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ABSTRACT

A PAM DECOMPOSITION OF WEAK CPM

Mason B. Wardle

Department of Electrical and Computer Engineering

Master of Science

The Enhanced Flight Termination System uses weak CPM as its modulation scheme

and a limiter-discriminator as its demodulation scheme. A PAM representation of weak

CPM was developed which representation provided the necessary componenents to build a

simplified PAM-based receiver that outperformed the EFTS limiter-discriminator, even in

the presence of phase noise. The PAM representation also provided a new perspective into

the negative characteristics of weak CPM.
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Chapter 1

Introduction

Most range safety programs use a Flight Termination System (FTS) to bring stray

airborne test vehicles to crash at a preselected location, by bringing the vehicle into a state

of zero lift and zero thrust. Methods used to meet this goal include parachute deployment

and detonation of explosive charges that destroy the test vehicle [1]. The test range ini-

tiates flight termination by sending a radio signal on a dedicated channel to the stray test

vehicle. The first FTS, brought into use in the 1950s, modulates a frequency modulation

(FM) carrier with different frequency audio tones [2]-[4].The aircraft completes the “arm”

and “terminate” commands after the arrival of a predefined sequence of these tones from

the ground-based transmitter [2]. The modified high-alphabet system [5] adds a security

feature by using a predefined sequence of tonepairs to encode the commands.

With the increase in flight altitudes came an incident where the terminate signal sent

by one test range inadvertently terminated the flight of a vehicle at a nearby test range [1, 6].

In response to this incident, the Range Safety Group of the Range Commanders Council

created a committee in April 2000 to enumerate the requirements of the next generation

FTS that would search for techniques to deal with the aforementioned situation. In January

2002, this group chose bi-phase pulse-coded modulation/frequency modulation (PCM/FM)

as the modulation for the next generation FTS, named Enhanced Flight Termination Sys-

tem (EFTS) [7]. The justification behind this choice of modulation included the important

reason that the ground-based FTS transmitter (i.e., the current hardware infrastructure) re-

quired an AC-coupled input to the FM modulator [8]. The EFTS standard chose a more

“digital” route for the EFTS waveform which opened the door for better security (3DES

encryption) and a higher level of reliability (Reed-Solomon error control coding).
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The selection of bi-phase (also known as Manchester) PCM/FM(also known as

continuous-phase modulation or CPM) included the assumption that the airborne vehicle

would use a FM limiter-discriminator for a demodulator because the FM limiter-discrimina-

tor has a history of reliability in aeronautical applications. Unfortunately, this FM limiter-

discriminator detector, (i.e., a simple FM-demodulator followed by a comparator) has a

much poorer bit-error rate (BER) than an optimal receiver. An optimum receiver, on the

other hand, requires a maximum-likelihood sequence detector and full phase coherency

which is difficult to attain in the presence of excessive amounts of phase noise resulting

from the high levels of shock and vibration typical in airborne vehicles.

In spite of this difficulty, consider such an optimum receiver. One method for de-

signing an optimal receiver utilizes the Viterbi algorithmto effect maximum likelihood

sequence estimation (MLSE). This approach yields a much lower BER at the expense of

increased complexity, which comprises part of the difficulty of taking an optimal approach

in EFTS. Anderson, Aulin, and Sundberg suggested a handful of techniques that facilitate

the construction of simplified receivers for CPM which receivers have sub-optimal perfor-

mance [9, chapter 8]; however, they can perform better than an FM limiter-discriminator.

Pierre Laurent also presented a method for simplified receiver design. He showed that CPM

can be reformulated as a sum of several PAM pulses [10]. (His results were later extended

to M-ary CPM by Mengali [11]1 and to multi-h CPM by Perrins and Rice [13].) Using all

of the pulses leads to MLSE detection; using fewer pulses results in a simplified receiver,

but still with better expected performance than an FM demodulator.

The design of a simplified PAM receiver for EFTS-based CPM that outperforms,

and maintains roughly the same level of complexity of, the current EFTS receiver would

be possible;2 this design goal motivated my research. Before diving into an explanation of

my research, a review of CPM and its PAM representation will be presented.

1Mengali also developed a method to form a PAM representationof CPM when the modulation index is
an integer. Another approach to forming a PAM representation for an integer modulation index can be found
in [12]

2This assumes that full phase coherency is achievable in the presence of such severe phase noise as that
found in EFTS applications

2



1.1 Definition of CPM

The complex-envelope of the transmitted CPM signal,s(t), is defined as

s(t) = exp

(

j2πh

∫ t

τ=−∞

N
∑

n=−∞

α(n)f(τ − nT ) dτ

)

(1.1)

wheref(t) is termed the frequency pulse and has a region of support (spans an interval of

time) typically restricted to0 < t < LT whereT is the symbol time andL is the number

of symbol times spanned by the frequency pulse. Also,α(n) represents then-th binary

data symbol and the modulation index,h, which dictates how much the phase changes for

each symbol. (Note that the frequency pulse dictates how thefrequency of the complex

exponential changes as a function of time.) Reversing the order of the integral and the

summation in (1.1) and performing integration yields

s(t) = exp(j · 2πh · φ(t)) (1.2)

where

φ(t) =

N
∑

n=−∞

α(n)g(t− nT ) t ≤ (N + 1)T (1.3)

g(t) =

∫ t

−∞

f(τ) dτ. (1.4)

Three design parameters available in CPM are the choice of the frequency pulse

and the choice of the symbol alphabet. The modulation index,h, is set depending on the

application. Henceforth, the alphabet will be assumed to bebinary. The choice of frequency

pulse (or phase pulse, depending on the perspective), can dramatically affect the behavior

of the CPM signal. The phase pulseis most often defined as:

g(t) =











0 t ≤ 0

1
2

t ≥ LT

(1.5)

which implies that the phase pulse has an infinite length, although it is constant fort > LT .

Weak CPM In rare cases, the frequency pulse is defined such that the phase pulse has a

finite length (EFTS being one such case). Looking at (1.4) and(1.5), one can see that the

3
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Figure 1.1: The frequency and phase pulses for the EFTS weak CPM. (Note: the pulses
have been normalized to unit peak amplitude for display.)

frequency pulse must integrate to zero in such a case. The phase pulse is thus defined for

this case as

g(t) = 0 t ≤ 0 andt ≥ LT. (1.6)

Figure 1.1 presents the plot of one example of such a frequency-pulse/phase-pulse pair.

A frequency pulse of this type has been termedweak [9, page 64]. Thus, from this

point forward, CPM based on such a frequency pulse will be termedweakCPM, whereas

CPM based on the more common frequency pulse, whose phase pulse is defined in (1.5),

will simply be termedCPM. The reason behind naming the frequency pulse weak comes

from the effect a weak frequency pulse has on the frequency spectrum and on the min-

imum Euclidean distance of the CPM signal; these effects will be investigated in Sec-

tions 2.4 and 3.1, respectively. References [14]-[22] present some of the limited research

completed for weak CPM.
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1.2 PAM Decomposition of CPM

The PAM representation presented by Laurent facilitates the design of simplified

receivers since there has been extensive research performed on linear3 modulations (mod-

ulations which include PAM); examples of this research include synchronization methods

and optimal receivers [23].

1.2.1 Exact Representation

Laurent showed that a binary CPM signal,s(t), can be reformulated as

s(t) =
∞
∑

N=−∞

2L−1−1
∑

K=0

aK(N)CK(t − NT ) (1.7)

where

CK(t) =
L−1
∏

i=0

u(t + [i + βK(i)L]T ) (1.8)

u(t) =
sin[Ψ(t)]

sin(πh)
(1.9)

Ψ(t) =











2πhg(t) t < LT

πh − 2πhg(t− LT ) t ≥ LT

(1.10)

aK(N) = JAK(N) (1.11)

AK(N) =

N
∑

n=−∞

α(n) −
L−1
∑

i=1

α(N − i) · βK(i) (1.12)

K =
L−1
∑

i=1

2i−1 · βK(i) 0 ≤ K ≤ 2L−1 − 1 (1.13)

J = ejπh (1.14)

andβK(i) is thei-th coefficient for the radix-2 decomposition of an integerK. (Appendix A

presents a complete derivation of this PAM decomposition.)Equation (1.7) contains a sum

of PAM pulses for eachN . In Laurent’s derivation, the sums of PAM pulses are dividedinto

3PAM representations of CPM transform the non-linear CPM into a linear PAM modulation by pushing
the non-linearity out of the modulation into the data symbols. The most important reason for making this
representation is that it allows the design of a demodulatorto perform sub-optimal detection as explained
later.
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groups. Each group consists of all PAM pulses that start in the intervalNT < t < (N+1)T

for a given value ofN . This grouping becomes useful in understanding the derivation of

the PAM representation in Chapter 2.

1.2.2 Approximate Representation

Generally speaking, in a PAM decomposition, one pulse or perhaps a few pulses

comprise most of the energy in the CPM signal. The use of only the most energetic PAM

pulses provides a receiver with acceptable performance. This ease of approximation helps

the PAM representation finds its niche: the PAM representation opens up a path to build a

simplified receiver. (See reference [24].) The approximation gives a simple way to reduce

complexity, while limiting the inevitable increase in BER relative to that of an optimal

receiver. Simualtion results presented in Chapter 3 showedthat a simplified PAM-based

receiver greatly outperforms an FM demodulator.

1.2.3 PAM Representation of Weak CPM

In order to build a simplified receiver, a PAM representationof weak CPM, which

was not provided by Laurent, must be developed; my research has focused on such a de-

velopment. Weak CPM is shown to have a PAM representation, just as CPM does. Such a

representation provided a new perspective to the failings of weak CPM. Most importantly,

this PAM representation gave a way to build a simplified EFTS receiver by following the

work of Ghassan Kaleh [24]; this simplified receiver performed significantly better than an

FM limiter-discriminator, even in the presence of phase noise that arises in EFTS applica-

tions.

Chapter 2 derives a PAM representation for weak CPM. Chapter3 shows how to

build weak CPM receivers and presents simulation results for EFTS PAM-based receivers.

6



Chapter 2

Weak CPM PAM Signal Representation

Laurent’s 1986 paper did not consider the rarely used weak CPM. The whole idea of

Laurent’s work aimed to find a linear PAM decomposition, but Laurent’s method applied

directly to weak CPM yields a non-linear PAM decomposition.However, my work has

derived a linear PAM representation for weak CPM using an approach to Laurent’s work

similar to that taken by Mengali and Morelli to create a PAM representation forM-ary

CPM [11].

Section 2.1 demonstrates the need for an approach differentthan that of Laurent’s.

Section 2.2 derives the PAM representation of weak CPM; the end of this section presents a

summary of an approach to calculate a general PAM representation for weak CPM Finally,

Section 2.3 finds the PAM pulses for EFTS-based CPM, and Section 2.4 shows how discrete

lines surface in the spectrum of weak CPM.

2.1 The Need For a New Approach

A comparison of Laurent PAM decompositions of CPM and weak CPM demon-

strates the need for a new approach in formulating a PAM representation of weak CPM. An

extended example (used throughout this chapter) illustrates this need in a straightforward

way as well as logically develops a new approach.

Example for L=2 Part 1

Appendix A shows that

exp
[

jπhα(n)g(t− nT )
]

= u
(

t + [L − n]T
)

+ Jα(n)u(t − nT ), (2.1)

7



with u(t) defined in (1.9). Equation (2.1) allowss(t), the CPM signal, to be expressed by

the following equation:

s(t) = J
∑(N−L)

n=−∞
α(n)

L−1
∏

i=0

[

u
(

t + [i + L − N ]T
)

+ Jα(N−i)u
(

t + [i − N ]T
)

]

. (2.2)

(For a full derivation, consult Appendix A). Using the time intervalNT < t < (N + 1)T

for N = 0, 1, 2 andL = 2, equation (2.2) becomes:

0 < t < T : s(t) = J
∑

−2
n=−∞

α(n) ·
[

C0(t + 2T )

+ Jα(−1)C0(t + T ) + Jα(0)+α(−1)C0(t) + Jα(0)C1(t)
]

T < t < 2T : s(t) = J
∑

−2
n=−∞

α(n) ·
[

Jα(−1)C0(t + T )

+ Jα(0)+α(−1)C0(t) + Jα(1)+α(0)+α(−1)C0(t − T )

+ Jα(1)+α(−1)C1(t − T )
]

2T < t < 3T : s(t) = J
∑

−2
n=−∞

α(n) ·
[

Jα(0)+α(−1)C0(t)

+ Jα(1)+α(0)+α(−1)C0(t − T ) + Jα(2)+α(1)+α(0)+α(−1)C0(t − 2T )

+ Jα(2)+α(0)+α(−1)C1(t − 2T )
]

.

