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ABSTRACT

A FLEXIBLE INFRASTRUCTURE FOR MULTI-AGENT SYSTEMS

Gerrit A.N. Sorensen

Department of Electrical and Computer Engineering

Master of Science

Multi-Agent coordination and control has been studied for a long time, but has

recently gained more interest because of technology improvements allowing smaller,

more versatile robots and other types of agents. To facilitate multi-agent experiments

between heterogeneous agents, including robots and UAVs, we have created a test-bed

with both simulation and hardware capabilities. This thesis discusses the creation

of this unique, versatile test-bed for multi-agent experiments, also a unique graph

creation algorithm, and some experimental results obtained using the test-bed.
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Chapter 1

Introduction

1.1 Problem Statement

Research interest in multi-agent systems continues to grow as they are con-

sidered for an increasing number of important applications. One area of emphasis in

our research in the BYU MAGICC Lab is the design of heterogeneous multi-agent

systems for applications in an urban or indoor environment.[1, 2]

A recent electrical engineering graduate class focused on designing and pro-

gramming a team of five robots to compete in the international Robocup Robot Soccer

competition. The class generated ten omnidirectional robots and spurred a desire for

further study in the area of multi-agent coordination. The Robot Soccer competition

did not provide the full complexity we desired, and so we decided to search for an

alternate multi-agent problem that better matched our interests.

After looking at a few options in use at other schools, we decided to define a

new multi-agent test-bed problem — a multi-robot version of the game of capture-the-

flag. Teams with ground-based robots, a UAV, and a human operator must coordinate

their actions as they navigate the maze, attempt to capture the opponent’s flag, and

defend against robots that have invaded their home territory. For a single human to

direct the actions of multiple robots, high-level directives must be supported. In the

context of our game, many useful directives would require that each robot have the

ability to navigate autonomously through the maze to a desired goal. Thus, path

planning is an essential building block in supporting the system functionality that we

sought.
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To play the game required the design and creation of a fairly large infrastruc-

ture including real-time simulation capabilities and hardware and communications

systems. This infrastructure, which we call the MAGICC test-bed, required a signif-

icant investment in time and effort to create, and went through several incarnations

before it reached its current and final state. While originally designed to be used solely

in the capture-the-flag setting, the test-bed has evolved into a flexible multi-agent ex-

periment platform that supports experiments in a variety of research areas, including

human factors, neglect tolerance, and agent autonomy. A particular strength of our

test-bed is that to the agents, there is no difference between simulation and hardware

— the test-bed looks the same in either case. This allows the user to test agent

code in simulation and then verify it in hardware without making any changes to

the software. This flexibility makes the test-bed well suited to facilitate the short

turn-around needed in today’s fast paced research environment.

1.2 Motivation

The structure of the test-bed changed over time as we ran into problems or

discovered better solutions. The discussion on the test-bed divides the design into

three separate phases, each of which contains major modifications to some part of

the test-bed. While we did not actually explicitly divide our work into “phases” as

such, I believe doing so in this thesis provides a useful function. As a thesis on the

architectural design of a substantial software system, it provides a look at the design

tradeoffs made, based on our assumptions and capabilities during each phase. This

hopefully will prove a valuable contribution to anyone designing a similar system,

and assist them in making initial design decisions. As the initial design decisions

have significant impact on the overall design cost and end functionality, I believe the

discussion of the test-bed’s evolution provides some valuable design insights, which

would be lost if I were to discuss only the final system.

2



1.3 Outline

This thesis discusses the design and implementation of the MAGICC test-

bed through its various iterations, focusing particularly on the various design choices

made, and the design lessons learned in each stage. The final design is presented, along

with some measurements of its capabilities, and a discussion of its unique aspects and

strengths.

The second part of this thesis will focus on the safe-path graph generation

algorithm designed specifically to work in a congested urban environment. The at-

tributes of a good path planner are laid out, and some alternate graph generation

techniques are discussed. The algorithm itself is discussed in detail, along with a

path smoothing algorithm that increases the effectiveness of the graph after creation.

The comparative advantages of safe-path over the two alternate techniques previously

used in the MAGICC Lab are discussed as well.

Finally, as the value of an experimental test-bed is best established by demon-

stration, chapter 4 presents some studies done using the test-bed.
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Chapter 2

Development of the MAGICC Test-bed

2.1 Introduction

Although the MAGICC Lab has existed for some time, its efforts to create an

integrated suite of tools for the development of multi-agent systems have had limited

success. Jed Kelsey’s thesis [3] focused on the creation of a software toolbox de-

signed to facilitate the coordination and control of multiple robotic agents, and other

students have developed additional infrastructure as well. Despite this, students run-

ning experiments generally developed their own infrastructure on an ad hoc basis, and

although some of the more useful pieces remained, most such infrastructure disap-

peared after the developing student’s graduation. As the development of supporting

infrastructure for an experiment often requires more time than running the actual

experiment, this sort of development paradigm can involve a large amount of wasted

time and effort repeating work that others have already done. While the concept of

the MAGICC lab test-bed was originally designed for use in a Senior Project design

class focused on the capture-the-flag game, we realized that having a solid, stable and

flexible set of development tools would help the increase the lab’s research efficiency

by reducing the overhead required to create new experiments.

While the test-bed still focuses on the MAGICC lab capture-the-flag game, it

has evolved from being useable only in the capture-the-flag multi-agent game setting

into a more flexible, multiple experiment platform. This chapter explores the history,

requirements, development process, and tradeoffs of the MAGICC test-bed. It fo-

cuses on the various design phases the test-bed went through, and on the reasons for

the various design decisions made. Each design phase section contains a subsection

describing the changes or design decisions made during the design of a particular
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module. At the end of each design phase section, I discuss the problems encountered,

and the advantages and disadvantages of the design during that phase.

2.1.1 Background

The original design of the test-bed was created as part of a Senior Project

Capture-the-Flag class for Winter semester 2003. Matt Blake and I came up with a

structure, and then I partitioned a team of 12 students to take on various aspects of the

test-bed and assist in the design and coding. Matt took the on the task of debugging

and perfecting the communication software (called MCF), which he had designed the

previous summer but hadn’t fully tested, and I worked on the infrastructure. Once

we finished the infrastructure the students were to divide into teams of four and use

the test-bed in a capture-the-flag competition using agents the students programmed

themselves. When we started work on the test-bed, we had only the control for

the omni-directional robots, some buggy code for a Voronoi path-planner, and MCF.

Despite this lack of initial infrastructure, the students set enthusiastically to work on

their parts.

The problem of getting a working test-bed turned out to be bigger than we first

thought, and the test-bed was not fully functional before the end of the class. We did

have a strong base to work with however, and over the summer of 2003 we worked

out most of the bugs in the original code, while refining and changing the overall

structure of the test-bed. By fall of 2003, the test-bed was stable, solid, and fast

enough to run experiments. However, path-planning remained a major problem. One

of the student teams had developed a working A∗ algorithm, and over the summer

we also implemented a Voronoi algorithm designed for use by UAVs, but both had

drawbacks when used in the congested maze setting used in the lab. Because of this,

I developed the safe-path graph generation algorithm during September-October of

2003. This algorithm facilitated several experiments over the next several months,

and became the standard path planning algorithm used with the test-bed because

of its stability, speed and path quality. I have since revised the original version to

operate on convex polygonal obstacles.
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2.2 Capture The Flag

The descriptions of the test-bed and its design in the following sections assume

some familiarity with the rules and underlying structure of the capture-the-flag game

played in the MAGICC lab. This section explains our reasons for choosing capture-

the-flag over other games, and should assist in understanding the decisions made in

the design of the test-bed.

As mentioned previously, the test-bed was partially inspired by an electrical

engineering graduate class dealing with the creation of a team for the international

Robocup competition. After the class we had a simulator and 10 robots, but little

of the other infrastructure necessary for the competition. In addition, Robocup has

been running for several years now, and many teams are highly advanced, and we felt

it would take too long for us to compete on a world-class level. For these reasons we

looked at other options that suited our research interests, while allowing us to work

on new research.

2.2.1 Overview of the Game

We play a modified version of capture-the-flag, using multiple small, omnidi-

rectional robots, on a field approximately five meters square. The field contains a

maze made of rectangular wooden blocks. The game involves two teams, each at-

tempting to capture the other team’s flag and return it to a specified location, while

simultaneously preventing the opposing team from doing the same. Robots in the

opposing team’s area can be tagged by the enemy’s robots and forced to return to

their own side before continuing the game.

Our teams consist of 3 or more robots with simulated sonar (which acts sim-

ilarly to laser range finding), a simulated UAV flying over the field, and a human

operator controlling the robotic agents. The UAV flies over the field locating enemy

flags and robots and relaying that information to its teammates. The ground robots

must navigate the obstacles on the field while avoiding enemy robots, and attempt

to pick up the enemy flag and return it their own side. The human coordinates the
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actions of the UAV and robots and balances the needs of defense and offense as the

game progresses.

A team returning the enemy flag to its own side scores one point. The game

continues until one team reaches a pre-decided score, at which point it wins the

game. The game moves fairly rapidly, generally taking about 10 minutes for one

team to reach 3 points. Capture-the-flag requires good resource management on

the user’s part, and the team with the better coordination strategy usually wins.

Capture-the-flag provides excellent opportunities to study various aspects of multi-

agent interaction, including neglect tolerance, human factors, and coordination and

control of heterogenous agents.

2.2.2 Definitions

Throughout this thesis I use certain terms, which I define here to prevent

confusion. The term ‘agent’ denotes the software running on a PC containing all the

high-level robot control code. The agent code makes all decisions, computes paths,

processes messages, tracks positions, etc. Two types of agent code exist: UAV and

robot; both function slightly differently. In cases where they differ I will explicitly

note which type I am discussing, otherwise both types behave the same. The term

‘robot’ refers to the actual physical robot itself, which contains only enough software

to process messages and control motor voltages. In a sense, these terms ‘robot’ and

‘agent’ are inseparable, and with more advanced hardware the robot might run the

agent code itself, in which case the two terms would refer to the same object. In our

case, because the physical robot does not contain its own control code I will refer to

them as separate objects.

The term ‘basestation’ refers to a GUI through which a user can monitor the

action on the field and direct the robots. Each team will have at most one basestation,

but no basestation need exist for agents to run.

Figure 2.1 shows the layout of the field, and the names of the respective areas.

In terms of location on the field, each team’s basestation is considered located in the

center of its respective baseline . The team defense area includes its respective untag
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zone. To get untagged, a robot must move into the untag zone before issuing an untag

request to the Referee. Robots in the no-man’s-land section of the field cannot tag

each other. Team 0 always starts at the top of the field, and team 1 always starts at

the bottom. For our lab setup the field width and length are equal, but for simulation

the field dimensions can be changed by editing the value in the map configuration

file. The x and y coordinates are in millimeters; we use 4500mm x 4500mm as the

standard dimensions for the field. The origin is always located in the upper left-hand

corner of the field.

Figure 2.1: The Capture-the-Flag field.

2.2.3 RoboFlag SURF

Before beginning our work on the test-bed we examined implementations of

capture-the-flag style games done by other universities. Of all the setups we looked at,
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one created jointly by Cornell University and the California Institute of Technology

called RoboFlag SURF[4, 5] interested us most. RoboFlag consists of two teams

playing a version of capture the flag. Each team has an area to defend, and an area

to attack. The field consists of a large open square, with a safe area for each team

in opposing corners, and the area that each team must defend in the middle of their

zone. In addition to the robots, some number of neutral obstacles move randomly

about the field. Each team must contend with limited communications bandwidth

and limited fuel resources. The teams play two halves, with a break in between. The

team with the most points at the end of the second half wins the game.

Robots must move about the field avoiding obstacles, inactive robots, and

enemy robots. Robots tag opposing team members by hitting them with golf balls

that are placed randomly on the field at the start of the game. Tagged robots must go

dormant until the end of the game, becoming obstacles the other robots must avoid.

Any robot contacting one of these dormant robots, or one of the neutral obstacles also

becomes ‘inactive’. In addition, robots which run out of fuel also become dormant.

Robots inactivated during the first half are reactivated for the second half.

Teams score when a robot enters the opposing team’s flag area and returns

to its own flag area without being tagged. Flags are completely symbolic and are

‘picked up’ simply by entering the opposing team’s flag area. Teams can also score

points by returning their own flag by tagging an enemy ‘carrying’ it, tagging enemy

robots in their defense zone, and for any inactive enemy robots, including those

inactivated by fuel loss and collision with neutral obstacles. This setup provides

numerous opportunities for team coordination studies, as well as interface and human

factors studies.

Though RoboFlag SURF provides numerous research opportunities, after some

study we decided there were some areas in which RoboFlag placed less emphasis,

particularly path-planning in an urban-style environment, that particularly interested

us. Since the RoboFlag field contained no stationary obstacles to begin the game, it

lacked the sort of congested urban environment that we wanted to study. In addition

we considered the lack of actual physical flags in RoboFlag to remove additional
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intriguing research possibilities. Finally, we wanted to study the coordination of

ground and air vehicles by adding UAVs to the game to ‘fly’ over the field and

communicate the locations of enemy robots and flags to its team members. We liked

the added complexity of forcing the nearly blind ground robots to coordinate their

actions with the overhead UAV. Due to these considerations, we decided to create a

capture-the-flag style game following a set of rules developed for a congested urban

environment, that more particularly suited our areas of interest.

