a Bessel filt

22



The frequency and phase pulses may be expressed as

f(t) = XV_thQ< LT”)
o <t—(L—1)T/2) P (t—(L+1)T/2)] (2.81)

o o

g(t) = xmh {a (e 2
vam (i (L+D) L+1)T/2
) +(\/—(L+1)T) ((L+1T) )

(= (L+1)T/2 (L+1)T) )

20

b (HEEE  (e20))
+\/§(t_ (Lgl)T)Q(t—(L—l)T/Q)

o2

n \/%(L - 1)TQ (_(L — 1)T)

20

_20_< t LT/2 _(%)2)

(- )o (H2) aetio(41)] e

where
1 > —u?/2
In2
o= SR (2.84)

andy is a constant required to produce the desired frequencyti@vi
As stated, the modulation for this model is similar to Gaaissninimum-shift key-
ing (GMSK). Recall that is the number of symbol periods spanned by the frequency

pulse. Tsai and Lui [26] give the following approximation fbin GMSK as a function of

BT
1

L~ [ﬁ—‘ (2.85)



where[-] denotes the integer closest to and larger tharFor the model used by EFTS,

BT =B-T,
15 kHz
TR, (2.86)
15 kHz

T 72 kBps

= 2.083.

It turns out that a slightly different approximation shobkelused for EFTS, as can be seen
in Figure 1.1, which is a Manchester frequency pulse filtdned Gaussian low-pass filter
with BT = 2.083. This figure shows that the pulse spans somewhere betweemdnao

symbol times. Thus for this cask,can be calculated as,

1
L~2 [ﬁ—‘ =2. (2.87)

SinceL =2 andx = 1 (as used in (2.77)), (2.62) shows that

qo(t +nT) = Co(t + nT)Dy(t + (n + 1)T) #0 0<t<2T,
@1 (t +nT) = Co(t +nT)Dy(t + (n+2)T) #0 0<t<T, (2.88)
andqy(t + nT) = Co(t + nT)Do(t + nT) # 0 T<t<2T

are the appropriate PAM pulses for an exact representafi@t©S-based CPM, shown
in Figure 2.1 with their spectra shown in Figure 2.2. It carsben from (2.64) that the

respective pseudo-symbols for these PAM pulses are

ag(n) = Jem
ay(n) = Jom+aln=1) (2.89)
as(n) = J° = 1.

Thus, the PAM representation of EFTS PAM is

s(t)= > (Z™Mgo(t — NT) + el tet=blg, (t — NT) + gt — NT). (2.90)
N=—00

2.4 Power Spectrum of Weak CPM Using the PAM Representation

The PAM representation of weak CPM aids in understandingutitesirable fre-

guency spectrum characteristics in weak CPM. Andersoninfanid Sundberg state that
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Figure 2.1: The three PAM pulses(t), ¢:(t), andgx(t) in the PAM representation of the
EFTS waveform.
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Figure 2.2: The spectra of the three PAM pulsgs), ¢;(t), andgs(t) in the PAM repre-
sentation of the EFTS waveform.
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weak CPM has discrete lines in its power spectral densitpjP$hey further state that
these lines are undesirable, because they represent vissisthit power since they con-
tain no information [9, page 154].

A periodic function has discrete lines, or impulses, in itafer Transform; the
magnitude of each of these impulses is proportional to thei€prseries coefficients of
the periodic function [27, Section 4.2]. Thus, if an auteetation function has a periodic
component, the PSD, which is the Fourier transform of theartelation function, will
have discrete lines.

This understanding combined with the PAM representatiaviges a way to dis-
cover the presence of discrete lines in weak CPM, diffenembfthat found in [9]. As seen
in (2.36), whenl = 2 one of the PAM components is symbol-independent, whichtisrde
ministic; such a pulse surfaces in the PAM representationeztk CPM regardless of the
value of L. A function made up of such a deterministic pulse repeatedaatliar intervals
is periodic. Since one of the PAM pulses of weak CPM is alwgyal®l-independent,
(2.65) shows that there is a time-shifted version of thislsylindependent pulse in every
symbol interval, thus giving(t) a periodic component. The presence of this periodic com-
ponent also implies the presence of a periodic componetieimtitocorrelation function,

ultimately resulting in discrete lines in the PSD.
Example for L = 2 Part5
Consider the symbol-independent pulse associated with the example:
qi(t) = Co(t) Do(t) + C1(t) D1 (t) (2.91)

wherei will be chosen based on the number of pulses that are prasém: iPAM repre-

sentation. In forming the autocorrelation of the CPM signal
Guslt,t+0) = E{s(t)s"(t +0)}, (2.92)

¢;(t) will remain symbol-independent only when placed in a praduith shifted versions

of itself.
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Assuming the frequency pulse is defined as

fA)>0 0<t< LT
o (2.93)
which is of the form of (2.42)¢;(¢) is time-limited to7" < ¢ < 27T'. The periodic pulse

present in the autocorrelation in this special caseé ef 2 is therefore
Pssperiodic(t, t +0) =Y qi(t + NT){qi(t + 0+ NT) + qi(t + 0 + [N + 1]T)}  (2.94)
N
where0 < # < T. The region of support of this periodic pulse is
NT <t < (N + 1T, (2.95)

and so has a period @f. The autocorrelation functionedt, t + ), represents the periodic
part of a cyclo-stationary random process, and thdgeriodit, t + 6) makes up a part of
a cyclo-stationary random process. In order to calculagéeR8D by taking the Fourier
transform of the autocorrelation function, the autocatieh function must represent a
stationary random process (i.e. it must be a function of only variable). The common
practice used to convert the autocorrelation function of@cestationary random process
into the autocorrelation function of a stationary randoracess is to average over one

period of the autocorrelation function [23]. Thus

1 (N+1)T
¢ssperi0dic(9) = ? / Cbssperiodic(tat + 9) dt (296)
NT

represents a stationary random process. The discretedlirget® (2.94) can thus be calcu-
lated using the following equation [27],

Z bed(f — 1/T)

k=—o0 (2.97)

whereb;, = % /T dssperiodic(0)e T db.
The latter part of (2.97) represents the Fourier seriedic@fts ofpssperiodic(0)-
A PAM representation for weak CPM has now been developedhéhestep is to

see how this PAM representation can be used to build a PAMebeeceiver and how to
predict the performance of such a receiver, and finally, ipteshd simulate the receiver's

performance.
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Chapter 3

Weak CPM Receivers

The main interest in a PAM representation of CPM arises indéns@gn of the re-

ceiver, which seeks to detect the transmitted data sequdrmehe received signad(¢):
r(t) = s(t) + w(t). (3.1)