(2.3)

The coefficents of shifted versions ofCK terms for a given value ofK are all the same.

For example, the coefficient forC0(t) is Jα(0)+α(−1) for 0 < t < 3T and the coefficient for

C0(t + T ) is Jα(−1) for 0 < t < 2T .
(

C0(t + T ) is zero fort > 2T .
)

This characteristic

ultimately allows the reformation of CPM into linear PAM. This reformation, found in (1.7)

and repeated here for convenience, expands (2.3) to includeall N :

s(t) =
∞
∑

N=−∞

2L−1−1
∑

K=0

aK(N)CK(t − NT ) (2.4)

where CK(t) =
L−1
∏

i=0

u
(

t + [i + βK(i)L]T
)

(2.5)

u(t) =
sin
[

Ψ(t)
]

sin(πh)
(2.6)

Ψ(t) =











2πhg(t) t < LT

πh − 2πhg(t − LT ) t ≥ LT

(2.7)

8



aK(N) = JAK(N) (2.8)

AK(N) =

N
∑

n=−∞

α(n) −
L−1
∑

i=1

α(N − i) · βK(i) (2.9)

K =
L−1
∑

i=1

2i−1 · βK(i) 0 ≤ K ≤ 2L−1 − 1 (2.10)

J = ejπh. (2.11)

On the other hand, applying weak CPM to (2.2) forN = 0, 1, 2 yields:

0 < t < T : s(t) =
[

C0(t + 2T ) + Jα(−1)C0(t + T ) + Jα(0)+α(−1)C0(t)

+ Jα(0)C1(t)
]

T < t < 2T : s(t) =
[

C0(t + T ) + Jα(0)C0(t) + Jα(1)+α(0)C0(t − T )

+ Jα(1)C1(t − T )
]

2T < t < 3T : s(t) =
[

C0(t) + Jα(1)C0(t − T ) + Jα(2)+α(1)C0(t − 2T )

+ Jα(2)C1(t − 2T )
]

.

(2.12)

Now in this case, unlike generic CPM shown in (2.3), the coefficients of theCK terms

change with eachN . For example, consider againC0(t). For 0 < t < T , C0(t) has a

coefficient ofJα(0)+α(−1); for T < t < 2T , this coefficient becomesJα(0). This makes

it impossible, using this form, to create a linear PAM expression for s(t) for all t. Thus,

Laurent’s PAM approach applied to weak CPM does not yield a linear result, and so another

approach must be taken to find a linear PAM representation of weak CPM.

2.2 General PAM Decomposition of Weak CPM

In order to derive a PAM decomposition for weak CPM, the signal will be split into

the product of two different CPM signals. This method of rewriting CPM as the product of

two CPM signals can also be found in [11].

2.2.1 Derivation of PAM Representation

Consider a frequency pulse,f(t), of lengthLT , that integrates to zero. In calcu-

lating the PAM decomposition for CPM based on this frequencypulse, the first step is to

9



divide the frequency pulse into two pulses:

f(t) = f+(t) + f−(t) (2.13)

where

f+(t) =











f(t) f(t) > 0

0 otherwise

f−(t) =











f(t) f(t) < 0

0 otherwise
.

(2.14)

The next step is to calculate the phase pulsesg+(t) andg−(t), which are equal to

the integral off+(t) and the integral off−(t), respectively. Thusg(t), which is the integral

of f(t), as defined in (1.4), can be expressed as the sum of two shorter-length phase pulses:

g(t) = g+(t) + g−(t). (2.15)

Clearly, if g+(LT ) = 1/2, theng−(LT ) = −1/2, since for weak CPM,g(LT ) = 0. The

PAM representation ofg+(t) can be formulated using (2.4) and assumingg+(t) is the same

length asg(t).

With a slight modification to Laurent’s original development, we can in a similar

manner find the PAM representaion forg−(t). To find the PAM representaion forg−(t),

note that CPM based on a frequency pulse that integrates to−1/2 is just like CPM with

a frequency pulse that integrates toA but has eachαi negated. Making this modification

to (2.9), (2.4) becomes

s−(t) =
∞
∑

N=−∞

2L−1−1
∑

K=0

a∗
K(N)DK(t − nT ) (2.16)

where∗ denotes complex-conjugation and theDK ’s are the PAM pulses for−g−(t). (For

a derivation of this modification see Appendix A.)

Recalling (1.2) and usingf(t) as defined in (2.14),s(t) can now be rewritten as

s(t) = exp j[
∞
∑

n=−∞

α(n)g+(t − nT )] · exp j[
∞
∑

n=−∞

α(n)g−(t − nT )]. (2.17)
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Applying Laurent’s PAM decomposition to both terms in this product yields

s(t) =

∞
∑

N=−∞

2L−1−1
∑

K=0

aK(N)CK(t − NT ) ·
∞
∑

N ′=−∞

2L−1−1
∑

K ′=0

a∗
K ′(N ′)DK ′(t − N ′T ). (2.18)

Example for L = 2 Part 2

Consider an expansion of the product of sums in (2.18), wherethe group of PAM

pulses that are nonzero in the interval0 < t < T will be considered. Thus (2.18) for

0 < t < T is:

s(t) = a0(0) · a∗
0(0)C0(t)D0(t)

+ a0(0) · a∗
1(0)C0(t)D1(t)

+ a0(0) · a∗
0(−1)C0(t)D0(t + T )

+ a0(0) · a∗
0(−2)C0(t)D0(t + 2T )

+ a1(0) · a∗
0(0)C1(t)D0(t)

+ a1(0) · a∗
1(0)C1(t)D1(t)

+ a1(0) · a∗
0(−1)C1(t)D0(t + T )

+ a1(0) · a∗
0(−2)C1(t)D0(t + 2T )

+ a0(−1) · a∗
0(0)C0(t + T )D0(t)

+ a0(−1) · a∗
1(0)C0(t + T )D1(t)

+a0(−1) · a
∗

0
(−1)C0(t + T )D0(t + T )

+a0(−1) · a
∗

0
(−2)C0(t + T )D0(t + 2T )

+ a0(−2) · a∗
0(0)C0(t + 2T )D0(t)

+ a0(−2) · a∗
1(0)C0(t + T )D1(t)

+a0(−2) · a
∗

0
(−1)C0(t + 2T )D0(t + T )

+a0(−2) · a
∗

0
(−2)C0(t + 2T )D0(t + 2T ) .

(2.19)

The terms of (2.19) in bold face are shifted versions of otherpulses already present in (2.19).

For example ifq0(t) = C0(t)D0(t) andd0(0) = a0(0)a∗
0(0), thena0(−2) · a∗

0(−2)C0(t +

2T )D0(t + 2T ) = d0(−2)q0(t + 2T ). This term came into the picture in the time interval

−2T < t < −T . Any pulseqi(t + NT ), where its region of support began in the interval
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NT < t < (N + 1)T N 6= 0, will be removed from this group and placed in the group

of pulses that also started in the intervalNT < t < (N + 1)T N 6= 0. Thus the terms

in bold face belong in different groups; the first three belong in the group of pulses that

start in the interval−T < t < 0 and the fourth pulse belongs with pulses that start in the

interval−2T < t < T . (Laurent also regrouped the PAM pulses along the same lines; see

Section 1.2.1 for further explanation.) Thus neglecting these terms,s(t) for the group of

PAM pulses for the interval0 < t < T can be written as:

s(t) = a0(0) · a∗
0(0)C0(t)D0(t)

+ a0(0) · a∗
1(0)C0(t)D1(t)

+ a0(0) · a∗
0(−1)C0(t)D0(t + T )

+ a0(0) · a∗
0(−2)C0(t)D0(t + 2T )

+ a1(0) · a∗
0(0)C1(t)D0(t)

+ a1(0) · a∗
1(0)C1(t)D1(t)

+ a1(0) · a∗
0(−1)C1(t)D0(t + T )

+ a1(0) · a∗
0(−2)C1(t)D0(t + 2T )

+ a0(−1) · a∗
0(0)C0(t + T )D0(t)

+ a0(−1) · a∗
1(0)C0(t + T )D1(t)

+ a0(−2) · a∗
0(0)C0(t + 2T )D0(t)

+ a0(−2) · a∗
1(0)C0(t + T )D1(t).

(2.20)

Thus, there are twelve unique PAM pulses in weak CPM withL = 2.

2.2.2 Simplifying the Exact Representation and Calculating the Number of PAM

Pulses

At no point in the preceding derivation were approximationsmade. Therefore, (2.20)

is an exact representation of weak CPM forL = 2, which equation can be simplified with-

out deferring to an approximate representation.
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Example for L = 2 Part 3

An examination of (2.20) shows that some of the pseudo-symbol products are equal.

Since these products are coefficients of the PAM pulses, any products that are equal allow

the combining of the PAM pulses corresponding to these products, thus reducing the num-

ber of PAM pulses without compromising the exact PAM representation in (2.20). This

reduction will be performed using (2.8) which states thataK(N) = JAK(N); this means the

simplification process will simply involve taking the difference between sums of various

combinations ofα(n). The pseudo-symbol products are:

a0(0) · a∗
0(0) = 1 (2.21)

a0(0) · a∗
1(0) = Jα(−1) (2.22)

a0(0) · a∗
0(−1) = Jα(0) (2.23)

a0(0) · a∗
0(−2) = Jα(0)+α(−1) (2.24)

a1(0) · a∗
0(0) = J−α(−1) (2.25)

a1(0) · a∗
1(0) = 1 (2.26)

a1(0) · a∗
0(−1) = Jα(0)−α(−1) (2.27)

a1(0) · a∗
0(−2) = Jα(0) (2.28)

a0(−1) · a∗
0(0) = J−α(0) (2.29)

a0(−1) · a∗
1(0) = J−α(0)+α(−1) (2.30)

a0(−2) · a∗
0(0) = J−α(0)−α(−1) (2.31)

a0(−2) · a∗
1(0) = J−α(0). (2.32)

Clearly

a0(0) · a∗
0(0) = a1(0) · a∗

1(0) (2.33)

a0(0) · a∗
0(−1) = a1(0) · a∗

0(−2) (2.34)

a0(−1) · a∗
0(0) = a0(−2) · a∗

1(0). (2.35)
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This results in the simplification ofs(t) for 0 < t < T , where the newly combined pulses

are displayed in bold face:

s(t) = [C0(t)D0(t) + C1(t)D1(t)]

+ Jα(−1)C0(t)D1(t)

+ Jα(0)[C0(t)D0(t + T ) + C1(t)D0(t + 2T )]

+ Jα(0)+α(−1)C0(t)D0(t + 2T )

+ J−α(−1)C1(t)D0(t)

+ Jα(0)−α(−1)C1(t)D0(t + T )

+ J−α(0)[C0(t + T )D0(t) + C0(t + T )D1(t)]

+ J−α(0)+α(−1)C0(t + T )D1(t)

+ J−α(0)−α(−1)C0(t + 2T )D0(t).

(2.36)

Maximum Number of PAM Pulses Just as done in transforming (2.3) into (2.4), (2.36)

can be generalized to include all time as follows:

s(t) =

∞
∑

N=−∞

P−1
∑

K=0

dK(N)qK(t − NT ) (2.37)

whereP = 32, dK(N) represents the new pseudo-symbols, andqK(t) is defined as the

products ofCK(t) andDK(t), each shifted by various amounts. As an example ofqK(t),

one might define the following:

q0(t) = C0(t)D0(t) + C1(t)D1(t)

q1(t) = C0(t)D1(t).
(2.38)

(In actuality,q0(t) and q1(t) will be assigned different pulse-product combinations than

those in (2.38); criteria for such assignment will be give later on.)