2.2.4 MAGICC Flag

Before beginning any infrastructure design we outlined the game rules and

parameters. First, we specified that the game would take place in a maze-like field

created using wooden blocks. Such a reconfigurable maze, allows numerous opportu-

nities to study path-planning in actual hardware situations. Having a maze also adds

an interesting twist to any team-coordination studies. We also wanted to have physi-

cal flags. To prevent game-stopping behaviors like flag-guarding, we decided to place

several ‘fake’ flags, that robots could only distinguish as such when they attempted to

pick them up. This forces the defending robots to guard several flags, since even the

defenders do not know which flag is the real one. Originally the flags were cardboard,

with a metal ‘real’ flag. We equipped the robots with magnetic servo arms for picking

up the real one. The magnets on the servo arm had to be extra strong to pick up the

metal flag, and this wreaked havoc with the sensitive onboard computing equipment

of the robots. After several failed attempts at shielding the robots from the magnets,

we finally scrapped the idea of real flags in favor of virtual flags. We required the

robots to mimic the physical behavior required to pick up the flag, without having to

have real flags, allowing us to remove the magnets.

This provided several advantages, without significantly affecting the way the

game played. First, the physical flags presented a serious challenge to the vision

system. The resolution and color differentiation capabilities of the single camera

system made it very difficult to track the flags, and impossible to track one that had

been picked up. In addition, since the real flag was physically different from the fake

11



flags, if a robot was tagged while holding it, the robots immediately knew the location

of the real flag, negating the need to guard multiple flags. Virtual flags removed the

involvement of the vision system completely, simplifying the use of flags considerably.

Having virtual flags allowed us to change the locations of the flags and add or remove

flags as desired. It also allowed us to enter the starting locations of the flags into

the map configuration file, simplifying start up procedures. Finally, it allowed us to

randomly change which flag is the ‘real’ flag if a robot happens to get tagged while

carrying it, forcing the defense to continue defending all flags.

We also changed the method in which robots tagged each other from that

of RoboFlag SURF. In a maze-like environment, it did not make sense to have the

robots shooting golf balls at each other, as the obstacles would block most such shots.

Instead we required a robot to close within a certain distance of an enemy robot, and

then issue a ‘tag’ request to the Referee. This forces the robots to use their simulated

sonar to locate enemies and avoid (or follow) them, or to coordinate somehow with

the UAV. The Referee checks the distance between the robots, and if sufficiently close

issues a ‘tagged’ command to the tagged robot. The tagged robot loses the ability to

communicate with team members, pick up flags, or tag enemy robots until it returns

to its own ’untag zone’ and request the Referee to release it. Once untagged, a robot

can act normally.

To increase the complexity and depth of possible studies, we added the possi-

bility of constrained communications. Each robot has a variable radius of communi-

cation, defined by the user, and enforced by the test-bed. In order to communicate

with a teammate, an agent must remain within that radius. Different agent types

have different communication radii, for example the base station has a larger radius

than the robots, and the UAV can always communicate with the base station, but

can only communicate with those robots it can see. The constrained communication

environment forces agents to form ad hoc communication networks, and have some

way of acting on their own when they lose communication. The test-bed allows the

players to turn the constrained communication option on or off as desired for their

game.
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As mentioned previously, a typical game involves three robots, a base station

and a UAV. The robots have only sonar to guide them, and must rely on the UAV to

find the flags and relay their location to the attacking robots. The base station acts

as a GUI through which the user follows the game, and commands the other team

members. The user generally selects one or two robots to go into the enemy defense

zone and attempt to pick up the enemy flag, and assigns the remainder to defense.

Depending on the sophistication of the base station and the agents, the human player

will need more or less involvement in selecting robot destinations, picking up flags,

avoiding enemies, tagging enemies, and untagging tagged robots.

Play continues until one side finds the real enemy flag, picks it up and returns

it to its own defense zone. The returning side receives one point for returning the

flag. In simulation mode the test-bed places the robots and flags back at their starting

locations and the game resumes. If playing with actual hardware robots, the robots

must be physically moved back into place before the game continues. The players

must agree to a score at which to stop play; the Referee will allow the game to

continue indefinitely, regardless of score.

2.3 MCF

MCF[6, 7] is a communications software package designed by Matthew Blake of

the MAGICC Lab. It is the underlying communications software used in all modules

of the test-bed. MCF allows the test-bed to handle an arbitrary number of robots,

UAVs, and base-stations, running on arbitrarily chosen machines, without reduction

in system performance, and without a priori knowledge by the programmer of which

machines will be running which processes. The MCF architecture consists of a server

resident on each machine, acting as the contact point for all local processes. The user

incorporates an MCF client in the software that connects to the server. The servers

connect to each other and pass on information about which clients have connected.

In this manner each server has a list containing the location of each client in the

network. All inter-client network traffic goes through the servers. A client wanting

to communicate with another asks the server for the ID of the client it wishes to
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communicate with, and then passes all data to the server, along with the receiver’s

ID. The server sends that data to the server on the host machine of the second client,

which passes the data up to the client. This system allows the client to make a single

connection to a single server, and still communicate with an arbitrary number of other

clients. It forms the backbone of the MAGICC test-bed communication system.

2.4 System Configuration

The original robot soccer simulator included a configuration file format used

to configure each team of robots, and the test-bed uses the same format for its robots.

The configuration file includes the physical aspects of the robot and can be modified

by the user to allow virtually any type of polygonal robot. We extended this concept

to include a configuration file for the map, since we wanted the ability to use any

number of different maze setups. The map configuration file contains the data for all

obstacles on the field; it lists the vertices of each obstacle in Cartesian coordinates.

Later we added the location of all the flags, and the size of the field. I rewrote the

parser from the original simulator to work with the map configuration file. We place

the configuration file in a known location and then any module using the obstacles

reads this file using the modified parser object. This format allows us to keep multiple

map files, and switch them easily when needed.

In addition to the map configuration file, key game parameters are placed

in a header file included in all system components. These parameters include the

standard field dimensions, robot tag distance, and robot communication parameters,

along with some common classes and programming structures. Changing this file

requires recompilation of the code to take effect so it is reserved for parameters that

change infrequently.

2.5 Design Phase One

As stated previously, the original design of the test-bed was inspired by the

Robocup competition infrastructure, where each team has a single command entity

which controls the robots, and makes the decisions for the team. This entity also
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Figure 2.2: A schematic of the original test-bed design. The black dots denote the
recipient of one-way communication. The smaller boxes represent the basestation,

UAV and robots for each team.

communicates with a game moderator called the Referee, which controls all aspects

of the game, including time, scoring and calling fouls. Our design, while following

this format to a certain extent, differs both in the number of modules, and in the

decentralized nature of the teams. Figure 2.2 shows the complete layout of the original

design.

The Referee acts as the central hub through which all other modules com-

municate. The test-bed runs in two different modes: simulation and hardware, and

requires different modules for each mode. In simulation mode the test-bed runs only

the simulator and the Referee; robots communicate with the simulator through the

Referee, and the simulator provides the vision and sonar data for the system. In hard-

ware mode the vision server receives data from the camera and extracts the vision

data. It passes the vision information to the vision client which uses it to create the

sonar information for the robots. In hardware mode the robot agents calculate their
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control values and send them to the hardware client which transmits them to the

robots via wireless modem. I explain the individual pieces in the following sections.

2.5.1 FlagClient Communications Framework

In any multi-agent experiment, communication between agents comprises a

major practical problem to solve. The problem is non-trivial in both programming

requirements and logistics, and can pose a major challenge. As part of our design

we wanted to create a framework that simplified the task of communication between

agents, and reduce the work required to implement it. We did this by creating an

entity we called the FlagClient. This object handles all communications between an

agent and its team members and between the agent and the Referee. It creates the

MCF client, and registers the agent with appropriate modules, freeing the program-

mer from these tasks. The programmer using the FlagClient for a particular agent

needs only the ID of the agents and modules to communicate with, and then can

send and read messages using only these IDs. The agent passes this data to the

FlagClient, which handles the actual communication using the MCF client as de-

scribed in section 2.3. The FlagClient also handles the parsing of messages, passing

the sender’s ID and the message received to the calling function. The FlagClient

removes the burden of programming the registration and communication process, al-

lowing users to focus on the essential parts of their research. By putting all the basic

communication functions in one place, this type of modular software design makes

modification easier when necessary. The FlagClient was originally written by Ryan

Faulk with later modifications by myself and Matt Blake. The FlagClient remained

basically the same through all design phases, receiving only minor updates as we

changed communication protocols.

2.5.2 Referee

The original version of the Referee functioned as the communication hub for

the infrastructure, and the arbiter of the rules. The phase one design had no GUI, and

no means of user input after startup. All game parameters, including the number of
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teams, the number of agents per team, and whether to run in hardware or simulation,

were set using command line arguments, and any change to the game parameters

required a complete system restart. All communication between modules passed

through the Referee, which checked each message and then sent it on to the proper

recipient(s). The Referee dispersed all vision data sent by the simulator and the

vision client; after updating its own robot position data, it distributed the vision

data to the individual robot agents. Agents registered with the Referee, which then

assigned each agent an ID to allow the system (including teammates) to differentiate

between them. Robot agents received two IDs: one system ID, and one for use

with the simulator. The robot agents used their system ID for communicating with

teammates and the Referee, and the simulator ID for sending move commands to the

simulator. The Referee assigned IDs based on time of registration, starting with zero,

and incrementing the ID for each succeeding registration.

To make it easier for users to follow the game, we envisioned the Referee

sending the vision data on to a monitor program that would display the robot, UAV,

and flag positions on the field, however this program was never written. Instead,

the Referee output the positions to the screen textually, which allowed users to track

robot positions and monitor the game, albeit with some difficulty.

In the phase one the Referee generally had a separate communication protocol

for each module, depending on the type of communication required. For example, all

the communication between the robots and Referee used strings to make debugging

and reading the code easier, but the Vision Client sent all its data as a data struc-

ture that the Referee reassembled on receipt. We did this to make constructing the

data packets easier when sending large amounts of data, such as with vision. This

had drawbacks, however, and resulted in multiple methods of parsing data, which

complicated the code unnecessarily.

Besides handling communication, the Referee tracked tags and untags, com-

munication between robots, flag pickups and drops, and issued an alert when a team

successfully returned the enemy flag to its own side. The Referee also registered each
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agent, tracked its status throughout the game, and handled all UAV movement and

vision functions.

The original Referee code structure did not use a timer, as does the simulator.

Instead, after reading the command line parameters and using them in the initializa-

tion function to create the map and teams, the Referee entered its main loop, which

it remained in until shut down by the user. The main loop processed a single mes-

sage, checked tags, tracked the flags, and then gave up the CPU by calling a sleep

function. The message processing format the Referee followed remained basically the

same through all design phases: check the sender, and then call a parsing function

based on the sender’s identity. This was particularly important at the start, because

as noted previously, different senders used different message formats, and their mes-

sages required different parsing techniques. The message parsing functions read the

message and then call other functions as appropriate to handle it.

Such modularization formed an important part of our programming methodol-

ogy. In such a large project maintaining organized code requires some effort. Giving

each task its own function, and minimizing the number of unrelated tasks per function

helps to modularize the code within a program. For example, even after standardizing

the message formats we kept separate message parsers for agents and infrastructure

modules, rather than having a single message parsing function for all messages. This

modularity in coding simplifies reading the code, reduces the size of functions, and

helps to keep the code logically organized. In addition, it allows reuse of functions by

making them more specific to a single task, and makes locating pieces of code easier.

We tried to make the code in all parts of the test-bed as modular as possible.

2.5.3 Real-time Simulator

Preston Jackson originally designed the simulator structure for use with the

RoboCup five-man robot soccer competition. It features real-time simulation with

collision detection, and uses actual robot dimensions as defined by the user. While

we kept the basic framework of the original, I rewrote most of the internal parts of

the simulator to work with the test-bed. For example, the original simulator used
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multiple separate threads to listen for incoming TCP connections to different code

objects. MCF removed the need for these threads so I removed them and placed

the communications from the separate objects into a single dispatcher object. The

dispatcher object keeps the MCF IDs of all processes the simulator communicates

with and handles all communication with the simulator. It parses incoming messages

and formats outgoing messages, and handles robot registration.

At startup the simulator creates the robot objects using a configuration file

supplied by the user. The phase one simulator allowed for a fixed number of teams

(either one or two) with a fixed number of team members; it could not handle arbitrary

sized teams. The user entered these values using command line arguments, and once

the simulator started could not change them. The simulator created an array for

each team using the values entered on the command line. If the proper number of

robots failed to register, or if too many registered, it would give an error and exit.

After creating the robots, the simulator created a vector of obstacles using the central

map configuration file. It then created the dispatcher object and connected to the

Referee. At this point it could accept incoming registrations, and when signalled by

the Referee, started its simulation.

