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Poynting’s theorem and luminal total energy transport in passive dielectric media

S. Glasgow,1 M. Ware,2 and J. Peatross2

1 Department of Mathematics, Brigham Young University, Provo, Utah 84601
2Department of Physics, Brigham Young University, Provo, Utah 84601

~Received 26 June 2000; revised manuscript received 17 May 2001; published 25 September 2001!

Without approximation the energy density in Poynting’s theorem for the generally dispersive and passive
dielectric medium is demonstrated to be a system totaldynamical energy density. Thus the density in
Poynting’s theorem is a conserved form that by virtue of itspositive definitenessprescribes important quali-
tative and quantitative features of the medium-field dynamics by rendering the system dynamically closed.
This fully three-dimensional result, applicable to anisotropic and inhomogeneous media, is model independent,
relying solely on the complex-analytic consequences of causality and passivity. As direct applications of this
result, we show~1! that a causal medium responds to a virtual, ‘‘instantaneous’’ field spectrum,~2! that a
causal, passive medium supports only a luminal front velocity,~3! that thespatial ‘‘center-of-mass’’ motion of
the total dynamical energy is also always luminal and~4! that contrary to~3! the spatial center-of-mass speed
of subsets of the total dynamical energy can be arbitrarily large. Thus we show that in passive media super-
luminal estimations of energy transport velocity for spatially extended pulses is inextricably associated with
incomplete energy accounting.

DOI: 10.1103/PhysRevE.64.046610 PACS number~s!: 42.25.Bs

I. INTRODUCTION

Recently several groups have published the outcomes of
experiments in which superluminal electromagnetic pulse
propagation has been observed in various senses. These
overages have varied from the moderate@1#, to the extreme
@2#. In most ~but not all! of these recent works the authors
have freely expressed the conservative sentiment that noth-
ing particularly disturbing has occurred with respect to rela-
tivity. Indeed it is well known that all of the the predictions
of the current classes of superluminal phenomenology have
been inspired by classical theory, which is heavily circum-
scribed by the limitations of relativity. One of the purposes
of the theoretical work presented here is to point out ways in
which these conservative sentiments can be made precise.

To accomplish this, we address and clarify the central
issue of energy transport in dissipative/dispersive dielectrics.
~Here we limit to the passive case and address the active case
elsewhere@3#.! We make these clarifications by introducing a
new theorem and an immediate corollary that address the
phenomena ofglobal energy flow in causal media. It is only
in this global sense that the various authors have ventured to
predict and, recently, to verify superluminal electromagnetic
pulse propagation, the local sense having been authorita-
tively proscribed by the theorems of Sommerfeld and Bril-
louin @4# almost 85 years ago.~The global theory presented
here also contains the main implication of the local
Sommerfeld-Brillouin theory as an important corollary.!

In order to produce a notion of global energy transport
that is unambiguous, we employ the method of moments or
expectations~more often seen and used in quantum mechan-
ics and kinetic theory than in electromagnetic theory!. These
techniques allow one to pass beyond the~often severe! ana-
lytic limitations of the local analyses usually employed in
this area of research. For example, a commonly employed
local tool is the Taylor series. Importantly, many of the ob-
jects to which this local tool is applied when analyzing the

‘‘superluminal’’ nature of energy transport in dielectrics do
not have series representations that converge in large enough
intervals to capture the cause of the anomalous behavior.
This is because these effects are associated with medium-
field resonances that are given mathematically by singulari-
ties in the relevant constitutive relations. Thus, in order to
establish an unambiguous notion of the global properties of
energy transport for finite energy medium-field excitations,
we introduce the moments of various components of the total
energy ~analogous to a center of mass!. Energy naturally
lends itself to this method since expectations are most in-
structive when the analog of a probability distribution~i.e., a
positive definite form! is used. With regard to superluminal
phenomena the evolutions of these various moments are not
only enlightening and subject to concrete analysis, but also
give the relevant and unambiguous generalization of group
velocity for arbitrarily complicated pulses@5#.

The main results of this paper are given in a theorem and
a corollary. The first is given by Eqs.~48!–~50!, and the
second by Eqs.~88! through~92!. Most of this paper is de-
voted to their development, with only a limited amount of
space given to their application. In another publication@3#
we show how the theorem can be used to precisely~i.e.,
quantitatively! explain both the Garrett and McCumber@6#
and Chiao@7# effects ~as demonstrated through experiment
by Chu and Wong@8# and Wanget al. @2#, respectively!. We
also discuss elsewhere@9# how the traditional, local concept
of energy transport velocity and the global concept of the
velocity of the energy’s spatial ‘‘center-of-mass’’ both pre-
scribe upper bounds on the signal velocity.

This paper is organized as follows: in Sec. II we develop
Poynting’s theorem for a passive dielectric. In Sec. II A we
present Maxwell’s equations and the assumptions that apply
most generally to a passive linear dielectric. In Sec. II B we
then show how this structure produces a positive definite
form for the total dynamical system energy density. Section
II C discusses this form and shows how it implies luminal
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front speed without the usual recourse to path integrals, as
well as pointing out the crucial distinctions between the dy-
namic total energy density and the quantity1

2 E•D1 1
2 B•H,

which is sometimes referred to@10#. In Sec. III we present
the simple corollary to the theorem of Sec. II B that aug-
ments the local Sommerfeld-Brillouin theorems by showing
that total energy transport is also globally luminal. Finally, in
Sec. IV, and in contrast to the unsurprising results of Sec. III,
we show that a certain subset of the total energy can have
superluminal global transport properties.

II. POYNTING’S THEOREM AND CONSERVATION
OF TOTAL DYNAMICAL ENERGY

A. Assumptions

We start with Maxwell’s equations for the fourreal mac-
roscopic fields. These fields are the electric fieldE(x,t), the
electric displacementD(x,t), the magnetic inductionB(x,t),
and the magnetic fieldH(x,t). x and t denote, respectively,
the spatial and temporal coordinates. We currently exclude
the possibility of macroscopic currents so that we are dealing
with a true dielectric. The dynamical equations are then~in
the Heaviside-Lorentz system of units!

]

]t
D~ t !2c“3H~ t !50, ~1!

]

]t
B~ t !1c“3E~ t !50. ~2!

Here and in much of the following we explicitly denote only
the time coordinate since we assume onlytemporallynonlo-
cal constitutive relations – i.e., we assume temporal but not
spatial dispersion. We assume these relations are, neverthe-
less, local in the frequency domain~stationary in time! and
also linear:

D~v!5 ê~v!E~v!, ~3!

B~v!5m̂~v!H~v!. ~4!

ê and m̂ are, respectively, the~electric! permittivity and
~magnetic! permeability tensors. Since we currently exclude
nonlinear effects,ê andm̂ are tensors of rank 2, and since we
can think of the fields as three-component column vectors,
we can interpret these tensors as 333 matrices. The right
hand sides of Eqs.~3! and ~4! are then interpreted in the
sense of matrix multiplication.

Note that the permittivity and permeability tensors can
also dependlocally on the space coordinatex,

ê5 ê~x,v!, ~5!

m̂5m̂~x,v!. ~6!

We will suppress this dependence for the time being as it
does not enter the calculations immediately, but we empha-
size that this spatial dependence is important in the end to
achieve finite and, hence, physical total energy.