The pseudo-symbols in (2.36) are functions only of the current and previous data

symbols and their coefficients:

dK(N) = J ν(n)α(n)+ν(n−1)α(n−1) (2.39)

whereα(i) represents the binary data symbols and the coefficientsν(i) ∈ {±1, 0} are taken

from a ternary alphabet. This gives32 possible data-symbol combinations (as opposed to
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the number of different values the pseudo-symbols can assume which is much smaller). If

an example were completed forL = 3, similar to the example just worked, the pseudo-

symbols would end up being

dK(N) = Jν(n)α(n)+ν(n−1)α(n−1)+ν(n−2)α(n−2) (2.40)

yielding33 possible pseudo-symbols. For generalL, each of the pseudo-symbols are of the

general form

dK(N) =

L−1
∏

i=0

Jν(N−i)α(N−i). (2.41)

It can thus be seen that there are3L possible pseudo-symbols since there areL different

binary data symbols in the product in (2.41) and sinceν(i) are taken from a ternary al-

phabet. Therefore, weak CPM requires no more than3L PAM pulsesfor an exact PAM

representation.

2.2.3 PAM Representation of a Special Important Case

The foregoing development uses a generic weak frequency pulse. Greater reduction

in the number of pulses arises when the weak frequency pulse for an important case is used.

Pulses That are Zero

Many of the PAM pulses become zero if the frequency pulse,f(t), is defined in a

way that represents an important case of weak CPM. In the following derivation, only the

intervals to which each pulse is time-limited will be considered as opposed to the actual

behavior of the pulse during that interval.

Consider a definition of a frequency pulse,f(t), of lengthLT , that integrates to

zero:

f(t) > 0 0 < t < κLT

f(t) < 0 κLT < t < LT,
(2.42)

where0 < κ < 1. Referring to (2.14) it is seen thatf+(t), which integrates to1/2, is zero

for κLT < t < LT , andf−(t), which integrates to -1/2, is zero for0 < t < κLT . g+(t)
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andg−(t) thus become:

g+(t) =











0 t < 0

1
2

t > κLT

g−(t) =











0 t < κLT

−1
2

t > LT

.

(2.43)

With g+(t) and g−(t) in hand,Ψ+(t) andΨ−(t) can both be determined which in turn

determinesu+(t) andu−(t).

u+(t) 6= 0 0 < t < (κL + L)T

u−(t) 6= 0 κLT < t < 2LT.
(2.44)

The latter equation will ultimately show that some PAM pulses are zero.

PAM pulse lengths Using (2.44) and (2.5) (the latter repeated in (2.45) for convenience),

the length of eachCK(t) andDK(t) can be calculated.

CK(t) =

L−1
∏

i=0

u+(t + [i + βK(i)L]T ) (2.45)

DK(t) =
L−1
∏

i=0

u−(t + [i + βK(i)L]T ) (2.46)

K =
L−1
∑

i=1

2i−1 · βK(i) 0 ≤ K ≤ 2L−1 − 1 (2.47)

For generalL, consider the intervals to whichCK(t) andDK(t) are time-limited:

C0 6= 0 0 < t < (κL + 1)T (2.48)

D0 6= 0 κLT < t < (L + 1)T (2.49)

C1 6= 0 0 < t < (κL − 1)T (2.50)

D1 6= 0 κLT < t < (L − 1)T (2.51)

C2, C3 6= 0 0 < t < (κL − 2)T (2.52)

D2, D3 6= 0 κLT < t < (L − 2)T (2.53)

C4, C5, C6, C7 6= 0 0 < t < (κL − 3)T (2.54)
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D4, D5, D6, D7 6= 0 κLT < t < (L − 3)T (2.55)

... (2.56)

C2L−1/2, . . . , C2L−1−1 6= 0 0 < t < (κL − (L − 1))T (2.57)

D2L−1/2, . . . , D2L−1−1 6= 0 κLT < t < (L − (L − 1))T. (2.58)

Example for L = 2 Part 4

Consider once again the example forL = 2 by recalling (2.36):

s(t) =[C0(t)D0(t) + C1(t)D1(t)]

+ Jα(−1)C0(t)D1(t)

+ Jα(0)[C0(t)D0(t + T ) + C1(t)D0(t + 2T )]

+ Jα(0)+α(−1)C0(t)D0(t + 2T )

+ J−α(−1)C1(t)D0(t)

+ Jα(0)−α(−1)C1(t)D0(t + T )

+ J−α(0)[C0(t + T )D0(t) + C0(t + T )D1(t)]

+ J−α(0)+α(−1)C0(t + T )D1(t)

+ J−α(0)−α(−1)C0(t + 2T )D0(t).

(2.59)

At this point (2.48) is used to find PAM pulses that are zero. Defining the weak phase pulse

as found in (2.43), it can be shown that

C0 6= 0 0 < t < (2κ + 1)T

D0 6= 0 2κT < t < 3T
(2.60)

C1 6= 0 0 < t < (2κ − 1)T

D1 6= 0 2κ < t < T.
(2.61)
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The results in (2.60) and (2.61) cause many of the pulses in (2.59) go to zero thus reducing

the number of pulses in (2.36) to 4:

C0(t)D0(t + T ) + C1(t)D0(t + 2T ) 6= 0 max[0, (2κ − 1)T ] < t < min[(2κ + 1)T, 2T

C0(t)D0(t + 2T ) 6= 0 0 < t < T

C0(t)D0(t) + C1(t)D1(t) 6= 0 2κT < t < (2κ + 1)T

C0(t)D1(t) 6= 0 2κT < t < T.

(2.62)

Thus the final PAM pulses for this special case of weak CPM are as follows:

q0(t) = C0(t)D0(t + T ) + C1(t)D0(t + 2T )

q1(t) = C0(t)D0(t + 2T )

q2(t) = C0(t)D1(t)

q3(t) = C0(t)D0(t) + C1(t)D1(t).

(2.63)

It can be seen from (2.36) that the pseudo-symbols corresponding to these PAM pulses

in (A.73) are

a0(n) = Jα(n)

a1(n) = Jα(n)+α(n−1)

a2(n) = Jα(n−1)

a3(n) = J0 = 1.

(2.64)

A similar process can be applied whenL is larger which will yield a similarly

extensive reduction in the number of pulses. It turns out that for this special case, the

number of pulses reduces to2L if κ = 1
L

(a common occurrence), which is comparable

to the number of PAM pulses in the PAM decomposition of binaryCPM which is equal

to 2L−1. Thus the number of PAM pulses increases linearly withL for weak CPM but

increases exponentially withL for CPM. Indeed,2L = 2L−1 for L = 4 but2L < 2L−1 for

L > 4!
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2.2.4 Method for Forming a PAM Representation of Weak CPM

Considerable ground has been covered in order to arrive at a PAM representation

for weak CPM. The final results are summarized in this section. The general PAM repre-

sentation is virtually identical to Laurent’s orginal PAM expression:

s(t) =
∞
∑

N=−∞

P−1
∑

K=0

dK(N)gK(t − NT ). (2.65)

A substantial amount of work has been put into finding a closedform for the pseudo-

symbols,dK(N), and the PAM pulses,gK(t). For example, Mengali presented an extensive

algorithm used to calculate the pseudo-symbols and PAM pulses. In the case of weak CPM

this algorithm, which was used to derive the PAM representation, leaves open the question

of the length of each pulse and of the form of the pseudo-symbols. This extra level of

complexity beyond that required to form Laurent’s PAM decomposition, is no greater than

the complexity required to calculate the pulses by hand. An approach to computing the

PAM pulses and pseudo-symbols of a complexity comparable toMengali’s algorithm is

therefore a brute-force approach. Once the pulses are calculated, simplification of the exact

representation can then be completed.

As discussed in the process of the derviation, at most, therewill be 3L PAM pulses

for a given representation. A further reduction in the number of pulses comes when weak

CPM uses an important common form of weak frequency pulses, as discussed in Sec-

tion 2.2.3. Indeed, all indications suggest that the numberof PAM pulses for weak CPM

can be reduced to as few as2L, which is comparable to (and less than for larger values of

L) the number of pulses in Laurent’s PAM representations of CPM.

The algorithm chosen is as follows. First, calculate the PAMpulsesCK(t) (based on

g+(t)) andDK(t) (based on−g−(t)). This requires thatg+(t) andg−(t) be calculated first,
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and therefore also requires formation off+(t) andf−(t), using the following equations:

f+(t) =











f(t) f(t) > 0

0 otherwise

f−(t) =











f(t) f(t) < 0

0 otherwise

(2.66)

g±(t) =

∫ t

−∞

f±(τ) dτ. (2.67)

This allows the calculation ofΨ+(t) andΨ−(t) and subsequentlyu+(t) andu−(t), the

latter two functions being the basis of the PAM representation:

Ψ+(t) =











g+(t) 0 < t < LT

2πh − πhg+(t) LT < t < 2LT

(2.68)

and

Ψ−(t) =











−g−(t) 0 < t < LT

2πh + πhg−(t) LT < t < 2LT

(2.69)

u+(t) =
sin[Ψ+(t)]

sin(πh)
(2.70)

u−(t) =
sin[Ψ−(t)]

sin(πh)
. (2.71)

Finally, the PAM pulses based onu+(t) andu−(t) can be formed:

CK(t) =
L−1
∏

i=0

u+(t + [i + βK(i)L]T ) (2.72)

DK(t) =
L−1
∏

i=0

u−(t + [i + βK(i)L]T ). (2.73)

βK(i) is thei-th coefficient for the radix-2 decomposition of an integerK, as seen in the

following:

K =

L−1
∑

i=1

2i−1 · βK(i) 0 ≤ K ≤ 2L−1. (2.74)
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Next, the product of the PAM representations of two CPM signals is formed and

expanded:

s(t) =

∞
∑

N=−∞

2L−1−1
∑

K=0

aK(N)CK(t − NT ) ·
∞
∑

N ′=−∞

2L−1−1
∑

K ′=0

a∗
K ′(N ′)DK ′(t − N ′T ). (2.75)

New pulses are thus formed as products ofCK(t+NT ) andDK ′(t+N ′T ) for all possible

permutations ofK, K ′, N , andN ′, as demonstrated in (2.19). A particular bit time is cho-

sen and any pulses whose region of support began in previous bit times will be discarded, as

explained in Section 2.2.1 in conjuction with (2.19). Pulses with identical pseudo-symbol

coefficients are grouped to effect simplifications possibleregardless of the frequency pulse

used in defining the weak CPM signal. At this point, there willbe no more than3L unique

PAM pulses.

If f(t) is as defined in (2.42), further simplification is possible. The time-limited na-

ture ofCK(t) andDK(t), as shown in (2.48), can be examined along with (2.42) to discover

and eliminate pulses that are zero; these two equations are repeated here for convenience:

C0 6= 0 0 < t < (κL + 1)T

D0 6= 0 κLT < t < (L + 1)T

C1 6= 0 0 < t < (κL − 1)T

D1 6= 0 κLT < t < (L − 1)T

C2, C3 6= 0 0 < t < (κL − 2)T

D2, D3 6= 0 κLT < t < (L − 2)T

C4, C5, C6, C7 6= 0 0 < t < (κL − 3)T

D4, D5, D6, D7 6= 0 κLT < t < (L − 3)T

...

C2L−1/2, . . . , C2L−1−1 6= 0 0 < t < (κL − (L − 1))T

D2L−1/2, . . . , D2L−1−1 6= 0 κLT < t < (L − (L − 1))T

(2.76)

f(t) > 0 0 < t < κLT

f(t) < 0 κLT < t < LT.
(2.77)
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This elimination results in limiting the number of PAM pulses to as few as2L where2L is

reached whenκ = 1/L.

2.3 Application to EFTS

The EFTS signal has the following design requirements. The peak frequency de-

viation, fd, is 60 kHz. The bit rate,Rb, is 7200 bits per second (bps). The modulation

type is continuous-phase modulation, using a Manchester frequency pulse. Before the fre-

quency pulse train is input into an FM modulator to create theCPM signal, EFTS dictates

the frequency-pulse train is to be filtered by a 4-pole low-pass Bessel filter with cut-off

frequencyFc = 15 kHz.