2.5.3.1 Simulator Engine

The simulator functions as a timer-activated loop. The timer calls the loop

function at a user-defined rate, depending on user requirements and CPU capabili-

ties. While in the loop the simulator handles all communication, responds to Referee

commands, calculates robot movement, handles collisions occurring due to movement,

calculates the sonar information for each robot, and then sends the vision data out

to the robots and the Referee, in that order.

Movement is handled as simply as possible to maximize the speed of the sim-

ulator. The simulator keeps track of the velocity and position of each robot at each

time step. Each agent sends the simulator its desired velocity, which the simulator

maintains until changed by the agent or by collision. Since instantaneous changes in

velocity defy realism, the simulator checks each robot’s velocity against the maximum
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velocity and acceleration defined by the user in the configuration file, and sets any

invalid changes to velocity at a valid bound. The current velocity of the robot is

divided by the number of frames per second the simulator is running at to get the

robot’s speed in meters per frame. This value is then added to the robot’s position

at each frame to get the robot’s proposed position. The simulator checks for any

collisions using the proposed positions, rather than the actual position.

For collision detection purposes, the simulator maintains the two-dimensional

physical dimensions of the robot as a list of points, each of which specifies a vertex

of the robot’s polygonal area, as viewed from directly above. The simulator main-

tains the list of obstacles in the same format. These points define the line segments

that make up the convex hull of the robots and obstacles. The collision detection

algorithm checks each line segment in the robot against the line segments of all other

robots and obstacles on the field. An intersection means the polygons overlap and a

collision has occurred. To reduce the number of (relatively) expensive line intersec-

tion checks performed, we check bounding circle1 intersections first for each polygon.

If no bounding circle intersection occurs then the two polygons cannot intersect and

the simulator skips the line segment intersection checks. In addition, after detecting

a collision, the simulator forgoes any remaining checks, as multiple collisions do not

require special treatment. If two robots collide, the simulator does not check the sec-

ond robot separately, which also speeds up the collision detection. When a collision

occurs, the simulator sets the colliding robot’s velocity to zero, and leaves the robot in

its original position, discarding the proposed position. When no collision occurs (the

usual case), it changes the robot’s position to the proposed position, and sends the

updated information out to the robot. With properly defined robot characteristics

this algorithm accurately models real-world robot behavior. The algorithm runs best

at a rate of at least 10 frames per second. Higher frame rates produce more realistic

results by minimizing the distances traveled between frames.

In addition to providing the vision data, the simulator sends each agent its

sonar information along with its position. As the simulator currently functions, the

1The minimum area circle containing all vertices of a polygon
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robots receive perfect sonar information, but we could easily add uncertainty to the

data if desired. The next section describes the algorithm used to create the sonar

data.

2.5.3.2 Sonar Detection Algorithm

As previously mentioned, the main sensor for the robots is the simulated sonar.

The simulator generates sonar information at every time—step, requiring a fast, ac-

curate algorithm allowing variable numbers of sonar points. The sonar is not true

sonar, but actually functions more like a laser range finder. Each robot receives a list

of sonar data points as part of its vision data. Each point represents the distance the

sonar ‘sees’ from the robot at a certain angle, starting with the angle the robot is

currently facing. The sonar algorithm is shown in Algorithm 2.1. The agents are free

to use the sonar data in whatever way they wish; the simulator places no restrictions

on its use. The vision server uses the same algorithm to generate sonar data when

running in hardware mode.

2.5.4 Vision Server and Vision Client

Jeff Anderson designed the original vision server for use with a single camera

positioned approximately 15 feet above the field. The camera required a fish-eye

lens to see the whole field, which warped the image somewhat, requiring the vision

server to de-warp the image before extracting the robot positions. After de-warping

the incoming frames from the frame grabber, the vision server derived the robot

positions from the image and sent them out as an array of double values in a set

order. The receiving client extracted the data from the array as needed. Any number

of clients could connect to the vision server and receive vision data: however, in the

test-bed only the vision client and the hardware client connected to the vision server.

Adding the sonar data in hardware mode required an intermediate process

to receive the vision data from the vision server and use it to calculate the sonar

values for each robot. I created the vision client, which performed this function in

the phase one design. The vision client received the robot positions from the vision
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Algorithm 2.1 Sonar Algorithm

1: for numSonarPoints do

2: if numSonarPoints = 0 then

3: theta = (current robot heading)

4: else

5: theta = theta + (2 ∗ pi/numSonarPoints)

6: end if

7: Find the line segment where the first endpoint is the center of the robot, and

the second endpoint is found using the following equations:

x2 = (maxDistance ∗ cos(theta)) + x1

y2 = (maxDistance ∗ sin(theta)) + y1

{maxDistance is the range of the sonar, theta is the current sonar angle, x1 and

y1 are the coordinates of the first endpoint, and x2 and y2 are the coordinates

of the second endpoint}

8: Find the intersection point closest to the robot of the line segment created in

with all other robots and obstacles. This intersection point is the sonar point

returned with the vision data.

9: end for
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server and then used the simulator sonar detection algorithm to calculate the sonar

values at each robot’s position. The vision client then sent this data, encapsulated

into a compact structure, to the Referee which extracted the data and sent it to the

individual robot agents.

2.5.5 Hardware Client

As mentioned previously, the robots only contain enough processing power

to handle serial communication and process some control functions. The hardware

client functioned as the intermediary between agents and their respective robots. It

received motor voltages from the agents and sent them out over a wireless modem to

the hardware robot. As I originally created it, it functioned purely as a translation

service, taking incoming packet data, and sending it byte by byte over the wireless

modem. The robot agents calculated the control values transmitted by the hardware

client. As the control loop for the omnidirectional robots requires a strict 30 frames

per second to produce good values, it quickly became apparent that the robot agents

could not meet the timing requirements of the control loops because of various delays.

To solve this problem, Ryan Faulk revised the system to allow the hardware client to

calculate the control values for all the robots.

In the revised version, the agents sent the hardware client their desired velocity

in the x and y axes. Using vision data obtained from the Referee, the hardware client

calculated the required control values for each robot’s motors. After deriving the

control values, it sent them out over the serial line to the robots. At first, we sent the

data as a single packet containing the control velocities for all the robots on the field.

However, this made it difficult to make changes to the hardware, because each robot

had to know which position in the packet contained its particular data, and this had

to match the top given to the robot. Because of this, we modified the system so the

hardware client sent the data out in individual packets, with an identifying header for

each robot. The robot looked at the header and ignored any packets not addressed

to itself. This made the code simpler, but increased the overhead of data sent via

the wireless modem. This increase in overhead in turn increased the amount of time
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the hardware client spent transmitting data and introduced delays into the control

loop when more than a certain number of robots required data. To combat this,

we simply limited the number of robots per team to three, which gave the hardware

client sufficient time to perform satisfactorily at 30 frames per second.

2.5.6 Design Phase One Conclusion

When we first started the project, we did not fully realize the limitations

inherent in running a real-time distributed system on a system not designed to handle

real-time operations. For example, while the usleep function provided in the standard

C++ library offers granularity in microseconds, the actual PC clock timer has a

granularity of 10 ms, making the usleep functionality moot. When we designed our

original loops throughout the entire system, we based them on the usleep timing.

Since the CPU could not handle that granularity, the loops could not handle enough

messages and hogged the CPU, causing further slowdown to the entire system. We

fixed this problem during phase two by redesigning the loop timing system used in

most processes.

The problems with the timing strategy initially used increased the overloading

of the Referee. With a distributed system such as this, where the functioning of one

process depends on the receipt of data from another, overloading a single process

slows the whole system down. In design phase one, the amount of message traffic

quickly caused the referee to become a bottleneck, slowing the entire system down

and causing errors due to dropped messages. This problem was especially acute for

the messages passed between the vision server and the robots, as any significant

delay caused huge errors in the motor control functions, making the robots virtually

impossible to control. Besides handling all message traffic, the Referee simulated the

UAV movement and sight, which further increased the code size of the Referee and

slowed it down. To reduce the complexity of the Referee and increase its speed we

removed some of its functions and placed them in their own dedicated modules.
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If the system were to run in simulation only, our initial structure would not

have been so problematic, however the control of real-life hardware robots is signifi-

cantly more sensitive to delay than simulation. Delays in the simulator do not change

its behavior significantly, while even small delays in the hardware control loop can

seriously degrade its functionality. Because of the delays introduced by our initial

structure we had very poor performance in hardware mode. Design phase two fo-

cused on restructuring the system to allow the hardware to perform as expected as

well as creating new functionality to facilitate the ease of using the system.

2.6 Design Phase Two

Design phase two focused on restructuring the system to remove delay and

speed up the message transmission. The Referee received the largest overhaul, in-

cluding the addition of a GUI to allow for visual monitoring, and the removal of the

UAV simulation tools into a separate module. We changed the timing mechanism

of most modules, and updated them to work with the new Referee GUI functions.

Finally, we reworked the hardware systems to take advantage of new modem technol-

ogy, and to increase the number of robots allowed on the field. Figure 2.3 shows the

infrastructure during design phase two. Other than the addition of the UAVmodule,

and an additional hardware client, the basic structure of the infrastructure remained

the same.

2.6.1 Referee

As mentioned previously, we found it necessary to change the message handling

so that the Referee handled messages between agents only, allowing the agents to

communicate directly with other modules. This change in message handling reduced

the load on the Referee, allowed the Referee to handle all the messages between

robots without dropping messages, and reduced the overall error rate of the system.

We did this by having the agents register with each module separately. This did not

complicate things significantly, as each process already kept the communication IDs

of all modules it communicated with, and so required little new information. Due
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Figure 2.3: The infrastructure after design phase two.

to the modularity of the code, adding registration functions to each module required

little more than cut-and-paste.

During this phase, we also changed the Referee’s structure to allow for more

specific definition of the timing. In the previous phase we relied on the sleep function

to provide timing, but as noted previously, this hogged CPU cycles because the loops

never exited. To fix this we implemented a timer that called the main loop at specific

intervals. We used the native QT QTimer class because of the computationally opti-

mal timing capabilities it provides. This configuration allows us to change the timer

frequencies, depending on the capabilities of the host machine and the network. The

timer calls the loop, which exits after running, freeing the CPU for other processes.

The Referee loop itself is quite simple and is shown in algorithm 2.2. Notice that in

this version the Referee processes all messages in the queue at each time step, rather

than processing a single message as before. This significantly increases the number
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of messages the Referee can process per second, and reduces the number of dropped

messages to a negligible number under normal operating conditions.

Algorithm 2.2 Referee Processing Loop

while messages in queue do

if message from simulator or vision server then

process vision

handle flags

else if message from uavmodule then

process UAV data

else if message from agent then

process agent message

end if

end while

All game functions are called from within one of the message parsing functions

in response to a particular message. Originally we had the Referee make certain

checks, such as tags, every time through the loop, but this wasted computation time

because tags occur relatively rarely. In the general case the Referee runs faster by

running checks only when it receives a request. For example the Referee does not check

for tags with every loop, but only when a particular robot requests it. This reduces

the computation required to process requests as long as agents keep the number

of requests within a reasonable bound. If all agents constantly send a tag request

even when they are nowhere near an enemy, it could overflow the Referee’s message

queue, causing dropped messages. However, since most game requests happen on an

infrequent basis, and because the time required to process a message is much less than

the time per loop iteration, this approach works well in most situations. Increasing

the number of agents increases the burden on the Referee, but reducing the number
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of iterations per second the agents execute will reduce the number of messages sent.

Reducing the rate at which the Referee runs helps also, as it causes fewer context

switches, allowing it to use more CPU cycles. We have tested the system with 32

robot agents at 10 frames per second without losing messages due to buffer overflow.

We tested this by having each robot send a certain number of messages, and count

the number received; if they match then no messages were dropped during transit.

The main drawback of this type of loop is that there is no bound on the time

each iteration takes, except the size of the message buffer. Since the Referee must

process all messages in its queue before exiting the loop, there is no way to guarantee

the Referee meets any timing requirement. The timer calls the loop at a specific rate,

but it cannot force the loop to exit to maintain that rate. With a large message

load at higher frame rates, the loop can go over its allotted time, dropping the frame

rate. In our system, only the display of the GUI depends on the Referee maintaining

a certain frame rate so decreasing the frame rate can make the movement on the

display seem somewhat jerky. All other modules have similar timing loops and thus

can maintain their own timing as necessary. Our timing strategy provides consistent

timing as long as the computation time required to process all the messages in the

queue is less than the time-per-frame. In normal circumstances the Referee maintains

the desired frame rate with less than 1% error.

In phase one the Referee provided no visual feedback on the action happening

on the field, which made the game hard to follow and made it more difficult to

debug the other modules. To overcome this, I incorporated the original Referee code

into a graphical user interface (GUI) using QT. The Referee now serves as a visual,

interactive means of controlling the game, with the ability to stop, start, reset, or

quit the game at the press of a button. In addition the GUI allows a user to view

and manipulate the obstacles on the field, add or delete obstacles and flags, and move

robots around the field (in simulation mode) using a mouse. The GUI provides the

means to change the number of teams playing the game, load new map files, and select

different game options such as enforcing communications restraints, without restarting
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the Referee or other modules such as the simulator. The Referee communicates user

commands and changes in game parameters to all modules connected to it, allowing

the user to modify the game setup from a single convenient point.