This received signal consists of the transmitted sigia), plus noisev(t), modeled as ad-
ditive white Gaussian noise (AWGN). An optimal way, in teraidit-error rate (BER), to
effect this detection is through the use of a maximum likedith sequence detector (MLSD),
which is a detector that performs maximum likelihood segeegstimation (MLSE). This
detector requires a sometimes prohibitively high compyexiis therefore desirable to use
a sub-optimum detector which requires a lower level of caxipy. The use of a PAM-
based representation of CPM is one method that allows rieduict the complexity of the
receiver. (For other methods, see [9, chapter 8].) The aatfofmulating weak CPM as
a PAM signal does not alone provide for a reduced complegitgiver. Indeed, a receiver
built using all of the PAM pulses to detect the signal is justther formulation of MLSE
[24], which is of roughly the same complexity as the MLSE d&iefor CPM described in
[9, page 249]. On the other hand, using fewer PAM pulses thamtimber required for an
exact representation (i.e. using an approximate reprasem} does decrease complexity
without a significant drop in BER; even a receiver using ohg/most energetic PAM pulse
greatly outperforms an FM limiter-discriminator detector

Section 3.1 reviews maximum-likelihood (ML) detectors &wttion 3.2 outlines

the design of sub-optimum detectors. Section 3.3 appleesetbults of the first two sections
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to the EFTS waveform. Finally, Section 3.4 presents simadatesults and complexity

comparisons of the various EFTS detectors.

3.1 Maximum Likelihood Detection

In order to understand how a MLSD works, it will be helpful #sdribe CPM using
a phase-state trellis, which is defined based on the phass,starrelative states, and state

transition of CPM.

States In weak CPM, the trellis arises when the frequency pulse spaore than one
symbol time. Within the trellis structure, there golease statgeswvhich represent accumu-
lated phase due to previous data symbols which are no lorayesitioning; in weak CPM,
there is only one phase state, since the accumulated phas@isThere are alsmorrela-
tive statesased on previous symbols that are still transitioningglaee thug ! (A7--*

for M-ary CPM) possible correlative states. The correlativeestand the phase states are
combined into atate vectoreach trellis state is described by a unique state vectarerh
are two paths leaving each state (paths for M-ary CPM). Thestate transition which

is based on the current symbol, describes these paths; ttemtdata symbol determines
to which of the two possible states these paths lead. Usigttte vector and the state
transition, a trellis can be constructed to show all possstbhtes and state transitions. This

will be done for EFTS later on in this chapter.

3.1.1 ML Detection Using the Complex Exponential Represeation

A MLSD searches for the path through the phase state trelishwmost closely
represents the path taken by the transmitted signal. “Mosely resembles” in this case
(signal- AWGN) means that the signal representing the path chosdreasdst likely path
is less different to the received signal in terms of squanedlifean distance than a signal

representing any other path through the trellis. A metrat gerforms this search is

arg max {In [pryalr®)|a)]} = arg min {/OO lr(t) — s(t, &)|? dt} (3.2)

[e1 [e1 —00

where & represents a possible transmitted sequence. (Equatiois 3ighply the log-

likelihood function for some signal in the AWGN channel.) elbquared term in (3.2)
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is expanded and only the pieces that vary witlare considered. This yields an equation
equivalentto (3.2):

arg max A (&) = arg max Re{/ r(t)s*(t, &) dt} . (3.3)
This metric assumes the whole received signal is in hand®efalecision is made. The
Viterbi Algorithm, on the other hand, calculates this mepiece-meal so as to enable the

making of decisions as the signal arrives.

The Viterbi Algorithm

The Viterbi Algorithm splits up the decision by incorporaginewly received infor-

mation one symbol time at a time as follows:

arg max Re{A;(n; &)} = arg max {Az(n — L) + ReN,, i (n; &n)]} (3.4)

[e3

(n+1)T
Am.i(n; &) :/ r(t)s: (t, &) dt (3.5)
nT
wherea,, = {a(n),a(n —1),...,a(n — [L — 1])} is a possible data sequence based on

the symbols from time. — (L — 1) up to and including time:.

Two comments about (3.4) will be instructive. First, theegral in (3.4) simply
represents a matched filteringsat) by filters matched to the possible CPM waveforms in
the intervalnT < t < (n + 1)T. The second comment regards the metrics uses in (3.4).
Am,i 1S the recursive metric andl is the cumulative metric [9, page 249}.represents the
metric for a given state, and since there 2te! trellis states, there ar2*~! different A
metrics, thus andj in the subscripts of (3.4) each take on a different value énrtinge
0<i,5<21-1, Also, \,, ; represents the metrics for each of the two paths leaving each
of the states. Equation (3.4) shows that; is a function of the previous — 1 symbols and
the current symbol, so there are different recursive metrics to be calculated each symbol
time. In order to allow foR’ combinations;n ranges aé < m < 1, sincei is in the range
0 <i<2l7' —1;i.e., since there are*~! trellis states and there are 2 paths leaving each
state, there must i different paths and so there must be an equal number of médric

describe these paths.
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Incorporating new information one symbol time at a time ifydralf of the story.

At this point, the number of paths still grows exponentialliyh each additional symbol
time. The Viterbi Algorithm uses the following scoring methto eliminate unnecessary
paths, reducing to a great degree the complexity requirdétiermine the most likely data
sequence. It will be seen that the Viterbi Algorithm fixes pla¢h length and the number of
maintained paths. (MLSE detection in the form shown in (88juires a number of paths
that grows exponentially with the length of the transmitedquence).

The cumulative metric\;, represents the information contained in thi state
vector and recursive metrig,, ;, represents the information relative to the two phase tran-
sitions leaving the-th state. That is); gives a “score” to each of the possible state vectors.
Then each of the possible paths leaving each of the statesignad a score equal kg, ;.

The total score for a path leaving the state is equal,fo+ A,.

Each path transitions to some state where it will merge witlath that left from
a different state. The scores of these two paths are comparckthe path with the larger
score is declared the survivor; the other path is discartled.destination state is assigned

a new score, equal to the sum of metrics corresponding tauttvessg path:

The discarded path no longer holds any useful informatinoesany path leaving thgth
state will increase its score the same amount, regardldbe oflue of the\; and); ,,, of
the surviving path. Therefore, the discarded path will glsvhave a smaller cumulative
score than the survivor.

In fine, the Viterbi Algorithm operates along the followinguir steps to keep the
computational complexity manageable. First, the recarametrics in (3.5) is calculated
in order to incorporate the new information that just aria the receiver, second, these
metrics are added to their associated cumulative methasl, tmetrics of merging paths
are compared, and fourth, a soft decision is made by degl#rlarger of the two metrics
as the survivor and the path with the smaller metric is did®dr The number of possible
paths is thus maintained 2t different paths and the computational load is spread out ove

the length of the transmitted sequence. Up to this pointy#iks paths have been followed
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and the most likely paths, up to the current tirfres- 1) 7, (or n-th symbol time) have been
isolated.

When the received signal has been observed over a sufficient! interval of time
and the recorded paths contain information about the/fisstmbol times, a hard decision
about the first bit is made. The first symbol interval in thehpathich corresponds to this
hard decision, can then be removed and disregarded. Thedegcpaths will then cover
n — 1 symbol periods. From this point on, the algorithm produces bit every symbol
time by sliding the observation window.