With both the permittivity and permeability tensors non-
trivial ~i.e., not proportional to the identity! and depending
~locally! on the spatial coordinate~as well as nonlocally on
time!, we are prepared to analyze inhomogeneous and aniso-
tropic media with both electric and magnetic effects. The
development of the total energy density in the following sec-
tion can be greatly simplified leaving out anisotropy, but we
include the more general derivation since interest has re-
emerged recently in considering these effects@11,12#.

As is obvious in these constitutive relations, we have
adopted the common practice of using the same symbols to
denote the fields as well as their temporal Fourier transforms,
distinguishing the two sets only by explicit reference to ei-
ther timet or frequencyv: for F(t) any one of the original
four fields, wedefineF(v) via

F~v!ª
1

A2p
E

2`

1`

dt eivtF~ t !, ~7!

and then note the inversion formula

F~ t !5
1

A2p
E

2`

1`

dv e2 ivtF~v!. ~8!

Since the original fields are real, the transforms manifest the
symmetryF* (v)5F(2v* ). Via Eqs.~3! and ~4!, we then
see that the permittivity and permeability tensors possess the
same symmetry: e.g.,ê* (v)5 ê(2v* ). In the following, we
refer to this symmetry asreal symmetry.

In addition to assuming the validity of the macroscopic
Maxwell’s equations, we limit the constitutive relations~3!
and~4! to physically reasonable ones via the following three
assumptions.

~a! Causality.ê(v)2 Î andm̂(v)2 Î are rapidly vanishing
and analytic~termwise! in the upper-half complexv plane (Î
is the identity tensor!. This implies the Kramers-Kronig re-
lations. Among these we will need that, for realv,

Re@ ê~v!#5 Î 1
1

p
PE

2`

1`

dv8
Im@ ê~v8!#

v82v
, ~9!

Re@m̂~v!#5 Î 1
1

p
PE

2`

1`

dv8
Im@m̂~v8!#

v82v
. ~10!

Here the symbol P refers to the operation of taking the
Cauchy principal value.

~b! Kinetic symmetry. In the absence of a strong, external,
static magnetic field, we have from near-equilibrium thermo-
dynamic considerations@13# that

êT~v!5 ê~v!, ~11!

m̂T~v!5m̂~v!. ~12!

Here and in the following superscriptT indicates the trans-
pose.
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~c! Passivity. We assume that the spectrar ~i.e., the col-
lection of eigenvalues! of the imaginary parts ofê andm̂ are
positive for positive frequenciesv:

r$Im@ ê~v!#%.0, ~13!

r$Im@m̂~v!#%.0. ~14!

Note that this assumption of passivity combined with the
kinetic symmetry assumption~b! shows that the imaginary
parts of the spectra ofê andm̂ are also positive for positive
frequencies~which property we call dissipation!.

(c8) Dissipation.

Im@r$ê~v!%#.0, ~15!

Im@r$m̂~v!%#.0. ~16!

At first (c8) might seem a more natural definition of passiv-
ity. ~E.g., in a crystal the eigenvalues ofê give the permit-
tivity in the direction prescribed by the corresponding eigen-
vectors. The imaginary parts of the eigenvalues then describe
absorption.! However, we will eventually see that~c! is the
more useful assumption from the complex-analytic point of
view. At any rate, in the case that these tensors encode the
electromagnetic properties of a crystal or an isotropic me-
dium, ~c! and (c8) are equivalent since the eigenvectors of
these tensors can be taken to be real~e.g., the directions of
the crystal’s principle axes!. For a discussion of the relation-
ship between what we have called dissipation and what we
have called passivity see the Appendix.

Using real symmetry, we see that the imaginary parts ofê

andm̂ are odd functions of real frequencyv. Consequently,
according to the passivity property~c! @Eqs. ~13! and ~14!#,
we have that for all real frequencies

r$v Im@ ê~v!#%>0, ~17!

r$v Im@m̂~v!#%>0, ~18!

with equality possibly holding only atv50. We use the fact
that these two tensors are non-negative in order to factor
them and thereby make their spectral properties obvious:
there are tensor-valued functionsâE(v) and âH(v) such
that

v Im@ ê~v!#5âE
†~v!âE~v!, ~19!

v Im@m̂~v!#5âH
† ~v!âH~v! ~20!

for all real frequenciesv.

B. Derivation of the total dynamical energy density
in Poynting’s theorem

Here we derive the version of Poynting’s theorem rel-
evant to the general assumptions made in the preceding sec-
tion. To our knowledge, this is the first time that this general
case has been handled correctly. We begin in the usual way

and dot the first of our Maxwell’s equations~1! into the
electric fieldE(t), and add to this the result of dotting the
second Eq.~2! into the magnetic fieldH(t),

E~ t !•
]

]t
D~ t !1H~ t !•

]

]t
B~ t !1c“•@E~ t !3H~ t !#50.

~21!

Here we have used the usual identity from vector
calculus, namely that H(t)•“3E(t)2E(t)•“3H(t)
5“•@E(t)3H(t)#.

The goal of this section is to express the first two terms in
Eq. ~21! as the time derivative of a positive definite quantity
@quadratic in the electric and magnetic fields,E(t) andH(t)#
under the assumptions made in the last section. We will iden-
tify this quantity as the total dynamical energy density, com-
prising recoverable and irrecoverable mechanical energies as
well as the energy stored solely in the electromagnetic field.
To achieve this goal we temporarily introduce the polariza-
tion P(t) and magnetizationM (t). They are defined~in the
Heaviside-Lorentz system of units@10#! via

P~ t !ªD~ t !2E~ t !, ~22!

M ~ t !ªB~ t !2H~ t !. ~23!

Using these to eliminateD(t) and B(t) from Eq. ~21!, we
obtain

]

]t S 1

2
iE~ t !i21

1

2
iH~ t !i2D1E~ t !•

]

]t
P~ t !1H~ t !•

]

]t
M ~ t !

1c“•@E~ t !3H~ t !#50. ~24!

As the first term of this expression is manifestly the time
derivative of a positive definite quadratic form inE(t) and
H(t), we now need only to recognize the second and third
terms in Eq.~24! as such. To that end we introduce and
define the electric and magnetic susceptibility tensors
x̂E(v)ª ê(v)2 Î and x̂H(v)ªm̂(v)2 Î . The transforms of
the polarization and magnetization vectors,P(v) andM (v),
can be expressed locally in terms of the transforms of the
electric and magnetic fields via

P~v!5x̂E~v!E~v!, ~25!

M ~v!5x̂H~v!H~v!. ~26!

Note that from their definitions, and from the relevant prop-
erties of the permittivity and permeability tensors@properties
~a!–~c!#, the susceptibility tensors are analytic and rapidly
vanishing in the upper halfv plane, and also possess prop-
erties ~b! and ~c!. They also demonstrate real symmetry:
x̂F* (v)5x̂F(2v* ). ~To avoid repetition, here and in the fol-
lowing F will stand for eitherE or H. Also, owing to the
symmetry between the two pairs (P,E) and (M ,H), in the
following we abbreviate by only presenting the derivation of
the quadratic form associated with the polarization and elec-
tric field. In the end we present the results for both pairs.!
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We next use Eq.~25! to eliminate explicit reference to the
polarization vector in Eq.~24!. To do this, we inverse Fou-
rier transform~25! to obtain

P~ t !5E
2`

1`

dt ĜE~ t2t!E~t!, ~27!

where the convolution kernelĜE(t) is defined in terms of the
susceptibility via

ĜE~ t !ª
1

2pE2`

1`

dv e2 ivtx̂E~v!. ~28!

