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Chemical bonding, elasticity, and valence force field models: A case study fora-Pt2Si and PtSi

J. E. Klepeis,1 O. Beckstein,2 O. Pankratov,2 and G. L. W. Hart3
1Lawrence Livermore National Laboratory, University of California, Livermore, California 94551

2University of Erlangen-Nu¨rnberg, Erlangen D-91058, Germany
3National Renewable Energy Laboratory, Golden, Colorado 80401

~Received 6 February 2001; published 26 September 2001!

We have carried out a detailed study of the chemical bonding for two room-temperature stable platinum
silicide phases, tetragonala-Pt2Si and orthorhombic PtSi. An analysis of the valence electronic charge density
reveals surprising evidence of covalent three-center bonds in both silicide phases, as well as two-dimensional
metallic sheets ina-Pt2Si. These elements of the bonding are further analyzed by constructing valence force
field models using the results from recent first principles calculations of the six~nine! independent, nonzero
elastic constants ofa-Pt2Si ~PtSi!. The resulting volume-, radial-, and angular-dependent force constants
provide insight into the relative strength of various bonding elements as well as the trends observed in the
elastic constants themselves. The valence force field analysis yields quantitative information about the nature
of the chemical bonding that is not easily discernible from the more qualitative charge density plots. More
generally, this study demonstrates that the detailed variations in the elastic constants of a material contain
useful information about the chemical bonds that can be extracted using valence force field models. Inversely,
these models also allow for identification of specific elements of the chemical bonding with particular trends in
the elastic constants, both within a given material and among a class of related materials.

DOI: 10.1103/PhysRevB.64.155110 PACS number~s!: 61.50.Lt, 62.20.Dc

I. INTRODUCTION

Deposition of metallic platinum silicide compounds on
silicon substrates leads to the formation of rectifying junc-
tions, with a Schottky barrier of 220–240 meV~for holes! in
the case of orthorhombic PtSi onp-type Si ~001!.1,2 This
energy matches an important atmospheric ‘‘transparency
window’’ in the infrared region, making these materials well
suited to infrared detector applications. PtSi has also been
discussed as a promising candidate to replace Ti2Si in poly-
silicon interconnect applications in sub-half-micron
technologies.3–5 In light of these and other technological ap-
plications, as well as a general paucity of earlier treatments
of the fundamental properties of the platinum silicides, there
have been two recent in-depth studies of the atomic and elec-
tronic structures of two room-temperature stable platinum
silicide phases, tetragonala-Pt2Si and orthorhombic PtSi.
Becksteinet al.6 have carried out an extensive set of first
principles electronic structure calculations for both materials.
In addition to the electronic structure, they have calculated
all of the equilibrium structural parameters and zero-pressure
elastic constants for both phases. Francoet al.7,8 used a com-
bination of photoelectron spectroscopy, soft x-ray emission
spectroscopy, and x-ray absorption spectroscopy to study the
detailed electronic structure of orthorhombic PtSi. First prin-
ciples calculations of the partial density of states were also
carried out in order to aid in interpreting the experimental
spectra.

The present study is complementary to these two earlier
treatments and makes contact with them in a number of
ways. The combination of the atomic and electronic structure
gives rise to the chemical bonding of a material. The elastic
constants and the various experimental spectroscopies reflect
the details of this bonding but they do so indirectly. One of
the goals here is to directly elucidate the fundamental nature

of the chemical bonding in the two silicide phases studied
previously. Towards that end we have calculated and ana-
lyzed the valence electronic charge density for both silicides.
However, this analysis is only qualitative and thus we have
made further attempts to gain a more quantitative under-
standing. The previous first principles study noted a number
of interesting trends in the elastic constants, both within a
given material and among the two silicides and the pure Pt
and pure Si phases.6 In the present work we analyze these
trends in much greater detail and in a more quantitative fash-
ion by constructing valence force field models for all four
materials. The models are obtained by fitting the first prin-
ciples elastic constants while also using insights gained from
the charge density analysis to guide the particular choice of
radial and angular interactions. In turn, the magnitudes of
these various interactions, as obtained from the fits, provide a
quantitative measure of the relative importance of different
elements of the chemical bonding. In addition, the models
can be inverted by expressing the various elastic constants in
terms of the volume-, radial-, and angular-dependent interac-
tions. We are thus able to identify the individual trends in the
elastic constants with particular elements of the chemical
bonding.

In the present work we have two overall goals. The first is
to gain a quantitative understanding of the chemical bonding
in tetragonala-Pt2Si and orthorhombic PtSi. The second
goal is to demonstrate, through a case study of these two
silicides as well as pure Pt and pure Si, that in general terms
the variations of the elastic constants of a material contain
useful information about the chemical bonding and that va-
lence force field models are a convenient means for extract-
ing this information. Moreover, by inverting the models and
identifying the chemical interactions responsible for the ob-
served trends in the elastic constants we are thereby able to
obtain a more intuitive understanding of the connection be-
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tween chemical bonding and the mechanical properties of a
material. Given this more general goal we have therefore
described the construction of the models and the analysis of
various elastic constant trends in some detail. Section II pro-
vides the relevant details regarding the atomic structure for
the two platinum silicides studied here. In Sec. III we sum-
marize the previous elastic constant calculations from Ref. 6.
The valence electronic charge densities are analyzed in Sec.
IV and the valence force field models are presented in Sec. V.
Our results are summarized in Sec. VI.

II. ATOMIC STRUCTURE

The stable phase of pure Pt at ambient conditions is face-
centered cubic~fcc!,9 while for pure Si it is cubic diamond.10

The conventional unit cells of the two platinum silicides
a-Pt2Si and PtSi are shown in Fig. 1. The room-temperature
(T,968 K) a-phase of Pt2Si occurs in the body-centered
tetragonal~bct! structure.11,12 The Strukturbericht designa-
tion is L82b and the space group isI4/mmm ~No. 139!.13

The two symmetry-equivalent Pt atoms in the primitive cell
occupy Wyckoff 4(d) sites and the one Si atom occupies a
2(a) site. The atom positions are completely determined by
the space group symmetry but there are two independent
lattice constantsa andc. PtSi has a primitive orthorhombic
structure with four symmetry-equivalent Pt atoms occupying
Wyckoff 4(c) sites and four symmetry-equivalent Si atoms
also occupying 4~c! sites.14–16 The Strukturbericht designa-
tion for this MnP-type lattice isB31 and the space group is
Pnma ~No. 62!.13 The atom coordinates along thea and c
axes are not completely specified by the space group sym-
metry and thus there are four free internal structural param-
etersuPt, vPt, uSi , and vSi . The structure also has three
independent lattice constantsa, b, andc. All of the relevant
equilibrium structural parameters for each of these four ma-
terials are given in Table I, including both the experimental
values and the self-consistent theoretical values calculated
from first principles in Ref. 6.

III. ELASTIC CONSTANTS

Since we will rely heavily on the detailed results of the
first principles elastic constant calculations from Ref. 6, we

briefly summarize them here. The change in the internal en-
ergy, DE, of the crystal is expanded to second order in the
elements of the strain tensorei , using Voigt notation,

DE~V,$ei%!5
V

2 (
i j

ci j eiej , ~1!

whereV is the volume of the unstrained crystal and theci j
are the second-order elastic constants.6 All of the elastic con-
stant calculations were carried out using the theoretical equi-
librium structural parameters listed in Table I.

Crystals with cubic space group symmetry have only
three distinct, nonvanishing elastic constants. The theoretical
values of these three elastic constants for both pure Pt and
pure Si, as obtained in Ref. 6, are listed in Table II together
with the corresponding experimental values. The theoretical
bulk moduli were obtained from the theoretical elastic con-
stants@B05 1

3 (c1112c12)#. We note that in the case of Si the
calculation ofc44 required a relaxation of the positions of the
Si atoms within the distorted unit cell.

Tetragonala-Pt2Si has six independent and nonzero elas-
tic constants. Three of these elastic constants,c11, c12, and
c44, correspond to strain-induced symmetry reductions for
which the positions of the Pt atoms are no longer completely
fixed by the symmetry. The strain-induced forces drive them
into energetically more favorable positions~the correspond-
ing forces on the Si atoms are identically zero by symmetry!.
The first principles results for the six elastic constants of
a-Pt2Si are given in Table III. The values labeled as ‘‘fro-
zen’’ correspond to keeping all of the atoms held fixed at the
positions determined solely from the strain tensor, while the
elastic constants labeled ‘‘relaxed’’ were obtained by relax-
ing the strain-induced forces on the Pt atoms. The bulk
modulus is calculated from the tetragonal elastic constants,
B05 1

9 (2c111c3312c1214c13), and has the same value in
the frozen and relaxed calculations.