The sliding operation happens in the following four recugssteps. 1) The first
hard decision is made. 2) After the first decision is made ptr¢ of the path regarding
the decision is removed leaving path information about2lesymbol interval up to the
n-th symbol interval. 3) Following this removal, an addi@brime interval is added to
the mix by calculating the next metric using (3.5), adding th + 1)-th interval to the
path information. 4) The Viterbi Algorithm then makes sodtisions (using the four steps
described in the preceding paragraph), eliminating hathefpaths opening the way for
another hard decision to be made and so the process repbats.tiie complexity is greatly
reduced, and the path length is set at a lengih ¢furthermore, the Viterbi Algorithm only
needs to keep track @f paths of this length, instead of a number of paths which grows
exponentially with the number of symbol times observed.

An example of receivers using the Viterbi Algorirhtm and ttker following re-

ceivers will be given later in this chapter.

Analysis: Minimum Euclidean Distance and Naming Weak CPM

In discussing receivers, interest lies most heavily in grenfance; a method for

predicting receiver performance will now be presented.

Sufficiently long” refers to the fact that after several & the first bit of all paths will be the same
with an asymptotic probability of 1. To find the number of thegcles that quanlifies as sufficiently long, the
detector can be designed and tested with increasingly lbsgrgation intervals. (The observation interval
refers to the number;, of symbol times the receiver is allowed to observe, whil&kimg soft decisions,
before a hard decision is made.) When increasing the lerigtie@bservation interval no longer reduces the
BER, the observation interval is “sufficiently long.”

33



The first step in the presentation is to discuss the notioruaf@n bound. The union
bound of probability says that the probability of the unidreeents occurring is less than
or equal to the sum of the individual probability of each afgh events. Using the union
bound on pair-wise error probabilities yields the follogrimequality for the probability of
error for CPM in the AWGN channel:

Pb<ZZQ<m> (3.7)

i jF#

whereQ) (, [ d3; f,b> is the probability that the sequence estimate jsvhena; was trans-

mitted andd?; is the Euclidean distance betweanwhena; given by

- 2
2 = 2Eb/\ () — s(t, ;) dt. (3.8)

If the double sum in (3.7) is reordered so as to combine tehatshave equal Euclidean

distances, the result is

asZZ@(ﬁ) Zm@(\/TNO) (3.9)

i jFi
whered,, is some Euclidean distance between two sequence$land a function of the
number of sequence pairs that have a Euclidean distanég af, as defined in (3.9) is

dominated by the term corresponding to the smallest distanc

min

2y, = min {d}} . (3.10)

At high SNR, (3.9) can be approximated as

E
Pb ~ WminQ ( d?nlnﬁi) : (311)

Wmin becomes insignificant at high SNR [9, pages 27,28,55,5%tgdhat the accuracy of
this approximation decreases as the difference betdfeand the next largegf becomes
relatively small.)

Consider the following example. Minimum-shift keying (M¥yis CPM withh = %
and a non-return to zero (NRZ) frequency pulse of length TKMi@s ad?,, = 2, which
translates to an expected probability of errofpf 3.9 x 10~% at ank, /Ny = 10 dB. One
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version of weak CPM could use the sambut replace the frequency pulse with a lendth-
Manchesterfrequency pulse; this modulation hasig,, =~ 0.36, which translates to an
expected probability of error aP, ~ 2.9 x 1072 at anE,/N, = 10 dB. This difference
in Euclidean distances results in a lossrefr dB at aP, = 1075. This makes clear the

reasoning behind the name “weak CPM.

Complexity

The number of real multiplies and real additions requirelimaw be used to con-
sider this receiver’s complexity. In doing so, keep in mihdttl) the complex-envelope
was used to simulate the receiver, and so complex multplezs vequired, that 2) a com-
plex multiply requires four real multiplies and two real ad@nd that 3) if there ar&
multiplies in a filtering operation, there afé — 1 adds.

The complex exponential-based MLSD receiver requires ayteagthd” matched
filters as it has recursive metrics. Equation (3.4) shows tthere are2” such metrics.
Assuming/N samples per bit are used for the digital realization of thetesy, each filter
requiresN complex multiplies. Each complex multiply requires foualrenultiplies and
two real adds, but as the imaginary part is discarded, thrergust two real multiplies and
one real add. Thus,2* N complex multiplies are required, but ority ™' N real multiplies
and2L(2N — 1) real addsZN — 1 real adds for eacli-length filter). To summarize, this
detector requires

oLl N (3.12)

real multiplies and

2L(2N — 1) (3.13)

real adds. The complexity required for effecting MLSE musbée accounted for, but

will not be quantified here.

2Af x =z, + jx; andy = vy, + jy; are complex numbers thew = z,.y, — x;y; + 7(z,.y; + z;y;). So if
the imaginary part is discarded, only two real multiplied ane real add are necessary.
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3.1.2 ML Detection Using the PAM Representation

An optimum receiver for a PAM-based modulation uses a malditter [23]; for
this reason, Kaleh designed a MLSD that uses matched filtesesdoon the PAM pulses to
compute the recursive metric [24].

Calculating the metrics for Kaleh’s method boils down to fbkowing process,
which also uses the Viterbi Algorithm and consists of siypsté-irst, the received signal is
fed into a bank of matched filters, which correspond to each@®PAM pulses and which

are sampled at times= nT'. Thek-th matched-filter output at time1 is

() = /_ L () dr (3.14)

[e.9]

t=nT

whereh,(t) is a matched-filter based on tiheth PAM pulse. (Note that at timeT", the
signal is only based on symbols up to and including(the- 1)-th symbol.) Second, the
k-th filter output is multiplied by thé-th pseudo-symbol, the latter being based on one
of the possible data sequences. Third, the real part of tieauhese products is taken

yielding the recursive metric:

Am.i(n) = Re{ink(n)dfk(n)} , (3.15)

where* denotes complex conjugatioR,is the total number of PAM pulses, andrepre-
sents the two possible transition paths. Fourth, thesesiweumetrics are summed to form

the cumulative metric

A = VI 3 Al (3.16)

l=—

which lends itself easily to the recursive formulation

wheren means the:-th symbol time is being considered (i.e., the time intenBl< t <

(n + 1)T). The variable represents one of tH&~! possible states; that i§; represents
the metric for the-th state andn represents one of two possible path transitions. Fifth, as
with the complex exponential-based receive() must be calculated for each of the states

after which it is added to eachy, ;(n) to find the metrics for each of the paths leaving each
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of the states. Sixth, the metrics of merging paths are coedparfind the survivors and to
discard the other paths. Just as with the CPM MLSD, after fecgritly long observation

interval, hard decisions can begin to be made on the bits.

Analysis

Since this detector is simply another instance of a MLSD,ntir@mum distance

for this receiver will be the same as it was for the exponéihigased ML detector.