We need the time derivative of the polarization. Via Eq.~27!,
we see that this is obtained through the formula

]

]t
P~ t !5E

2`

1`

dt
]

]t
ĜE~ t2t!E~t!. ~29!

~Note: The rapid vanishing of the susceptibilities at large
frequencies renders the kernels differentiable everywhere but
at a single time where they are, fortunately, continuous. Thus
the exchange of orders of the operations of integration and
differentiation is justified.!

We now use the various properties of the susceptibilities
to reduce Eq.~29! to an equivalent expression that can be
used to directly demonstrate the conserved energy. The first
~and usual! simplification is to note that the integral~28! can
be evaluated explicitly fort,0. We use Cauchy’s integral
theorem with contours constructed from great semicircles in
the upper-halfv plane, closed along the real axis. Since the
susceptibilities are analytic and rapidly vanish with increas-
ing radius in the region enclosed by these contours, it is
readily shown that fort,0 the integration over the real in-
terval defining the convolution kernel gives zero:

ĜE~ t !50̂; t,0. ~30!

(0̂ indicates the zero matrix.! The formula expressing the
time derivative of the polarization vector in terms of the
electric field, Eq.~29!, then reduces to integration up to time
t5t:

]

]t
P~ t !5E

2`

t

dt
]

]t
ĜE~ t2t!E~t!. ~31!

The previous formula involves the convolution kernel
ĜE , which is constructed from the susceptibility by Eq.~28!.
In particular, it appears from that construction that both the
real and imaginary parts of the susceptibility are important.
We now show that the convolution kernel can be constructed
entirely from the imaginary part of the susceptibility which,
in turn, will allow us to use passivity~c! to deduce certain
important properties of this kernel. To that end, we note that
in terms of a susceptibility, the Kramers-Kronig relations
@causality~a!# can be expressed as

Re@ x̂F~v!#5
1

p
PE

2`

1`

dv8
Im@ x̂F~v8!#

v82v
. ~32!

We can use these relationships between the real and
imaginary parts of the susceptibilities to show that thein-
phaseandout-of-phase componentsof the electric and mag-
netic convolution kernels are not independent. These two
components of the convolution kernels are defined in terms
of the real and imaginary parts of the susceptibilities via

ĜF
in~ t !ª

1

2pE2`

1`

dv e2 ivt Re@ x̂F~v!#, ~33!

ĜF
out~ t !ª

i

2pE2`

1`

dv e2 ivt Im@ x̂F~v!#. ~34!

Note thatĜF(t)5ĜF
in(t)1ĜF

out(t).
We now show that the in- and out-of-phase components

of the convolution kernels are identical for positive argu-
ment, i.e.,ĜF

in(t)5ĜF
out(t), t.0. To that end we rewrite

Eq. ~33! via Eq. ~32! and obtain

ĜF
in~ t !ª

1

2pE2`

1`

dv e2 ivt
1

p
PE

2`

1`

dv8
Im@ x̂F~v8!#

v82v
.

~35!

Exchanging the orders of the integrations1 ~and simplifying!,
we obtain

ĜF
in~ t !5

1

2p2E2`

1`

dv8S PE
2`

1`

dv
e2 ivt

v82v
D Im@ x̂F~v8!#.

~36!

The inner integral can be evaluated via Cauchy’s theorem by
use of a large semicircular contour that extends into the
lower-half plane~for t.0) and that, for example, contains a
small semicircular dimple excluding the pole atv5v8. Al-
ternatively, one can recognize the integral as a Hilbert trans-
form and consult a table. Either way the result is that

PE
2`

1`

dv
e2 ivt

v82v
5 ipe2 iv8t; t.0. ~37!

Using this result in Eq.~36! gives

ĜF
in~ t !5

i

2pE2`

1`

dv8e2 iv8t Im@ x̂F~v8!#5:ĜF
out~ t !; t.0,

~38!

according to definition~34!.
Our formula allowing us to eliminate the polarization~31!

can now be expressed as

1A rigorous exchange can be made by writing the Cauchy princi-
pal value operation as a limit and by restricting the fields to certain
physically reasonable function spaces. Similar statements apply to
much of what follows.
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]

]t
P~ t !52E

2`

t

dt
]

]t
ĜE

out~ t2t!E~t!. ~39!

The advantage of this expression over Eq.~31! is that the
auxiliary field is now related to the electric field only through
the imaginary part of the susceptibility, about which we have
the restrictions of passivity~c!. ~Recall that we have no di-
rect restriction on the real part of this tensor.!

We are trying to re-express the termE(t)•(]/]t)P(t) in
~24! so as to recognize it as the derivative of a positive defi-
nite quadratic form in the electric fieldE(t). For uniformity
of notation between dot products and matrix/tensor products,
we will denote this scalar product by juxtaposition of ad-
joints,

E~ t !•
]

]t
P~ t !5E†~ t !

]

]t
P~ t !5F ]

]t
P~ t !G†

E~ t !. ~40!

In passing from the second to the third expression we have
used that the fields are real.

Using the third form of the expression in Eq.~40! and Eq.
~39! to eliminate the auxiliary fieldP, as well as definition
~34! to eliminate the out-of-phase component of the convo-
lution kernel, we find that the dot product can be expressed
in terms of only the electric field and the imaginary part of
the susceptibility. The formula is

F ]

]t
P~ t !G†

E~ t !5
1

p F E
2`

t

dtE
2`

1`

dv

3e2 iv(t2t)v Im@ x̂E~v!#E~t!G†

E~ t !.

~41!

We now remember that, from passivity~c! and real symme-
try, v Im@ x̂E(v)# is a non-negative tensor for all real fre-
quencies@Eq. ~19!# and so can be factored,

F ]

]t
P~ t !G†

E~ t !5
1

p F E
2`

t

dtE
2`

1`

dv

3e2 iv(t2t)âE
†~v!âE~v!E~t!G†

E~ t !.

~42!

Interchanging the orders of integration and rearranging terms
in a more symmetric fashion, we get the suggestive form

F ]

]t
P~ t !G†

E~ t !5
1

pE2`

1`

dvF E
2`

t

dt eivtâE~v!E~t!G†

3eivtâE~v!E~ t !, ~43!

which is immediately recognized as a sum of the Hermitian
products of various vectors with their derivatives:

F ]

]t
P~ t !G†

E~ t !5
1

pE2`

1`

dvF âE~v!E
2`

t

dt eivtE~t!G†

3
]

]t F âE~v!E
2`

t

dt eivtE~t!G . ~44!

This expression would be an obvious perfect derivative if the
vectors that are multiplied were not complex conjugates.
However, while the individual terms in the frequency inte-
grand are complex, the integration clearly gives a real result.
Thus the integrand can be re-expressed in terms of only its
real part. We write this as

F ]

]t
P~ t !G†

E~ t !5
1

2pE2`

1`

dvH F âE~v!E
2`

t

dt eivtE~t!G†

3
]

]t F âE~v!E
2`

t

dt eivtE~t!G1c.c.J .