There are nine independent and nonzero elastic constants
for orthorhombic PtSi. Relaxation of the internal degrees of
freedom was necessary in calculating all nine PtSi elastic
constants because the atomic positions are not completely

FIG. 1. Conventional unit cells of~a! body-centered tetragonal
a-Pt2Si and ~b! orthorhombic PtSi. The relevant lattice constant
distances are illustrated in both cases.

TABLE I. Equilibrium theoretical~from Ref. 6! and experimen-
tal lattice constants~in a.u.! and internal structural parameters~for
PtSi!.

Material a0 b0 c0 Ref.

Pt theor. 7.403 6
expt. 7.415 30

a-Pt2Si theor. 7.407 11.241 6
expt. 7.461 11.268 12

PtSi theor. 10.583 6.774 11.195 6
expt. 10.539 6.778 11.180 15

Si theor. 10.22 6
expt. 10.26 31

PtSi uPt vPt uSi vSi Ref.

theor. 0.9977 0.1919 0.1782 0.5841 6
expt. 0.9956 0.1922 0.177 0.583 15
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fixed by the space group symmetry, even for the unstrained
crystal. The results of the calculations are listed in Table III.
The labels ‘‘frozen’’ and ‘‘relaxed’’ have the same meaning
as in the case ofa-Pt2Si. The two values ofB0 are obtained
from the elastic constants,B05 1

9 (c111c221c3312c12
12c1312c23). As expected, the relaxed value ofB0 is
smaller than the frozen value.

Figure 2 summarizes the calculations for all four materials
in terms of the trends of the elastic constants as a function of
the atomic percent Pt. Each of the curves corresponds to an
average of a different class of elastic constants, while the
symbols show the values of the individual elastic constants
themselves. Mechanical stability requires that6 1

3 (c121c13
1c23),B0, 1

3 (c111c221c33) @note that in the case of
a-Pt2Si the appropriate averages are13 (c1212c13) and
1
3 (2c111c33) becausec135c23 and c115c22 for tetragonal
crystals#. This stability requirement is reflected in the top
three curves in Fig. 2. We also see that these three curves
each increase monotonically as a function of atomic percent
Pt from pure Si to pure Pt, and we note that all three classes
of elastic constants represented by these curves correspond to

strains in which the volume is not fixed. Conversely, the two
lower curves labeled (c112c12)/2 andc44 correspond to the
two classes of elastic constants in which the strains are
strictly volume-conserving@in the case of PtSi the lowest
solid-line curve and large open circles correspond to elastic
constant combinations 1

4 (c111c2222c12),
1
4 (c111c33

22c13), and 1
4 (c221c3322c23)#. We see that in this case the

two sets of averages are approximately constant as a function
of atomic percent Pt. The significance of this difference in
the trends of volume-conserving versus non-volume-
conserving elastic constants is connected to the curve labeled
C0 and is discussed in Sec. V along with a general discussion
of the relationship between the magnitudes of the various
elastic constants and the chemical bonding.

IV. ELECTRONIC CHARGE DENSITY

In order to provide insight into the nature of the chemical
bonding ina-Pt2Si and PtSi we have analyzed the valence
electronic charge density in these materials. We have chosen
to plot charge density differences, the superposition of free

TABLE II. Elastic constants of Pt and Si. The first principles calculations, described in Ref. 6, were
carried out at the theoretical self-consistent lattice constants ofaPt57.403 a.u. andaSi510.22 a.u. The
theoretical value ofc44 in parentheses for Si is the ‘‘frozen’’ value obtained without allowing for internal
relaxation. The bulk modulus is calculated from the elastic constants asB05

1
3 (c1112c12). Experimental

values are extrapolated to 0 K. All values are in units of GPa.

Pt, theory~Ref. 6! Pt, expt.~Ref. 32! Si, theory~Ref. 6! Si, expt.~Ref. 31!

c11 346.860.5 358 163.4560.03 165
c12 262.760.3 254 62.1360.02 63
c44 87.560.3 77 79.8560.02 ~108.6! 79.1
B0 290.860.3 288.4 95.9060.02 97.0

TABLE III. First principles elastic constants ofa-Pt2Si and PtSi from Ref. 6. Calculations were per-
formed at the theoretical self-consistent lattice constants~Table I!. ‘‘Frozen’’ refers to keeping the atoms fixed
at the positions determined solely from the strain tensor and, in the case of PtSi, with the internal structural
parameters held fixed at their theoretical self-consistent values~Table I!. ‘‘Relaxed’’ indicates that a relax-
ation of the atomic positions was carried out, including a relaxation of the PtSi internal structural parameters.
Parentheses in the case of the relaxeda-Pt2Si elastic constants denote values where no internal relaxation
was necessary because of symmetry constraints~small differences with the frozen values come from using a
slightly more stringent convergence criterion on the energy!. The bulk modulus is calculated from the elastic
constants asB05

1
9 (2c111c3312c1214c13) for a-Pt2Si andB05

1
9 (c111c221c3312c1212c1312c23) for

PtSi. No experimental data is available for either material. All values are in units of GPa.

a-Pt2Si, frozen~Ref. 6! a-Pt2Si, relaxed~Ref. 6! PtSi, frozen~Ref. 6! PtSi, relaxed~Ref. 6!

c11 347.261.2 332.460.9 327.561.2 298.261.2
c22 313.860.0 269.360.8
c33 297.560.5 (298.060.4) 345.960.1 308.060.6
c12 225.061.2 239.661.0 157.760.6 156.460.8
c13 169.360.9 (169.460.8) 162.960.6 132.260.7
c23 153.460.1 165.160.6
c44 75.460.3 62.760.5 141.360.3 100.160.4
c55 113.160.1 104.560.1
c66 169.565.2 (169.365.2) 74.260.2 66.360.4
B0 235.460.6 (235.560.5) 215.060.2 198.160.3
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atom densities subtracted from the fully self-consistent crys-
tal density, thus emphasizing the formation of bonds. Since
we are using an all-electron method even the valence charge
density has a large amplitude close to each of the atomic
positions. Subtracting two such large numbers can some-
times produce unusual features in the plots described below,
but these are of no consequence to our discussion. Rather we
focus on the smoothly varying density differences in between
the atomic positions. In all of the gray-scale plots presented
below the brighter spots represent an increase in the density
relative to superimposed free atoms while the darker spots
represent a decrease, with exactly the same scale being used
in all of the plots.

A. FPLMTO method

The valence electronic charge densities were obtained us-
ing a full-potential linear muffin-tin orbital~FPLMTO!
method17,18 which makes no shape approximation for the
crystal potential. The crystal is divided up into regions inside
atomic spheres, where Schro¨dinger’s equation is solved nu-
merically, and an interstitial region. The wave functions in
the interstitial region are Hankel functions. An interpolation
procedure is used for evaluating interstitial integrals involv-
ing products of Hankel functions. The triple-k basis is com-
posed of three sets ofs, p, d, and f LMTOs per atom with
Hankel function kinetic energies of2k2 520.01,21.0, and
22.3 Ry~48 orbitals per atom!. The Hankel functions decay
exponentially ase2kr . The angular momentum sums in-
volved in the interpolation procedure are carried up to a
maximum ofl 56. The calculations presented here are based

on the local density approximation, using the exchange-
correlation potential of Ceperley and Alder19 as parametrized
by Vosko, Wilk, and Nusair.20 The scalar-relativistic Schro¨-
dinger equation was solved self-consistently. We did not in-
clude spin-orbit interactions and we used atomic sphere radii
equal to one-half the nearest-neighbor bond lengths. In the
case ofa-Pt2Si we included an empty atomic sphere at the
octahedral interstitial site, as well as the usual empty spheres
in the interstitial sites of pure cubic-diamond-phase Si. How-
ever, these empty spheres do not contribute to the basis but
merely improve the accuracy of the interstitial interpolation
procedure.