These parameters need to be converted into the model used forsimulating the CPM

modulator modeled in Chapter 1. The model requires the modulation index,h, defined in

[23, section 4.3.3] as

h = 2fdT (2.78)

whereT is the symbol time, which for a binary modulation is equal to the bit time,Tb. The

bit time can be calculated as

Tb =
1 bit

symbol

Rb

(

bits
second

) =
1

Rb
; (2.79)

therefore,h = 16.666̄. (2.80)

The model chosen to represent the low-pass Bessel filter was aGaussian low-pass

filter with Fc = 15 kHz. This choice was made for two reasons. First, the Gaussian low-

pass filter is used as the pre-modulation filter for GMSK [25] where GMSK is CPM based

on an NRZ frequency pulse, filtered by a low-pass Gaussian filter with a time-bandwidth

BT , and withh = 1
2
. This is interesting because GMSK provides approximately the same

spectral shaping as the recommended EFTS pre-modulation filter. Second, the Gaussian

low-pass filter produces a somewhat more tractable mathematical expression for the fre-

quency, and phase pulses, compared to when using a Bessel filter.
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The frequency and phase pulses may be expressed as

f(t) = χ
√

2πσh

[

2Q

(

t − LT/2

σ

)

−Q

(

t − (L − 1)T/2

σ

)

− Q

(

t − (L + 1)T/2

σ

)]

(2.81)

g(t) = χπh

[

σ

(

e−
1
2(

t−(L+1)T/2
σ )

2

− e−( (L+1)T )
2σ )

2
)

+
√

2π

(

t − (L + 1)T

2σ

)

Q

(

t − (L + 1)T/2

σ2

)

+
√

2π
(L + 1)T

2
Q

(

−(L + 1)T

2σ

)

+ σ

(

e−
1
2(

t−(L−1)T/2
σ )

2

− e−( (L−1)T )
2σ )

2
)

+
√

2π

(

t − (L − 1)T

2σ

)

Q

(

t − (L − 1)T/2

σ2

)
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(2.82)

where

Q(x) =
1√
2π

∫ ∞

x

e−u2/2du, (2.83)

σ =

√
ln 2

2πB
, (2.84)

andχ is a constant required to produce the desired frequency deviation.

As stated, the modulation for this model is similar to Gaussian minimum-shift key-

ing (GMSK). Recall thatL is the number of symbol periods spanned by the frequency

pulse. Tsai and Lui [26] give the following approximation for L in GMSK as a function of

BT :

L ≈
⌈

1

BT

⌉

(2.85)
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where⌈·⌉ denotes the integer closest to and larger than(·). For the model used by EFTS,

BT = B · Tb

=
15 kHz

Rb

=
15 kHz

7.2 kBps
= 2.083̄.

(2.86)

It turns out that a slightly different approximation shouldbe used for EFTS, as can be seen

in Figure 1.1, which is a Manchester frequency pulse filteredby a Gaussian low-pass filter

with BT = 2.083̄. This figure shows that the pulse spans somewhere between oneand two

symbol times. Thus for this case,L can be calculated as,

L ≈ 2

⌈

1

BT

⌉

= 2. (2.87)

SinceL = 2 andκ = 1
2

(as used in (2.77)), (2.62) shows that

q0(t + nT ) = C0(t + nT )D0(t + (n + 1)T ) 6= 0 0 < t < 2T,

q1(t + nT ) = C0(t + nT )D0(t + (n + 2)T ) 6= 0 0 < t < T,

andq2(t + nT ) = C0(t + nT )D0(t + nT ) 6= 0 T < t < 2T

(2.88)

are the appropriate PAM pulses for an exact representation of EFTS-based CPM, shown

in Figure 2.1 with their spectra shown in Figure 2.2. It can beseen from (2.64) that the

respective pseudo-symbols for these PAM pulses are

a0(n) = Jα(n)

a1(n) = Jα(n)+α(n−1)

a2(n) = J0 = 1.

(2.89)

Thus, the PAM representation of EFTS PAM is

s(t) =

∞
∑

N=−∞

(ejπhα(n)q0(t − NT ) + ejπh[α(n)+α(n−1)]q1(t − NT ) + q2(t − NT ). (2.90)

2.4 Power Spectrum of Weak CPM Using the PAM Representation

The PAM representation of weak CPM aids in understanding theundesirable fre-

quency spectrum characteristics in weak CPM. Anderson, Aulin and Sundberg state that
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Figure 2.1: The three PAM pulsesq0(t), q1(t), andq2(t) in the PAM representation of the
EFTS waveform.
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Figure 2.2: The spectra of the three PAM pulsesq0(t), q1(t), andq2(t) in the PAM repre-
sentation of the EFTS waveform.
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weak CPM has discrete lines in its power spectral density (PSD). They further state that

these lines are undesirable, because they represent wastedtransmit power since they con-

tain no information [9, page 154].

A periodic function has discrete lines, or impulses, in its Fourier Transform; the

magnitude of each of these impulses is proportional to the Fourier-series coefficients of

the periodic function [27, Section 4.2]. Thus, if an autocorrelation function has a periodic

component, the PSD, which is the Fourier transform of the autocorrelation function, will

have discrete lines.

This understanding combined with the PAM representation provides a way to dis-

cover the presence of discrete lines in weak CPM, different from that found in [9]. As seen

in (2.36), whenL = 2 one of the PAM components is symbol-independent, which is deter-

ministic; such a pulse surfaces in the PAM representation ofweak CPM regardless of the

value ofL. A function made up of such a deterministic pulse repeated atregular intervals

is periodic. Since one of the PAM pulses of weak CPM is always symbol-independent,

(2.65) shows that there is a time-shifted version of this symbol-independent pulse in every

symbol interval, thus givings(t) a periodic component. The presence of this periodic com-

ponent also implies the presence of a periodic component in the autocorrelation function,

ultimately resulting in discrete lines in the PSD.

Example for L = 2 Part 5

Consider the symbol-independent pulse associated with theL = 2 example:

qi(t) = C0(t)D0(t) + C1(t)D1(t) (2.91)

wherei will be chosen based on the number of pulses that are present in the PAM repre-

sentation. In forming the autocorrelation of the CPM signal,

φss(t, t + θ) = E{s(t)s∗(t + θ)} , (2.92)

qi(t) will remain symbol-independent only when placed in a product with shifted versions

of itself.
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Assuming the frequency pulse is defined as

f(t) > 0 0 < t <
LT

2

f(t) < 0
LT

2
< t < LT

(2.93)

which is of the form of (2.42),qi(t) is time-limited toT < t < 2T . The periodic pulse

present in the autocorrelation in this special case ofL = 2 is therefore

φss,periodic(t, t + θ) =
∑

N

qi(t + NT ){qi(t + θ + NT ) + qi(t + θ + [N + 1]T )} (2.94)

where0 ≤ θ < T . The region of support of this periodic pulse is

NT < t < (N + 1)T, (2.95)

and so has a period ofT . The autocorrelation function,φss(t, t+ θ), represents the periodic

part of a cyclo-stationary random process, and thusφss,periodic(t, t + θ) makes up a part of

a cyclo-stationary random process. In order to calculate the PSD by taking the Fourier

transform of the autocorrelation function, the autocorrelation function must represent a

stationary random process (i.e. it must be a function of onlyone variable). The common

practice used to convert the autocorrelation function of a cyclo-stationary random process

into the autocorrelation function of a stationary random process is to average over one

period of the autocorrelation function [23]. Thus

φss,periodic(θ) =
1

T

∫ (N+1)T

NT

φss,periodic(t, t + θ) dt (2.96)

represents a stationary random process. The discrete linesdue to (2.94) can thus be calcu-

lated using the following equation [27],

X(f) =

∞
∑

k=−∞

bkδ(f − 1/T )

wherebk =
1

T

∫

T

φss,periodic(θ)e
−j k

T
θ dθ.

(2.97)

The latter part of (2.97) represents the Fourier series coefficients ofφss,periodic(θ).

A PAM representation for weak CPM has now been developed; thenext step is to

see how this PAM representation can be used to build a PAM-based receiver and how to

predict the performance of such a receiver, and finally, predict and simulate the receiver’s

performance.
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Chapter 3

Weak CPM Receivers

The main interest in a PAM representation of CPM arises in thedesign of the re-

ceiver, which seeks to detect the transmitted data sequencefrom the received signalr(t):

r(t) = s(t) + w(t). (3.1)

This received signal consists of the transmitted signal,s(t), plus noisew(t), modeled as ad-

ditive white Gaussian noise (AWGN). An optimal way, in termsof bit-error rate (BER), to

effect this detection is through the use of a maximum likelihood sequence detector (MLSD),

which is a detector that performs maximum likelihood sequence estimation (MLSE). This

detector requires a sometimes prohibitively high complexity; it is therefore desirable to use

a sub-optimum detector which requires a lower level of complexity. The use of a PAM-

based representation of CPM is one method that allows reduction in the complexity of the

receiver. (For other methods, see [9, chapter 8].) The act ofreformulating weak CPM as

a PAM signal does not alone provide for a reduced complexity receiver. Indeed, a receiver

built using all of the PAM pulses to detect the signal is just another formulation of MLSE

[24], which is of roughly the same complexity as the MLSE detector for CPM described in

[9, page 249]. On the other hand, using fewer PAM pulses than the number required for an

exact representation (i.e. using an approximate representation) does decrease complexity

without a significant drop in BER; even a receiver using only the most energetic PAM pulse

greatly outperforms an FM limiter-discriminator detector.

Section 3.1 reviews maximum-likelihood (ML) detectors andSection 3.2 outlines

the design of sub-optimum detectors. Section 3.3 applies the results of the first two sections
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to the EFTS waveform. Finally, Section 3.4 presents simulation results and complexity

comparisons of the various EFTS detectors.

3.1 Maximum Likelihood Detection

In order to understand how a MLSD works, it will be helpful to describe CPM using

a phase-state trellis, which is defined based on the phase states, correlative states, and state

transition of CPM.

States In weak CPM, the trellis arises when the frequency pulse spans more than one

symbol time. Within the trellis structure, there arephase states, which represent accumu-

lated phase due to previous data symbols which are no longer transitioning; in weak CPM,

there is only one phase state, since the accumulated phase iszero. There are alsocorrela-

tive statesbased on previous symbols that are still transitioning; there are thus2L−1 (ML−1

for M-ary CPM) possible correlative states. The correlative states and the phase states are

combined into astate vector; each trellis state is described by a unique state vector. There

are two paths leaving each state (M paths for M-ary CPM). Thestate transition, which

is based on the current symbol, describes these paths; the current data symbol determines

to which of the two possible states these paths lead. Using the state vector and the state

transition, a trellis can be constructed to show all possible states and state transitions. This

will be done for EFTS later on in this chapter.

3.1.1 ML Detection Using the Complex Exponential Representation

A MLSD searches for the path through the phase state trellis which most closely

represents the path taken by the transmitted signal. “Most closely resembles” in this case

(signal+AWGN) means that the signal representing the path chosen as the most likely path

is less different to the received signal in terms of squared Euclidean distance than a signal

representing any other path through the trellis. A metric that performs this search is

arg max
α̃

{

ln
[

pr(t)|α̃(r(t)|α̃)
]}

= arg min
α̃

{
∫ ∞

−∞

|r(t) − s(t, α̃)|2 dt

}

(3.2)

where α̃ represents a possible transmitted sequence. (Equation 3.2is simply the log-

likelihood function for some signal in the AWGN channel.) The squared term in (3.2)
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is expanded and only the pieces that vary withα̃ are considered. This yields an equation

equivalent to (3.2):

arg max
α̃

Λ(α̃) = arg max
α̃

Re

{
∫ ∞

−∞

r(t)s∗(t, α̃) dt

}

. (3.3)

This metric assumes the whole received signal is in hand before a decision is made. The

Viterbi Algorithm, on the other hand, calculates this metric piece-meal so as to enable the

making of decisions as the signal arrives.