Users issue the stop, start, restart, reset, and quit commands by pressing

buttons on the main interface. These commands allow the Referee to stop or start

all modules connected to it, reset the game by disconnecting all agents, and exit the

entire system by closing all modules at once. Before the GUI was implemented, the

game parameters were set using the command line, and changing them or starting a

new game required a complete system shutdown. The GUI allows the user to change

parameters such as the number of teams without shutting down any modules. In

addition, starting a new game requires only a reset to disconnect all agents, and then

new agents can register as normal. Stopping the game allows a user to move robots

around the field, change flag locations, or perform other tasks such as modifying the

maze, while preventing the robots from moving or taking other actions. Restarting

the game returns the robots to their original starting locations, resets the score, and

randomizes which flag is the real flag. Figure 2.4 shows the Referee GUI with no

robots registered. The colored squares show the locations of the flags; the real flag

for each team has a yellow dot in the center.

2.6.1.1 Communication Algorithm

One of our goals for inter-agent communication was to allow the enforcement

of limited communication distances between robots. The communication rules defined

for the test-bed allow a robot to communicate with any teammate within a specified

radius, or indirectly with others as long as each transmission step is in range. This

format forces a sort of ad hoc network to be formed, wherein robots must maintain

their links or be cut off from communication. The original algorithm, which checked

communication constraints, cross-referenced two arrays and had a worst case exe-

cution time of O(n4), where n is the number of robots. This proved too slow with

teams of more than 4 robots, and so I wrote a new recursive algorithm that runs

in O(n log n). The algorithm begins with the original source robot, and checks each
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Figure 2.4: The Referee GUI. Each team has a different color.

agent on the team until it finds one within the source’s communication radius. If that

agent is the destination agent the algorithm returns a boolean true result, otherwise

the agent is placed into a list of robots the original source can communicate with, and

the algorithm starts over on the new robot. The algorithm works its way through

any existing links to the destination robot, and returns a true value. If no links ex-

ist to the destination the algorithm will return a false value. This method does not

require the Referee to maintain or update any sort of communication table as the

previous method did. However, since it must run every time an agent communicates

with another agent, it can result in unnecessary function calls for multiple messages

from the same agent. In practice it runs fast enough that it does not cause noticeable

slowdown. A possible optimization would be to save a list of agents each agent can

communicate with and check it before running the algorithm. The list would remain

valid for only a short time before clearing itself.
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2.6.2 Real-time Simulator

I modified the simulator in phase two to work with the new Referee game

commands built into the GUI: stop, start etc. In addition I changed the simulator

to allow arbitrary numbers of robots on a team. The simulator maintains a vector

of robot objects, and creates them individually as the agents register, rather than

creating the entire team on startup as done previously. This removes the necessity

of command line arguments specifying team members, and gives the user much more

flexibility in the game scenarios allowed. When the Referee issues a reset command,

the simulator clears the robot vector and registers new agents, allowing the simulator

to handle multiple, distinct team configurations without rerunning the program.

As part of the communication changes for design phase two, we changed the

registration process so that agents register directly with the simulator. The Referee no

longer assigns agents a simulator ID; instead, it tracks the order robot agents register

with the simulator, and implicitly deduces the simulator ID. The Referee uses the

simulator ID of each robot when receiving its vision data and notifies the simulator

when the user moves a robot using the GUI. The simulator uses the ID to directly

reference robots in the vector. The agents communicate movement commands to

and receive vision data directly from the simulator, rather than through the Referee

as done previously. This change substantially reduced the message load seen at the

Referee, while increasing the simulator message traffic due to the increased overhead

incurred by sending vision to multiple recipients. Overall the amount of vision traffic

remained constant, but by distributing the load we removed the bottleneck at the

Referee.

2.6.3 UAVmodule

I created this module because running the UAV simulation code in the Referee

required too much computation time. The UAVmodule took over all simulation duties

involving UAVs, including movement and vision. Like the simulator the UAVmodule
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can handle an arbitrary number of UAVs on each team, and does not need to know

the number a priori.

To simulate the UAVs’ movement I used a constant velocity model; the agent

sends only its desired heading changes to the UAVmodule. Algorithm 2.3 shows

the method of calculating each UAV’s position. Once the UAVmodule calculates

each UAV’s current position, it uses that data to create a list of all world objects

the UAV can see. Each UAV has a square sight ‘footprint’ rather than a circular

one; this simplifies the list creation without significantly changing the amount of the

world the UAV can see. UAVs can see robots, flags, and obstacles; the UAVmodule

communicates the number and location of each back to the UAV in a human readable

string of variable length. The UAVmodule receives robot position data from either

the vision server or the simulator depending on the mode; the Referee sends a list of

flag positions when ever a robot moves one of the flags.

Algorithm 2.3 UAV Movement

1: for Each UAV do

2: if ωdesired > ωmax then

3: ωdesired = ωmax

4: end if

5: UAV POS.x+ = V ELOCITY ∗ cosωdesired

6: UAV POS.y+ = V ELOCITY ∗ sinωdesired

7: UAV POS.theta+ = ωdesired

8: end for

2.6.4 Vision Client

The vision client remained basically the same during this phase except, like

the other modules, we modified it to allow the agents to register directly with it.
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The vision client communicated directly with each robot after this phase, registering

clients in a manner similar to that of the simulator. After registering an agent, the

vision client sent the agent vision data directly rather than through the Referee. In

addition I updated the vision client to work with the new Referee game commands:

stop, start, restart, reset and quit. Because of the vision system, the vision client

remained a command line process with static game parameters. Changing the number

of robots on the field required the user to close the vision client and restart with the

new parameters. The other modules could continue running while the user restarted

the vision client. I also standardized the vision output format to match the simulator’s

so that clients receiving vision data can process it the same way in both hardware

and simulation modes.

2.6.5 Hardware Client

During this phase we acquired some new wireless modems with multi-channel

capabilities, so we changed the hardware client to make use of these. Instead of

having a single client to handle all the robots, we ran one hardware client for each

team. Each hardware client transmitted on its own channel to all the robots on its

team. This allowed us to double the maximum number of robots per team, while still

maintaining the required 30 frames per second for the control loops. Like the vision

client, the hardware clients had to restart when the number of robots on the field

changed.

2.6.6 Design Phase Two Conclusion

After restructuring system communications the system ran well enough to

handle experiments in both simulation and hardware modes. However, it still had

some flaws, particularly in ease of use. Because of the changes to the hardware client,

running in hardware mode with two teams required a user to start five modules, not

including any agents, and some modules still required static game parameters. The

variable starting methods made it inconvenient to run repeated experiments because

of the number of processes requiring shutdown and restart between test-runs.
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During this phase we began standardizing message formats, particularly the

vision data. Having a standard vision format allowed agents to process the vision

data the same in both simulation and hardware modes, moving the system towards

mode transparency.

Adding the GUI increased the functionality of the system significantly. With-

out the ability to visually track robot positions, debugging modules (e.g. the simu-

lator, vision client, and basestation) was much more difficult. Before the creation of

the GUI users had to adjust game settings separately for each module, often requiring

restarting the module. The ability to control the entire system from a central location

reduced the complexity of the infrastructure, making it easier to use.

Finally, removing the necessity of statically set game parameters let users run

multiple experiments on the same system incarnation without shutting the system

down. The original system added a high overhead in the time required between ex-

perimental test-runs, because the entire system had to shut down and restart between

runs. This overhead made using the system a significant headache.

2.7 Design Phase Three

In phase three we refined the infrastructure somewhat by removing the hard-

ware and vision clients, and replacing them with a new module: the control server. In

addition the vision system received a significant upgrade. By this phase the Referee,

UAVmodule and simulator functioned well, and changed very little. Figure 2.5 shows

the infrastructure after design phase three.

2.7.1 Control Server

The control server replaced the hardware clients and vision client for each

team and added control functionality to the system in hardware mode. Although

having separate hardware clients for each team improved the hardware performance,

the robots still did not behave as well as desired in hardware mode, and the hardware

clients did not implement all available control functions. In addition, the large number

of modules required for hardware mode made the system unwieldy.
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Figure 2.5: The infrastructure after design phase three.

The control server assumed the duties of the vision and hardware clients for

each team. Placing the control, vision and sonar functions in one place also removed

any synchronization errors introduced by using the vision data in two separate places.

Each team had its own control server which connected to the vision system and

requested the vision data for its team members. Receiving vision data directly from

the vision server rather than from the Referee reduced the delay in the control loops

significantly, which in turn improved the response and performance of the robots on

the field. This change allowed us to run the robots in hardware mode with similar

behavior to the robots in simulation mode, a previously impossible situation.

The robots registered with the control server instead of with the hardware

client and vision client, and the control server sent out the vision data to the robots.

The control server reduced the number of modules required to run in hardware mode

from five to four. This reduction made the system easier to use, particularly when
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changing the number of robots per team, because only two modules needed restarting

instead of three.

The control server implemented additional movement types into the control

loop, giving robot agents access to commands such as move-to-point, turn-to-point,

follow-line, and maintain-facing. These move commands increased the functionality

of the robots in hardware mode, but since they were not available in simulation

mode they did not get used often, because they required programming separate move

functions for each mode.

2.7.2 Vision Server

As noted previously, the original camera setup contained one camera placed

15 feet above the field, with a fish-eye lens allowing it to view the entire field. This

setup, while functional, was not optimal as the fish-eye lens caused warping, which in

turn caused position errors, particularly near the edges of the field. This situation was

impossible to remedy using a single camera, because of restraints on the placement

of the camera. After some study, we determined that using four cameras to view the

field would eliminate the need for fish-eye lenses, in addition to increasing the overall

resolution of the system. Accordingly, we purchased four new video cameras, which

were installed above the field.

The new vision server is composed of four scanning clients, each responsible

for a single camera, and the main vision server. Each of the clients scans the images

returned by its camera, and extracts the position information of any robots in the

image. If two or more cameras see a particular robot, the position information for that

robot is averaged from all available data by the main server. The server combines the

position data extracted by the individual cameras and distributes it to any connected

clients.

Currently only the control server connects to the vision server. It might seem

that the need for processing four separate images would make for a slower system,

but each image is about 1/4 the size of the image in the original system, and so

requires much less processing time. In addition, because each camera is responsible
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for only 1/4 of the field they can be mounted lower and do not need a fish-eye

lens, eliminating warping. Removing the need for the computationally expensive de-

warping algorithm significantly increases processing speed, resulting in a speedup in

overall vision processing. The increased resolution of the images returned by the

cameras allows for more accurate positioning, particularly near the edges of the field.

This new vision system was designed and implemented by Matt Blake.

2.7.3 Design Phase Three Conclusion

The control servers served an important purpose in placing all the vision

processing in a single location. Having vision data processed in separate locations

can cause synchronization errors, and reduces system efficiency through redundant

processing. The control servers removed this redundancy. During the previous design

phases we overestimated the processing power required for most functions, erroneously

attributing poor performance to overloaded CPUs, when in fact the performance prob-

lems were caused by the timing strategies originally employed. Once we redesigned

the timing system we could remove redundant systems such as the vision and hard-

ware clients and place similar functions in a single process. This had the additional

benefit of reducing the network traffic load and system complexity. However, by in-

troducing a new movement interface for hardware mode, the control server moved us

farther from our goal of mode transparency by forcing agents to send different move

commands depending on the mode.

2.8 Final Design

The schematic for the final design is shown in Figure 2.6. The final phase

involved changes to the control server and simulator. We tested the whole system

during this phase extensively, and ran it for hours at a time in simulation mode

without problems. The system is not quite as robust in hardware mode, but it

functions reasonably well as long as the robot battery supplies last. The final system

has mode transparency, meaning agent code runs the same in both simulation and
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Figure 2.6: A schematic of the final test-bed design.

hardware, so an experiment run in simulation can be verified in hardware without

any modification to the code.

2.8.1 Control Server

One of the goals we had was to make the system look the same to the agents

in both hardware and software mode. In previous phases the system required the

agents to send different move command formats depending on if they were running

on hardware or simulation. In addition, multiple software modules had to be started,

and the set of modules required also depended on the mode. To achieve our goal of

mode transparency we merged the simulator into the control server, which allowed

the agents to interface with the control server in the same manner, regardless of mode.
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In phase three the control server added additional movement types in hardware

mode; agents now have access to these move commands in simulation mode. The

control server receives the commands and then generates motor voltages if running in

hardware mode, or velocities if running in simulation. Agents thus can use the same

movement types regardless of mode, and have full functionality in simulation mode.

To the agents the infrastructure looks and acts the same in hardware and software.

This reduces the complexity of agent code by allowing the programmer to use one set

of commands throughout development, rather than using one set to test in simulation,

and a second set when validating in hardware. This reduces the design burden of new

experiments, and helps the simulator more closely match real-life behavior.

The control server mode is set through a command line argument. Merging

the simulator and the control server allows a user to run experiments with fewer

modules, decreasing the system complexity and reducing the number of machines

required to handle the infrastructure. It also allows the simulator to take advantage

of any additional command types that might be introduced in the future, and reduces

the number of places the code must be changed when new commands are added.