The Pt 6s, 6p, 5d, and 5f orbitals as well as the Si 3s,
3p, 3d, and 4f orbitals were all treated as valence states.
The semicore Pt 5s and 5p orbitals were treated as full band
states by carrying out a ‘‘two-panel’’ calculation. The second
panel band calculation for the semicore orbitals included the
Pt 5s, 5p, 5d, and 5f orbitals as well as all of the Si valence
orbitals. The Brillouin zone~BZ! sums were carried out us-
ing the tetrahedron method.21 We used the same mesh ofk
points for both the self-consistent total energy and charge
density calculations. In the case ofa-Pt2Si we used a shifted
24324324 (12312312) mesh in the full BZ, resulting in
1056~159! irreduciblek points in the first~second! panel. In
the PtSi calculations we used a shifted 12316312 (638
36) mesh in the full BZ, resulting in 288~36! irreduciblek
points in the first~second! panel. A shifted 28328328 (16
316316) mesh in the full BZ was used for fcc Pt, resulting
in 2030~408! irreduciblek points in the first~second! panel.
Finally, a shifted 12312312 mesh in the full BZ was used
for cubic-diamond-phase Si, resulting in 182 irreduciblek
points.

B. Pt and Si

We start with the well-known cases of pure diamond-
phase Si and fcc Pt in order to provide a baseline with which
to compare the results we obtain for the silicides. In Fig. 3~a!
we see the localized piling up of additional charge between
each pair of Si atoms that corresponds to the covalent bonds
in this material. Except for these bonds, the density is rela-
tively unchanged from the free-atom superposition in the re-
maining regions outside of the atomic cores, as can be seen
by identifying the ‘‘0’’ level in the accompanying scale bar.
This circumstance is in stark contrast to the case of fcc Pt in
Fig. 3~b!. In Pt the increase in density is spread approxi-
mately uniformly throughout all of the regions outside the
atomic cores. In fact, from this perspective Pt appears almost
free-electron-like, despite the more localized nature of the
states arising from the partially occupiedd band. Thus we
see that charge density difference plots such as those in Fig.
3 are clearly able to distinguish metallic bonding, as occurs
in Pt, from covalent bonding, as occurs in Si. For later pur-
poses we note that the nearest-neighbor spacing is 2.35 Å in
Si and 2.77 Å in Pt.

C. a-Pt2Si

Each Si atom ina-Pt2Si has eight Pt nearest-neighbors at
a distance of 2.47 Å@see Fig. 1~a!#. In addition to four Si

FIG. 2. Trends in the elastic constants as a function of atomic
percent Pt for pure cubic-diamond-phase Si, orthorhombic PtSi, te-
tragonala-Pt2Si, and fcc Pt. The different curves correspond to the
average values of different classes of the individual elastic con-
stants, as specified in the legend. For example, in the case of the
dotted-line curve labeled asc12, the line passes through13 (c12

1c131c23) in the case of PtSi and through13 (c1212c13) for
a-Pt2Si (c135c23 for tetragonal crystals!, while the open squares
show the actual values ofc12, c13, andc23, as appropriate for each
material. TheC0 force constant curve is scaled by the inverse of the
volume per atom in order to be able to plot it on the same scale as
the elastic constants. The significance ofC0 in connection with the
elastic constants is discussed in Sec. V.
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nearest-neighbors, each Pt atom also has four Pt second-
nearest neighbors at a distance of 2.79 Å and two Pt third-
nearest neighbors at 2.98 Å. The Pt second-nearest neighbors
form two-dimensional~001! planes while the Pt third-nearest
neighbors form linear@001# chains. The Pt second-nearest-
neighbor distance is very close to the nearest-neighbor dis-
tance in pure fcc Pt and thus we might expect these two-
dimensional planes to exhibit evidence of metallic bonding.
This is in fact what we see, as shown in Fig. 4~a! which bears
a strong resemblance to the analogous plot in Fig. 3~b!.
However, this approximately uniform increase in the charge
density in the regions outside the atomic cores is confined to
the two-dimensional second-nearest-neighbor Pt~001!
planes. In particular, there is little evidence of bonding~i.e.,
little or no increase in the charge density relative to free
atoms! along the third-nearest-neighbor@001# Pt chains.

In addition to the two-dimensional ‘‘metallic’’ bonding,
we find strong evidence of covalent bonding between the Pt
and Si nearest neighbors, illustrated in Fig. 4~b!. Unlike the
case of pure Si where the increase in charge density occurred
between pairs of atoms, here the density increase is localized
between three atoms, two Pt and a Si. For this reason we
refer to these features as three-center covalent bonds. We
might even be tempted to call these four-center bonds be-
cause there is a smaller increase in the density, in between
the two Pt atoms, which connects two of the three-center
bonds. However, we note that thex axis in Fig. 4~b! is along
the @11̄0# direction and that each of the Pt-Pt pairs in be-
tween two of the three-center bonds are also located in one
of the ~001! planes that exhibit evidence of metallic bonding

@Fig. 4~a!#. It would thus appear that rather than four-center
covalent bonds, a more appropriate description of the bond-
ing in a-Pt2Si would be three-center bonds interconnected
by two-dimensional metallic sheets.

The y axis of Fig. 4~b! is along the@111# direction and
highlights two of the central Si atom’s three-center bonds.
However, from Fig. 1~a! we see that there are four of these
crystallographic directions and therefore a total of eight of
these three-center bonds for each Si atom. As noted above,
the pair of Pt atoms participating in a given three-center
bond are second-nearest neighbors themselves. Figure 4~c!
shows that there is another set of three-center bonds involv-
ing one Si atom and a pair of Pt atoms that are third-nearest
neighbors oriented along the@001# chains. Thex axis in Fig.
4~c! is along @100# and they axis is along@001#. There is
little or no indication of an increase in charge density along
the Pt-Pt@001# chains. In addition to the two three-center
bonds in Fig. 4~c!, there are two more of these bonds located
in the plane obtained by a 90° rotation about the@001# axis
@see Fig. 1~a!#, for a total of four of these three-center bonds
for each Si atom.

FIG. 3. Superposition of free atom densities subtracted from the
fully self-consistent crystal density for~a! cubic-diamond-phase Si
and~b! fcc Pt. In both plots there are 51 contour levels plotted with
pure black corresponding to210 and pure white to110
millielectrons/bohr3, as indicated in the scale bar. In~a! thex axis is
along @110# and they axis along@001# while in ~b! the x axis is
@100# and they axis @010#. In both cases the calculations were
carried out at the experimental equilibrium volume and only the
density from the valence states was considered, excluding the den-
sity arising from the core states. In the case of Si~a! the density was
calculated at 763101 grid points while for Pt~b! there were 101
3101 grid points.

FIG. 4. Superposition of free atom densities subtracted from the
fully self-consistent crystal density for tetragonala-Pt2Si. The same
51 contour levels and gray scale are used as in Fig. 3. The two-
dimensional Pt-Pt second-nearest-neighbor metallic sheets are
shown in~a! with thex axis along@100# and they axis along@010#.
In ~b! we show the three-center Pt-Si-Pt covalent bonds involving

two second-neighbor Pt atoms, with thex axis along@11̄0# and the
y axis along@111#. The second set of three-center Pt-Si-Pt covalent
bonds involving two third-neighbor Pt atoms is illustrated in~c!
with the x axis along@100# and they axis along@001#. All three
calculations were carried out for the experimental equilibrium struc-
ture and only the density from the valence states was considered.
The density was calculated at 1013101 grid points in~a!, 151
3201 grid points in~b!, and 1013151 grid points in~c!.
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Thus we see that each Si atom ina-Pt2Si participates in
12 three-center bonds, eight with Pt-Pt second-nearest-
neighbors and four with Pt-Pt third-nearest neighbors, and
that these three-center covalent bonds are interconnected by
two-dimensional second-nearest-neighbor Pt-Pt metallic
sheets. Given the large increase in the number of bonds in
a-Pt2Si relative to pure Si we expect that each individual
bond will be weaker than one of the covalent bonds in Si.
However, taken as a whole and in terms of the material
strength, the more distributed nature of the bonding in
a-Pt2Si may indicate something closer in character to the
pure metallic bonding in fcc Pt. This interpretation is sup-
ported by the calculated elastic constants in Fig. 2, where the
non-volume-conserving elastic constants fora-Pt2Si are
much closer to those of fcc Pt as opposed to pure Si. We
address this issue in more detail in Sec. V C.