~45!

Here c.c. denotes the complex conjugate.
This object is now clearly a perfect time derivative to

which the product rule has been applied, and so can be re-
written as

F ]

]t
P~ t !G†

E~ t !5
]

]t H 1

2pE2`

1`

dv I âE~v!

3E
2`

t

dt eivtE~t!I 2J . ~46!

~Here the norm symboli* i indicates that one takes the
length of its argument as a complex 3 vector.! This expres-
sion is manifestly the time derivative of a positive definite
quadratic form in the electric field, albeit nonlocal in time.
Repeating the above steps for the pair (M ,H) we get an
analogous formula,

S ]

]t
M ~ t ! D †

H~ t !5
]

]t H 1

2pE2`

1`

dv I âH~v!

3E
2`

t

dt eivtH~t!I 2J . ~47!

We can now express the dispersive, dissipative version of
Poynting’s theorem~in the absence of macroscopic currents!.
Emphasizing the spatial dependencies heretofore suppressed,
this conservation law is

]u~x,t !

]t
1c“•S~x,t !50, ~48!

where the energy fluxS(x,t) is the usual Poynting vector,

S~x,t !5E~x,t !3H~x,t !. ~49!

The total energy densityu(x,t) is now somewhat more com-
plicated than in the usual case,
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u~x,t !ª
1

2
iE~x,t !i21

1

2
iH~x,t !i2

1E
2`

1`

dvF I âE~x,v!
1

A2p
E

2`

t

dt eivtE~x,t!I 2

1I âH~x,v!
1

A2p
E

2`

t

dt eivtH~x,t!I 2G . ~50!

Here we remind the reader that over real frequencies theâ
tensors are related to the susceptibilities and hence permit-
tivity and permeability as follows:

âE
†~x,v!âE~x,v!5v Im@ x̂E~x,v!#5v Im@ ê~x,v!2 Î #

5v Im@ ê~x,v!#, ~51!

âH
† ~x,v!âH~x,v!5v Im@ x̂H~x,v!#5v Im@m̂~x,v!2 Î #

5v Im@m̂~x,v!#. ~52!

These last two formulas should also remind the reader that
what is required in Eq.~50! is the imaginary parts of the
spatially varying permittivity and permeability. Thus if, as in
@14#, composite media are considered, long range ‘‘effec-
tive’’ constitutive relations cannot be used to obtain Eq.~50!,
but rather recourse to the original, spatially resolved relations
must be made. It is only the latter that are guaranteed to
satisfy all the requirements of causality. In particular the ef-
fective constitutive parameters mentioned in Ref.@14# do not
satisfy the high frequency asymptotics of causality~a! ensur-
ing luminal front velocity. This does not mean that the com-
posite media in such constructions are not causal~physically
impossible!, but only that the formulas for the effective con-
stitutive relations are approximate, applying only for the low
frequencies associated with the long range spatial averaging
that give rise to such formulas~see also@15#!.

We note that the expression for thecurrent total dynami-
cal energy densityu(x,t) Eq. ~50! contains the classical ex-
pression for the~heat! energyeventuallydissipated to the
medium. Due to propagation, we expect the fields to eventu-
ally vanish at any given positionx as timet→6`. Thus via
Eq. ~50! we expect the density of energy ‘‘left behind’’~as
t→1`) at any given position to be obtained only via the
third, temporally nonlocal term,

u~x,1`!5E
2`

1`

dv v@E†~x,v!Im@ ê~x,v!#E~x,v!

1H†~x,v!Im@m̂~x,v!#H~x,v!#. ~53!

This formula is the well known classical expression for the
energy eventually dissipated to the medium@14#.

C. Discussion of the total dynamical energy density

Definition ~50! demonstrates that the density represented
by u in the conservation law Eq.~48! is a positive definite
quadratic form in the fields. The positivity property is impor-

tant to establish ifu is to be interpreted as a meaningful
dynamicalenergy density that not only has the units of en-
ergy but can also prescribe the qualitative features of system
dynamics. Such features include the boundedness~as well as
existence and uniqueness! of solutions for all time, the
asymptotic state of the solutions, and, since our dynamical
equations~1! and~2! constitute a system of wave equations,
the ‘‘domain of dependence’’ of solutions, i.e., the classical
Sommerfeld-Brillouin result of vanishing of the fields out-
side the light cone of compactly supported initial data@4#.

In another publication@3# we discuss in greater detail how
the structure of dynamical energy density~50! suggests a
mechanism for the Garrett and McCumber@6# and Chiao
effects@7#. For now we limit our discussion to demonstrating
that a causal medium responds to virtual frequencies and to
giving a very geometric proof of the property of luminal
front velocity. In addition, we discuss the connection be-
tween the dynamical energy density~50! and an approximate
expression often employed.

1. The medium responds to a virtual, instantaneous spectrum

The form of Eq.~50! can be used to explain the phenom-
ena by which the leading portion of an electromagnetic pulse
exchanges energy with the causal medium differently than
the trailing portion@3#. To see that this is possible, rewrite
Eq. ~50! as

u~x,t !ª
1

2
iE~x,t !i21

1

2
iH~x,t !i2

1E
2`

1`

dv v@E†~x,v;t !Im@ ê~x,v!#E~x,v;t !

1H†~x,v;t !Im@m̂~x,v!#H~x,v;t !#, ~54!

where the instantaneous spectrum at time t, F(x,v;t),
(F5E or H) is defined by

F~x,v;t !ª
1

A2p
E

2`

t

dt eivtF~x,t!. ~55!

The instantaneous spectrumF(x,v;t) is just the spectrum of
a modified version of the ‘‘signal’’F(x,t) truncated or
‘‘turned off’’ at time t5t,

F~x,t! ; 2`,t,t

0 ; t,t,1`. ~56!

@Note that in the limitt→`, the instantaneous spectrum is
simply the Fourier transform ofF(x,t) as per Eq.~7!.#

That the energy density in a physical system must depend
on the fields this way is made clear by causality: the energy
at a given timet cannot depend on future values of the fields
producing it. It is also clear that the instantaneous spectra can
be much broader at certain finite times than at its asymptotic
(t→`) value. In particular it can be shown to be broadest at
a given positionx when the signal achieves its peak value
there—i.e., when truncation produces the greatest disconti-
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nuity in the truncated signal~56!. In this sense, we may say
that the medium responds dynamically to ‘‘virtual’’ frequen-
cies, i.e., to frequencies that would be produced if the signal
were suddenly turned off. It is as if the causal medium must
be prepared for this possibility and responds accordingly.