2.9 Conclusion

During the design we developed several design strategies in response to new

requirements, or to overcome unforeseen difficulties. Often, problems required us to

rethink our approach to the design, and redo parts of the test-bed. During this period

we practiced some fundamental methods of design which helped reduce the amount

of time spent rewriting portions of the code, or adding new modules. This section

discusses some of the lessons learned, in an effort to assist anyone designing a similar

test-bed.

2.9.1 Code Organization

In a large project, code organization becomes extremely important, especially

as the number of people using or modifying the code increases. I recommend that a

code control system such as CVS be used from the start of any major project, even
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if only one person expects to work on it. A code control system provides security

from tampering, and a secure backup in case of error or catastrophe. It also helps

maintain an organized structure to a project by requiring an active role by the user

in structuring the project. A code control system is a vital part of maintaining code

organization, especially with multiple users.

Having a modular code structure also greatly assists in keeping code organized,

makes debugging code simpler, and makes code more easily reusable. In the test-bed,

each task, such as checking tags, is separated into its own function, including any

world state checks required before running the task. All operations related to the

task are contained within the same function. This allows a user to look in one place

to find all code related to a specific task, simplifying debugging and making the code

more organized. This also makes it easier to use code in more than one module,

as the user does not have to cut and paste from multiple functions. Obviously this

principle can be taken too far, if every minor task gets its own function, but when

used intelligently, it can significantly reduce the time required to finish a project.

2.9.2 Design

Often when starting a new project, it can be tempting to take existing software

and modify it to the new purpose rather than design from scratch. Rather than

take this approach, I recommend writing new software using relevant pieces from the

existing software. This allows new pieces to be tested as they are added, without

dealing with existing bugs or worrying about how the new code interacts with the old

code. It also allows the designer to make design decisions without worrying about the

ease of implementing them in the current code. While it may seem counter-intuitive,

I have found that designing new modules from scratch and pasting in existing code

when possible, leads to cleaner designs, and can actually require less effort.

For example, our original simulator was designed specifically for two teams of

five robots with a static field setup. In addition, it required several threads to handle

various incoming connections. For capture-the-flag we needed the simulator to allow

for arbitrary numbers of robots on each team, and handle any valid maze setup. In
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addition we wanted a single threaded process. Rather than writing a new simulator

using pieces of the old simulator, I modified the existing simulator, removing the

threads and changing the way it handled robots and objects. Because the original

was designed under significanyly different constraints, these changes required major

code changes. The size of the existing code and its complexity made it difficult

to determine whether bugs were the result of something I removed, or something I

added. Because of this, making the modifications ended up being more difficult than

originally estimated. In contrast, the the simulator in the final control server was

designed from scratch to specific requirements. Useful pieces of the old simulator

were cut-and-pasted as needed into the new simulator. This allowed us to test and

debugg each new code section before adding the next. This process required less time

and effort than making the original modifications, and resulted in software tailored

to the application.
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Chapter 3

Safe-path Graph Generation for Urban Environments

3.1 Introduction

Path planning plays a vital role in running experiments in a congested urban

environment. While techniques exist that allow robots to navigate through such

environments without planning an explicit path, such techniques cannot guarantee

robots will reach their goal regardless of the maze structure. Effectively navigating

a maze-like congested urban environment requires the use of a path planner. Path

planners consist of two main parts: one that generates and maintains a graph that

represents the world, and a second part that searches the graph to produce paths as

needed.[8] This chapter focuses on the first of these two parts; many good solutions

exist to search an existing graph, and any of these can be used as desired.

The importance of creating a good graph should be emphasized. The quality

of paths created using the graph will be reduced if the graph is too sparse; if the graph

is too dense, it will be expensive to search, increasing the run-time requirements of

the path constructor. A good graph will provide something approaching the minimal

representation of all safe movement options through the maze. Ideally, it will result in

paths close to minimal length that avoid collisions with all obstacles. The safe-path

algorithm was designed with all these conditions in mind, as this chapter will show.

The chapter is organized as follows: Section 3.2 discusses the lab setup and as-

sumptions that inspired the creation of the safe-path algorithm. Section 3.3 describes

the graph generation algorithms we initially implemented as we developed the game

infrastructure. We explain the criteria we used to evaluate them and show how the

schemes we implemented fell short in meeting our requirements. In Section 3.4, we

present a new graph generation algorithm that avoids the problems encountered with
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the other approaches described here, and we show an example of a graph constructed

using it. Section 3.5 presents data comparing the new scheme with two alternatives

in terms of memory requirements and the quality of paths generated. Conclusions

and future work are summarized in Section 5.2.

3.2 Lab Setup

As mentioned previously, our lab includes both hardware robots and fully com-

patible software simulators that can be used for a variety of applications. Figure 3.1

shows robots playing capture-the-flag. We currently have 10 omni-directional robots

with on-board microprocessors that receive commands through a wireless modem. [9]

The physical world of the robots is a square carpeted area that may be configured

with wooden obstacles as desired. Each obstacle is 1 foot long, square in cross sec-

tion, painted black, and fastened to the carpet with Velcro. Currently all obstacles

are placed parallel to the X and Y axes of the field for simplicity’s sake, but the

algorithm works with obstacles of any polygonal shape and alignment.

Figure 3.1: BYU MAGICC Lab Capture-the-flag Environment

Robots have on-board sonar but no vision capability; they are aware of their

position and orientation. While we initially planned for robots to navigate through

their world after receiving information from the UAVs about the layout of the ob-

stacles on the field, the agents currently obtain map information prior to the game.
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Future work will focus on requiring the robots to build map information through

real-time exploration, in conjunction with the UAVs.

Our lab setup simulates real world multi-agent applications in which a UAV

scouts out an area and transmits back to the robots the location and size of obstacles

such as buildings and cars. Once they have a map, robots plan their own paths and

navigate through the environment. In order to prevent collisions that could damage

or disable robots, it is important that path planning algorithms produce paths that

are safe, in that they maintain a minimum separation from adjacent obstacles.

3.3 Evaluating Path Planning Alternatives

Different environments present different path-planning challenges; this section

analyzes the aspects of a graph that make it useful in a congested urban environment.

During the early stages of the test-bed we implemented a Voronoi graph previously

used for path-planning with aerial vehicles. One of the senior project teams also

implemented a grid array scheme. Experimentation with both types led to the devel-

opment of a set of requirements for a useful graph.

In order for a graph to work well in a path-planner for congested urban environ-

ment path-planner, it must satisfy four requirements. First and most importantly, a

useful graph should account for obstacle dimensions in a way that creates safe “buffer

zones” around all obstacles, but it must do this in a way that will not prevent access

to any reachable areas of the world. Paths created from such a graph can therefore

have any desired reachable point on the field as their destination, and they will al-

ways maintain a minimum distance from all obstacles. Such paths help mitigate the

significant hazard to the robots of getting stuck on or crashing into an obstacle. Sec-

ond, the algorithm should scale well with respect both to map size and the number of

obstacles present. Our lab resources limit us to running the actual hardware robots in

a relatively small area, but in simulation our experiments involve much larger maps

producing much larger graphs, similar to real-world situations. Third, the graph

should not require an excessive amount of memory to store. In a distributed environ-

ment, each agent must have its own copy of the graph, so total memory requirements
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are an important consideration. While we run nearly all the agent code on a PC,

allowing us to ignore memory issues, most mobile robots have limited memory and

computation capabilities. Future efforts to implement path-planning directly on the

robots will require a graph with low memory usage. Finally, a useful graph will lend

itself to implementation using a straightforward data structure that other modules in

the agent code besides the path-planner can use if desired. Such a structure, when

done well, also assists in fulfilling the other requirements.

An additional consideration when designing a graph depends on its usage.

The design of a graph often makes obtaining minimal search speed and an optimal

path mutually exclusive, requiring some sort of trade off. Because a graph returning

optimal paths will likely be larger, containing more information, it tends to have

increased search times, and vice versa. Real-time path planning requires minimal

search times to maintain good response to user input, and allow proper control loop

timing. In such cases the optimality of the path is of less concern than the time needed

to find it. In the non-real-time case, optimality often is the primary concern, and one

can safely ignore search time. Taking response time requirements into account during

the design of a graph can make the difference between a useable graph, and a useless

one.

3.3.1 Grid Arrays

The simplest type of graph to create is a grid array. [10] A gridded graph maps

the obstacles in the world to an array of numbers. A large value representing infinite

cost is placed in each element in the array that an obstacle maps to. The planner

then creates a buffer zone of decreasing cost around each obstacle in order to create

safe paths. The resulting array can be searched using any number of standard search

algorithms. We used an A∗ algorithm [11]. Figure 3.2 shows a possible representation

of an obstacle in a grid array.

A grid array meets two of the requirements of a good graph. First, since it

takes into account the obstacle dimensions when creating the graph, it can generate

safe paths around the obstacles. However, getting a good margin of safety does
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Figure 3.2: A representation of an obstacle in a grid array. The value 10000
represents the obstacle; lesser values indicate areas of relative safety near the

obstacle. A value of zero indicates no danger of collision.

require some tweaking of parameters, particularly the amount of buffering, especially

if the ratio of map units to array elements increases. A good buffering algorithm

can alleviate this problem somewhat. Second, a grid array scales easily by increasing

the array size, and increasing the number of obstacles does not affect the size of the

array in any way. However, increased obstacle density can affect path quality, as the

buffer zones of nearby obstacles merge. As the buffer zones merge, the path planner

seeks paths with lower cost, bypassing the merged areas and creating longer paths.

Increasing the granularity of the array can overcome this, but doing so exacerbates

certain drawbacks of grid arrays.

Gridding fails to meet the third requirement because of the large amounts

of memory needed to create the array. For example, the field our robots run on

is a square, 4.5 m each side. Through experimentation we have found that we get

the best paths when using a maximum ratio of 1 cm per array element. This ratio

requires an array of 450 x 450 elements, each of which is a 4 byte integer, meaning

the graph requires over 800 KB of memory to hold the array. The problem gets

worse as the map gets bigger; doubling the length and width of the field requires 4

times the memory to represent. Reducing the size of the array by increasing the ratio

of map units to array elements alleviates the memory problem somewhat, but also
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degrades the path quality, particularly in maps with large numbers of obstacles, again

because of merging buffer zones. Finally, a grid array is not an ideal data structure for

representing a graph because of its large size and because it cannot easily be accessed

and manipulated by other graph-based algorithms without some additional structure.

A grid array contains no information on nodes or edges, and thus cannot be easily

used by some search algorithms, such as Dijkstra’s.

The grid array exemplifies the trade-off between optimality and search speed.

A grid array with high granularity returns very optimal paths, but the increase in size

necessary to obtain such paths increases the search times significantly. Conversely,

reducing the granularity to increase speed has a significant effect on path optimality.

3.3.2 Voronoi

(a) (b)

Figure 3.3: A Voronoi graph before (a) and after (b) pruning. Pruning causes some
areas to become impassable by removing the edges through them, and does not

remove edges that pass through small gaps between obstacles.

Voronoi graphs are often used for path planning, and numerous algorithms

exist for generating one [12, 13, 14, 15]. The algorithm we implemented generates a

standard Voronoi graph using the vertices of the obstacles as the starting nodes. After
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generating the graph, it prunes any edges that cross obstacles from the graph, leaving

only valid paths. The size of the graph depends on the number of obstacles: increasing

the area covered without increasing the number of obstacles does not affect the size

of the graph at all. Increasing the number of points used to generate the graph, for

example by including the midpoints of obstacle edges as well as the vertices, also

increases the size of the graph, but provides better paths. In contrast to gridding,

a large map can be searched as quickly as a small map, given similar numbers of

obstacles, because they have comparable numbers of nodes and edges. Additionally,

the graph has an organized structure consisting of a list of nodes and connecting edges

which is a useful representation with a minimum of redundant information.

Figure 3.4: A path generated using a Voronoi graph. Notice how close the path
comes to the obstacle. This could result in a collision.

Unfortunately, as Figures 3.3 and 3.4 illustrate, a Voronoi graph fails the first

and most important requirement because paths created from it are more likely to bring

robots within unsafe distances of obstacles. Voronoi graphs cannot explicitly account

for obstacle dimensions; while it uses all vertices of an obstacle in its generation, the

vertices have no connection to each other. When the obstacles are small relative to

the robots this presents no problem, however in an urban environment this is not

the case. Because of its inability to account for obstacle dimensions many of the
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created edges cross obstacles and should not be included in the graph. Before using

the graph the path planner must prune the invalid edges. In our implementation,

edges intersecting with obstacles were removed from the graph by checking each edge

against the list of obstacles. Any edge intersecting an obstacle is removed. Adding

more points to the initial set provides a better graph, but it also increases the amount

of pruning required. Unfortunately, pruning can force the search algorithm to create

suboptimal paths because some edges leading through open areas get removed from

the graph. In extreme cases, some areas of the map become unreachable. As a final

concern, unless complex pruning methods are employed, an unpruned edge can lie

arbitrarily close to the edge of an obstacle, leading to unsafe paths.

After determining that neither of these two graph generation approaches fully

satisfies our requirements, we realized the advantages of an approach that uses obsta-

cle geometry in generating the graph. After some experimentation and iteration, we

developed the algorithm described in the next section. This algorithm offers several

advantages: paths generated using the graph it generates will provide safe paths to

all accessible map areas, it scales well with map size and obstacle density, it has rel-

atively low memory requirements, and it is represented using a logical data structure

allowing access to all nodes and edges in the graph.