Complexity

Equations (3.15) and (3.17) show the metrics calculateth&yPAM-based MLSD.
The PAM-based MLSD receiver requires a matched filter of tlertgy7” for each PAM
pulse, where; is the number of bit times spanned by thth PAM pulse. The PAM
matched filters are real-valued filters but the receivedaigncomplex so this receiver

requires

pP-1
T=2N> O (3.18)
i=0

real multiplies and no addsagain assumingV samples/bit are used for the digital real-
ization of the system. After these multiplies, the complexpat of each matched filter
is multiplied by the possible pseudo-symbol combinatioms #ne imaginary part is dis-
carded. If the-th pseudo-symbol, which corresponds to thh PAM pulse, is a function

of ©; different data symbols, then there are

=) 2% (3.19)

real adds and® real multiplies required to calculate the metrics,. Thus the ML PAM-
based detector requires
T+ 29 (3.20)

real multiplies andpb real adds. Just as with the ML complex exponential-basesttiat

the complexity required to effect MLSE must be taken intooaett.

8If 2 = x,. is a real number ang = v, + jy; is a complex number thery = z,.y,. + jz,y;. So there are
only two real multiplies required but no adds are required.
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3.2 Sub-Optimum Detection

Two sub-optimum receivers were used in the simulations. Waea PAM-based
receiver, using only the most energetic symbol-dependdséepThe other receiveris a FM
limiter-discriminator since CPM can be viewed as “digit’H28] and since the current

EFTS uses an FM demodulator at the receiver.

3.2.1 Reduced-Complexity Detection Using the PAM Represttion

Simplified PAM receivers have been studied by Kaleh [24] asal &nd Lui [26, 29]
for GMSK, by Colavolpe and Raheli [30] fa¥/-ary CPM, and by Perrins and Rice [13]
for M-ary multi-h CPM.

The cumulative metric for the ML detectors as as well as tloegss for calculating
their metrics is the same with this detector excepting theputtation of the recursive

metric, which changes (3.15) to

R—-1
Ami(n) = Re{z nk(n)d;jk(n)} , (3.21)

whereR is some integer less thdh the total number of PAM pulses, aitirepresents the
number of PAM pulses that will be kept in making the simplifredeiver. Thus, the sum
now only sums front to R — 1 instead of) to P — 1; the variablesn and: will now vary

to account for all the possible combinations of data symbtws are used in the reduced
set of pseudo-symbols.

This change may or may not affect the trellis. The trellisl wilange only if the
reduction in the number of pulses and corresponding reatudti the number of pseudo-
symbols results in the complete removal of one of the datdsysnFor example, suppose
that the exact PAM representation of some weak CPM signartigoon the current and
previous two data symbols. The MLSE trellis will have fouatss and two transitions out
of each of those states. Then, if an approximate represamiatused which is dependent
only on the current and previous data symbol, the trelli$ malze only two states and two
transitions from each of these states. Finally, if an appnaion depends only on the

current data symbol, the trellis disappears entirely, asgnabol-by-symbol detector will
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suffice. (An example of this latter case will be shown in desig the EFTS simplified

receiver.)

Analysis: Mismatched Filter

If the receiver is not matched exactly to the transmittedaigthen a mismatched
Euclidean distance must be used to compare receiver coafigs. This situation arises
when a simplified PAM receiver is used, which uses an appratéar®PAM signal, repre-

sented by a slightly modified version of (2.37):

[e.e]

R—1
F(t)= > > axnCk(t—NT) (3.22)

N=—o00 K=0
whereR is some integer less thap, the total number of PAM pulses. The probability of
error is well approximated by (3.11) except thit  is replaced by a modified distance
measure given by
1 ([15(t; ) — s(t; a0) 2 dt — [ [3(t; an) — s(t; )2 dt)”
2E;, J15(t; 1) — 3(¢; ) |? dt
wherea; and a are two different data sequences. Als) is the transmitted signal

P =

(3.23)

(exact CPM) and(¢) is the PAM-based approximation of CPM which will be used at th
receiver [31]. Just as with Euclidean distance, the mininmiodified Euclidean distance
among all possible data sequences gives an approximatiire girobability of error and

so (3.11) can be used to predict the BER curve, which predidiiecomes increasingly

accurate with increasing SNR [9, section 3.5.1].

Complexity

The complexity calculation is the same as ML PAM-based dietecbut now there
are R matched filter and? pseudo-symbols used in the filtering and multiplying, iadte
of P as in ML PAM-based detection. The only change comes in theutaion of the

following:
R-1
O =) 2% (3.24)
=0
equations (3.19) and (3.20) still hold. Thus, the symbakpgnbol detector requires fewer

adds and multiplies and is also simpler in the fact that a MisStot required.
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3.2.2 Reduced-Complexity Detection

Using an FM Limiter-Discriminator Detector

An FM limiter-discriminator detector simply removes theagk pulse train from
the complex exponential and differentiates this pulsentrgielding the frequency pulse
train. This pulse train is then fed into a matched filter mattto the frequency pulse. The
matched-filter output is scaled and clipped. If the outpuotga at timel = nT" is positive,
a(n) = 1is the decision; otherwise,@&n) = 0 is the decision. Analyis and complexity of

this receiver will not be considered.

3.3 Application to EFTS

The following sections will describe in brief terms the m&adar used as well as

the various receivers in simulating an EFTS system.

3.3.1 CPM Modulator

The EFTS modulator is similar to other CPM modulators. A @rexcy pulse train
is formed, and then pre-filtered by a Gaussian low-pass.fillee output of the filter is
integrated and multiplied b¥rh, which is input into a complex-exponential, thus forming

the transmitted signal.

3.3.2 MLSE and Sub-Optimum Receivers

As discussed in Section 3.1, the MLSD uses matched filter$féatehe recur-
sive metric, whether the detector is complex-exponei@sed or PAM-based. With weak
CPM, the number of states is based solely on the number of glytimbes spanned by
the frequency pulse. Since EFTS uses a Gaussian low-passdilManchester frequency
pulse of lengti2T’, there are only two states. The transition state alwaysistsnsf one
symbol and so there are two possible paths leaving and egtedch state. The trellis is
shown in Figure 3.1 where the states are labeled accorditigetoumulative metric found
in (3.17).
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Figure 3.1: The two state trellis describing the signalkestat the EFTS modulation.

Complex Exponential-based Detector In a complex exponential-based MLSD, the
matched filters are matched to CPM signals for all possibie sequences. The matched
filters only calculate the recursive metrig,(; found in (3.4)) and so only consider the
current symbol time. In EFTS, the pulses span two symboldiamel so, since the alphabet
is binary and since only two symbols are transitioning in misgl time, there are four

possible waveforms in a given symbol time.
s(t) = expj (ﬂh [a(n)g(t —nT) 4+ a(n—1)g(t — (n — 1)T)D (3.25)

where the four possibilities are found by varyia¢:) anda(n — 1) in s(¢). The MLSD
detector is shown in Figure 3.2(a).
To calculate the metrics, simply replagg; &) found in (3.4) with the complex

exponential found in (3.25) as follows:

Am.i(n; &) = /(n+1)TT(t) exp <j7Th [a(n)g(t —nT)+a(n—1)g(t— (n— 1)T)]> dt.
" (3.26)

Also note that andm found in this equation now both vary 8s< i, m < 1 sinceL = 2.