The instantaneous spectra contribute in Eq.~54! to the
total energy density of the medium-field system through
summation over all frequency contributions. Of course, the
imaginary parts of the permittivity and permeability are also
present in the integrand giving the energy density stored in
the medium. The energy reactively stored in the dissipative
medium is greatest, then, when the instantaneous spectrum
produces the most overlap with the medium resonances,
which resonances are given by peaks in the imaginary parts
of ~the eigenvalues of! the permittivityê and permeabilitym̂.
Depending on the detuning of the incident radiation from
these resonances~i.e., depending on the asymptotict→`
value taken on by its instantaneous spectrum! this time of
greatest energy storage can be before or after the peak of the
propagating components of the pulse~which are given solely
by the fieldsE andH) have arrived at a specific positionx.
This ‘‘temporal’’ disparity of energy storage in the medium
~and subsequent retrieval from the medium! caused by the
medium’s response to virtual frequencies then leads to spa-
tial redistribution of thefield energy, giving rise to a~poten-
tially anomalous! global energy transport mechanism.

It can be shown, though, that when this spatial redistribu-
tion of energy makes the pulse appear to move superlumi-
nally the redistribution does not constitute a signal in the
direction of energy transport. Rather the redistribution is due
to a change in the form of the energy—a change from me-
dium to field energy, for example. Thus no matter how fast
the pulse may appear to move in a global sense~e.g., in the
sense of center of mass!, the associated signal velocities are
always luminal@3,9#. In this sense, the anomalous speeds
apparently produced by these spatial redistributions are com-
pletely analogous to the phenomena in which two detectors
can be made to ‘‘click’’ simultaneously regardless of their
separation simply by irradiating them simultaneously with
the same source. The clicking of the two detectors in this
example does not, of course, constitute superluminal com-
munication between those detectors, rather it merely consti-
tutes simultaneous luminal communication between the
source and the detectors.

2. A dynamical energy density implies a maximum front speed

In this section we show by looking at energy flow that the
support of fields satisfying the Maxwell equations~1! and
~2!, with constitutive relations~3! and ~4! prescribed by as-
sumptions~a!–~c!, can expand or contract no faster thanc.
The velocity of the support is called thefront velocity. We
begin by assuming that the total dynamical energy densityu
as given by Eq.~50! is zero in some spherical region of space
at a timet i . We then demonstrate that this initial condition
guarantees thatu is also zero on the space-time ‘‘cone’’ of
slope c with this initial sphere as its base~see Fig. 1!. In
other words, no energy~and hence no signal! can enter the
initial sphere with a speed greater thanc. ~For a relevant
similar derivation see@16#.!

Given some final timetapex, we prescribe an initial time
t i(t i,tapex) at which u vanishes inside anx ball of radius
c(tapex2t i) centered at positionxapex:

u~x,t i !50, xPB„xapex,c~ tapex2t i !…. ~57!

Here the notation is defined by

B~x0 ,r 0!ª$xuix2x0i<r 0%. ~58!

@Note that in Fig. 1 the coordinates of the cone’s apex are
(xapex,tapex).# Given this initial state, we can now show that
the energy densityu, and thus the fields, vanish in the cone
depicted in Fig. 1, i.e., in the forward light cone defined by

V~xapex,tapex!ª$~x,t !uix2xapexi

<c~ tapex2t !,t i<t<tapex%, ~59!

thereby establishing luminal front velocity.
To this end consider the energy in the variousx balls

comprising the cone, one for each timet in the cone. Let
EV(t) denote these energies and note they are defined by

EV~ t !ªE
B„xapex,c(tapex2t)…

u~x,t !d3x; t i<t<tapex.

~60!

Note also that sinceu is positive definite,EV(t) is always
non-negative,

EV~ t !>0. ~61!

Now from Eq.~57! we learn thatEV(t) has the initial data

EV~ t i !50. ~62!

We now show thatEV(t) does not differ from this initial
value for as long as it is defined, i.e., for all timet in
@ t i ,tapex#. DifferentiatingEV(t) @using Eq.~60!# we get

FIG. 1. The space-time ‘‘cone’’ of a spherical region of space
that is initially free of energy. Three-dimensional space is repre-
sented by the horizontal dimensions and time proceeds vertically.
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ĖV~ t !5E
B~xapex,c(tapex2t)…

ut~x,t !d3x

2cE
]B~xapex,c(tapex2t)…

u~x,t !d2x; t i<t<tapex.

~63!

The boundary term~the second integral! appears since the
dimensions of the ball depend on timet. The2c multiplying
the boundary term appears since the ball’s radiusdecreases
in size as time proceeds forward, and does so at the ratec.
The boundary]B@xapex,c(tapex2t)# is the surface of the
ball embedded at timet ~dimension 2!.

Using the conservation law~48! to eliminateut(x,t) in
the first integral, and then using the divergence theorem to
exchange the volume integral for a surface integral, one gets
that ĖV(t) is determined by the values of certain quantities
only on the ball’s boundary,

ĖV~ t !52cE
]B„xapex,c(tapex2t)…

@S~x,t !•n~x!

1u~x,t !#d2x; t i<t<tapex. ~64!

Heren(x) is the unit outward normal to the boundary of the
ball at position xP]B„xapex,c(tapex2t)…. In Sec. III we
show that uu(x,t)u>iS(x,t)i . Since u is positive definite,
this establishes the more useful fact that

u~x,t !5uu~x,t !u>iS~x,t !i>uS~x,t !•n~x!u>2S~x,t !•n~x!,
~65!

i.e.,

S~x,t !•n~x!1u~x,t !>0. ~66!

Thus the integrand in Eq.~64! is non-negative and so the
energy does not increase,

ĖV~ t !<0; t i<t<tapex. ~67!

Equation~67! together with the initial data~62! demands that

EV~ t !<EV~ t i !50; t i<t<tapex, ~68!

which contradicts the non-negativity ofEV(t) Eq. ~61! unless

EV~ t !5EV~ t i !50; t i<t<tapex. ~69!

Since u is positive definite in the fieldsE(x,t) and
H(x,t), EV(t) vanishes for time in the indicated interval
only if those fields vanish in the coneV(xapex,tapex). This
together with the causal relationship of the other two fields to
these fields then demands that all four fields vanish in the
cone, thereby establishing luminal front velocity.

3. The relationship between the dynamical energy and the
traditional approximate kinematic energy

From definition~50! it is clear that the dynamical energy
density differs from the approximate energy density,

uapprox~x,t !ª
1

2
E~x,t !•D~x,t !1

1

2
B~x,t !•H~x,t !.

~70!

Some texts on classical electrodynamics originally identified
Eq. ~70! as thetotal energy density, i.e., as the object con-
served in Poynting’s theorem~48!. Subsequent editions have
clarified that the quantity~70! is valid only for the time av-
erage of a single frequency. However, they have not demon-
strated that the correct object to be considered is adynamical
total energy density~i.e., a positive definite form indicating
the closed nature of the dynamics!.

To make a comparison with Eq.~50!, we eliminateD(x,t)
and B(x,t) from the expression by way of Eq.~22!, ~39!
~without the time derivatives!, and~34! ~and the ‘‘magnetic’’
analogs of these relations!. Writing the result as closely as
possible to the form of Eq.~50!, we get

uapprox~x,t !

5
1

2
iE~x,t !i21

1

2
iH~x,t !i2

1
i

4pE2`

1`

dvFE†~x,t !e2 ivt
âE

†~x,v!âE~x,v!

v

3E
2`

t

dt eivtE~x,t!

1H†~x,t !e2 ivt
âH

† ~x,v!âH~x,v!

v

3E
2`

t

dt eivtH~x,t!G1c.c. ~71!