3.4 A New safe-path Graph Generation Algorithm

Our algorithm begins with a list of obstacles, the desired buffer distance around

each obstacle, and the maximum map dimensions. Each polygonal obstacle is repre-

sented by a list of points that make up the vertices, in order around the edge of the

polygon. Using these values we can create the line segments that make up the edges

of the obstacle. The buffer distance is the minimum safe distance a robot can get to

an obstacle — generally slightly more than the maximum radius of the robot. The

user can vary this value as necessary. For example, a sensor-based obstacle avoidance

algorithm can reduce the buffer distance needed to create safe paths. The initial

version of the algorithm assumed that all obstacles were rectangular and aligned with

one of the map axes, but after some modification the algorithm can now be applied
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to maps with convex polygonal obstacles of any orientation. Concave polygons need

to be subdivided into their component convex polygons - a task for which algorithms

already exist [16].

Generating our graph consists of five main steps, one of which is an optional

optimization. In addition we have developed a line smoothing algorithm that can be

applied as the graph is used for path planning.

3.4.1 Create Buffer Zone

First, we expand each obstacle in the list by the buffer distance. In doing so it

is important that the exact obstacle dimensions are maintained, so that the expanded

polygon is directly similar1 to the original. Each line segment of the expanded polygon

will be parallel to exactly one line segment in the original, with the buffer distance

as the perpendicular distance between them. Expanding the obstacles makes each

line segment in the expanded obstacle’s border the closest path a robot can follow

without hitting the obstacle.

To ensure the expanded obstacle maintains direct similarity to the original, any

concave polygons must first be broken into convex parts. The expansion algorithm

does not guarantee direct similarity for concave polygons, and will produce erroneous

results. Fortunately, it is a fairly simple matter to create convex polygons from a

concave polygon [16].

Having obtained a set of convex obstacles, we run algorithm 3.1 on each.

We calculate the geometric center of the polygon using an algorithm described by

O’Rourke [16]. The polygon is then translated so the geometric center becomes the

origin. One of the difficulties in expanding a non-rectangular polygonal obstacle is en-

suring the line segment is expanded in the proper direction, ie. we don’t inadvertently

shrink or deform the obstacle by expanding line segments in the wrong direction. By

stipulating the use of convex polygons, and setting the origin at the geometric cen-

ter, we ensure that any line segment with a positive y-intercept will only need to

1all corresponding angles are equal and described in the same rotational sense
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be expanded in the positive y direction, and vice-versa for those with negative y-

intercepts. In addition we ensure that no part of the hull will pass through the origin,

which simplifies certain steps. These assumptions hold for vertical line segments; the

x-intercept simply replaces the y-intercept. The expansion algorithm (3.1) can start

with any vertex, and proceeds through the remaining vertices in clockwise rotation

around the hull of the polygon.

Note that the values of the starting line, mi and bi, are saved for use in the

final step. In addition, the algorithm saves the slope and intercept calculated in the

previous step for use in the current step. Thus, each value is calculated only once

during the algorithm, increasing its speed. Observant readers will point out that θ

can actually appear in either of two quadrants, depending on how it is calculated.

This makes no difference, as only the sign will change, not the value, which is why the

absolute value of r is used. Finally, while vertical lines complicate things somewhat,

the essential functioning of the algorithm remains the same; the equations are just

rearranged somewhat.

Figure 3.5: Dotted lines outline the actual obstacles. Solid lines show the “buffer
zone” created around each obstacle. The circles denote where the line segments will

be cut.
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Algorithm 3.1 Expand Obstacles

1: for Each polygon with n vertices do

2: Calculate the geometric center of the polygon. Translate vertices to set as the

origin.

3: for i = 0, i → n do

4: Find the line segment li formed from vertices pi and pi+1

5: if li is non-vertical then

6: For li calculate the slope mi, and y-intercept bi

7: else

8: For li calculate the slope mi, and x-intercept bi

9: end if

10: Find θi, the angle of li with respect to the origin.

11: r = expandamount/ sin(π/2 − θi)

12: if bi > 0 then

13: bi = bi + |r|

14: else if bi < 0 then

15: bi = bi − |r|

16: end if

17: Save the values of bi and mi for later use

18: if i! = 0 then

19: Set the intersection of lines li and li−1 as a vertex in the expanded polygon.

20: end if

21: end for

22: end for{The final vertex is formed from the intersection of lines l0 and ln−1}
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3.4.2 Remove Invalid Segments

After expanding the set of obstacles we create a list of line segments from

the contiguous vertices of the polygonal hull2 of each obstacle. As stated before, the

obstacles can overlap; this step removes line segments interior to the outer hull of

overlapping obstacles. The process is described in algorithm 3.2.

Algorithm 3.2 Remove Invalid Segments

1: for Every obstacle, oi do

2: for Every obstacle ok, k 6= i do

3: if Bounding circles intersect then

4: for Every edge ei,m in oi do

5: if Both endpoints of ei,m are inside ok then

6: Remove ei,m from edge list

7: else if One endpoint is inside ok then

8: Find intersection cept, of ei,m with hull of ok

9: Set the endpoint inside of ok to cept

10: end if

11: end for

12: end if

13: end for

14: end for

The list created in the process described above may still contain some edges

that cross through obstacles, and thus must be removed. This is because while

algorithm 3.2 removes all segments with endpoints that lie inside another obstacle,

2The convex hull of a polygon P is the smallest-area convex polygon which encloses P. The convex

hull of a convex polygon P is P itself
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some edges crossing an obstacle will have both endpoints outside the obstacle and

will not be removed. To deal with this, we find all intersections of the line segments

in the list, as shown in Figure 3.5. This step requires the most time in the graph

generation algorithm, as each line segment must be checked against every segment.

Where a line segment intersects another at a non-endpoint, we add the two smaller

segments making up the bisected line segment to the list and remove the original

(larger) segment. This guarantees the list contains segments of minimal length and

that segments intersect only at their endpoints. It also guarantees that no segment

crosses any obstacle without having an endpoint contiguous with the obstacle hull, and

allows us to remove invalid segments without breaking the path around the obstacle.

We achieve this in much simpler fashion than algorithm 3.2, because we only need

remove those segments whose midpoint lies within an obstacle and not contiguous

with its hull. We can make this simplification because our list of segments contains

only segments minimal in length, with no intersections other than at the endpoints,

and whose endpoints lie contiguous with some obstacle’s hull. After removing all

such invalid segments we find and delete any duplicate segments, in order to save

computation time in the following steps. The resulting set of line segments includes

all minimally safe paths around the obstacles and guarantees that a robot following

any segment will not hit an obstacle, as seen in Figure 3.6.

3.4.3 Connect Sections

The line segments created in the previous steps do not yet constitute a useable

graph so we must add additional line segments to connect the separated sections.

There are several ways to do this, depending on the graph characteristics and the

speed of generation desired. We have tried three alternate methods. The first method

works best when all obstacles are rectangular and aligned with one of the grid axes,

and is the method we use for the mazes used in the MAGICC lab hardware setup.

We create two lines, one parallel to each axis, that extend from each corner of every

obstacle out until they intersect another expanded obstacle, or the map edge. This

method creates a well-connected graph with relatively low computational overhead.
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(a) (b)

Figure 3.6: (a) The graph with polygonal obstacles after removing invalid line
segments. The actual obstacles are shown in white. (b) A standard map after

removing invalid line segments.

Figure 3.7 shows this method. The second method involves finding every possible

connection from every vertex of every obstacle, and adding those connections that

don’t intersect any other obstacle. This method creates the most complete graph, but

is extremely slow. The third method only looks for the n closest connections to each

vertex and connects them. This significantly reduces the computational requirements,

but results in a less complete graph than method 2. However, as will be shown in a

subsequent section, this is not a significant disadvantage, and the increase in speed

more than makes up for the reduced number of connections. There are many other

possibilities that could be explored.

3.4.4 Optimization

At this point we have the option of performing an additional step to create

a smaller, cleaner graph. Finding the intersections between the connecting lines and

breaking the lines into the component segments as we did in step two will increase

the number of line segment endpoints, and help us combine nodes in the final step.

Depending on the connection method being used, it can also create a better initial
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Figure 3.7: Connecting the sections. Line segments are drawn from each corner to
the nearest obstacle. Some parallel lines will be removed during merging. The grey

sections denote the original expanded obstacles.

graph by allowing more lines to be merged. During this optimization step we also

remove any duplicate line segments created in the previous step, reducing the com-

putation time required to create the final graph. Finding all the intersections can

require a substantial amount of computation time on maps with large numbers of

obstacles. In practice we have found that omitting this step does not create any

noticeable problems with the final graph. Because the computation time required to

perform this step is usually greater than that of any other step, omitting it speeds up

the overall time substantially. A graph created without this step will be 5-10% larger

than one created using it, because there will be fewer nodes available for merging in

the final step. One should note that in a sparse map, if one uses the first method

of graph connection described in the previous section, omitting this step may result

in parts of the graph being unconnected if the lines created in the previous step for

an obstacle do not intersect with any other obstacle. This is because of the way the

final step generates the graph from the line segments, and can be avoided by using

either of the other two methods described above. This step provides greater benefit

on sparse maps; its value rapidly diminishes as the map density increases.

3.4.5 Create Nodes and Edges

The final step takes the list of line segments and creates the graph from it.

The finished graph consists of a list of nodes, each containing a position value and a

list of connections to other nodes. To create it, the generator takes each line segment
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Figure 3.8: The final graph.

in the list and finds its endpoints. It then checks the graph to see if either endpoint

has previously been added to the graph; if not, the generator creates a new node for

each unique endpoint, adds the connection to both nodes’ list, and then adds the new

nodes to the graph. If the graph already contains a node for one or both endpoints,

the graph adds the connection to the list of the existing node(s), but does not add a

new node to the graph for the duplicate endpoint.

Once the generator has added all the line segments, we can clean up the graph

by merging nodes within a certain distance of each other into one node. The gen-

erator merges nodes by taking two close nodes, setting the position of one node to

the average of the two nodes’ position values, unifying the set of their connections,

and then removing the second node from the graph. One should note that merging

does not remove any edges from the graph, only nodes. Merging reduces the num-

ber of nodes in the graph, reducing the graph’s size, but merging can bring nodes

and connections closer to obstacles by averaging the positions, reducing the safety

margin. The user can define a distance between zero (no merging) and infinity (all
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nodes merged into one) for the merges. An optimal value for the merge distance will

increase the quality of the graph significantly by reducing the number of redundant

and useless nodes without reducing the available connections. We have found that

a value approximately half the distance of expansion provides optimal merging of

redundant nodes without significantly reducing the margin of safety.

3.4.6 Path Smoothing

After merging, the graph can be used with the search algorithm of choice,

however we have added one final optimization. This optimization actually occurs

during path generation by dynamically adding connections to the graph. Because

of the extreme computational requirements of creating a complete graph (one with

all possible connections) most graphs created will be suboptimal. As a result any

path created using that graph will also be suboptimal. This results in unnecessarily

‘jagged’ paths, which slow the robot down by causing it to repeatedly change direction.

The path smoothing algorithm reduces the effects of using a suboptimal graph by

combining the jagged path segments when possible, and adding new connections to

the graph as it finds them. After the path planner generates a path from the graph

the path smoother checks the path and removes unnecessary points, shortening the

path and straightening out some path segments.

The path smoother keeps track of three points — the current point, i, the last

valid point, j, and the point to check against, k. To begin, i is set to the first point in

the path, j is set to the second point in the path, and k is set to the third point. The

line segment between the points i and k is then checked to see if it intersects with an

edge of any of the expanded obstacles. We use the expanded obstacles to ensure the

smoothed path maintains the desired safety margin. If the path segment does not

intersect any edge, then a robot can travel directly from point i to k without going

through j, and j can be deleted from the path. If segment (i, k) does intersect then

the robot cannot bypass point j without hitting an obstacle and we must keep j in

the path. The current point i is set to the last valid point j, and j is set to k. We
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then increment k and repeat the process of removing unneeded points until we reach

the end of the path.

Algorithm 3.3 shows the process in shorter form. Note that in the code im-

plementation we do not actually remove the points from the path, instead we create

a new vector object containing only the valid points. Creating a new vector instead

of deleting elements from the old one actually speeds up the algorithm, and pre-

vents pointer errors in the old vector caused by deleting elements while still iterating

through the vector.

Algorithm 3.3 Path Smoothing

1: Set i = 0, j = 1, k = 2, n = path.size()

2: while k < n do

3: while line lpi,pk
does not intersect any extended obstacle AND k < n do

4: Remove pj from path

5: pj = pk

6: pk = pk+1

7: end while

8: pi = pj

9: pj = pk

10: pk = pk+1

11: end while

After smoothing the path we add any new connection to the graph created by

the points (i, i+1) in the path. We do this after smoothing is complete to reduce the

number of new connections added, and ensure that only those connections actually

used get added to the graph. As the planner creates paths the line smoother will

continually add additional connections to the graph. The new connections increase
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the size of the graph somewhat, but they also speed up the line smoother by reducing

the number of points that must be removed from the path, because the planner

will use the new optimal connections when creating the path. The number of new

connections added will also decrease with time, helping limit the growth of the graph.