PAM-based Detector In a PAM-based MLSD, the matched filters are matched to the
PAM pulses. The PAM-based MLSD is seen in Figure 3.2(b). dethe MLSE block,
the input to this block is multiplied by the possible psewsyoabol combinations to find all

of the metrics. It can be seen in this figure that the symbd¢jrendent PAM pulse was

completely neglected, yet the detector is still optimunrifi@ation of this metric as well as
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the metric for the sub-optimum detector is easily done byyapgthe PAM decomposition
to s(t) in (3.3) and discarding terms that are constant with resjpeGt The metrics for
this MLSD are thus
t
wn) = [ i) dr

—00

Am,i(n) = Releft{no(n)d;o(n) +m(n)d;,(n)},
andA;(n) = Ai(n — 1) + /2EAmi(n).

(3.27)

Symbol-by-symbol PAM-based Receiver In EFTS, there are only two symbol-
dependent PAM pulses, as seen in (2.88) and (2.89). As thbédaindependent pulse
carries no information, the only simplification that can bad® is to remove; (¢), thus
using the only pulse lefty(¢). Sinceao(n) = J*™, which is a function of the current
symbol only, this simplification removes the need for aised symbol-by-symbol detector
will suffice. This detector, which is sub-optimum, can berseeFigure 3.2(c).
The metric for this detector is
nT
An) = Re{J‘O‘(")/ r(T)ho(T) dT} ) (3.28)

(n—1)T
Clearly, there are only two possible metrics for eackince there are only two possible
values thatv(n) can take on. These two metrics are compared and the bit pordig to

the larger metric is taken as the likely transmitted sym@Bius, the decision rule for this

detector is
+1 Re{zy(nT)e 7™\ > Redxy(nT)el™
a(n) = to(nD)e™} = Reqao(nT)er™) (3.29)
—1 otherwise
Usingh = 50/3, itis easy to show that the decision rule reduces to
+1 Im{zg(nT)} >0
a(n) = tao(e)} 20, (3.30)

—1 otherwise

3.3.3 FM Limiter-Discriminator

The FM limiter-discriminator can be built in several waysn the simulations

done for this work, the received signal, both in-phase araticpture components, are ran
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Figure 3.2: Coherent detectors for the EFTS modulationm@jimum likelihood detector

based on the complex exponential representation; (b) maritikelihood detector based
on the PAM representation; (c) reduced-complexity detdzased on the PAM representa-
tion; (d) non-coherent FM Limiter-Discriminator.
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through intermediate frequency (IF) filters. These filteesevmodeled ag"-order Cheby-
chev filters with peak ripple-widths of5 dB and cutoff frequencies 0f75F; whereF; is
the sample rate. After these filters, the derivative of eawhponent is taken; the arctan-
gent is then taken of the ratio of the filtered derivative & tfuadrature component to the
filtered derivative of the in-phase component. This resultivided byrh and clipped to
be betweent1. The result is compared to zero to determine whether a “1” seas or a

“0” was sent. This detector is shown in Figure 3.2(d).

3.4 EFTS Receiver Performance and Complexity

The performance of the PAM-based MLSD was approximé&igly dB better than
an FM limiter-discriminator at0—°> BER; the BER curves, with and without the symbol-
independent pulse included as a matched filter, were fontahts and purposes identical.
The performance of the symbol-by-symbol detector showdy asmall loss of approxi-
mately(.68 dB from optimal at a BER of(0 .

Distance analysis was performed in order to predict perdoee. Using (3.23), the
following were found:d?2,,, ~ 1.18 for the MLSD receiver and the mismatched distance
Jmin ~ 1.02 for the symbol-by-symbol receiver; for both receivérs,, = 1. The com-
plexity for this case was calculated using (3.12), (3.13)19), and (3.20). The simulation
results and analysis for the MLSD receiver and the symbedyoybol receiver are com-
pared in Figure 3.4 and the simulation results for all remivare shown in Figure 3.5. The
performance and complexity results are summarized in Takle

The analyis and simulations were performed assuming an AWlaxinel. EFTS
applications are actually implemented in AWGN channeldaitlded phase noise. Fig-
ure 3.3 shows the setup of the receiver simulations with @nasse and AWGN added.
A fourth curve is seen in Figure 3.5 which shows how phaseenaifects the simplified
PAM-based receiver: still 4 dB better. (The FM limiter-disginator was unaffected by
the addition of phase noise.) For further explanation riggrthe phase noise model, see

Appendix B.
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Figure 3.3: This figure shows the PAM-based simplified remeiand FM limiter-
discriminator used to simulate operation in the presengdase noise.

bit error rate

simulated: No mismatch
| O analysis: main pulse only|- - -
| — — —simulated: main pulse only- -~~~

6 ] ] ] ]
0 3 6 9 12
E,/N, (dB)

Figure 3.4: BER curves based on the Euclidean distance anchdldified Euclidean dis-
tance anaylis, compared to the BER curves achieved fromiaiion. As can be seen, the
analysis made an excellent prediction.
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Figure 3.5: Bit error rate simulations for the three detattnethods for the EFTS mod-

ulation, as well as the results for the phase noise simulatiaghe simplified PAM-based
receiver.

Table 3.1: Comparison of the number of real-valued mutmlrequired by the three
detectors illustrated in Figure 3.2.

Detector E,/N, for a BER of107° | real multiples | real adds
ML-Complex Exponential N/A 8N 8N —4
ML-PAM 11.6 dB 6N + 12 6
Reduced-Complexity PAM 12.6 dB AN 0
PAM With Phase Noise 14.2 dB 4N 0

FM Limiter-Discriminator 18.2 dB N/A N/A
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Chapter 4

Conclusion

Although Laurent’s work did not provide for a PAM represdita of weak CPM,
his work combined with the work of Mengali led to an approamhderiving a PAM repre-
sentation for weak CPM. All the implications associatedwatPAM decomposition were
shown to apply to the PAM decomposition of weak CPM, most esgflg, the implica-
tion that a simplified receiver for the EFTS waveform couldcbastructed, based on this
representation, that greatly outperforms a limiter-dmgrator currently used in the EFTS
system. The receiver performed with near optimal perfomeamder the assumption of
phase coherency and neatly outperformed the FM demodukaten in the presence of
phase noise present in EFTS applicatibns.