Clearly densities~50! and ~71! constitute different quadratic
forms in the fields. In particular, whereas the dynamic total
energy density~50! is manifestly positive definite for any
field history, the approximate total energy density~71! can
be shown to alternate sign for certain physically relevant
examples.

To illustrate this effect, we here consider the simple case
of monochromatic electric fields given by

E~x,t !5E0~x!e2 iVt1c.c. ~72!

~In this example we examine only the electric contribution.!
Also, it is useful to recall the distributional identities

e2 i (v2v8)tE
2`

t

dt ei (v2v8)t5 lim
e→01

1

e1 i ~v2v8!

5pd~v2v8!2 iPS 1

v2v8
D .

~73!
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Here P@1/(v2v8)# indicates the Cauchy Principal value
distribution centered atv5v8, andd(v2v8) indicates the
Dirac d function ~distribution! also centered atv5v8. In-
serting the fields~72! into ~71!, using the relevant versions of
the distributional identities~73!, and finally the Kramers-
Kronig relations~32! in reverse, we get~simplifying to the
isotropic case!

uapprox~x,t !5iE0~x!i2Re@ ê~V!#1
E0

T~x!E0~x!

2
e22iVtê~V!

1
E0

†~x!E0* ~x!

2
e12iVtê* ~V!. ~74!

We investigate the two extreme values of Eq.~74! ~at
each pointx) by limiting Eq. ~74! to the set of times at which
the kinematic density is stationary. At those times~denoted
t̄ ) we find that

E0
†~x!E0* ~x!

2
e12iV t̄ ê* ~V!5

E0
T~x!E0~x!

2
e22iV t̄ ê~V!.

~75!

Note that both of these quantities are real at those times. The
extreme values of the density~74! are then

uapprox~x, t̄ !5iE0~x!i2Re@ ê~V!#

1E0
T~x!E0~x!e22iV t̄ ê~V!. ~76!

Using the fact that the second quantity in Eq.~76! is real at
these times, we realize that

e22iV t̄56
E0

†~x!E0* ~x!ê* ~V!

uE0
T~x!E0~x!ê~V!u

, ~77!

in which case~76! becomes~after simplification!

uapprox~x, t̄ !5iE0~x!i2$Re@ ê~V!#6u ê~V!u%. ~78!

In Eq. ~78! it is now clear that the approximate density does
not have definite sign so long as Im@ ê(V)# is not zero.

Note that in the limit of static fields, however, the dy-
namical and approximate results agree: Using real symmetry,
whereby Im@ ê(V)# goes to zero whenV does, we see that
Eq. ~74! becomes~after some simplification!

uapprox~x,t !5
Re@ ê~0!#

2
iE0~x!1E0* ~x!i25

ê~0!

2
iE~x,t !i2,

~79!

as expected. Using identities~73! the dynamical energy den-
sity ~50! becomes, for the fields given in Eq.~72! at V50,

u~x,t !5
1

2
iE0~x!1E0* ~x!i2S 11

1

p
PE

2`

1`

dv
Im@ ê~v!#

v20 D
5

1

2
iE0~x!1E0* ~x!i2Re@ ê~0!#

5
ê~0!

2
iE~x,t !i2, ~80!

the second equality following from Kramers-Kronig for this
isotropic case.

III. GLOBAL ENERGY TRANSPORT VELOCITY

In previous work, we investigated a certain ‘‘temporal
center-of-mass’’ of an electromagnetic pulse@5#. We found,
among other things, that this formalism provided a frame-
work wherein the classical notion of group velocity was
meaningful even for broad-band pulses. The following rep-
resents the spatial analog of that work. As is evidenced by
the weight of recent works on superluminal electromagnetic
phenomena~for a ‘‘small’’ sampling see@17#!, this issue of
the nature of global energy transport that we and others have
addressed is clearly not the local one addressed by the~oth-
erwise very satisfying! classical Sommerfeld-Brillouin re-
sult. Nevertheless, in the following one will see that, in con-
trast to the ‘‘temporally oriented’’ view of the properties of
global total energy transport reported in@5#, the ‘‘spatially
oriented’’ view is very much a global generalization of Som-
merfeld and Brillouin’s local result.

We begin by defining the position of the total dynamical
energy as the normalized, first spatial moment of the total
dynamical energy density,

xu~ t !ª
E d3x x u~x,t !

E d3x u~x,t !

~81!

5E 21E d3x x u~x,t !. ~82!

The integrals are over all space and we have defined the total
energy

EªE d3x u~x,t !. ~83!

Having defined the position of the total energyxu(t), we
then define the velocity of the total energyvu(t) in the natu-
ral way, i.e., by time differentiation of the position

vu~ t !ª
d xu~ t !

dt
. ~84!

Making use of the definition of the position~82! and by use
of Poynting’s conservation law~48! we find that
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vu~ t !5E 21E d3x x
]u~x,t !

]t
~85!

52c E 21E d3x x“•S~x,t !. ~86!

Integration by parts then gives

vu~ t !5c E 21E d3x S~x,t !. ~87!

The fact that the magnitude of the velocity so defined is
always bounded byc is now straightforward. Ostensibly it
amounts to no more than a statement of the fact that the
magnitude of the Poynting vectorS(x,t)5E(x,t)3H(x,t) is
always less than or equal to the energy densityu(x,t),

ivu~ t !i5c E 21I E d3x E~x,t !3H~x,t !I ~88!

<c E 21E d3xiE~x,t !3H~x,t !i ~89!

<c E 21E d3x H 1

2
iE~x,t !i21

1

2
iH~x,t !i2J ~90!

<c E 21E d3x u~x,t ! ~91!

5c E 21 E5c. ~92!

In passing from Eq.~89! to Eq. ~90! we used Lagrange’s
identity, and in passing from Eq.~90! to Eq.~91! we used the
definition of the total dynamical energy densityu(x,t), Eq.
~50!.

Lastly we show that the total dynamical energy’s center-
of-mass velocity just derived is a spatial average of the tra-
ditional energy transport velocity. Denote and define the
‘‘ u-average’’ of a measurableO(x,t) by

^O~x,t !&uª

E d3xO~x,t !u~x,t !

E d3xu~x,t !

. ~93!

Then, with this notation, we see that

vu~ t !5 K S c
S

uD ~x,t !L
u

5^vE~x,t !&u , ~94!

where vE(x,t) is the traditional energy transport velocity.
Note that in Eqs.~88! through~91! we also effectively dem-
onstrated that the traditional energy transport velocity is lu-
minal for passive dielectrics,

ivE~x,t !i<c. ~95!

By more complicated arguments, in Ref.@3# we also show
that the same is true for active dielectrics.

IV. SUPERLUMINAL GLOBAL TRANSPORT OF
SUBSETS OF THE TOTAL ENERGY:

THE LORENTZ MODEL

While the global notion of energy transport defined by
center-of-mass motion of the total dynamical energy in a
passive media is always luminal, global energy transport is
not so constrained when only a subset of the total dynamical
energy is considered. This indicates that in the global sense,
the root of superluminal behavior is associated with incom-
plete energy accounting.~Note that via the Sommerfeld-
Brillouin theorems, it is only in a nonlocal sense that super-
luminal phenomena are not strictly prohibited.!