It may seem like the line smoother would continue increasing the size of the

graph arbitrarily, however as more connections are added, the planner uses them to

create better paths, and fewer new connections need to be added. If the additional

graph size and computation time involved in using the line smoother proves pro-

hibitive, it can be turned off without rendering the graph unusable. As noted before,

when not using path smoothing, the path planner will return longer paths with more

points than those created with line smoothing on. Unsmoothed paths will also tend

to zigzag more than smoothed paths, and can seriously degrade the average speed of

a robot following the path. In practice we have found the line smoother generally

requires only slightly more time to complete than the search algorithm, and that

the benefits, both in better paths and an improved graph outweigh the additional

computation time required.

3.5 Results and Analysis

To see how our graph performed against gridding and Voronoi we ran several

tests. In addition, we have tested the graph in dozens of hours of actual game-play.

For the first test we planned a large number of paths using each type of graph. We

planned the paths using the same set of random starting and ending locations for

all graph types to ensure a fair comparison. To reduce the probability of a single

map affecting the performance of any particular graph type, we planned 160 paths

on each of three different maps, for a total of 480. After generating each path we

computed the minimum distance that path came within any obstacle, and computed

the average minimum distance for each of the three graph types. This average gives

an approximation of the relative safeness of paths generated using each type of graph.

Table 3.1 shows the results. When created with a buffer zone of 120 mm, our algorithm

generated paths with an average minimum distance 22% greater than the grid array,
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Table 3.1: Average minimum distance from an obstacle for paths generated from
each type of graph. Values given in mm.

Minimum Dist. to Obstacle

safe-path: 112

Grid Array: 92

Voronoi: 54

and 107% greater than Voronoi. The fact that the minimum safe distance was less

than the specified 120 mm can be attributed to the node merging algorithm, which as

we noted before causes paths to move closer to obstacles. Omitting the node merging

step brings the minimum distance to 120 mm. We can tweak the grid array’s buffering

algorithm to achieve approximately the desired distance of 120mm, but every time the

desired value changes it requires recalibration. Safe-path creates the desired distance

during generation without requiring any changes to the algorithm.

After running the first tests, we calculated the memory requirements of each

graph, not including any additional memory used while searching the graph. Our

Voronoi implementation and graph had very similar memory requirements - 14 KB,

and 10 KB respectively for our field with 50 obstacles. As noted previously, gridding

requires 800 KB for the same map with a ratio of 1 cm per element. With a simulated

map 100m2 containing approximately 250 obstacles, Voronoi required 80.6 KB, graph

required 34.4 KB, and gridding required 3.2 MB for best results. As can be seen,

both Voronoi and graph scale fairly linearly with the number of obstacles. Gridding

scales well with the number of obstacles, but poorly with map size because of the

extra memory required for larger arrays; doubling the map dimensions quadruples

the memory required.

Comparisons of graphs for the final requirement are somewhat subjective, but

safe-path and Voronoi do well, since both types consist of a list of nodes and edges
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with little redundant or useless information, while a grid array contains large amounts

of unnecessary information, and no correlation between elements.

One final comparison is that of generation time. While low generation over-

head was not one of our main requirements, an algorithm with excessive generation

overhead will not be useful in real-time conditions. The overhead to generate a graph

using the safe-path algorithm is equivalent to that of gridding or Voronoi for maps

with less than 50 obstacles. However, it increases as more obstacles are added, and

with more than 100 obstacles the generation overhead becomes significant. In a large

map with 250 obstacles, generation using the safe-path algorithm required between

18 and 20 seconds on a Pentium 4 2.5 HZ computer, compared to 1.5 - 3 seconds to

generate a grid array or Voronoi graph on the same machine. Reducing the length

of the generation is suggested as a major focus of future work on the algorithm. We

note that the overhead for generation is paid just once using safe-path or gridding, so

computational efficiency is not a major concern. It should be noted also that while a

safe-path or grid array graph remains static once generated, a Voronoi graph requires

regeneration every time the path changes. The algorithm must use the starting and

end point of the path during generation, and because any change in one part of a

Voronoi graph can potentially affect the whole graph, it must regenerate the graph

for every path. More advanced versions of the Voronoi graph may not suffer from this

defect, but in the simple case the Voronoi generation overhead must be paid every

time a path is generated.

We measured the execution time for planning paths using the three graph

types, but since the different graph types require different search algorithms, the

comparisons are not meaningful. While our approach and Voronoi produce similar

data structures and can therefore be searched with similar algorithms, the grid array

requires a different approach with substantially more overhead. We note that, using

Dijkstra’s search [17] on a moderately sized-graph of approximately 40 obstacles, our

path planner generally required less than 2-3 ms to generate a path when using path

smoothing, and less than 1 ms with no smoothing. We have run several hours of

testing for the three types in actual game situations, with the following conclusions:
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The grid array produces the shortest paths, with reasonable safety margins, but suf-

fers from long search times. The long search time causes significant response delay

to user input; in addition the agent AI routines take too long to respond to changing

game situations, causing poor performance. In a less time-critical application grid-

ding would have great application. The Voronoi approach works best when used in

conjunction with some sort of obstacle avoidance routine. This helps minimize the

effect of the low safety margin its paths provide. However, the tendency of Voronoi to

create graphs with no access to certain areas makes it completely unusable on certain

maps, and unreliable in general. The safe-path algorithm provides a good margin of

safety, and while not providing as optimal paths as gridding, the fast search times

provide the best response of any of the three types. Safe-path has proved its utility

over dozens of hours of use, with several different map types and multiple interface

types.

(a) (b)

Figure 3.9: (a) A path generated using the safe-path algorithm. (b) A path
generated using a grid array.
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3.5.1 Hardware Results

This algorithm was developed and tested using our simulation framework. We

have also tested the algorithm extensively using hardware robots. These hardware

tests confirmed that the safe-path graph’s ability to maintain a higher minimum

distance from obstacles creates an advantage for robots by reducing the number of

collisions with obstacles, especially when used in conjunction with an obstacle avoid-

ance algorithm. This ability to reduce collisions reduces the chances that a robot

will become non-functional due to a collision and reduces the amount of time a user

is inconvenienced by robots that have become stuck on obstacles. It also reduces

wear and tear on the robots. While we have not performed nearly as many hours of

hardware tests as in simulation, the nature of the test-bed ensures that safe-path will

function similarly in hardware as in simulation, where it has proven utility.
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Chapter 4

Multi-Agent Experiments on the MAGICC Test-bed

4.1 Introduction

While the development of the test-bed was a learning experience, it is not an

end in itself. This chapter discusses several of the experiments run on the test-bed

by other researchers, and the functions of the test-bed that made them possible. It

does not present conclusions reached, or data gathered by the researchers, as that is

beyond the scope of this thesis. Interested parties can consult publications by other

researchers for more information.

4.2 Standard Experimental Setup

This section describes the basic setup of the environment for directing a team

of robots. It details the interface, structure, and capabilities of the basestation and

robots, and gives examples of its use.

In order to more easily develop and run experiments, I have created a ba-

sic interface that includes a basestation GUI, some robot controllers and the basic

communications infrastructure in the robot agent. This should allow future users to

quickly add appropriate agent code, without the need for agent infrastructure devel-

opment.

4.2.1 basestation

The basestation was developed using QT, and provides a graphical interface

for interacting with all the agents on a team. Figure 4.1 shows the display of the

basestation. The interface is divided into two parts: the map, and the toolbar. The

map displays the obstacles, the agents on the team, and the locations of any enemy
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Figure 4.1: The basestation GUI. Friendly robots, flags and UAVs are blue, while
enemies are green.

robots that have been detected. The basestation uses the configuration file to generate

the obstacles displayed on the map. Clicking on a robot selects that robot and allows

the user to issue commands to the robot. Multiple robots can be selected and issued

commands by holding down the control key during selection. The checkboxes on the

left allow the user to toggle output of timing information to the console, display of

the communication radius of each agent, including the basestation, and display of the

robot’s sonar information.

Each robot has a mini display window that can be brought up by pressing

the corresponding button in the lower left part of the GUI. The mini display window

holds tabs for movement, commands, and status. The movement tab allows the user

to select the path-planning type, and manually direct the robot using a ’driving’

widget. The command tab presents buttons for tag, win, surrender, pick up and drop

flag, and attack and defend flags. The attack flags button sends the robot to attempt

to pick up each enemy flag, while defend flag creates a cyclical path between all the
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friendly flags, which the robot follows. If it senses any enemy robots with its sonar

it will chase them and attempt to tag them. If successful, or if it loses track of the

enemy robot, it returns to its old path.

4.2.2 Robot Agent Structure

The robot agents’ structure consists of some initialization code, followed by

a while loop containing the behavioral code. After each iteration of the loop the

agent pauses, releasing the CPU so that other processes can run. The loop can run

anywhere from 1-100 iterations per second. The agent process is timing-sensitive

only to user commands, meaning that there must be no noticeable delay between the

user giving a command, and the agent’s acknowledgement. The behaviors themselves

are timing-insensitive, meaning that delays between loop iterations will generally not

cause erratic behavior. The exceptions to this are reactive behaviors such as chase,

evade and tag. Any delay must be short enough that the situation does not change

dramatically between iterations. Practically speaking this is not a problem, as the

delay is generally only a fraction of a second between iterations. In practice, the loop

timing is set at about 10 iterations per second. This provides acceptable performance

with teams of 4 or more agents, and still reacts well to user input and changes to the

world state.

User commands are sent to the individual robots in string format, allowing

for easy debugging. Table 4.1 shows the list of commands currently accepted by the

robot agents. The agents parse the command and then call appropriate functions to

handle them. At each time-step agents send their position data to all other agents

within range. The UAV sends all other agents, including the basestation, the location

of flags as it finds them; subsequently it transmits only changes in flag location. The

UAV also sends the locations of any enemy robots it sees. Robot agents use this world

state information to make decisions, or as part of individual behaviors. For example,

the AutoPickup behavior checks the position of enemy flags vs. its own position, and

when properly positioned, issues a pickup request to the Referee.
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Table 4.1: Robot Commands

Command Issuer Function

AgressionMode basestation Sets the aggression mode

AutonomyMode basestation Sets the autonomy mode

CyclicalWaypoint basestation Adds cyclical waypoint to the agent’s list

DefendFlags basestation Triggers DefendFlags behavior

DropFlag basestation Tells agent to issue drop flag request

GenerateCyclicalPath basestation Generates cyclical path using point list

GetFlag basestation Tells agent to issue a pick up flag request

GoToPoint basestation Agent plans a path to the specified point

PathType basestation Sets the path planner to use the specified type

Quit Referee Causes the program to exit

Restart Referee Alerts agent that the game has restarted

SetVel basestation Sets robot’s velocity to the specified value

Start Referee Alerts agent that the game has started

Stop Referee Alerts agent that the game has stopped

Surrender basestation Tells agent to issue surrender request

Tag basestation Tells agent to issue tag request

ToggleChasing basestation Toggles chase mode

ToggleEvading basestation Toggles evade mode

ToggleSonar basestation Toggles sending of sonar data

TurnToPoint basestation Robot turns to face the specified point

Untag basestation Tells agent to issue untag request

Waypoint basestation Extends current path to go to the specified point

Win basestation Tells agent to issue win request
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4.3 Autonomy and Aggression Levels

Interfaces allowing one human to control multiple robots engaged in multiple

separate tasks while minimizing the total idle time for the robots present numerous

areas of research. Using the MAGICC test-bed, I expanded the basic basestation

and robot agents described above, using the concept of aggression levels coupled

with autonomy levels. Aggression levels moderate the behavior of a robot, while the

autonomy level moderates the amount of decision making an agent will do on its

own. Coupling these two allows a user a lot of flexibility in setting the behavior of

the robots.

For this project I wrote a large number of self-contained low-level behaviors

that can be used to build higher-level behavior. For example, the AutoEvade behavior

causes the robot to move away from enemy robots when it senses them with its sonar.

The AutoWin behavior plans a path back to the robot’s home side whenever the

robot picks up the enemy real flag. When combined, the robot will evade enemy

robots while attempting to move back to its own side. Without the evade behavior

the robot will move directly back to its own side, ignoring any enemies sensed along

the way. Together they work to return the robot safely home with the flag. Many of

these behaviors can be explicitly accessed using the setup described in Section 4.2;

what I have done here is combine them in useful ways, allowing the user to select the

types of behavior a robot should exhibit. Table 4.2 provides a list of the autonomous

behaviors I developed and a short description.

The autonomy modes define how much work the agent will do on its own. An

agent with no autonomy will not do anything without express user input. The user

must tell it to pick up flags, tag enemies, where to move, etc. This mode provides

the basis for measuring the efficiency of the other modes.

A partially autonomous agent will tag enemies that come within range, pick

up flags when moved to the proper position, move to the untag zone when tagged, and

in general do most low-level behaviors on its own as the situation warrants. It does

not make any decisions on its own, however, and will not coordinate its actions with

other robots unless specifically directed by the user. This mode frees the user from
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Table 4.2: Autonomous behaviors

Behavior Description

AttackFlags Visits each enemy flag and attempts to pick it up

AutoChase Chases enemies detected by sonar

AutoEvade Evades enemies detected by sonar

AutoPickup Picks up flag when in suitable position

AutoTag Tags enemies who come within tag range

AutoUntag Plans path to untag zone; requests untag upon arrival

AutoWin Plans path home after picking up flag; requests win upon arrival

DefendFlags Generates cyclical waypoint between flags

having to manually execute basic behaviors, while still making strategic decisions.