Another benefit of the PAM representation of weak CPM was thditimnal per-
spective given as to why weak CPM has poor performance. Nathel PAM representa-
tion revealed a symbol-independent PAM pulse that is gleadsted energy, accounting
for the discrete lines observed in weak CPM as well as thelsmalmum distance ex-
hibited by weak CPM. The PAM representation of weak CPM cdddised to predict the

energy in discrete lines due to the symbol-independenepuls

it may be that the effect of the phase noise could be lesséheadare chosen to be an odd multiple%)f
bringing the two different complex-exponentials to an arrgﬁi%w, and so making samples at tim& of
the signal antipodal, thus maximizing the phase rotatiaesgary to cause an error due to the phase noise.
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Appendix A

Derivation of a PAM Decomposition of CPM and Weak CPM

A.l CPM

The first order of business is to properly define the orgindiGRynal, from which
the pulse-amplitude modulation (PAM) decomposition wdl Berived. The frequency
pulse, f(t), defines how the frequency of the signal changes during aangiymbol pe-
riod. It is well known that to find the phase of a signal, one niniegrate the frequency
over time; the frequency pulses will be assumed to integedie. The following are some

definitions that will be useful in the derivation of the PAMoresentation:

t=NT+rT1 0<r<T

(A1)
J = elhm
Also
o) = [ fryar (A2)
where
0 t<0
g(t) = ) (A.3)

5 t>LT

A phase pulse that has reachedtésminal responsehas arrived in the time interval >

LT, whereas a phase pulse in the time intefval ¢ < LT is transitioning (The behavior

of ¢(t) in this last time interval will not affect the discussion).
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The following defines the CPM signal ferco <t < (N + 1)T™

s(t) = exp |jbo + 2h Z gt —nT)| . (A.4)
Assuming without loss of generality théf = 0,
s(t) = exp []27rh Z g(t —nT)]| -exp |j27h Z g(t—nT)|. (AD)
n=—oo n=N-—-L+1

First s(¢) as found in (A.5) will be simplified. Consideil(t — nT') forn > N — L. From
(A.3),

gt —nT) = % t—nT > LT. (A.6)

Fromeq (A.1)t = NT + 7 so

ot — NT) = % (N—n)T +7> LT (A7)
or
gt —nT) = % nl' < (N—-L)T+r. (A.8)
Andsince) <7 < T,
1
gt —nT) = 5 n<N—L. (A.9)

In words, g(t — nT") will have reached its terminal response for< N — L. Thus, the

terms in the first sum of (A.5) are all simpdy(n)hn:

N-L N
s(t) = exp [j Z a(n)wh] - exp [j27rh Z a(n)g(t —nT)|, (A.10)
n=-—oo n=N-—-L+1
which can be rewritten as
s(t) = JERL atw)h - exp []27rh Z g(t —nT)
n=N-—L+1 (All)

L-1
_ g atmymh H exp [j2h - a(N —i)g(t — (N —4)T)].

=0
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Next it will be shown that
exp[j2rha(n)g(t — NT)] = u(t + [L — N|T) + J*™u(t — NT). (A.12)

In the processy(t) will be defined. (In the following derivatiodrh - g(t — NT') will be
represented simply by anda(n) by «.) First, from Euler’s identity

expljag] = cos(ag) + jsin(ag). (A.13)

Sincea € +1, it just affects the sign of the argument of the sine and @#inctions, and
since cosine is an even function and sine is an odd functibas;Tthe complex exponential
can be rewritten as:

exp[jag] = cosg + jasing. (A.14)

This next step is in the dark; the reasoning for it will becaapparent

, sin(rh)cosg . sin(mwh)sing
expljag] = ———~— +ja———~5—
sin(mh) sin(mh) (A15)
__sin(wh)cosg ,asin(ﬁh) sing  cos(mh)sing = cos(wh)sing '
~ sin(nwh) J sin(mh) sin(mh) sin(mh)

Combining the first and third terms and factoring out the camgin 7hg in the second

and fourth terms gives

expljag] = sin(wh —g) N sin g - [cos(7'rh) + jo sin(wh)]. (A16)
sin(mh) sin(mh)

Insertinga into the cosine of the second term and pushingithmack inside the sine, also
of the second term, yields:

sin(mh — g)  sing - [cos(amh) + jsin(amh)]

expljag] = sin(mh) sin(mh) (A7)

The right hand side of the numerator of the second term idye@siognizable as the ex-

panded form of a complex exponential:

sin(mh — g) N sin g - exp[jamh]

o
exp[jrhag] Sin(7h) sin(mh) (A.18)
sin(7h) sin(wh)’
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Now define a function to be the argument of the sine in the natoeof the first term of
(A.18) during one interval. Let the same function equal trgument of the sine in the

numerator of the second term during another interval disfoom the first:

2mhg(t fort < LT
(t) = Q (A.19)
wh — 2mhg(t — LT) fort> LT
_ sin[W(t)]
u(t) = Sn(rh) (A.20)
Thus
ult + (L — N|T) = 51n[\If(T+]YT+(L—N)T)] (A21)
sin(mh)
_ sin[W(7 + LT)]
N sin(mh) ' (A-22)
Also note that) < 7 < T. ltis clear thatr + LT > LT. Thus
(A.23)
sin[rh — 27hg(t — LT)]
u(t+[L — NIT) = nh) . (A.24)
Following a similar path it is easy to see that
_sin 2whg(t — NT)
u(t — NT) = () (A.25)
Combining the latter equation with (A.18)
exp[jrha(n)g(t — nT)] = u(t + [L — n]T) + J*™u(t — nT). (A.26)

This is the identity needed to form Laurent’s PAM represeoiteof CPM. Using this iden-
tity with (A.11)

L—1
s(t) = T2 00 T ult + [+ L — NIT) + 7 Du(t + [i - NJT)).  (A.27)

=0
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Example for L = 2 Part 6

Consider the cas® = 0 (i.e., the time intervad < ¢t < T). Expanding the product
in (A.30)

p=[Jlult+ i +27) + J*Du(t +i7)]

= [u(t + 2T) + JOu(t)] - [u(t + 3T) + J*CVu(t + T)] (A.28)

w(t 4 20)u(t + 37) + J*Vu(t 4+ T)u(t + 2T)
+ J Oy (t)u(t + 3T) + JOreED oy (t)u(t + T).

DefineCy(t) = u(t)u(t + T). Thus
u(t+T)u(t+2T) = Co(t +1T). (A.29)
Also defineC (t) = u(t)u(t + 37"). And so for0 <t < T'

s(t) = JEZ M) [y (¢ + 2T) + J*DCy (¢ + T) + J*OTED O (1) + O (1))

(A.30)
ForT <t < 2T,
1
p=[Jlult+[i+2—1T)+ Dt + [i — 1]T)]
=0
= [u(t+T) + J*Du(t — T)] - [u(t + 2T) + J*Ou(t)] (A.31)
= u(t 4 T)u(t + 2T) + JOut)u(t + T) + JOu(t — T)u(t + 2T)
+ JOFO (g — Tyu(t).
ThusforT <t < 2T,
s(t) = JEwm=oe ) [Co(t + T) + J*OCy(1)
+ JoOTOCy(t —T) 4+ O (t - T)]
(A.32)

5(t) = JEnoe s JAENCY (4 T) + Tt Dy (1)

+ Jal-i—oeo-i-a(—l)CO(t _ T) + Ja1+a(—1)Cl (t — T)]
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And for 2T <t < 3T,
1
p=[Jlut+[i+2=2T)+ JCu(t + (i — 2)T]
=0

= [u(t) + J*Pu(t — 27)] - [u(t + T) + J*Du(t — T)] (A.33)
= u(t)u(t +T) 4+ J*Dut — Tyu(t) + J*Pu(t — 2T)u(t + T)
+ Jo@raWy(t — 2T )u(t — T).