D. PtSi

In the orthorhombic PtSi structure each Si atom has six Pt
neighbors, with one Pt at 2.41 Å, two at 2.43 Å, one at 2.52
Å, and two at 2.64 Å. In view of the fact that the nearest-
neighbor Pt-Si distance is 2.47 Å ina-Pt2Si it is perhaps not
surprising that we find the two Pt neighbors at 2.64 Å appear
to contribute little to the bonding in PtSi. Each Si also has
two Si fifth-nearest neighbors at 2.84 Å but again we find
little evidence of bonding between these atoms, which is
consistent with the fact that the nearest-neighbor distance in
pure Si is only 2.35 Å. In addition to six Si neighbors at the
same distances listed above, each Pt atom also has two Pt
neighbors at a sixth-nearest-neighbor distance of 2.87 Å and
two more at a seventh-nearest-neighbor distance of 2.90 Å.
These distances are somewhat larger than the 2.77 Å nearest-
neighbor distance in pure fcc Pt.

The striking appearance of three-center bonds ina-Pt2Si
is repeated in orthorhombic PtSi, as shown in Fig. 5~a!. As
we see in Fig. 1~b!, a convenient way to think of the PtSi
structure is as two alternating planes of atoms stacked along
theb axis. Figure 5~a! shows the charge density difference in
one of these planes. As in the case ofa-Pt2Si @Figs. 4~b! and
4~c!# we see a pileup of charge relative to the free atom
density that is not localized between a single pair of atoms
but rather between one Si and two Pt atoms. These Pt neigh-
bors participating in the three-center bond are the first- and
third-nearest neighbors of the Si atom and are at distances of
2.41 Å and 2.52 Å. The two Pt atoms are themselves sixth-
nearest neighbors, with a bond length of 2.87 Å. There ap-
pears to be a small increase in the charge density between
these two Pt atoms. We note that the two different three-
center bonds shown in Fig. 5~a! are equivalent by symmetry.

The two second-neighbor Pt atoms of a given Si atom are
located in adjacentb-axis planes from the Si. The charge
density difference for these bonds is shown in Fig. 5~b!,
which indicates that they are of the standard two-center va-
riety. In addition to these two-center bonds, the plot also
shows part of the bond with the first-neighbor Pt atom on the
left side of the figure. In fact, the two second neighbors as
well as the first and third neighbors form a very distorted
tetrahedron around the central Si atom. The Pt-Si-Pt bond

angles involving one Pt second neighbor and one third neigh-
bor are very nearly equal to the perfect tetrahedral angle of
109.47° in pure Si, but the remaining four bond angles vary
considerably, ranging from 71° to 132°.

There is very little evidence of an appreciable increase in
the charge density between the Pt and Si fourth-nearest
neighbors and the Si-Si fifth neighbors, as we mentioned
above. The Pt-Pt sixth-nearest neighbors in Fig. 5~a! show
some evidence of charge accumulation but the Pt-Pt seventh
neighbors do not. We thus see that there appears to be only
two sets of strong covalent bonds in orthorhombic PtSi, the
three-center Pt-Si-Pt bonds within a givenb-axis plane and
the two-center Pt-Si bonds between atoms in adjacentb-axis
planes, resulting in a total of only three bonds per Si atom. In
this sense the bonding in PtSi appears to be qualitatively
much more similar to that in pure Si as compared to pure Pt
or evena-Pt2Si. In particular, we are unable to identify any
concrete evidence in PtSi of a uniform increase in interstitial
charge density that might be associated with an element of
metallic bonding. We revisit this subject in Sec. V D.

V. VALENCE FORCE FIELD MODELS

In order to provide a more quantitative analysis of the
trends in the elastic constants as well as the various elements
of the chemical bonding, we construct simple valence force
field models22,23 to describe the interatomic interactions for
pure Pt, pure Si, and the two silicides. In these models the
change in the internal energy upon distorting the crystal,DE,
is given as follows

FIG. 5. Superposition of free atom densities subtracted from the
fully self-consistent crystal density for orthorhombic PtSi. The same
51 contour levels and gray scale are used as in Fig. 3. In~a! we
show the three-center Pt-Si-Pt covalent bonds with thex axis along

@ 1̄00# and they axis along@001#. The covalent Pt-Si bonds that
connect atoms in adjacentb axis planes are shown in~b! with thex
axis approximately along@304̄# and they axis along@010#. Both
calculations were carried out for the experimental equilibrium struc-
ture and only the density from the valence states was considered.
The density was calculated at 1013101 grid points in~a! and 81
365 grid points in~b!. The leftmost Pt atom in~b! with the label
contained inside a dotted circle is not actually located in the plane
of the plot but is close enough that its influence can still be seen.
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whereN is the number of primitive cells in the crystal,n is
the number of atoms in the primitive cell,V is the volume,
Ddi is the change in thei th bond length, andDu i j is the
change in the bond angle between thei th and j th bonds. We
determine theC and K force constants by equating this ex-
pression forDE to the corresponding elastic constant expres-
sions derived from Eq.~1!, examples of which are given in
Ref. 6. These coefficients are referred to as force constants
because Eq.~2! could also be used to analyze the phonon
spectrum and in this case, within a constant factor, the coef-
ficients play the role of Hooke’s law force constants.

The factor ofn in the first term of Eq.~2! is explicitly
included so that the resulting force constantC0 represents
the volume contribution per atom, thus facilitating the com-
parison between materials with different numbers of atoms in
the primitive cell. Similarly, the indicesi and j are summed
over all of the relevant bonds for each of the atoms in the
primitive cell ~avoiding any double counting!, which results
in force constants that represent the interaction strength for a
single bond (Ci) or bond angle (Ki j ). The volume term in
Eq. ~2! is needed for metals such as Pt and is reminiscent of
the embedded-atom method24,25 that has been successful in
treating fcc metals. Similarly, the angular terms are needed
for covalently bonded systems such as Si; such terms are a
part of the Tersoff potential formulation26 that has been used
successfully in semiconductor systems. Both the volume and
the angular terms lead to deviations from the Cauchy
relations,27 which are strict equalities between various elastic
constants that apply when the interatomic interactions
are purely pairwise@i.e., including only the second term
in Eq. ~2!#.

A. Pt

In the case of fcc Pt we construct a two-parameter model,
considering only the nearest-neighbor bond length and a vol-
ume term, but no angular terms. The radial force constantC1
can be obtained from the volume-conserving strains corre-
sponding to either (c112c12) or c44,

1

2
~c112c12!5

1

v
1

4
C1 ~3!

and

c445
1

v
1

2
C1 , ~4!

wherev5 1
4 a3 is the volume per atom. Taken together, these

two equations provide an explanation for the fact that (c11
2c12) andc44 for pure Pt are similar in magnitude in Table
II. They also satisfy the cubic mechanical stability require-
ments that (c112c12).0 andc44.0.28

In order to facilitate comparison with the silicides where
there is no experimental data for the elastic constants, we
also use the theoretically determined elastic constants for fcc

Pt. For the purpose of internal consistency we use the theo-
retical equilibrium volume as well. The resulting two values
of C1 obtained from Eqs.~3! and~4! are 15.78 eV and 16.42
eV, respectively. The fact that the two numbers differ is an
indication of the incompleteness of the two-parameter
model. Use of the experimental elastic constants yields a
bigger difference but we, nonetheless, will use the average of
these two values for the purpose of comparing to the sili-
cides,

C̄15v@~c112c12!1c44#. ~5!

Evaluating Eq.~5! using the theoretical elastic constants we
obtain C̄1516.10 eV, while the experimental elastic con-
stants correspond to a value of 16.95 eV. We note that
we could have eliminated the need to use the averaged ex-
pression in Eq.~5! by including additional force constants
but we prefer to maintain the conceptual simplicity of
the two-parameter model. For example, including an angular
interaction in Eqs.~3! and ~4! results in a small and slightly
negative angular force constantK, which is conceptually
unsatisfying.

The uniform expansion and compression represented by
the bulk modulusB0 can be used to obtain the following
expression involvingC0 andC1,

B05
1

3
~c1112c12!5

1

v S C01
2

3
C1D . ~6!

Equations ~5! and ~6! together yield a value ofC0
516.54 eV using the theoretical elastic constants, and 15.73
eV using the experimental values. The values ofC0 andC1
obtained from the theoretical elastic constants are listed in
Table IV. We note that the volume force constant has ap-
proximately the same magnitude as the radial force constant
and that both are important in contributing to the large bulk

TABLE IV. Force constants of valence force field models@Eq.
~2!# for fcc Pt, tetragonala-Pt2Si, orthorhombic PtSi, and cubic-
diamond-phase Si. TheC0 force constant represents the volume-
dependent interaction, each of the remainingCi is a radial force
constant for thei th nearest-neighbor bond, andKi j is an angular
force constant for the bond angle between thei th and j th nearest-
neighbor bonds. All of the force constants are in units of eV.