In order to simplify the discussion, we consider the
Abraham-Lorentz model of a nonmagnetic@H(x,t)
5B(x,t)# homogeneous, isotropic dielectric with a single
resonance frequency, and consider only one-dimensional so-
lutions of the original three-dimensional system. In one
space dimension, we can write the equations as a system of
first order partial differential equations,

]

]t S E

B

P

Q

D ~x,t !5
]

]x S 0 2c 0 0

2c 0 0 0

0 0 0 0

0 0 0 0

D S E

B

P

Q

D ~x,t !

1S 0 0 0 2vp

0 0 0 0

0 0 0 v0

vp 0 2v0 2g

D S E

B

P

Q

D ~x,t !.

~96!

We note in passing that since the eigenvalues of the first
matrix on the right of equation~96! ~less the spatial deriva-
tive! are real, the system is hyperbolic. Furthermore, the
theory of hyperbolic partial differential equations dictates
that these eigenvalues give the limiting speeds at which sin-
gularities propagate so that for this model we already have
the ~luminal! Sommerfeld-Brillouin result for the front ve-
locity @18#.

The scalar permittivitye(v) for this model can be calcu-
lated to be the usual prototypical example@10# possessing all
of the relevant requirements of causality and passivity,

e~v!511
vp

2

2v22 igv1v0
2

. ~97!

Using the fact that the operator on the right of Eq.~96! is
already in a form in which it can be written as a sum of an
operator that is skew symmetric and one that is negative
definitewith respect to the usual inner product, we see that
Eq. ~96! dictates a law ofdissipation@similar to the law of
conservation~48!# simply by expressing the time evolution
of the particular positive definite quadratic form associated
with the ~relevant! identity matrix,
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~EB PQ!S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
D S E

B

P

Q

D ~x,t !

5~E21B21P21Q2!~x,t !. ~98!

We will denote this form~divided by 2! by uR(x,t) and,
in order to distinguish it from the total energy density that
obeys a conservative law, will call it thefree-energydensity
~or distribution!. Though we do not engage in a statistical
mechanics treatment, we justify the use of this term as fol-
lows. We can interpret Eq.~96! as a phenomenological de-
scription of a system in whichuR(x,t) has the interpretation
of being the sum of the densities associated with energy
stored in the macroscopic fields and that stored in the coher-
ent motions of the molecular dipoles of the dispersive me-
dium ~mechanical energy density!. In this phenomenological
treatment, clearlyuR(x,t) cannot be interpreted as containing
energy deposited irreversibly in the medium via incoherent
motions and their associated degrees of freedom.

The law of dissipation associated with this particular qua-
dratic form, or energy projection, is

]

]t S 1

2
E21

1

2
B21

1

2
P21

1

2
Q2D1

]

]x
~cEB!522gS 1

2
Q2D .

~99!

Here we have suppressed the coordinatesx and t.
Note that if wedefinethe free-energy density’s velocity to

be the ratio of the~suitably averaged! flux cEB to the~simi-

larly averaged! density uR5( 1
2 E21 1

2 B21 1
2 P21 1

2 Q2), we
are guaranteed to get a luminal result since

ucEBu
uR

<c. ~100!

Unfortunately this definition of the velocity generically has
almost nothing to do with the gross motion of the free-
energy distributionuR because the evolution of the free en-
ergy is dissipative. If one simply views the results of a nu-
merical simulation of Eq.~96! by watching a movie of
uR(x,t) passing by, the perceived speed of the pulse can be
arbitrarily large, depending on the system preparation. In the
following, we make this observation concrete by showing
analytically that a pulse’s free energy ‘‘center-of-mass’’
xuR

(t), defined as

xuR
~ t !ª

E dx x uR~x,t !

E dx uR~x,t !

, ~101!

~with the integration over allx) can move with any speed.
The velocity corresponding to this definition of position is

obtained by time differentiating the center of mass. We use
the law of transport~99! to eliminate the time derivative of

the densityuR , and then use integration by parts to eliminate
spatial derivatives on the fluxEB. After some simplification
we obtain

vuR
~ t !5c

E dx E~x,t !B~x,t !

E dx uR~x,t !

1gH S E dx Q2~x,t !

E dx uR~x,t !
D

3F E dx x ūR~x,t !

E dx uR~x,t !
G2S E dx ūR~x,t !

E dx uR~x,t !
D

3F E dx x Q2~x,t !

E dx uR~x,t !
G J , ~102!

where

ūRªuR2
1

2
Q25

1

2
E21

1

2
B21

1

2
P2. ~103!

In Eq. ~102! the velocity is expressed as having two com-
ponents, the first not dependent on system parameters explic-
itly and the second explicitly dependent upon the damping
rateg. For each timet the two terms are functionals of func-
tions of positionx. The first functional can be shown to pos-
sess extrema6c. This is done by showing that the absolute
value of the integrand of its numerator never exceeds~but
can be equal to! the integrand of its denominator~which is
non-negative! multiplied by c. Below we will show that the
second term, which is multiplied by the damping rateg, is an
unbounded functional in a relevant function space. Thus, in
this function space, the center-of-mass velocity functional is
unbounded when damping is present but is bounded lumi-
nally when damping is absent. Note that we do not presently
address the issue of thedurationof superluminal behavior in
the free-energy’s center-of-mass motion, but only the issue
of superluminal system preparations, i.e., of whether the sys-
tem can, in principle, be initially prepared so as to demon-
strate superluminal behavior in the motion of the free-energy
center of mass.

To that end we consider the velocity att50, and consider
a two-parameter family of system preparations, all members
of which correspond to the same initial free energy. We then
show that, when damping is present, the initial center-of-
mass velocity increases without bound as the difference in
the two parameters increase. In order to motivate how this is
accomplished we pause to comment on which details of the
structure of the second functional in Eq.~102! suggest that
this can be done. We have tried to make this structure evi-
dent by parallel uses of parenthesis and square brackets. The
two terms in large square brackets have units of position.
The left term in square brackets measures the center of mass
~as normalized by the free energy! of the energy stored in the
fields and in the displacements of the dipoles from equilib-
rium ~dipole potential energy!. The right term in square
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brackets measures the center of mass~as normalized by the
free energy! of the kinetic energy associated with the motion
of the dipoles. Note that the two energy projections just dis-
cussed sum to the free energy. Consequently we will speak
of them as being compliments with respect to the free en-
ergy. In contrast to the terms measuring positions, the two
terms in large parenthesis are homogeneous and so are unit-
less. They measure the relative amounts of energy associated
with the two centers of mass just described. As such they
may be described as weights for the associated ‘‘masses.’’
Note that the weights are paired~via multiplication! with
their complement centers. Thus, since the notion of comple-
ment is with respect to the free energy, and since the free
energy is the distribution used to normalize the two centers
of mass, the two products of these four objects give the cen-
ters of reducedmass of the two complimentary energy pro-
jections. Thus we see that the second functional in Eq.~102!
gives a measure of thedifference in the centers of reduced
mass of the kinetic energy and its free-energy complement.
Thus the ‘‘additional’’ velocity of the free-energy distribu-
tion ~i.e., the component of its velocity that is attributable to
damping! is just the damping rate multiplied by a difference
in ~representative! positions of two complementary distribu-
tions.