The Viterbi Algorithm

The Viterbi Algorithm splits up the decision by incorporating newly received infor-

mation one symbol time at a time as follows:

arg max
α̃

Re{Λj(n; α̃)} = arg max
α̃

{

Λi(n − 1; α̃) + Re[λm,i(n; α̃n)]
}

(3.4)

λm,i(n; α̃n) =

∫ (n+1)T

nT

r(t)s∗m(t, α̃n) dt (3.5)

whereα̃n = {α(n), α(n − 1), . . . , α(n − [L − 1])} is a possible data sequence based on

the symbols from timen − (L − 1) up to and including timen.

Two comments about (3.4) will be instructive. First, the integral in (3.4) simply

represents a matched filtering ofr(t) by filters matched to the possible CPM waveforms in

the intervalnT < t < (n + 1)T . The second comment regards the metrics uses in (3.4).

λm,i is the recursive metric andΛ is the cumulative metric [9, page 249].Λ represents the

metric for a given state, and since there are2L−1 trellis states, there are2L−1 differentΛ

metrics, thusi andj in the subscripts of (3.4) each take on a different value in the range

0 ≤ i, j ≤ 2L−1−1. Also,λm,i represents the metrics for each of the two paths leaving each

of the states. Equation (3.4) shows thatλm,i is a function of the previousL−1 symbols and

the current symbol, so there are2L different recursive metrics to be calculated each symbol

time. In order to allow for2L combinations,m ranges as0 ≤ m ≤ 1, sincei is in the range

0 ≤ i ≤ 2L−1 − 1; i.e., since there are2L−1 trellis states and there are 2 paths leaving each

state, there must be2L different paths and so there must be an equal number of metrics to

describe these paths.
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Incorporating new information one symbol time at a time is only half of the story.

At this point, the number of paths still grows exponentiallywith each additional symbol

time. The Viterbi Algorithm uses the following scoring method to eliminate unnecessary

paths, reducing to a great degree the complexity required todetermine the most likely data

sequence. It will be seen that the Viterbi Algorithm fixes thepath length and the number of

maintained paths. (MLSE detection in the form shown in (3.3)requires a number of paths

that grows exponentially with the length of the transmittedsequence).

The cumulative metric,Λi, represents the information contained in thei-th state

vector and recursive metric,λm,i, represents the information relative to the two phase tran-

sitions leaving thei-th state. That is,Λi gives a “score” to each of the possible state vectors.

Then each of the possible paths leaving each of the states is assigned a score equal toλm,i.

The total score for a path leaving the state is equal toλm,i + Λi.

Each path transitions to some state where it will merge with apath that left from

a different state. The scores of these two paths are comparedand the path with the larger

score is declared the survivor; the other path is discarded.The destination state is assigned

a new score, equal to the sum of metrics corresponding to the surviving path:

Λj(n; α̃) = λm,i(n; α̃L−1) + Λi(n − 1; α̃). (3.6)

The discarded path no longer holds any useful information since any path leaving thej-th

state will increase its score the same amount, regardless ofthe value of theΛi andλi,m of

the surviving path. Therefore, the discarded path will always have a smaller cumulative

score than the survivor.

In fine, the Viterbi Algorithm operates along the following four steps to keep the

computational complexity manageable. First, the recursive metrics in (3.5) is calculated

in order to incorporate the new information that just arrived at the receiver, second, these

metrics are added to their associated cumulative metrics, third, metrics of merging paths

are compared, and fourth, a soft decision is made by declaring the larger of the two metrics

as the survivor and the path with the smaller metric is discarded. The number of possible

paths is thus maintained at2L different paths and the computational load is spread out over

the length of the transmitted sequence. Up to this point, thetrellis paths have been followed
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and the most likely paths, up to the current time,(n+1)T , (orn-th symbol time) have been

isolated.

When the received signal has been observed over a sufficiently long1 interval of time

and the recorded paths contain information about the firstn symbol times, a hard decision

about the first bit is made. The first symbol interval in the path, which corresponds to this

hard decision, can then be removed and disregarded. The recorded paths will then cover

n − 1 symbol periods. From this point on, the algorithm produces one bit every symbol

time by sliding the observation window.

The sliding operation happens in the following four recursive steps. 1) The first

hard decision is made. 2) After the first decision is made, thepart of the path regarding

the decision is removed leaving path information about the2nd symbol interval up to the

n-th symbol interval. 3) Following this removal, an additional time interval is added to

the mix by calculating the next metric using (3.5), adding the (n + 1)-th interval to the

path information. 4) The Viterbi Algorithm then makes soft decisions (using the four steps

described in the preceding paragraph), eliminating half ofthe paths opening the way for

another hard decision to be made and so the process repeats. Thus, the complexity is greatly

reduced, and the path length is set at a length ofn. Furthermore, the Viterbi Algorithm only

needs to keep track of2L paths of this length, instead of a number of paths which grows

exponentially with the number of symbol times observed.

An example of receivers using the Viterbi Algorirhtm and theother following re-

ceivers will be given later in this chapter.

Analysis: Minimum Euclidean Distance and Naming Weak CPM

In discussing receivers, interest lies most heavily in performance; a method for

predicting receiver performance will now be presented.

1“Sufficiently long” refers to the fact that after several cycles, the first bit of all paths will be the same
with an asymptotic probability of 1. To find the number of these cycles that quanlifies as sufficiently long, the
detector can be designed and tested with increasingly long observation intervals. (The observation interval
refers to the number,n, of symbol times the receiver is allowed to observe, while making soft decisions,
before a hard decision is made.) When increasing the length of the observation interval no longer reduces the
BER, the observation interval is “sufficiently long.”
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The first step in the presentation is to discuss the notion of aunion bound. The union

bound of probability says that the probability of the union of events occurring is less than

or equal to the sum of the individual probability of each of those events. Using the union

bound on pair-wise error probabilities yields the following inequality for the probability of

error for CPM in the AWGN channel:

Pb ≤
∑

i

∑

j 6=i

Q

(

√

d2
ij

Eb

N0

)

(3.7)

whereQ
(√

d2
ij

Eb

N0

)

is the probability that the sequence estimate isαj whenαi was trans-

mitted andd2
ij is the Euclidean distance betweenαj whenαi given by

d2
ij =

1

2Eb

∫

|s(t, αi) − s(t, αj)|2 dt. (3.8)

If the double sum in (3.7) is reordered so as to combine terms that have equal Euclidean

distances, the result is

Pb ≤
∑

i

∑

j 6=i

Q

(

√

d2
ij

Eb

N0

)

=
∑

k

WkQ

(

√

d2
k

Eb

N0

)

(3.9)

wheredk is some Euclidean distance between two sequences andWk is a function of the

number of sequence pairs that have a Euclidean distance ofdk. Pb as defined in (3.9) is

dominated by the term corresponding to the smallest distance:

d2
min = min

k

{

d2
k

}

. (3.10)

At high SNR, (3.9) can be approximated as

Pb ≈ WminQ

(

√

d2
min

Eb

N0

)

. (3.11)

Wmin becomes insignificant at high SNR [9, pages 27,28,55,59]. (Note that the accuracy of

this approximation decreases as the difference betweend2
min and the next largestd2 becomes

relatively small.)

Consider the following example. Minimum-shift keying (MSK) is CPM withh = 1
2

and a non-return to zero (NRZ) frequency pulse of length T; MSK has ad2
min = 2, which

translates to an expected probability of error ofPb ≈ 3.9×10−6 at anEb/N0 = 10 dB. One

34



version of weak CPM could use the sameh but replace the frequency pulse with a length-T

Manchesterfrequency pulse; this modulation has ad2
min ≈ 0.36, which translates to an

expected probability of error ofPb ≈ 2.9 × 10−2 at anEb/N0 = 10 dB. This difference

in Euclidean distances results in a loss of7.47 dB at aPb = 10−6. This makes clear the

reasoning behind the name “weak CPM.”

Complexity

The number of real multiplies and real additions required will now be used to con-

sider this receiver’s complexity. In doing so, keep in mind that 1) the complex-envelope

was used to simulate the receiver, and so complex multplies were required, that 2) a com-

plex multiply requires four real multiplies and two real adds, and that 3) if there areX

multiplies in a filtering operation, there areX − 1 adds.

The complex exponential-based MLSD receiver requires as many length-T matched

filters as it has recursive metrics. Equation (3.4) shows that there are2L such metrics.

AssumingN samples per bit are used for the digital realization of the system, each filter

requiresN complex multiplies. Each complex multiply requires four real multiplies and

two real adds, but as the imaginary part is discarded, there are just two real multiplies and

one real add.2 Thus,2LN complex multiplies are required, but only2L+1N real multiplies

and2L(2N − 1) real adds (2N − 1 real adds for eachT -length filter). To summarize, this

detector requires

2L+1N (3.12)

real multiplies and

2L(2N − 1) (3.13)

real adds. The complexity required for effecting MLSE must also be accounted for, but

will not be quantified here.

2If x = xr + jxi andy = yr + jyi are complex numbers thenxy = xryr − xiyi + j(xryi + xiyi). So if
the imaginary part is discarded, only two real multiplies and one real add are necessary.
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3.1.2 ML Detection Using the PAM Representation

An optimum receiver for a PAM-based modulation uses a matched filter [23]; for

this reason, Kaleh designed a MLSD that uses matched filters based on the PAM pulses to

compute the recursive metric [24].

Calculating the metrics for Kaleh’s method boils down to thefollowing process,

which also uses the Viterbi Algorithm and consists of six steps. First, the received signal is

fed into a bank of matched filters, which correspond to each ofthe PAM pulses and which

are sampled at timest = nT . Thek-th matched-filter output at timenT is

ηk(n) =

∫ t

−∞

r(τ)hk(τ) dτ

∣

∣

∣

∣

t=nT

(3.14)

wherehk(t) is a matched-filter based on thek-th PAM pulse. (Note that at timenT , the

signal is only based on symbols up to and including the(n − 1)-th symbol.) Second, the

k-th filter output is multiplied by thek-th pseudo-symbol, the latter being based on one

of the possible data sequences. Third, the real part of the sum of these products is taken

yielding the recursive metric:

λm,i(n) = Re

{

P−1
∑

k=0

ηk(n)d∗
i,k(n)

}

, (3.15)

where∗ denotes complex conjugation,P is the total number of PAM pulses, andm repre-

sents the two possible transition paths. Fourth, these recursive metrics are summed to form

the cumulative metric

Λj(n) =
√

2Eb

n
∑

l=−∞

λm,i(l) (3.16)

which lends itself easily to the recursive formulation

Λj(n) = Λi(n − 1) +
√

2Ebλm,i(n) (3.17)

wheren means then-th symbol time is being considered (i.e., the time intervalnT < t <

(n + 1)T ). The variablei represents one of the2L−1 possible states; that isΛi represents

the metric for thei-th state andm represents one of two possible path transitions. Fifth, as

with the complex exponential-based receiver,Λi(n) must be calculated for each of the states

after which it is added to eachλm,i(n) to find the metrics for each of the paths leaving each
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of the states. Sixth, the metrics of merging paths are compared to find the survivors and to

discard the other paths. Just as with the CPM MLSD, after a sufficiently long observation

interval, hard decisions can begin to be made on the bits.

Analysis

Since this detector is simply another instance of a MLSD, theminimum distance

for this receiver will be the same as it was for the exponential-based ML detector.

Complexity

Equations (3.15) and (3.17) show the metrics calculated by the PAM-based MLSD.

The PAM-based MLSD receiver requires a matched filter of length ΩiT for each PAM

pulse, whereΩi is the number of bit times spanned by thei-th PAM pulse. The PAM

matched filters are real-valued filters but the received signal is complex so this receiver

requires

Υ = 2N
P−1
∑

i=0

Ωi (3.18)

real multiplies and no adds,3 again assumingN samples/bit are used for the digital real-

ization of the system. After these multiplies, the complex output of each matched filter

is multiplied by the possible pseudo-symbol combinations and the imaginary part is dis-

carded. If thei-th pseudo-symbol, which corresponds to thei-th PAM pulse, is a function

of Θi different data symbols, then there are

Φ =

P−1
∑

i=0

2Θi (3.19)

real adds and2Φ real multiplies required to calculate the metricsλm,i. Thus the ML PAM-

based detector requires

Υ + 2Φ (3.20)

real multiplies andΦ real adds. Just as with the ML complex exponential-based detector,

the complexity required to effect MLSE must be taken into account.