Pt a-Pt2Si PtSi Si

C0 16.54 13.88 10.38
C1 16.10 13.58 42.58 54.06
C2 26.03 48.26
C3 8.39 10.90
C6 18.32
C7 3.91
K11 5.06 3.13
K12 1.87
K13 1.29
K22 7.62
K23 15.01
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modulus. For completeness we also give the expressions for
c11 andc12 in terms ofC0 andC1,

c115
1

v
~C01C1!, ~7!

c125
1

v S C01
1

2
C1D . ~8!

Equations~6!–~8! explicitly satisfy the mechanical stability
requirement thatc12,B0,c11.6

The Cauchy relation for cubic crystals is thatc125c44.27

Using Eqs.~4! and ~8! we obtain the following expression
for the deviation from the cubic Cauchy relation:

~c122c44!5
1

v
C0 . ~9!

Thus we see that the large and positive deviation from the
Cauchy relation in pure Pt is due to a large volume contri-
bution toc12. Moreover, the presence of the volume contri-
butionC0 is responsible for the fact thatc11, c12, andB0 are
all significantly larger than the volume-conserving elastic
constants1

2 (c112c12) andc44 in Table II.

B. Si

In the case of Si we also construct a two-parameter model
but instead consider only the nearest-neighbor bond length
and the tetrahedral bond angle and set all of the otherC and
K force constants to zero. Since there are three elastic con-
stants and we allow only two force constants, we can check
the accuracy of the model. The volume-conserving strain
corresponding to (c112c12) leaves the nearest-neighbor
bond lengths unchanged to first order in the distortion and
thus only the angular force constant enters,

1

2
~c112c12!5

1

v
2K11, ~10!

wherev5 1
8 a3 is the volume per atom. Comparing this result

to Eq.~3! we see that12 (c112c12) has a very different origin
in Si as compared to fcc Pt, despite the fact that the two
values are approximately the same in Table II.

The volume-conservingc44 strain in Si involves both ra-
dial and angular distortions and can thus be used in conjunc-
tion with Eq. ~10! to determineC1,

c44
frozen5

1

v S 2

9
C11

4

9
K11D , ~11!

wherec44
frozen corresponds to a purec44 strain, without allow-

ing for any internal relaxation. This choice is convenient but
not essential and we can test how well the two force con-
stants we obtain describe the final remaining elastic constant.
Using the theoretically determined elastic constants and
equilibrium volume, Eqs. ~10! and ~11! yield C1
554.06 eV andK1153.13 eV, which are listed in Table IV.
Based on this analysis, the fact that (c112c12) andc44 for Si

are close in magnitude in Table II is merely a coincidence
having to do with the specific values of theC1 andK11 force
constants.

The final independent elastic constant is the bulk modulus
B0 that corresponds to an isotropic expansion or compression
and therefore only involves radial but not angular distortions.
In addition, this distortion is not volume-conserving and thus
we could also have included theC0 volume term from Eq.
~2!, which would not affect either of the volume-conserving
strains corresponding to Eqs.~10! and ~11!, but would yield
the following equation for theB0 distortion,

B05
1

3
~c1112c12!5

1

v S C01
2

9
C1D . ~12!

Our two-parameter model hasC0[0 and thus the extent to
which C0 obtained from Eq.~12! deviates from zero pro-
vides a direct measure of how well the two-parameter model
is able to describe the elastic constants. Using the theoretical
values determined here, Eq.~12! yields C0520.18 eV,
which demonstrates that the two-parameter model is indeed
sufficiently accurate for describing the elastic constants in Si.
For the sake of completeness we give the expressions for
c11, c12 and the deviation from the Cauchy relation (c12
2c44), including a volume contribution,

c115
1

v S C01
2

9
C11

8

3
K11D , ~13!

c125
1

v S C01
2

9
C12

4

3
K11D , ~14!

~c122c44!
frozen5

1

v S C02
16

9
K11D . ~15!

We can compare our two-parameter model to the one de-
rived by Harrison.22 His angular term has the identical form
as ours and his value ofK1153.2 eV differs from ours of
3.13 eV only because we have used the theoretical elastic
constants and equilibrium lattice constant while he uses the
experimental values.29 We derived the value of the radial
force constantC1 using the frozenc44 elastic constant
whereas Harrison derives his radial force constant fromB0.
The two values would be identical if the value ofC0 derived
from Eq. ~12! were exactly zero. The small deviation from
zero, in addition to the difference in the lattice constants
used, leads to a small difference between Harrison’s value of
C1555.0 eV and our value of 54.06 eV.

We have found that for Si the angular force constantK11
is more than an order of magnitude smaller than the radial
force constantC1 ~Table IV!. The angular interaction is,
nonetheless, of particular importance for two reasons. The
first is that the crystal would be unstable in the absence of
angular interactions since (c112c12)[0 @Eq. ~10!# and B0
5c115c12 @Eqs. ~12!–~14!# for purely radial interactions,
both of which violate the cubic mechanical stability condi-
tions that (c112c12).0 and c12,B0,c11.6,28 The second
reason is that the angular interaction is responsible for the
fact that the elastic constants do not obey the Cauchy relation
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for a cubic crystal,c125c44 @Eq. ~15!#. Including a volume
term but not an angular interaction would still result in an
unstable crystal since the (c112c12) distortion is volume
conserving and the dependence onC0 is identical for B0 ,
c11, andc12. In addition, a positive volume contribution in
the absence of an angular interaction could not account for
the fact that the deviation from the Cauchy relation is nega-
tive (c12,c44). Thus we see that Eq.~15! and the fact that
K11 is small combine to provide an explanation for the fact
that c12 is smaller thanc44, but only by a relatively small
amount. This is in sharp contrast to pure Pt where the devia-
tion from the Cauchy relation@Eq. ~9!# arises fromC0 and is
large and positive, resulting in a value ofc12 that is more
than four times larger than in Si. More generally, the absence
of a volume contribution in Si is responsible for the fact that
c12 and B0 are similar in magnitude to the volume-
conserving elastic constants1

2 (c112c12) andc44, in contrast
to the case of Pt~see Table II!.

From the force constants listed in Table IV we see thatC1

for Si is more than a factor of 3 times larger than for fcc Pt,
which is consistent with the presence of strong covalent
bonds in Si and distributed metallic bonding in Pt. In addi-
tion, the volume contributionC0 is equally important in
terms of the metallic bonding in Pt but plays no role in Si.
The influence on the elastic constants of these qualitative
differences in the chemical bonding are clearly illustrated by
comparing Eqs.~6! and~12! for the bulk moduli in Pt and Si,
respectively. We see that the geometry coefficient ofC1 is
three times larger for Pt than for Si, reflecting the difference
in the nearest-neighbor coordination and nearly compensat-
ing for the difference in the magnitudes of the two force
constants. Given thatC0 andC1 are approximately the same
in Pt, we see from Eq.~6! that the volume contribution toB0
is approximately 50% larger than the contribution fromC1.
In the case of Si theC0 force constant is essentially zero and
this difference accounts for most of the difference in the
magnitudes ofB0 between Pt and Si. The prefactors of 1/v
account for the remaining difference since the volume per
atomv is 30% larger in Si.

We therefore see that the presence or absence of metallic
bonding, as reflected in theC0 and C1 force constants, is
intimately connected to the magnitudes ofB0. Similar analy-
ses can be used to explain the fact thatc11 andc12 are also
larger in Pt, the predominant reason being the presence of a
large volume contribution~or equivalently, metallic bonding!
in Pt but not Si. Conversely, the elastic constants correspond-
ing to both of the volume-conserving distortions in Pt,
1
2 (c112c12) and c44, are approximately the same as in Si,
indicating that they are less sensitive to the differences in
chemical bonding for these two materials. These differing
trends in the volume-conserving versus non-volume-
conserving elastic constants were already noted in Sec. III
and are illustrated in Fig. 2. The volume force constantC0 is
included in the figure on the same scale as the elastic con-
stants by dividing by the appropriate volume per atomv
~note thatC0/v is precisely the combination that enters all
of the expressions for the non-volume-conserving elastic
constants!.