To make these connections more obvious we introduce
some notation. Relabel the kinetic energy densityQ2(x,t)/2
as m1

t (x) and relabel its complementūR(x,t)5uR(x,t)
2Q2(x,t)/2 asm2

t (x). Also relabel the corresponding ener-
gies~the integrals of the densities! by the same symbols but
with capital letters and, of course, without reference to the
positionx,

M1
t
ªE dx m1

t ~x!, and ~104!

M2
t
ªE dx m2

t ~x!. ~105!

Then the center-of-mass velocity of the free energy can be
expressed as

vuR
~ t !5c

E dx E~x,t !B~x,t !

E dx uR~x,t !

12gH E dx x
M1

t m2
t ~x!

M1
t 1M2

t

M1
t 1M2

t

2

E dx x
m1

t ~x!M2
t

M1
t 1M2

t

M1
t 1M2

t
J . ~106!

Here we see that the integrands used to define the centers of
mass appear analogous to the classical expression for re-
duced mass in the two-body problem.

We now consider the velocity att50 and a corresponding
class of system preparations or initial conditions that show
that the velocity at this instant can be arbitrarily large if and
only if g does not vanish. To find the simplest expression for

this initial velocity we choose initial data for which the total
initial kinetic energy is equal to its complement. On the other
hand, if we choose the associated distributions to be identical
then the differences in the associated centers of~reduced!
mass will be zero. The simplest way to get a nontrivial and
interesting result is to choose the two distributions to be
translates of each other: For some even and square integrable
function f (x) different from 0 and for some positionsx1 and
x2 definem1

0(x) andm2
0(x) by

m1
0~x!ª f 2~x2x1!, and ~107!

m2
0~x!ª f 2~x2x2!. ~108!

Then we getM1
05M2

05*dx f2(x)5M.0, and then

E dx x mi~x!5xiM , i 51,2. ~109!

Then Eq.~106! reduces att50 to

vuR
~0!5c

E dx E~x,0!B~x,0!

E dx uR~x,0!

1
g

2
~x22x1!. ~110!

In order to make this expression more explicit we can, for
example, further decompose the initial energy densities as
follows. ChooseE(x,0)5B(x,0)5 f (x2x2) and P(x,0)50
@andQ(x,0)5A2 f (x2x1)#. With this two-parameter family
of choices for the initial data, the initial velocity of the free
energy center of mass~110! reduces to

vuR
~0!5

c

2
1

g

2
Dx. ~111!

~Here we have expressed the difference in the centers of
reduced mass of the kinetic energy and its complement,x2
2x1, asDx.! It now becomes clear that ifg is not zero, the
speed of the free-energy center of mass can be increased
arbitrarily, as long as the ‘‘position’’ of the kinetic energy
distribution can be made to lead~or lag! that of its free en-
ergy complement by arbitrarily large distances. Furthermore
this notion of position becomes more natural and precise as
the variance off (x) reduces. In fact there is nothing to keep
us from considering the limit in whichf (x)→Ad(x): in this
limit we still get the~not luminal! result~111! for the initial
center-of-mass velocity of the free energy.

V. SUMMARY

In this paper the luminality of both local and global no-
tions of total energy transport in very general~anisotropic,
inhomogeneous, passive! media was established. In lieu of
specific microscopic models, these results were established
using only the macroscopic limitations of causality and pas-
sivity. Specifically these estimates were obtained by~1! de-
veloping total dynamical energy densities for these media
~i.e. conserved, positive definite, quadratic forms! and then
by ~2! considering the time evolution of their associated fi-
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nite and infinite volume energies, respectively. We also
showed how a total dynamical energy density demonstrates
that a causal media responds to a virtual, instantaneous field
spectrum weighted by system resonances, that this density
gives the heat energy eventually dissipated to the medium,
but that this density is not the same as the one derived from
kinematic arguments.

The connection between the local concept of energy trans-
port velocity and the global concept of total energy center-
of-mass velocity was also established, and the importance of
avoiding subsets of a total energy~i.e., forms that are not
conserved! in establishing the global notion of luminality
was emphasized. For the Lorentz model~a specific example
of the general media considered at the onset!, a certain subset
of the total energy was shown to have the potential for dem-
onstrating what appears~in the center of mass picture! to be
an arbitrarily fast global energy transport mechanism. It was
emphasized, however, that this appearance of high velocity
does not constitute energy transport from one detector to
another, but simply indicates that other energy already down-
stream has been converted to the type being observed. This
illustrates the general principle that classical ‘‘superluminal’’
effects are intimately linked with an incomplete energy ac-
counting.

APPENDIX: KINETIC SYMMETRY AND PASSIVITY
IMPLY DISSIPATION

We prove~c! and (b)⇒c8 for ê. That the converse (c8)
and (b)⇒c) is false ~without invoking more structure! is
verified by specific counter examples. However, as is dis-
cussed in the main text, if we invoke the structure that the
eigenvectors of the tensors can be taken as real, it is then true
that (c8) and (b)⇒(c). Physically this extra structure means
that the eigenvectors of the tensors can correspond to
bonafide directions in real 3 space, the principal axes, say, of
a crystal. Otherwise these eigenvectors correspond to ‘‘direc-
tions’’ only in complex 3 space, but whose real and imagi-
nary parts in real 3 space can be made to correspond to
directions together with rotation angles.

In order to avoid needless repetition, we state here once
that in the following paragraph all statements about the per-
mittivity tensor ê are valid when it is evaluated at real posi-
tive frequenciesv, i.e., when the restrictions of assumption
~c! are enforced.

Let vl be an eigenvector ofê for eigenvaluelPr. The
eigenvalue can be expressed in terms of the eigenvector and
the real and imaginary parts ofê via the formula

l5
vl

† Re@ ê #vl

vl
†vl

1 i
vl

† Im@ ê #vl

vl
†vl

.

The kinetic symmetry~b! of ê implies this symmetry of its
real and imaginary parts, which, since they are each real,
shows that they are each trivially Hermitian. Taking the Her-
mitian conjugate, then, of our formula, and using the Hermit-
ian properties~just established! of the real and imaginary
parts of ê shows that the imaginary part ofl can be ex-
pressed as

Im@l#5
l2l†

2i
5

vl
†Im@ ê #vl

vl
†vl

.

At this point it is already obvious that Im@l#.0 since Im@ ê #
is positive definite , but we make the proof even more ex-
plicit since we will use a certain notation that these details
provide in the main text~Sec. II B! where we derive the total
energy of the system: since we assume~c!, i.e. since we
assume that Im@ ê # is a positive definite tensor, and since, as
we have just shown, Im@ ê # is trivially Hermitian, this tensor
can be factored and expressed as

Im@ ê #5b̂†b̂

so that the imaginary part ofl is then expressed as

Im@l#5
vl

†b̂†b̂vl

vl
†vl

5
ib̂vli2

ivli2
>0,

regardless of the relationship of the eigenvectorvl of ê to the
tensor Im@ ê #. However, since equality is achieved only ifvl

happens to be a nullvector ofb̂ and, hence, of Im@ ê #, and
since we assume that Im@ ê # has no null vectors, the result is

Im@l#5
ibvli2

ivli2
.0,

which is (c8).
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