3If x = xr is a real number andy = yr + jyi is a complex number thenxy = xryr + jxryi. So there are
only two real multiplies required but no adds are required.
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3.2 Sub-Optimum Detection

Two sub-optimum receivers were used in the simulations. Onewas a PAM-based

receiver, using only the most energetic symbol-dependent pulse. The other receiver is a FM

limiter-discriminator since CPM can be viewed as “digital FM” [28] and since the current

EFTS uses an FM demodulator at the receiver.

3.2.1 Reduced-Complexity Detection Using the PAM Representation

Simplified PAM receivers have been studied by Kaleh [24] and Tsai and Lui [26, 29]

for GMSK, by Colavolpe and Raheli [30] forM-ary CPM, and by Perrins and Rice [13]

for M-ary multi-h CPM.

The cumulative metric for the ML detectors as as well as the process for calculating

their metrics is the same with this detector excepting the computation of the recursive

metric, which changes (3.15) to

λm,i(n) = Re

{

R−1
∑

k=0

ηk(n)d∗
i,k(n)

}

, (3.21)

whereR is some integer less thanP , the total number of PAM pulses, andR represents the

number of PAM pulses that will be kept in making the simplifiedreceiver. Thus, the sum

now only sums from0 to R − 1 instead of0 to P − 1; the variablesm andi will now vary

to account for all the possible combinations of data symbolsthat are used in the reduced

set of pseudo-symbols.

This change may or may not affect the trellis. The trellis will change only if the

reduction in the number of pulses and corresponding reduction in the number of pseudo-

symbols results in the complete removal of one of the data symbols. For example, suppose

that the exact PAM representation of some weak CPM signal depends on the current and

previous two data symbols. The MLSE trellis will have four states and two transitions out

of each of those states. Then, if an approximate representation is used which is dependent

only on the current and previous data symbol, the trellis will have only two states and two

transitions from each of these states. Finally, if an approximation depends only on the

current data symbol, the trellis disappears entirely, and asymbol-by-symbol detector will
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suffice. (An example of this latter case will be shown in designing the EFTS simplified

receiver.)

Analysis: Mismatched Filter

If the receiver is not matched exactly to the transmitted signal, then a mismatched

Euclidean distance must be used to compare receiver configurations. This situation arises

when a simplified PAM receiver is used, which uses an approximate PAM signal, repre-

sented by a slightly modified version of (2.37):

r̃(t) =
∞
∑

N=−∞

R−1
∑

K=0

aK,NCK(t − NT ) (3.22)

whereR is some integer less thanP , the total number of PAM pulses. The probability of

error is well approximated by (3.11) except thatd2
min is replaced by a modified distance

measure given by

d̃2 =
1√
2Eb

(∫

|s̃(t; α2) − s(t; α1)|2 dt −
∫

|s̃(t; α1) − s(t; α1)|2 dt
)2

∫

|s̃(t; α1) − s̃(t; α1)|2 dt
(3.23)

whereα1 andα2 are two different data sequences. Also,s(t) is the transmitted signal

(exact CPM) and̃s(t) is the PAM-based approximation of CPM which will be used at the

receiver [31]. Just as with Euclidean distance, the minimummodified Euclidean distance

among all possible data sequences gives an approximation ofthe probability of error and

so (3.11) can be used to predict the BER curve, which prediction becomes increasingly

accurate with increasing SNR [9, section 3.5.1].

Complexity

The complexity calculation is the same as ML PAM-based detection, but now there

areR matched filter andR pseudo-symbols used in the filtering and multiplying, instead

of P as in ML PAM-based detection. The only change comes in the calculation of the

following:

Φ =

R−1
∑

i=0

2Θi ; (3.24)

equations (3.19) and (3.20) still hold. Thus, the symbol-by-symbol detector requires fewer

adds and multiplies and is also simpler in the fact that a MLSEis not required.
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3.2.2 Reduced-Complexity Detection

Using an FM Limiter-Discriminator Detector

An FM limiter-discriminator detector simply removes the phase pulse train from

the complex exponential and differentiates this pulse train, yielding the frequency pulse

train. This pulse train is then fed into a matched filter matched to the frequency pulse. The

matched-filter output is scaled and clipped. If the output sample at timet = nT is positive,

α(n) = 1 is the decision; otherwise, aα(n) = 0 is the decision. Analyis and complexity of

this receiver will not be considered.

3.3 Application to EFTS

The following sections will describe in brief terms the modulator used as well as

the various receivers in simulating an EFTS system.

3.3.1 CPM Modulator

The EFTS modulator is similar to other CPM modulators. A frequency pulse train

is formed, and then pre-filtered by a Gaussian low-pass filter. The output of the filter is

integrated and multiplied by2πh, which is input into a complex-exponential, thus forming

the transmitted signal.

3.3.2 MLSE and Sub-Optimum Receivers

As discussed in Section 3.1, the MLSD uses matched filters to effect the recur-

sive metric, whether the detector is complex-exponential-based or PAM-based. With weak

CPM, the number of states is based solely on the number of symbol times spanned by

the frequency pulse. Since EFTS uses a Gaussian low-pass filtered Manchester frequency

pulse of length2T , there are only two states. The transition state always consists of one

symbol and so there are two possible paths leaving and entering each state. The trellis is

shown in Figure 3.1 where the states are labeled according tothe cumulative metric found

in (3.17).
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Figure 3.1: The two state trellis describing the signal state for the EFTS modulation.

Complex Exponential-based Detector In a complex exponential-based MLSD, the

matched filters are matched to CPM signals for all possible data sequences. The matched

filters only calculate the recursive metric (λm,i found in (3.4)) and so only consider the

current symbol time. In EFTS, the pulses span two symbol times and so, since the alphabet

is binary and since only two symbols are transitioning in a symbol time, there are four

possible waveforms in a given symbol time.

s(t) = exp j
(

πh
[

α(n)g(t− nT ) + α(n − 1)g(t − (n − 1)T )
])

(3.25)

where the four possibilities are found by varyingα(n) andα(n − 1) in s(t). The MLSD

detector is shown in Figure 3.2(a).

To calculate the metrics, simply replaces(t; α̃) found in (3.4) with the complex

exponential found in (3.25) as follows:

λm,i(n; α̃n) =

∫ (n+1)T

nT

r(t) exp
(

jπh
[

α(n)g(t − nT ) + α(n − 1)g(t− (n − 1)T )
])

dt.

(3.26)

Also note thati andm found in this equation now both vary as0 ≤ i, m ≤ 1 sinceL = 2.

PAM-based Detector In a PAM-based MLSD, the matched filters are matched to the

PAM pulses. The PAM-based MLSD is seen in Figure 3.2(b). Inside the MLSE block,

the input to this block is multiplied by the possible pseudo-symbol combinations to find all

of the metrics. It can be seen in this figure that the symbol-independent PAM pulse was

completely neglected, yet the detector is still optimum. Verification of this metric as well as
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the metric for the sub-optimum detector is easily done by applying the PAM decomposition

to s(t) in (3.3) and discarding terms that are constant with respectto α̃. The metrics for

this MLSD are thus

ηk(n) =

∫ t

−∞

r(τ)qk(τ) dτ

∣

∣

∣

∣

t=nT

λm,i(n) = Releft
{

η0(n)d∗
i,0(n) + η1(n)d∗

i,1(n)
}

,

andΛj(n) = Λi(n − 1) +
√

2Ebλm,i(n).

(3.27)

Symbol-by-symbol PAM-based Receiver In EFTS, there are only two symbol-

dependent PAM pulses, as seen in (2.88) and (2.89). As the symbol-independent pulse

carries no information, the only simplification that can be made is to removeq1(t), thus

using the only pulse left,q0(t). Sincea0(n) = Jα(n), which is a function of the current

symbol only, this simplification removes the need for a trellis; a symbol-by-symbol detector

will suffice. This detector, which is sub-optimum, can be seen in Figure 3.2(c).

The metric for this detector is

λ(n) = Re

{

J−α(n)

∫ nT

(n−1)T

r(τ)h0(τ) dτ

}

. (3.28)

Clearly, there are only two possible metrics for eachn since there are only two possible

values thatα(n) can take on. These two metrics are compared and the bit corresponding to

the larger metric is taken as the likely transmitted symbol.Thus, the decision rule for this

detector is

α̂(n) =











+1 Re
{

x0(nT )e−jπh
}

≥ Re
{

x0(nT )ejπh
}

−1 otherwise
. (3.29)

Usingh = 50/3, it is easy to show that the decision rule reduces to

α̂(n) =











+1 Im {x0(nT )} ≥ 0

−1 otherwise
. (3.30)

3.3.3 FM Limiter-Discriminator

The FM limiter-discriminator can be built in several ways. In the simulations

done for this work, the received signal, both in-phase and quadrature components, are ran
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Figure 3.2: Coherent detectors for the EFTS modulation: (a)maximum likelihood detector
based on the complex exponential representation; (b) maximum likelihood detector based
on the PAM representation; (c) reduced-complexity detector based on the PAM representa-
tion; (d) non-coherent FM Limiter-Discriminator.
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through intermediate frequency (IF) filters. These filters were modeled as8th-order Cheby-

chev filters with peak ripple-widths of0.5 dB and cutoff frequencies of0.75Fs whereFs is

the sample rate. After these filters, the derivative of each component is taken; the arctan-

gent is then taken of the ratio of the filtered derivative of the quadrature component to the

filtered derivative of the in-phase component. This result is divided byπh and clipped to

be between±1. The result is compared to zero to determine whether a “1” wassent or a

“0” was sent. This detector is shown in Figure 3.2(d).

3.4 EFTS Receiver Performance and Complexity

The performance of the PAM-based MLSD was approximately5.62 dB better than

an FM limiter-discriminator at10−5 BER; the BER curves, with and without the symbol-

independent pulse included as a matched filter, were for all intents and purposes identical.

The performance of the symbol-by-symbol detector showed only a small loss of approxi-

mately0.68 dB from optimal at a BER of10−5.

Distance analysis was performed in order to predict performance. Using (3.23), the

following were found:d2
min ≈ 1.18 for the MLSD receiver and the mismatched distance

d̃2
min ≈ 1.02 for the symbol-by-symbol receiver; for both receiversWmin = 1. The com-

plexity for this case was calculated using (3.12), (3.13), (3.19), and (3.20). The simulation

results and analysis for the MLSD receiver and the symbol-by-symbol receiver are com-

pared in Figure 3.4 and the simulation results for all receivers are shown in Figure 3.5. The

performance and complexity results are summarized in Table3.1

The analyis and simulations were performed assuming an AWGNchannel. EFTS

applications are actually implemented in AWGN channels with added phase noise. Fig-

ure 3.3 shows the setup of the receiver simulations with phase noise and AWGN added.

A fourth curve is seen in Figure 3.5 which shows how phase noise affects the simplified

PAM-based receiver: still 4 dB better. (The FM limiter-discriminator was unaffected by

the addition of phase noise.) For further explanation regarding the phase noise model, see

Appendix B.
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receiver.

Table 3.1: Comparison of the number of real-valued multiplies required by the three
detectors illustrated in Figure 3.2.

Detector Eb/N0 for a BER of10−5 real multiples real adds
ML-Complex Exponential N/A 8N 8N − 4
ML-PAM 11.6 dB 6N + 12 6
Reduced-Complexity PAM 12.6 dB 4N 0
PAM With Phase Noise 14.2 dB 4N 0
FM Limiter-Discriminator 18.2 dB N/A N/A
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Chapter 4

Conclusion

Although Laurent’s work did not provide for a PAM representation of weak CPM,

his work combined with the work of Mengali led to an approach for deriving a PAM repre-

sentation for weak CPM. All the implications associated with a PAM decomposition were

shown to apply to the PAM decomposition of weak CPM, most especially, the implica-

tion that a simplified receiver for the EFTS waveform could beconstructed, based on this

representation, that greatly outperforms a limiter-discriminator currently used in the EFTS

system. The receiver performed with near optimal performance under the assumption of

phase coherency and neatly outperformed the FM demodulator, even in the presence of

phase noise present in EFTS applications.1

Another benefit of the PAM representation of weak CPM was the additional per-

spective given as to why weak CPM has poor performance. Namely, the PAM representa-

tion revealed a symbol-independent PAM pulse that is clearly wasted energy, accounting

for the discrete lines observed in weak CPM as well as the small minimum distance ex-

hibited by weak CPM. The PAM representation of weak CPM couldbe used to predict the

energy in discrete lines due to the symbol-independent pulse.