C. a-Pt2Si

In order to provide a more quantitative description of the
chemical bonding ina-Pt2Si we describe the interatomic in-
teractions using a valence force field model, just as we did
for pure fcc Pt and pure Si. In view of the analysis of the
valence charge density in Sec. IV C, we include first-,
second-, and third-nearest-neighbor radial force constants as
well as a volume term. We also consider some of the angular
interactions. In keeping with our neglect of angular interac-
tions in pure Pt we also neglect the bond angles between any
two Pt-Pt bonds, both in the two-dimensional~001! metallic
sheets and the@001# Pt chains. In consideration of the three-
center bonds discussed earlier, we include both the Pt-Si-Pt
and the Si-Pt-Pt bond angles relevant to the three-center
bonds involving one Si atom and two second-neighbor Pt
atoms. However, we neglect the bond angles relevant to the
three-center bonds involving one Si and two third-neighbor
Pt atoms. This choice is based on the expectation that the
strength of the angular interactions will generally be smaller
than that of the radial interactions and that the three-center
bond involving two Pt second-neighbors is stronger than the
one involving two third neighbors. We thus have six force
constants that can be fit to the six elastic constants. For the
sake of convenience we fit the force constant expressions to
the ‘‘frozen’’ elastic constants, where no internal relaxations
were carried out. This choice is not essential and need not be
considered an additional approximation because the resulting
force constants could be used to directly calculate the inter-
nal relaxations.

The volume-conserving strains corresponding to (c11
2c12) andc44 both depend only on the first-nearest-neighbor
Pt-Si radial force constantC1 since the second- and third-
nearest-neighbor Pt-Pt bond lengths are left unchanged to
first order. In addition, (c112c12) depends on the Si-Pt-Pt
bond angle but not the Pt-Si-Pt bond angle, whilec44 de-
pends on both. We label the force constant for the Pt-Si-Pt
bond angle asK11 because it is the angle between two first-
neighbor bonds. Similarly we label the Si-Pt-Pt force con-
stant asK12. Equating the elastic constant@Eq. ~1!# and force
constant@Eq. ~2!# expressions for the change in the energy
and using the theoretical lattice constants from Table I, we
obtain the following two equations,

1

2
~c112c12!

frozen5
1

v
~0.2685C111.1553K12! ~16!

and

c44
frozen5

1

v
~0.3092C110.2874K1110.8089K12!, ~17!

wherev50.2529a3 is the volume per atom. We note that in
these equations and all of those that follow, the numerical
coefficients are simply geometrical factors containing vari-
ous combinations of thea andc lattice constants. Examining
the geometry coefficients ofC1 in Eqs. ~16! and ~17!, to-
gether with the expectation that the angular force constants
will be significantly smaller in magnitude thanC1, we see
that these two equations provide a natural explanation for
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the fact that12 (c112c12) is similar in magnitude but slightly
smaller thanc44 in Table III. We also see that two of the
mechanical stability requirements for tetragonal crystals,
(c112c12).0 andc44.0,28 are explicitly satisfied.

The volume-conserving strain corresponding toc66
changes the second-neighbor Pt-Pt bond length, leaving the
other two bond lengths unchanged to first order. This strain
also modifies the two bond angles, yielding

c665
1

v S 1

3
C211.2394K1110.6197K12D . ~18!

Thus we can see from Eqs.~17! and ~18! that sincec66 in
Table III is somewhat more than two times larger thanc44,
we expect that the second-neighbor Pt-Pt force constantC2
must be approximately two times larger than the first-
neighbor Pt-Si force constantC1. We will in fact find this to
be the case. Equation~18! also satisfies the mechanical sta-
bility requirement thatc66.0.28

The final remaining volume-conserving strain correspond-
ing to (c111c3322c13) changes all of the first-, second-, and
third-neighbor bond lengths, as well as the two bond angles,

1

4
~c111c3322c13!

frozen

5
1

v S 0.0687C11
1

12
C21

1

6
C310.3723K1110.4750K12D .

~19!

We note that14 (c111c3322c13).0 as required for mechani-
cal stability,28 and that it is similar in magnitude to12 (c11
2c12) andc44 in Table III.

The uniform expansion and compression corresponding to
the bulk modulusB0 changes the volume and all of the bond
lengths but leaves the bond angles fixed,

B05
1

9
~2c111c3312c1214c13!

5
1

v S C01
8

27
C11

4

27
C21

2

27
C3D . ~20!

The final two equations resulting from thec11 andc33 strains
both include a contribution from a change in the volume,

c11
frozen5

1

v S C010.5370C11
1

3
C210.1655K1111.2381K12D

~21!

and

c335
1

v S C010.3560C11
2

3
C310.6619K1110.3310K12D .

~22!

Similarly, the equations forc12 andc13 are

c12
frozen5

1

v S C01
1

3
C210.1655K1121.0726K12D ~23!

and

c135
1

v
~C010.3092C120.3310K1120.1655K12!. ~24!

Equations~20!–~24! explicitly satisfy the mechanical stabil-
ity requirements thatB0, 1

3 (2c111c33) and B0. 1
3 (c12

12c13).
6 We note that in contrast to the case of Si, all of the

mechanical stability requirements would be satisfied even for
purely radial interactions~i.e., no angular interactions!.

Equations~16!–~19!, ~21!, and~22! represent six linearly
independent equations in the six unknown force constants.
Solving this linear system of equations yields the force con-
stants listed in Table IV fora-Pt2Si. The volume force con-
stantC0 is only 16% smaller than in pure Pt. This finding is
consistent with the presence of two-dimensional metallic
sheets ina-Pt2Si and the fact that there are a large number of
distributed three-center bonds all interconnected by these
sheets. The first neighbor Pt-Si force constantC1 is nearly
four times smaller thanC1 in pure Si. This large reduction
results from the fact that each Si atom ina-Pt2Si has eight Pt
nearest neighbors and participates in 12 different three-center
bonds. Conversely, the second-neighbor Pt-Pt force constant
C2 is 60% larger than the correspondingC1 force constant in
pure fcc Pt, despite the fact that the two Pt-Pt bond lengths
are very nearly the same. We can understand this result be-
cause each Pt atom in pure Pt has 12 nearest neighbors while
each Pt ina-Pt2Si has only four Pt second neighbors and two
Pt third neighbors. Moreover, the Pt atoms in the silicide
participate in covalent three-center bonds in addition to the
metallic bonding within the two-dimensional sheets. The dis-
tributed nature of these bonds and the large number of them
in the primitive cell are both consistent with the fact thatC2
is still a factor of 2 smaller thanC1 in pure Si. We found
little evidence of an increase in the electronic charge density
between the Pt-Pt third neighbors and this is reflected in the
fact thatC3 is more than three times smaller thanC2. We
also find that the angular force constantsK11 and K12 are
similar in magnitude to theK11 force constant in pure Si.
These angular terms play an important but less crucial role in
the silicide as compared to pure Si.

Having determined the values of the individual force con-
stants we can now use them to understand the trends in the
elastic constants. For example, the two Cauchy relations for
tetragonal crystals are thatc125c66 and c135c44.27 Using
Eqs. ~18! and ~23! the deviation from the first Cauchy rela-
tion is given by

~c122c66!
frozen5

1

v
~C021.0739K1121.6923K12!. ~25!

Similarly, the deviation from the second Cauchy relation is

~c132c44!
frozen5

1

v
~C020.6184K1120.9744K12!. ~26!

As in the case of pure Pt@Eq. ~9!#, it is the presence of the
volume interaction that produces a positive deviation from
the Cauchy relations. The angular interactions provide a
negative contribution to Eqs.~25! and ~26!, just as they did
for pure Si@Eq. ~15!#. From the geometry coefficients of the
angular terms we see that (c132c44) must be larger in mag-
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nitude than (c122c66). The net result is that the deviations
from the Cauchy relations fora-Pt2Si are still positive but
are factors of 2–3 smaller than the deviation in pure Pt.

In pure Pt we found that the volume-conserving elastic
constants were all significantly smaller than the others and
that this was due predominantly to the presence of a large
volume contributionC0. We find the same trend ina-Pt2Si
with 1

2 (c112c12), c44, and1
4 (c111c3322c13) all being simi-

lar in magnitude and smaller than all of the remaining elastic
constants~see Table III!. The notable exception to this trend
is c66. In conjunction with Eq.~18! we already noted that the
large value ofc66 in relation to the other volume-conserving
elastic constants is due primarily to the fact that the second-
neighbor Pt-Pt force constantC2 is a factor of 2 larger than
the first neighbor Pt-Si force constantC1. This result is in
turn directly related to the presence of the network of three-
center bonds interconnected by two-dimensional metallic
sheets. We also saw that mechanical stability for tetragonal
crystals requires thatc12,c11, c13,

1
2 (c111c33), B0

, 1
3 (2c111c33), and B0. 1

3 (c1212c13).
6,28 In addition, the

deviations from the Cauchy relations are positive. The re-
maining variations among the six elastic constants in Table
III are determined by the detailed dependence on the various
force constants as described above.