For example, the user would still have to direct the robot to the proper position to

pick up an enemy flag. Once there, the agent would automatically attempt to pick

up the flag and return home if successful. Robots in this mode can be set to go to

full autonomy mode after some time delay with no user input received. This reduces

the effects of neglect when a user has more robots than they can handle efficiently.

The agent returns to partial-autonomy mode after receiving any input from the user.

Fully autonomous agents make all strategic decisions for themselves, based on

the current game state. They base their decisions on the current aggression mode

selected by the user, the location of other robots (friendly and unfriendly) and flags.

The user can override the current behavior selected by the agent, but the agent will

resume its activities after following the user directive.

4.4 Interface Studies

The test bed has shown its usefulness in a study by the Human-Centered Ma-

chine Intelligence Lab (HCMI Lab) associated with the Computer Science department
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at Brigham Young University. This study, done by Josh Johansen, focused on the

effects of interface design and functionality on neglect tolerance, situation awareness

and attention management. For this study they developed the GUI shown in Fig-

ure 4.2. This GUI acts as the basestation, and also contains the agent code for all

robots on the team. Each robot has a separate map display which the user switches

between using tabs on the GUI. Users playing the capture-the-flag game randomly

had their attention removed from the game by the GUI, which required them to

answer math questions before they could resume play. While they answered the ques-

tions the game went on, requiring the user to adapt to a changed situation on return.

The game was played with various assistance options turned on or off, and the GUI

measured the performance of the user with each option for comparison purposes. The

GUI provides four options to help the user: a fading tail, a waypoint manager, sonar

memory, and an attention manager.

The fading tail provides the user short-term, visual feedback of a robot’s path,

by providing a ‘tail’ following the robot. The end of the tail fades out over time,

to prevent the screen becoming overloaded with information. The tail should help a

user rapidly assess what the robot has been doing while his attention was elsewhere,

and backtrack if necessary.

The waypoint manager allows the user to set points that he would like the

robot to go to. The agent plans its own path between the points, freeing the user

from unnecessary micro-management of the robot’s movement. The user also has the

option of modifying individual points along the path, or of making the whole path

cyclical. The waypoint manager allows the user to set the robot’s behavior for a

longer period of time, reducing the effects of neglect.

In the HCMI lab GUI the map is not processed and displayed before the

game begins, so they have developed a method for the robots to use their sonar to

discover the layout of the map. The sonar memory filters out motionless objects

such as obstacles and displays them on the GUI, slowly building up a map as the

robots move about the field. In addition, mobile objects are compared against the

information collected, allowing the user to identify enemy robots. The sonar memory
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Figure 4.2: The GUI used in the human-factors work done by the Human-Centered
Machine Intelligence Lab at BYU.

helps the user understand the robot’s position relative to the objects on the field and

react to enemies.

The attention manager provides visual or audio feedback when a robot re-

quires attention, e.g., a robot cannot complete a command, becomes stuck or tagged,

or has some other unexpected event requiring user input. The attention manager uses

different signals depending on the urgency of the problem. For example, if a robot

is unable to complete a command, the attention manager signals the user through

beeps, flashes and text, while lesser problems get communicated with simple oscillat-

ing colors. The attention manager allows the user to divert his attention for a longer

time—span, and still respond to problems with the robots. It also helps the user

respond to problems in an efficient fashion, by signalling which problems are most

urgent.
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4.5 Formation-based Team Control

Jeff Anderson’s thesis work in multi-agent studies involves the use of forma-

tions to control teams of robots in the completion of a task. Based on previous work

by Tucker Balch and Ronald Arkin [18], Jeff uses formations directly with other be-

haviors to assist human operators in controlling a team of robots. After setting the

formation, the user can then control the robots as a group, commanding them to

move to a location, or follow enemy robots for example, as a single entity. He has

shown that the robots can maintain a formation while executing other behaviors. The

formations act as building blocks for more complex team behaviors.

In addition to research on formation control, Jeff is running experiments on

neglect tolerance and human factors using the formations and team behaviors already

developed. Neglect tolerance is a metric used to analyze an agent’s performance when

neglected by the human operator. A neglect-tolerant agent will have a smaller degra-

dation than one with lower neglect-tolerance. Neglect is simulated by interrupting

the user’s control of the team by suspending the display of the field temporarily. The

robots must run on their own for a certain period of time before the user is allowed to

resume control. The efficacy of each control scheme is then measured by the time it

takes to accomplish the task while suffering the forced interruptions. The study hopes

to show that using team-based formation behaviors provides more neglect-tolerance

than having the user control individual robots.
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Chapter 5

Conclusion and Future Work

5.1 Multi-agent Test-bed

During our work on the test-bed we struggled to balance two important prin-

ciples. First, overloading any single critical process in the system will slow the entire

system down; the balance of functions between system processes plays a critical role

in determining system performance. Second, too many processes make the system

unwieldy and difficult to use. A large number of critical processes creates substantial

system complexity in the code organization and structure, the communication system

between processes, and in understanding the relationships between modules. In ad-

dition to being unwieldy for use in experiments, such a system increases the difficulty

of maintaining and updating the code, increasing the likelihood of its obsolescence.

Finding a good balance between these two competing principles early in the system’s

design will reduce the amount of time spent later in system revisions. In our de-

sign we went from one extreme to the other, with less than satisfactory results. Our

final design achieved a good balance in the number of processes and the functions

they perform, with little redundancy. Each process performs a minimal set of related

functions, without doing too much or too little.

The design of our timing system for the loops played an important part of our

ability to achieve this balance. In the early designs the timing loops used the CPU

in an inefficient manner, leading us to believe we had less processing power avail-

able. This in turn caused us to increase the number of processes, leading to a larger

more complex system in an attempt to reduce the amount of work allocated to each
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process. With a better timing strategy we were able to increase the workload given

to each process, substantially reducing the size of the system. Properly estimating

the capabilities of the hardware the system runs on would have alerted us sooner to

the real source of our performance problems.

Having overcome our original errors, we found it useful to place similar func-

tions into a single process. For example, placing the hardware control loops and

simulator into the same process allowed for complete mode transparency. The same

process handles robot movement in both modes, and uses the same movement com-

mands in both simulation and hardware modes. The user can program agents using

the most sophisticated movement types available, debug the agents in simulation, and

verify the results in hardware without changing anything other than a command line

argument. This simplicity reduces the burden on the programmer to handle different

modes in software, and increases the realism of the simulation. One of the strongest

points of our system is this mode transparency.

For control loops and other time sensitive loops, it is important to separate

those loops from other less-time sensitive loops. In the beginning the control function

(requiring 30 fps (frames per second)) for each robot was processed in that robot’s

AI loop, which also performed functions such as path-planning, communications and

other less time sensitive functions (10-15 fps). The AI loop could not perform at a

high enough rate to satisfy the control laws, and thus the hardware performance of

the robots was severely degraded. Isolating the loops allows them to run at their own

rate without being slowed by other less time-critical functions.

When possible, we discovered that direct communication between modules is

best. This can be complicated with multiple robots, but in our test-bed MCF made

it fairly simple. The Referee necessarily monitors inter-agent communication, but all

other communication takes place directly between modules and agents. This actually

reduces the complexity of communications by allowing for more a logical design and

more reusable code. In the early version of the test-bed the Referee had to handle

many messages it did not use directly, such as move messages, vision, etc. This

increased the possibility of errors during transmission, and made finding and fixing
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problems more difficult by increasing the number of places in the code a message

was looked at. The final system’s modules handle only messages they use directly,

making for more logical design. Errors can only occur at either end of a point-to-point

transmission, making debugging simpler. The flag-client communication object plays

an important role in our test-bed by handling these communication details. Removing

the burden of communication from the programmer reduces the design time of new

experiments.

5.1.1 Future Work

Future work on the test-bed is likely to be limited to minor extensions which

increase the flexibility and adaptability of the test-bed for future experiments. These

could include changing the Referee so that it can handle arbitrary polygonal obsta-

cles, and more accurately depicting robot shapes. Modifying the Referee to allow

it to monitor and enforce communication bandwidth limitations for the agent would

allow some interesting experiments. Finally, some documentation to help future users

understand the code structure would be an important addition as well. Overall, the

test-bed is solid, stable, and fast, allowing it to serve as a useful tool well into the

future.

5.2 Safe-Path

We have detailed the important aspects of a good graph generation algorithm:

that it takes into account the type and shape of obstacles, scales well both with map

size, and the number of obstacles, has moderate memory usage, and has a useful

data structure. We have shown two common graph generation algorithms, a Voronoi

algorithm and a grid array, and shown why neither alternative suffices in a dense

urban environment such as the one modeled here in the MAGICC lab. Finally, we

have presented a unique graph generation algorithm, the safe-path algorithm which

fills all the requirements of a good graph algorithm as noted above, and shown its

effectiveness in actual hardware tests.
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5.2.1 Future Work

Future efforts will focus on reducing generation overhead and eliminating the

requirement of a priori knowledge of the map. We hope to modify the algorithm to

allow individual obstacles to be added to the graph as they are found by the robots as

they explore their environment. Since most of the generation overhead is due to large

number of obstacles that must be checked in different functions, the most likely way

of reducing the overhead will involve reducing the number of checks through some

sort of intelligent checking mechanism. Such a mechanism would reduce the number

of expensive function calls, perhaps by rejecting obstacles based on relative locations.

Eliminating the need for a priori knowledge of the map will require removing

path segments that cross the new obstacle, and then integrating the new obstacle

into the existing map. A simple way to do this would be to regenerate the graph

after adding every new obstacle, but as the number of obstacles rises, the cost in

computation time would become prohibitive using this method. An ideal method

would break the computation time into n smaller chunks, where n is the number of

obstacles, and where each chunk is 1/n of the generation time of the entire graph.

This would allow us to generate the graph as time permits, rather than all at once.

For very large maps this would be a great advantage because the initial gen-

eration time can be quite large. Since adding new obstacles will only affect a small

part of the graph, breaking the graph into smaller more computationally efficient sub-

sections would further reduce the computation required without affecting the quality

of the graph. As the robots explore the map, they would add found obstacles to the

graph one at a time, regenerating only a small part of the graph. Initial exploration

would require means of navigation other than the path-planner, but once explored,

areas could be safely navigated. Such a method would have particular application

in military or search-and-rescue type applications in unknown settings, especially in

conjunction with a UAV providing visual map updates.
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5.3 Experiments

This thesis discussed three studies done using the MAGICC test-bed. Each

study utilized the basic infrastructure of the test-bed in different ways. My own

study used the test-bed in the ‘classic’ capture-the-flag mode it was designed for. I

used all the capture-flag-rules as originally specified to design an autonomous team

of robots. Each agent had its own AI code, running in a separate process. Jeff

Anderson’s human factors study utilized the same basic structure, while utilizing a

set of game rules designed specifically for his work. Finally, Josh Johansen’s work

utilized a centralized structure with no distributed processing at all. The variety,

both in intent and design, of these three studies, demonstrates the flexibility offered

by the test-bed infrastructure. While based around a specific game, the test-bed does

not force the user into following the rules, instead allowing researchers to create their

own structure for their experiments. This flexibility will allow the test-bed a longer,

more useful life as a research tool.

These studies had the additional effect of stress-testing the infrastructure,

both during and after work was finished. My autonomous team could run for several

hours without crashing, freezing or otherwise demonstrating errors in the infrastruc-

ture. We achieved this level of stability through hours of testing, debugging, and

re-testing. The test-bed is fast, stable, and robust; harmful messages get discarded

by the infrastructure before they can cause errors. The entire infrastructure can run

on a single Pentium 4 2.4 GHz machine, with two teams of three robots, a UAV,

and a basestation without significant slowdown. Finally, since all three studies used

the safe-path graph generator and path planner, they served to test its utility too.

After generating the graph, the path-planner consistently allows the user to plan

paths without any noticeable response delay. In my basestation’s case, the user can

repeatedly create a new path using the mouse and the agent will plan the path and

return it to the basestation as fast as the user can click with the mouse. The plan-

ner is fast enough that an agent can plan a new path at every time frame without

getting bogged down. In several hours of using it, I have not experienced a crash,

unexplainable path, or other error. While anecdotal, this is evidence of its stability

and usefulness.
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5.4 Conclusion

In this thesis I have presented the design evolution of a flexible test-bed for

multi-agent studies. The final test-bed provides a stable, robust platform suitable for

a variety of studies, as demonstrated by the differences in the three studies already

performed using it. In addition I have presented a unique algorithm for the generation

of a graph for path-planning in congested urban environments. Hours of play-testing

have shown the speed and reliability of the safe-path algorithm, and it has become the

de facto path-planning method used in the test-bed. These tools should provide future

students a platform from which they can more easily design and run experiments,

reducing the programming overhead and design time of future work, and thereby

increasing the efficiency and scholarly output of the MAGICC lab.
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