1It may be that the effect of the phase noise could be lessened if h were chosen to be an odd multiple of1

2

bringing the two different complex-exponentials to an angle of± 1

2
π, and so making samples at timenT of

the signal antipodal, thus maximizing the phase rotation necessary to cause an error due to the phase noise.
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Appendix A

Derivation of a PAM Decomposition of CPM and Weak CPM

A.1 CPM

The first order of business is to properly define the orginal CPM signal, from which

the pulse-amplitude modulation (PAM) decomposition will be derived. The frequency

pulse,f(t), defines how the frequency of the signal changes during a given symbol pe-

riod. It is well known that to find the phase of a signal, one must integrate the frequency

over time; the frequency pulses will be assumed to integrateto hπ. The following are some

definitions that will be useful in the derivation of the PAM representation:

t = NT + τ 0 ≤ τ < T

J = ejhπ
(A.1)

Also

g(t) =

∫ t

−∞

f(τ)dτ (A.2)

where

g(t) =











0 t ≤ 0

1
2

t ≥ LT

. (A.3)

A phase pulse that has reached itsterminal response, has arrived in the time intervalt ≥
LT , whereas a phase pulse in the time interval0 ≤ t < LT is transitioning. (The behavior

of g(t) in this last time interval will not affect the discussion).
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The following defines the CPM signal for−∞ < t < (N + 1)T :

s(t) = exp

[

jθ0 + 2πh

N
∑

n=−∞

α(n)g(t − nT )

]

. (A.4)

Assuming without loss of generality thatθ0 = 0,

s(t) = exp

[

j2πh

N−L
∑

n=−∞

α(n)g(t− nT )]

]

· exp

[

j2πh

N
∑

n=N−L+1

α(n)g(t− nT )

]

. (A.5)

First s(t) as found in (A.5) will be simplified. Considerg(t − nT ) for n ≥ N − L. From

(A.3),

g(t − nT ) =
1

2
t − nT ≥ LT. (A.6)

From eq (A.1),t = NT + τ so

g(t − NT ) =
1

2
(N − n)T + τ ≥ LT (A.7)

or

g(t − nT ) =
1

2
nT ≤ (N − L)T + τ. (A.8)

And since0 ≤ τ < T ,

g(t − nT ) =
1

2
n ≤ N − L. (A.9)

In words,g(t − nT ) will have reached its terminal response forn ≤ N − L. Thus, the

terms in the first sum of (A.5) are all simplyα(n)hπ:

s(t) = exp

[

j
N−L
∑

n=−∞

α(n)πh

]

· exp

[

j2πh
N
∑

n=N−L+1

α(n)g(t− nT )

]

, (A.10)

which can be rewritten as

s(t) = J
∑(N−L)

n=−∞
α(n)πh · exp

[

j2πh

N
∑

n=N−L+1

α(n)g(t − nT )

]

= J
∑(N−L)

n=−∞
α(n)πh

L−1
∏

i=0

exp [j2πh · α(N − i)g(t − (N − i)T )] .

(A.11)
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Next it will be shown that

exp[j2πhα(n)g(t− NT )] = u(t + [L − N ]T ) + Jα(n)u(t − NT ). (A.12)

In the process,u(t) will be defined. (In the following derivation2πh · g(t − NT ) will be

represented simply byg andα(n) by α.) First, from Euler’s identity

exp[jαg] = cos(αg) + j sin(αg). (A.13)

Sinceα ∈ ±1, it just affects the sign of the argument of the sine and cosine functions, and

since cosine is an even function and sine is an odd function. Thus, the complex exponential

can be rewritten as:

exp[jαg] = cos g + jα sin g. (A.14)

This next step is in the dark; the reasoning for it will becomeapparent

exp[jαg] =
sin(πh) cos g

sin(πh)
+ jα

sin(πh) sin g

sin(πh)

=
sin(πh) cos g

sin(πh)
+ jα

sin(πh) sin g

sin(πh)
− cos(πh) sin g

sin(πh)
+

cos(πh) sin g

sin(πh)

(A.15)

Combining the first and third terms and factoring out the common sin πhg in the second

and fourth terms gives

exp[jαg] =
sin(πh − g)

sin(πh)
+

sin g · [cos(πh) + jα sin(πh)]

sin(πh)
. (A.16)

Insertingα into the cosine of the second term and pushing theα back inside the sine, also

of the second term, yields:

exp[jαg] =
sin(πh − g)

sin(πh)
+

sin g · [cos(απh) + j sin(απh)]

sin(πh)
(A.17)

The right hand side of the numerator of the second term is easily recognizable as the ex-

panded form of a complex exponential:

exp[jπhαg] =
sin(πh − g)

sin(πh)
+

sin g · exp[jαπh]

sin(πh)

=
sin(πh − g)

sin(πh)
+ Jαπh sin g

sin(πh)
.

(A.18)
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Now define a function to be the argument of the sine in the numerator of the first term of

(A.18) during one interval. Let the same function equal the argument of the sine in the

numerator of the second term during another interval disjoint from the first:

Ψ(t) =











2πhg(t) for t < LT

πh − 2πhg(t− LT ) for t ≥ LT

(A.19)

u(t) =
sin[Ψ(t)]

sin(πh)
. (A.20)

Thus

u(t + [L − N ]T ) =
sin[Ψ(τ + NT + (L − N)T )]

sin(πh)
(A.21)

=
sin[Ψ(τ + LT )]

sin(πh)
. (A.22)

Also note that0 ≤ τ < T . It is clear thatτ + LT ≥ LT . Thus

(A.23)

u(t + [L − N ]T ) =
sin[πh − 2πhg(t − LT )]

sin(πh)
. (A.24)

Following a similar path it is easy to see that

u(t− NT ) =
sin 2πhg(t− NT )

sin(πh)
. (A.25)

Combining the latter equation with (A.18)

exp[jπhα(n)g(t − nT )] = u(t + [L − n]T ) + Jα(n)u(t − nT ). (A.26)

This is the identity needed to form Laurent’s PAM representation of CPM. Using this iden-

tity with (A.11)

s(t) = J
∑(N−L)

n=−∞
α(n)

L−1
∏

i=0

[u(t + [i + L − N ]T ) + Jα(N−i)u(t + [i − N ]T )]. (A.27)
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Example for L = 2 Part 6

Consider the caseN = 0 (i.e., the time interval0 < t < T ). Expanding the product

in (A.30)

p =

1
∏

i=0

[u(t + [i + 2]T ) + Jα(−i)u(t + iT )]

= [u(t + 2T ) + Jα(0)u(t)] · [u(t + 3T ) + Jα(−1)u(t + T )]

= u(t + 2T )u(t + 3T ) + Jα(−1)u(t + T )u(t + 2T )

+ Jα(0)u(t)u(t + 3T ) + Jα(0)+α(−1)u(t)u(t + T ).

(A.28)

DefineC0(t) = u(t)u(t + T ). Thus

u(t + T )u(t + 2T ) = C0(t + T ). (A.29)

Also defineC1(t) = u(t)u(t + 3T ). And so for0 < t < T

s(t) = J
∑

−2
n=−∞

α(n) · [C0(t + 2T ) + Jα(−1)C0(t + T ) + Jα(0)+α(−1)C0(t) + Jα(0)C1(t)].

(A.30)

ForT < t < 2T ,

p =

1
∏

i=0

[u(t + [i + 2 − 1]T ) + Jα(1−i)u(t + [i − 1]T )]

= [u(t + T ) + Jα(1)u(t− T )] · [u(t + 2T ) + Jα(0)u(t)]

= u(t + T )u(t + 2T ) + Jα(0)u(t)u(t + T ) + Jα(1)u(t − T )u(t + 2T )

+ Jα(1)+α(0)u(t − T )u(t).

(A.31)

Thus forT < t < 2T ,

s(t) = J
∑

−1
n=−∞

α(n) · [C0(t + T ) + Jα(0)C0(t)

+ Jα(1)+α(0)C0(t − T ) + Jα(1)C1(t − T )]

s(t) = J
∑

−2
n=−∞

α(n)·[Jα(−1)C0(t + T ) + Jα0+α(−1)C0(t)

+ Jα1+α0+α(−1)C0(t − T ) + Jα1+α(−1)C1(t − T )].

(A.32)
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And for 2T < t < 3T ,

p =

1
∏

i=0

[u(t + [i + 2 − 2]T ) + Jα(2−i)u(t + (i − 2)T ]

= [u(t) + Jα(2)u(t − 2T )] · [u(t + T ) + Jα(1)u(t − T )]

= u(t)u(t + T ) + Jα(1)u(t − T )u(t) + Jα(2)u(t − 2T )u(t + T )

+ Jα(2)+α(1)u(t − 2T )u(t− T ).

(A.33)

Thus for2T < t < 3T ,

s(t) = J
∑0

n=−∞
α(n)·[C0(t) + Jα(1)C0(t − T )

+ Jα(2)+α(1)C0(t − 2T ) + Jα(2)C1(t − 2T )]

= J
∑

−2
n=−∞

α(n)·[Jα0+α(−1)C0(t) + Jα1+α0+α(−1)C0(t − T )

+ Jα2+α1+α0+α(−1)C0(t − 2T ) + Jα2+α0+α(−1)C1(t − 2T )]

(A.34)

To summarize, the equations for N = 0,1,2, can be rewritten, as:

0 < t < T : s(t) = J
∑

−2
n=−∞

α(n)·[C0(t + 2T ) + Jα(−1)C0(t + T ) + Jα(0)+α(−1)C0(t) + Jα(0)C1(t)]

T < t < 2T : s(t) = J
∑

−2
n=−∞

α(n)·[Jα(−1)C0(t + T ) + Jα0+α(−1)C0(t)

+ Jα1+α0+α(−1)C0(t − T ) + Jα1+α(−1)C1(t − T )]

2T < t < 3T : s(t) = J
∑

−2
n=−∞

α(n)·[Jα0+α(−1)C0(t) + Jα1+α0+α(−1)C0(t − T )

+ Jα2+α1+α0+α(−1)C0(t − 2T ) + Jα2+α0+α(−1)C1(t − 2T )].

(A.35)

Note that the coefficents of theCK terms are the same for each shifted version ofCK(t).

For example, the coefficient forC0(t) is alwaysJα0+α(−1). Laurent saw this pattern and

realized that the equations (A.30), (A.32), and (A.34) could be combined to form, for

0 < t < 3T ,

s(t) = J
∑

−2
n=−∞

α(n)·[C0(t + 2T ) + Jα(−1)C0(t + T ) + Jα(0)+α(−1)C0(t)

+ Jα1+α0+α(−1) + C0(t − T ) + Jα2+α1+α0+α(−1)C0(t − 2T )

+ Jα2+α0+α(−1)C1(t − 2T ) + Jα1+α(−1)C1(t − T ) + Jα(0)C1(t)].

(A.36)
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which holds for0 < t < 3T . This expression can be expanded to include all time, yielding

Laurent’s result forL = 2. If the same process is done for other values ofL, Laurent’s final

result is found:

s(t) =
∞
∑

N=−∞

2L−1−1
∑

K=0

JAK(N)CK(t − nT ) (A.37)

where

AK(N) =

N
∑

n=−∞

α(n) −
L−1
∑

i=1

α(N − i) · βK(i) (A.38)

andβK(i) is thei-th coefficient for the radix-2 decomposition of an integerK, as seen in

the following:

K =
L−1
∑

i=1

2i−1 · βK(i). (A.39)

The PAM pulses are time-limited according to the following set of equations:

C0 6= 0 0 < t < (L + 1)T (A.40)

C1 6= 0 0 < t < (L − 1)T (A.41)

C2, C3 6= 0 0 < t < (L − 2)T (A.42)

C4, C5, C6, C7 6= 0 0 < t < (L − 3)T (A.43)

... (A.44)

C2L−1/2, . . . , C2L−1−1 6= 0 0 < t < T. (A.45)

This allows correlatation of our CPM signal with the outputsof two filters based onC0

andC1. Then after multiplying the output by the possible symbol combinations, the Viterbi

algorithm can be used to decode the most likely sequence of symbols. This would not be

possible if an expression fors(t) could not be found that was valid for all N. For example,

if the combination of symbols that multiplyC0(t − T ) differed from the N=2 case to the

N=3 case, the filter approach could not be used.