One interesting example is thatc13 is found to be essen-
tially identical toc66. Comparing Eqs.~18! and~24! we see
that in the case ofc13, positive volume and first-neighbor
radial terms are partially counterbalanced by negative angu-
lar contributions, whereasc66 corresponds to a volume-
conserving distortion and has positive angular contributions.
In addition, thec13 distortion changes the first-neighbor bond
lengths, leaving the others fixed, while thec66 distortion
changes the second-neighbor bond lengths, leaving the oth-
ers fixed. We have already noted thatc66 is anomalously
large in comparison toc44 predominantly becauseC2 is
twice as large asC1. The elastic constantc12 is larger than
c13 for the same reason, thus explaining how it is at least
possible for the volume-conserving elastic constantc66 to be
similar in magnitude to the non-volume-conserving elastic
constantc13, despite the presence of a large volume force
constantC0. In summary, while we are able to explain the
overall magnitudes of the individual elastic constants, we are
forced to conclude that the specific equality ofc13 andc66 in
Table III depends on the precise values of the individual
force constants and is therefore simply accidental.

We saw in Eq.~6! for the bulk modulus of Pt that the
volume contribution represented 60% of the total, with the
contribution from the radial interaction making up the rest.
The same approximate 60:40 split between the volume and
radial contributions applies to the expression for the bulk
modulus ofa-Pt2Si in Eq. ~20!. In addition, the volume per
atomv is nearly the same in the two materials. Thus we see
that the 16% reduction inC0 for a-Pt2Si relative to Pt, com-
bined with a similar reduction in the overall radial contribu-
tion, leads to a bulk modulus that is approximately 20%
smaller ina-Pt2Si. As we noted previously, there is no vol-
ume contribution in Si where the bulk modulus is a factor of
2–3 smaller. Conversely, the volume-conserving elastic con-

stantc44 is similar in magnitude for all three materials. Com-
paring Eqs.~4!, ~11!, and ~17! we see that in pure Ptc44
arises solely fromC1 whereas in pure Si anda-Pt2Si it arises
from a combination ofC1 and angular contributions. In Si
the split is 90:10, radial to angular, while in the silicide the
split is only 60:40 sinceC1 is a factor of 4 smaller. In addi-
tion, the volume per atom is 30% larger in Si than in the
other two materials. The remaining elastic constants for
a-Pt2Si can be similarly analyzed in relation to those of pure
Pt and pure Si.

D. PtSi

Once again we construct a valence force field model to
describe the chemical bonding and elastic constant trends in
PtSi. In keeping with the discussion of the valence charge
density in Sec. IV D, we include first-, second-, and third-
neighbor Pt-Si radial force constants~labeledC1 , C2, and
C3) as well as sixth- and seventh-neighbor Pt-Pt radial force
constants~labeledC6 and C7). We also include a volume
term (C0) and three Pt-Si-Pt angular force constants. The
angular force constants are labeledK13, corresponding to the
bond angle between first- and third-neighbor Pt-Si bonds,
K22, corresponding to the bond angle between two second-
neighbor Pt-Si bonds, andK23, corresponding to the bond
angle between second- and third-neighbor Pt-Si bonds. These
three bond angles are the ones we have found to be most
important and are the ones that correspond to the distorted
tetrahedral Pt-Si-Pt angles described in Sec. IV D. The fourth
and last of these angles is represented by the force constant
K12 but we found it to be unimportant and have not included
it in the analysis presented here. Part of the reason for this
finding may be that this bond angle is 131.72°, which is
quite different from the perfect tetrahedral angle of 109.47°.
We thus have nine force constants that can be fit to the nine
elastic constants. As in the case ofa-Pt2Si we fit the force
constant expressions to the ‘‘frozen’’ elastic constants out of
convenience, but this choice is not essential because the re-
laxations could be calculated from the resulting model.

Most of the expressions for the elastic constants in terms
of the force constants involve all of the radial and angular
terms and thus there is not much to be learned by writing
them down. Two exceptions are the volume-conserving
strains corresponding toc44 andc66, which depend only on
the second-neighbor Pt-Si and seventh-neighbor Pt-Pt radial
force constants, as well as the angular force constantK23.
Using the theoretically determined structural parameters
from Table I we obtain the following two expressions:

c44
frozen5

1

v
~0.1601C210.1182C710.3279K23! ~27!

and

c66
frozen5

1

v
~0.0882C210.000 02C710.1750K23!, ~28!

wherev50.084 64a3 is the volume per atom. The force con-
stantC7 will turn out to be small and thus we can see from
Eqs.~27! and ~28! that c44

frozen is approximately a factor of 2
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larger thanc66
frozen purely because of geometrical factors. In

addition, the orthorhombic mechanical stability requirements
that28 c44.0 andc66.0 are satisfied by a combination of
radial and angular terms. However, as in the case ofa-Pt2Si,
the angular terms are not essential with regard to stability
since the crystal would still be stable under purely radial
interactions. It turns out that this circumstance is true for all
of the orthorhombic mechanical stability requirements. We
also note that all of the volume-conserving elastic constants,
1
4 (c111c2222c12),

1
4 (c111c3322c13),

1
4 (c221c3322c23),

c44, c55, andc66 are similar in magnitude and smaller than
the other non-volume-conserving elastic constants~see Table
III !. The primary exception isc44

frozen, although including the
effects of internal relaxation brings it in line with the other
volume-conserving constants.

Solving the linear system of nine equations in the nine
unknown force constants, we obtain the values listed in Table
IV. The volume force constantC0 is nearly 40% smaller than
in pure Pt and 25% smaller than ina-Pt2Si. Nonetheless, the
value is still sizeable and perhaps somewhat surprising given
that we found no evidence of metallic-type bonding in our
analysis of the charge density in Sec. IV D. The first- and
second-neighbor Pt-Si radial force constants are quite large
and nearly as large as the first-neighbor Si-Si force constant
in pure Si. This result is consistent with the fact that we
found only a small number of two- and three-center bonds
for each Si atom in PtSi. This small number of bonds means
that each bond is relatively strong, as is the case in pure Si,
but in contrast to the situation ina-Pt2Si where the Pt-SiC1
force constant is more than a factor of 3 smaller. The fact
thatC1 andC2 in PtSi are still smaller thanC1 in Si may be
due to the fact that the bond angles in PtSi are considerably
distorted away from the perfect tetrahedral angle. The Pt-Si
C3 force constant in PtSi is approximately a factor of 4
smaller thanC1 and C2, which may be due in part to the
correspondingly longer bond length.

The Pt-Pt sixth-neighbor force constantC6 is larger than
C1 in pure Pt which is likely due to the fact that this inter-
action contributes to the three-center bonds in PtSi. How-
ever, C6 is 30% smaller than the corresponding Pt-PtC2
force constant ina-Pt2Si, reflecting the longer bond length in
PtSi and the presence of two-dimensional metallic sheets in
a-Pt2Si. Although the seventh-neighbor Pt-Pt bond length in
PtSi is only 0.03 Å larger than the sixth-neighbor bond
length, the seventh-neighbor bond does not participate in any
three-center bonds and we found little evidence of any in-
crease in the charge density. It is thus not surprising thatC7
is more than a factor of 4 smaller thanC6.

We find that the angular interactions are sizeable in PtSi,
as they were ina-Pt2Si. However, in PtSi these interactions
show a wider variation in magnitude, withK23 being more
than an order of magnitude larger thanK13. We can under-
stand the variation in these Pt-Si-Pt force constants by look-
ing at the sizes of the bond angles themselves.K13 corre-
sponds to a bond angle of 71.09°, which is very far from the
perfect tetrahedral angle of 109.47°. The bond angle associ-
ated withK22 is a lot closer, having a value of 94.64°, re-
sulting in a larger force constant. The largest angular force

constant is K23 with the corresponding bond angle of
109.75° being nearly identical to the perfect tetrahedral
angle. While the trend in the angular force constants in PtSi
is understandable in terms of the deviation relative to the
pure tetrahedral angle, the large magnitude ofK23 in com-
parison to the angular force constants in pure Si anda-Pt2Si
is unexpected. The angular interactions appear to be of
greater importance in PtSi than they were ina-Pt2Si. An
attempt to fit the elastic constants of PtSi using a valence
force field model including only radial interactions plus a
volume term resulted in nonsensical values for these force
constants. A sensible fit was only achieved after including
angular terms.