Thus for2T < t < 3T,

s(t) = JEn=—oe®M.[Co(2) + JDCy(t — T)
i Ja(2)+a(1)00<t —2T) + Ja(2)(j1 (t —27)]
B (A.34)
_ Jzn:—oo a(n)_[Joeo-i-a(—l)CO(t) + Ja1+oco+a(—l)C’0(t — T)
+ Jag-i—al—i-ao-i-oc Co(t _ 2T) + Jaz-‘rao-i-a( 1)Cv1 (t . QT)]

To summarize, the equations for N = 0,1,2, can be rewritten, a

O0<t<T: s(t)=JEnoM[Cy(t+2T) + JOCVCy(t + T) + J*OrCNCy(1) + JOCy (1)
T<t<2T: s(t)=JSnwM.[JoDC ¢+ T) + JooreD oyt

4 Jorteote=D g Ty 4 JeateED0 (t - T)]

T <t <3T: s(t)=JEniooo).[Jootal=D) () 4 Jorteotal-1cy (¢ — T)
+ Jorteateotal=h oy (¢ — 2T7) 4 Jorteotel=Uy (¢ — 27,

(A.35)
Note that the coefficents of th@&y terms are the same for each shifted versio@'gf).
For example, the coefficient fa¥(t) is alwaysJ+*(-1  Laurent saw this pattern and

realized that the equations (A.30), (A.32), and (A.34) dobé combined to form, for
0<t<3T,

s(t) = JEnZ-@M[C(t + 2T) + Ja<—1>00(t + 1) + JHO+aE=D 0 (1)
+ JorteotaCl L Co(t — T) + Joterteotel=D oyt — 2T)
4 Jerteota=D ey (1 — 9T) 4 Jerte=Dey (t — T) + JoO ¢ (1)),
(A.36)
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which holds for0 < ¢t < 3T'. This expression can be expanded to include all time, yigldi
Laurent’s result for, = 2. If the same process is done for other values dfaurent’s final

result is found:

oo 2L-1_1

s(y=">_ Y JWNCk(t —nT) (A.37)
N=—oco K=0
where
N L-1
Ag(N) = > an) =Y a(N —i) - Bkli) (A.38)
n=-—oo =1
and gk (i) is thei-th coefficient for the radix-2 decomposition of an inte@géras seen in
the following:
L-1
K=Y 27" Bili). (A.39)
=1
The PAM pulses are time-limited according to the followirg sf equations:
Co#0 O<t<(L+1)T (A.40)
Cy#0 O0<t<(L-1)T (A.41)
Cy,C5 #0 0<t<(L-2)T (A.42)
Cy, Cs, Cq, Cr # 0 0<t< (L — 3)T (A43)
(A.44)
CQL—I/Q, ey C2L71_1 ;é 0 0 < t < T (A45)

This allows correlatation of our CPM signal with the outpatdwo filters based ot
andC. Then after multiplying the output by the possible symbahbmations, the Viterbi
algorithm can be used to decode the most likely sequencenabaig. This would not be
possible if an expression fe(t) could not be found that was valid for all N. For example,
if the combination of symbols that multipl/y (¢ — 7') differed from the N=2 case to the

N=3 case, the filter approach could not be used.

A.2 Weak CPM

If g(¢) is redefined for weak CPM, i.e.
g(t)=0  t<0,t>LT, (A.46)
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the terms in the first sum of (A.30) equal &@n) - 0, altering it as shown here for three

values of NV:

0<t<T: s(t)=[Co(t+2T)+ JVCy(t+T)+ JNOTEDC (1) + OOy (1))
(A.47)

T <t<2T: s(t)=[Co(t+T)+ JOC(t) + JW+OCy(t — T) + JVCy(t — T)]
(A.48)

2T <t <3T: s(t) = [Co(t) + J*VCy(t — T) 4 J*PTeW (¢t — 2T) + J*D Oy (t — 2T)].
(A.49)
Now in this case, unlike generic CPM, the coefficients of heterms change with each
time step. For example, consider agéift). When N = 0, Cy(t) has a coefficient of
JoO+e(=1- at N = 1, this coefficient become$*®. This makes it impossible, using
this form, to create a linear expression #t) for all N. Thus, Laurent’s PAM approach
applied to weak CPM does not yield a linear result, and soremn@pproach must be taken

to find a linear PAM representation of weak CPM.

A.3 Pulses That are Zero: the Full Derivation

Consider the definition of a frequency pulgé¢), of length LT, that integrates to
zero:

f(t) >0 0<t<kLT (A50)

f(t) <0 kLT <t< LT,
where0 < k < 1. Referring to (A.50) it is seen thgt™(¢), which integrates tal, is zero
for kLT <t < LT, andf~(t), which integrates toA4, is zero for) < t < xLT. g*(t) and

g~ (t) thus become:

(

0 t<0
gt(t) = (A.51)
\A t > kLT
(
0 t < kLT
g (t) = : (A.52)
\—A t> LT

(A.53)
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With g*(¢) andg~(¢) in hand,U*(¢) andW~(¢) can both be determined as well as
ut(t) andwu~(t). Itis in this determination that it can be seen that some PAldgs are

zero. W (t) and¥~(¢) are calculated as follows:

n
W) = gt (t) 0<t<LT (A54)

A—gt(t) LT <t<2LT
and

(1) = —g~ (1) 0<t< LT (A55)

A+g (t) LT <t<2LT
(Since Dk (t) was defined using-g—(t), ¥~ (¢) also uses-g~(t) in its definition.) For a
given set of PAM pulses(t) is a function of¥(¢) (see (2.6)); thus™(¢) andu—(¢) can be

defined as:

ut(t)#£0 0<t<(kL+ L)T (A56)
u (t) #0 kLT <t <2LT, '

whereu™(t) is based o *(¢) andu~(t) is based ol —(¢).
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Example for L = 2 Part 7

Consider once again the example for= 2, where at this point the products of

shifted versions ofi* (¢) andu~ (¢) are used to find PAM pulses that are zero. Recall (2.36):

s(t) =[Co(t) Do(t) + C1(t) D (t)]
+ JEDCH () Dy ()
+ J*OUC, () Do(t + T) + Oy (t) Do (t + 27T)]
+ JoO+a=D 0G4 Dy (t + 2T)
+ J7EDC (£ Dy () (A.57)
+ JoO==D e () Do (t + T)
+ JO[Co(t + T)Dy(t) + Co(t + T)Dy(t)]
+ JoO+eED Ot 4 T)Dy ()
+ JO=eED Ot 4 2T) Dy (t).
In order to determine which pulses are zero, the intervalhlveach of the PAM-pulse

products is time-limited will be considered.