A.2 Weak CPM

If g(t) is redefined for weak CPM, i.e.

g(t) = 0 t ≤ 0, t ≥ LT, (A.46)
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the terms in the first sum of (A.30) equal toα(n) · 0, altering it as shown here for three

values ofN :

0 < t < T : s(t) = [C0(t + 2T ) + Jα(−1)C0(t + T ) + Jα(0)+α(−1)C0(t) + Jα(0)C1(t)]

(A.47)

T < t < 2T : s(t) = [C0(t + T ) + Jα(0)C0(t) + Jα(1)+α(0)C0(t − T ) + Jα(1)C1(t − T )]

(A.48)

2T < t < 3T : s(t) = [C0(t) + Jα(1)C0(t − T ) + Jα(2)+α(1)C0(t − 2T ) + Jα(2)C1(t − 2T )].

(A.49)

Now in this case, unlike generic CPM, the coefficients of theCK terms change with each

time step. For example, consider againC0(t). WhenN = 0, C0(t) has a coefficient of

Jα(0)+α(−1); at N = 1, this coefficient becomesJα(0). This makes it impossible, using

this form, to create a linear expression fors(t) for all N . Thus, Laurent’s PAM approach

applied to weak CPM does not yield a linear result, and so another approach must be taken

to find a linear PAM representation of weak CPM.

A.3 Pulses That are Zero: the Full Derivation

Consider the definition of a frequency pulse,f(t), of lengthLT , that integrates to

zero:

f(t) > 0 0 < t < κLT

f(t) < 0 κLT < t < LT,
(A.50)

where0 < κ < 1. Referring to (A.50) it is seen thatf+(t), which integrates toA, is zero

for κLT < t < LT , andf−(t), which integrates to -A, is zero for0 < t < κLT . g+(t) and

g−(t) thus become:

g+(t) =











0 t < 0

A t > κLT

(A.51)

g−(t) =











0 t < κLT

−A t > LT

. (A.52)

(A.53)
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With g+(t) andg−(t) in hand,Ψ+(t) andΨ−(t) can both be determined as well as

u+(t) andu−(t). It is in this determination that it can be seen that some PAM pulses are

zero.Ψ+(t) andΨ−(t) are calculated as follows:

Ψ+(t) =











g+(t) 0 < t < LT

A − g+(t) LT < t < 2LT

(A.54)

and

Ψ−(t) =











−g−(t) 0 < t < LT

A + g−(t) LT < t < 2LT

. (A.55)

(SinceDK(t) was defined using−g−(t), Ψ−(t) also uses−g−(t) in its definition.) For a

given set of PAM pulses,u(t) is a function ofΨ(t) (see (2.6)); thusu+(t) andu−(t) can be

defined as:

u+(t) 6= 0 0 < t < (κL + L)T

u−(t) 6= 0 κLT < t < 2LT,
(A.56)

whereu+(t) is based onΨ+(t) andu−(t) is based onΨ−(t).
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Example for L = 2 Part 7

Consider once again the example forL = 2, where at this point the products of

shifted versions ofu+(t) andu−(t) are used to find PAM pulses that are zero. Recall (2.36):

s(t) =[C0(t)D0(t) + C1(t)D1(t)]

+ Jα(−1)C0(t)D1(t)

+ Jα(0)[C0(t)D0(t + T ) + C1(t)D0(t + 2T )]

+ Jα(0)+α(−1)C0(t)D0(t + 2T )

+ J−α(−1)C1(t)D0(t)

+ Jα(0)−α(−1)C1(t)D0(t + T )

+ J−α(0)[C0(t + T )D0(t) + C0(t + T )D1(t)]

+ J−α(0)+α(−1)C0(t + T )D1(t)

+ J−α(0)−α(−1)C0(t + 2T )D0(t).

(A.57)

In order to determine which pulses are zero, the interval to which each of the PAM-pulse

products is time-limited will be considered.

PAM pulse lengths First, the interval to which each of theCK(t) andDK(t) pulses is

time-limited must be considered. The length of eachCK(t) andDK(t) can be calculated by

examing the definition ofCK(t), found in (2.5) (repeated here for convenience), combined

with the definition ofu(t) as found in (A.56).

CK(t) =

L−1
∏

i=0

u(t + [i + βK(i)L]T )

K =

L−1
∑

i=1

2i−1 · βK(i)

(A.58)

For generalL, consider the intervals to whichCK(t) andDK(t) are time-limited:

C0 6= 0 0 < t < (κL + 1)T (A.59)

D0 6= 0 κLT < t < (L + 1)T (A.60)

C1 6= 0 0 < t < (κL − 1)T (A.61)
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D1 6= 0 κLT < t < (L − 1)T (A.62)

C2, C3 6= 0 0 < t < (κL − 2)T (A.63)

D2, D3 6= 0 κLT < t < (L − 2)T (A.64)

C4, C5, C6, C7 6= 0 0 < t < (κL − 3)T (A.65)

D4, D5, D6, D7 6= 0 κLT < t < (L − 3)T (A.66)

... (A.67)

C2L−1/2, . . . , C2L−1−1 6= 0 0 < t < (κL − (L − 1))T (A.68)

D2L−1/2, . . . , D2L−1−1 6= 0 κLT < t < (L − (L − 1))T (A.69)

All pulses withK > 0 are time-limited to intervals that can be expressed in the form

0 < t < (κL − R)T or κLT < t < (L − R)T , whereR is an integer. Those pulses

defined with the former interval are zero forκ ≤ R
L

whereas the pulses defined with the

latter interval are zero forκ ≥ 1 − R
L

. Thus asK increases, an increasing number of PAM

pulses are zero for an increasing range of values ofκ. This can greatly simplify the PAM

representation.

Example for L = 2 Part 8

Consider an example whereL = 2 and a general weak phase pulse.C0(t) is the

product ofu(t) andu(t + T ). u(t) is time-limited to0 < t < 4T . Thus,C0(t) has a length

of 3T . C1(t) is the product ofu(t) andu(t + 3T ) and thus has a length ofT .

Now replace the general weak phase pulse with with a weak phase pulse as defined

in (2.15). Using (A.56),u+(t) is found to be time-limited to0 < t < (2κ + 2)T and

u−(t) is time-limited to2κT < t < 4T . This alters the interval to whichC0 andD0 are

time-limited:

C0 6= 0 0 < t < (2κ + 1)T

D0 6= 0 2κT < t < 3T.
(A.70)

Also,

C1 6= 0 0 < t < (2κ − 1)T

D1 6= 0 2κ < t < T.
(A.71)
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The results in (A.70) and (A.71) reduce the number of pulses in (2.36)) to 4:

C0(t)D0(t + T ) + C1(t)D0(t + 2T ) 6= 0 max[0, (2κ − 1)T ] < t < min[(2κ + 1)T, 2T

C0(t)D0(t + 2T ) 6= 0 0 < t < T

C0(t)D0(t) + C1(t)D1(t) 6= 0 2κT < t < (2κ + 1)T

C0(t)D1(t) 6= 0 2κT < t < T.

(A.72)

Thus the final PAM pulses for this special case of weak CPM are as follows:

q0(t) = C0(t)D0(t + T ) + C1(t)D0(t + 2T )

q1(t) = C0(t)D0(t + 2T )

q2(t) = C0(t)D1(t)

q3(t) = C0(t)D0(t) + C1(t)D1(t).

(A.73)

It can be seen from (2.36) that the psuedo-symbols corresponding to the PAM pulses in

(A.73) are

a0(n) = Jα(n)

a1(n) = Jα(n)+α(n−1)

a2(n) = Jα(n−1)

a3(n) = J0 = 1.

(A.74)
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Appendix B

Phase Noise and Phase-Lock Loop Models

The phase noise that is being simulated is due to the large amounts of vibrations

found experimentally to be present in flight vehicles using the EFTS. It was estimated

that the phase noise had an RMS frequency deviation of 4 kHz and an equivalent noise

bandwidth of 2.5 kHz [8]. The simulations were done in discrete-time with a sample rate

of

N =
Fs

Rb
= 56

Samples
Bit

. (B.1)

The following simple recursive filter, wherea was chosen so that the phase noise

had the desired RMS frequency deviation and equivalent noise bandwidth,

FPN(z) =
1

1 + az−1
, (B.2)

was used to generate the phase noise as

ρ(n) = fPN(n) ⋆ z(n) (B.3)

where⋆ denotes convolution. Also,fPN(n) is the time-domain version of the filter in (B.2),

ρ(n) is the simulated frequency noise, andz(n) is white Gaussian noise. The variance of

z(n), σ2
z as well asa can be calculated based on the target equivalent noise bandwidth in

radians,ωNB, and the target RMS frequency deviation in radians,σ2
RMS, of the noise, using

the following equations:

a =
2ωNB − 1

2ωNB − 1
(B.4)

σ2
z = |a2 − 1|σ2

RMS. (B.5)

Figure B.1 shows the setup of the noise generator.
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Figure B.1: This figure shows the simulation setup used to generate phase noise, which
generator is injected with white Gaussian noise (w(n)).

The filter output was then sent through an integrator to turn the noise into phase

noise, which noise was then added to the phase of the signal asfollows:

r(n) = s(n)ejp(n) + w(n) (B.6)

with

p(n) = Ts

∑

ρ(n) (B.7)

wherew(n) is AWGN.

The simulation in a simple AWGN channel assumed ideal phase coherency, so a

phase-lock loop (PLL) was not actually built into the simulation. A PLL must be included

to simulte the effect of PLL tracking errors in the presence of phase noise.

The phase noise was added to the phase of the received signal as previously noted.

The phase noise was also filtered by a filter that was equivalent to the frequency response of

a PLL, in order to simulate the effect a PLL would have on the phase noise. The PLL was

chosen to have a damping factor,ζ = 1, and a noise-bandwidth,Bn = 18. The following

equation was used for the equivalent transfer function of the PLL:

FPLL(z) =
(K1 + K2)z

−1 − K1z
−2

1 + (K1 + K2 − 2)z−1 + (1 − K1)z−2
(B.8)

with

K1 =

4ζ
N

(

BnTb

ζ+ 1
4ζ

)

1 + 2ζ
N

(

BnTb

ζ+ 1
4ζ

)

+

(

BnTb

N(ζ+ 1
4ζ )

)2 (B.9)

K2 =

4
N2

(

BnTb

ζ+ 1
4ζ

)2

1 + 2ζ
N

(

BnTb

ζ+ 1
4ζ

)

+

(

BnTb

N(ζ+ 1
4ζ )

)2 (B.10)
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whereN is the number of samples per bit used in the simulation andTb = 1
Rb

is the bit

time.

The phase noise could be added to the phase of the received signal, as well as

filtered by the PLL-equivalent filter, the results of which being subtracted off the phase

of the signal, all before the signal is matched-filtered. However, in this configuration, the

noise bandwidth of the PLL could be cranked up to eliminate the phase noise altogether.

Therefore, after the phase noise was added to the received signal but before it was filtered

by the PLL, it was modified by adding the quadrature componentof the AWGN (w(n)

in (B.6)) in order to get a more realistic result as shown in the following equation:

p̃(n) = (p(n) + wQ(n)) ⋆ fPLL(n) (B.11)

wherefPLL(n) is the time-domain version of the filter in (B.8) andwQ(n) = Im{w(n)}.

Thus the filtered phase noise will cancel some of the phase noise, simulating the imperfect

yet still effective operation of a PLL through the followingequation:

r(n) = s(n)ejp(n)e−jp̃(n) + w(n). (B.12)

It should be noted that all of this assumes a priori that a PLL could be designed that

functions in the presence of such severe phase noise as that found in EFTS applications.
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