PAM pulse lengths First, the interval to which each of th€x () and D (t) pulses is
time-limited must be considered. The length of edght) and D, (¢) can be calculated by
examing the definition of 'k (¢), found in (2.5) (repeated here for convenience), combined

with the definition ofu(t) as found in (A.56).

Cret) = [T e + 1 + B LIT)

L (A.58)
K=Y 27" Bk(i)
i=1
For general, consider the intervals to whiatix (¢) and D (¢) are time-limited:
Co#0 0<t<(kL+1)T (A.59)
Dy #0 kLT <t < (L+1)T (A.60)
C1#0 0<t<(kL—-1)T (A.61)
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D #£0 kLT <t<(L-1T (A.62)

Cy,C3#£0 0<t<(kL—2)T (A.63)

Do, Dy #£0 kLT <t < (L—2)T (A.64)
Cy,C5,C6,C7 # 0 0<t<(kL—-3)T (A.65)

Dy, Ds,Dg,D; 20 kLT <t < (L —3)T (A.66)
(A.67)

Corijgye.,Cori 1 0 0<t<(kL—(L—1)T (A.68)
DyiijgyyDori 1 #0 kLT <t <(L—(L—1)T (A.69)

All pulses with K > 0 are time-limited to intervals that can be expressed in thefo
0 <t< (kL —R)TorklT <t < (L— R)T, whereR is an integer. Those pulses
defined with the former interval are zero fer< % whereas the pulses defined with the
latter interval are zero fat > 1 — %. Thus ask increases, an increasing number of PAM
pulses are zero for an increasing range of values dfhis can greatly simplify the PAM

representation.

Example for L = 2 Part 8

Consider an example whefe = 2 and a general weak phase pulgg(t) is the
product ofu(t) andu(t + T'). u(t) is time-limited to0 < ¢ < 47". Thus,Cy(t) has a length
of 37". Cy(t) is the product of.(t) andu(t + 37") and thus has a length &f.

Now replace the general weak phase pulse with with a wealeghase as defined
in (2.15). Using (A.56)u"(t) is found to be time-limited t®) < ¢ < (2« + 2)T and

u~(t) is time-limited to2x7T < t < 47'. This alters the interval to whict, and D, are

time-limited:
Co#0 O<t<(2k+1)T
’ (A.70)
Dy#0 25T <t <3T.
Also,
Ci #0 O<t<(2xk—1T
(A.71)

Dy #0 2k <t <T.
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The results in (A.70) and (A.71) reduce the number of puls€2.36)) to 4:

Co(t)Do(t +T) + C1(t)Do(t + 27) max|[0, (2k — 1)T] < t < min[(2k + 1)T, 2T

#0

Co(t)Do(t +2T) #0 0<t<T

(t) #0 2T <t < (2k+1)T
) #0

Co(t) Do(t) + Ci (1)
(t)Da(t

D
Co(t)D

1
1 2T <t < T.

(A.72)
Thus the final PAM pulses for this special case of weak CPM sifelbws:

(A.73)

It can be seen from (2.36) that the psuedo-symbols correlspgno the PAM pulses in
(A.73) are

(A.74)
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Appendix B

Phase Noise and Phase-Lock Loop Models

The phase noise that is being simulated is due to the largeisishof vibrations
found experimentally to be present in flight vehicles usihg EFTS. It was estimated
that the phase noise had an RMS frequency deviation of 4 kidzaarequivalent noise

bandwidth of 2.5 kHz [8]. The simulations were done in digefgme with a sample rate

of
F Samples
N =_° = _ . B.1
R, % Bit ( )

The following simple recursive filter, wherewas chosen so that the phase noise

had the desired RMS frequency deviation and equivalenermsdwidth,

1
FPN(Z) = m, (BZ)
was used to generate the phase noise as
p(n) = fen(n) x 2(n) (B.3)

wherex denotes convolution. Alsgpn(n) is the time-domain version of the filter in (B.2),
p(n) is the simulated frequency noise, and) is white Gaussian noise. The variance of
z(n), o2 as well asu can be calculated based on the target equivalent noise ldthdw
radianswyg, and the target RMS frequency deviation in radiarfg,s, of the noise, using

the following equations:

2wNB —1
= ——— B.4
2wNB -1 ( )
o7 = |a® — 1|ogus. (B.5)

Figure B.1 shows the setup of the noise generator.
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é(n) o(n)

1 -1 . .
w(n) —»| =) o L » 0 =» e
1+az 1-771

Figure B.1: This figure shows the simulation setup used tegda phase noise, which
generator is injected with white Gaussian noisér)).

The filter output was then sent through an integrator to thenrtoise into phase

noise, which noise was then added to the phase of the sigfal@ss:
r(n) = s(n)e’™ + w(n) (B.6)
with

p(n) =T.)  p(n) (B.7)
wherew(n) is AWGN.

The simulation in a simple AWGN channel assumed ideal phakerency, so a
phase-lock loop (PLL) was not actually built into the simida. A PLL must be included
to simulte the effect of PLL tracking errors in the presentehase noise.

The phase noise was added to the phase of the received ssgmahvéously noted.
The phase noise was also filtered by a filter that was equitfaléime frequency response of
a PLL, in order to simulate the effect a PLL would have on thagghnoise. The PLL was
chosen to have a damping factgr= 1, and a noise-bandwidtl,, = 18. The following

equation was used for the equivalent transfer function®fRhbL.:

(K1 + Ky)z™! — K 272
I — B.8
pLL(2) 1+ (K 4+ Ky —2)2 1+ (1 — Ky)z2 (B.8)

with

g BnTb
N g+i

Kl - P) (Bg)

2¢ [ BnT B, T
LW (c—) ! (N<< >)
2

4 ( BuTh
+(22)

Ky = (B.lO)




where N is the number of samples per bit used in the simulation’Bng Rib is the bit
time.

The phase noise could be added to the phase of the receiveal, sig well as
filtered by the PLL-equivalent filter, the results of whichirme subtracted off the phase
of the signal, all before the signal is matched-filtered. ldee&v, in this configuration, the
noise bandwidth of the PLL could be cranked up to eliminateghase noise altogether.
Therefore, after the phase noise was added to the recenyeal &iut before it was filtered
by the PLL, it was modified by adding the quadrature compooéithe AWGN (w(n)

in (B.6)) in order to get a more realistic result as shown ftillowing equation:

p(n) = (p(n) +we(n)) x fer(n) (B.11)

where fp  (n) is the time-domain version of the filter in (B.8) ang)(n) = Im{w(n)}.
Thus the filtered phase noise will cancel some of the phasensimulating the imperfect

yet still effective operation of a PLL through the followieguation:
r(n) = s(n)e’?™e P (n) 4+ w(n). (B.12)

It should be noted that all of this assumes a priori that a Rulatbe designed that

functions in the presence of such severe phase noise astimatin EFTS applications.
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