We can now examine some of the trends in the elastic
constants of PtSi using the calculated force constants. In par-
ticular, the Cauchy relations for an orthorhombic crystal are
thatc125c66, c135c55, andc235c44.27 The expressions for
the deviations from these Cauchy relations are as follows,

~c122c66!
frozen5

1

v
~C020.1765K2220.0860K23!, ~29!

~c132c55!
frozen5

1

v
~C020.4475K1320.3453K23!, ~30!

~c232c44!
frozen5

1

v
~C020.3202K2220.4544K23!. ~31!

As in the case ofa-Pt2Si the volume interaction makes a
positive contribution to the deviations from the Cauchy rela-
tions while the angular interactions make a negative contri-
bution. The geometry coefficients for the angular terms in
Eqs.~29!–~31! are smaller than fora-Pt2Si in Eqs.~25! and
~26!, reflecting the smaller multiplicity of the bond angles in
PtSi. This reduction is more than compensated by the larger
magnitude of the force constants in PtSi, particularlyK23.
The volume per atomv is similar in the two silicides but the
magnitude ofC0 is smaller in PtSi. The combined effect of
the smallerC0 and the largerK23 is that the deviations from
the Cauchy relations in Eqs.~29!–~31! are still positive but
approximately 30% smaller on average than ina-Pt2Si. This
conclusion remains true for the relaxed elastic constants, al-
though the specific numerical details are changed. For ex-
ample, the larger geometry coefficients ofK22, and espe-
cially K23, in Eq. ~31! result in a very small deviation from
the third Cauchy relation (c232c44)

frozen for the frozen elas-
tic constants. When relaxation is includedc44 drops by 29%
while c23 increases by 8%, resulting in a significantly larger
deviation. However, (c132c55) becomes much smaller so
that on average the deviations are still approximately 30%
smaller in PtSi.

The requirements of mechanical stability in orthorhombic
crystals constrain the elastic constants by requiring thatc12
, 1

2 (c111c22), c13,
1
2 (c111c33), c23,

1
2 (c221c33), B0

, 1
3 (c111c221c33), andB0. 1

3 (c121c131c23).
6,28 However,

there are additional trends among the elastic constants. We
have already noted that the volume-conserving elastic con-
stants in PtSi are all smaller than those where the corre-
sponding distortion does not conserve volume. The predomi-
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nant reason for this occurrence is the presence of the positive
volume contributionC0, just as it was in the case of pure Pt
and ina-Pt2Si ~see Fig. 2!. The positive deviations from the
Cauchy relations in Eqs.~29!–~31! provide specific ex-
amples of this trend. We noted above that the relatively large
value ofC0 in PtSi seemed surprising given the lack of evi-
dence for metallic bonding in the charge density. In fact, it
appeared that the chemical bonding in PtSi was much more
similar to that in pure Si than in eithera-Pt2Si or pure Pt.
However, the trends in the elastic constants of PtSi, the posi-
tive deviations from the Cauchy relations, and the smaller
values of the volume-conserving elastic constants are much
more similar to those in the materials that do exhibit direct
evidence of metallic bonding, thus requiring a sizeableC0
volume contribution in PtSi as well. This conclusion is not
one that we would have reached based on the charge density
alone, thus demonstrating the need for care when examining
such qualitative characteristics. By contrast, the analysis of
the elastic constants using a valence force field model has
allowed a more quantitative description of the chemical
bonding. We note that the finding of both metallic and cova-
lent components to the bonding in PtSi as well asa-Pt2Si
indicates a strong similarity between these two materials and
may also be connected with the fact that the heats of forma-
tion for the two are very nearly the same.6

Finally, we examine how the elastic constants of PtSi fit
into the trends among the different materials studied here.
The expression for the bulk modulus in PtSi is

B0
frozen5

1

9
~c111c221c3312c1212c1312c23!

frozen

5
1

v S C01
1

18
C11

1

9
C21

1

18
C31

1

18
C61

1

18
C7D .

~32!

Using the force constants listed in Table IV we find that there
is a roughly 50:50 split between the volume and radial con-
tributions to B0 in Eq. ~32! compared to an approximate
60:40 split in pure Pt@Eq. ~6!# and a-Pt2Si @Eq. ~20!#. We
already noted that the volume per atomv is similar in all
three materials. Thus we see that the smaller value ofC0 is
partially compensated by an increase in the radial contribu-
tion, yielding a value ofB0 that is only slightly smaller in
PtSi than ina-Pt2Si, but still approximately a factor of 2
larger than in pure Si. We can now see that the nearly linear
relationship between the bulk modulus and the atomic per-
cent Pt, evident in Fig. 2, has a direct connection with the
nature of the chemical bonding in these materials. Con-
versely, the fact that the volume-conserving elastic constants
are similar in magnitude in all four materials demonstrates
that they are less sensitive to the nature of the bonding. For
example,c44 in Pt @Eq. ~4!# arises purely from radial inter-
actions while the split is 90:10, radial to angular, in Si@Eq.
~11!#. In the two silicides@Eqs. ~17! and ~27!# the split is
approximately 60:40. Despite these variations in the split be-
tween radial and angular contributions and variations in the
individual force constants themselves, the volume-

conserving elastic constants are all relatively small and simi-
lar in magnitude in all four materials.

VI. SUMMARY

We have carried out an extensive study of the chemical
bonding and elasticity of two room-temperature stable plati-
num silicides, tetragonala-Pt2Si and orthorhombic PtSi, as
well as pure Pt and pure Si. We have investigated the trends
in the calculated elastic constants, both the trends within a
given material as well as between materials. The Cauchy
relations, thatc125c66, c135c55, andc235c44, apply to a
crystal in which the interatomic interactions are purely ra-
dial. Real materials deviate from these relations and we find
that in pure Pt as well as the two silicides the deviations are
always positive~left-hand side greater than right-hand side!,
but in Si the deviation is negative. More generally, we find
that in the metals the elastic constant expressions that corre-
spond to volume-conserving strains are always smaller than
those that correspond to strains that do not conserve volume.
This also turns out to be true in Si with the exception thatc12
is less thanc44 ~negative deviation from the Cauchy rela-
tion!. However, the difference in magnitudes between
volume-conserving and non-volume-conserving elastic con-
stants is largest on average in Pt and gets smaller in the
progression Pt→a-Pt2Si→ PtSi→Si. In general, the
volume-conserving elastic constants have similar magnitudes
in all four materials while the non-volume-conserving elastic
constants follow this same progression. In particular, the
bulk modulus is found to be a very nearly linear function of
the atomic percentage of Pt.

We have analyzed the valence electronic charge density in
order to gain insight into the nature of the chemical bonding
in the silicides. In the case ofa-Pt2Si we find striking evi-
dence of a wide network of covalent three-center bonds, each
involving a single Si atom and two Pt atoms. Each Si atom
participates in 12 different three-center bonds. We also find
evidence of two-dimensional metallic Pt~001! sheets that act
to interconnect the network of three-center bonds. The Pt-Pt
bond length in these two-dimensional sheets is very nearly
the same as in pure fcc Pt. The widely distributed nature of
the bonding ina-Pt2Si appears to be closer in character to
the pure metallic bonding in fcc Pt than the covalent two-
center bonds in Si. The trends in the elastic constants support
this interpretation. PtSi also exhibits evidence of covalent
Pt-Si-Pt three-center bonds in addition to more standard
Pt-Si two-center bonds. Each Si atom participates in one
three-center bond and two two-center bonds with the four Pt
neighbors forming a very distorted tetrahedron. Two of the
six corresponding bond angles are very nearly equal to the
perfect tetrahedral angle but the other four angles vary from
71° to 132°. Qualitatively the bonding in PtSi appears much
more similar to the covalent bonding in pure Si than the
metallic bonding in pure Pt, but the trends in the elastic
constants indicate that there are actually elements of both.
The finding of strong Pt-Si covalent bonding in PtSi is con-
sistent with the experimental study of Francoet al.7,8 in
which they found spectroscopic evidence that the influence
of the Pt 6d orbitals extends throughout the entire valence
band.

We have constructed valence force field models for the
two silicides as well as pure Pt and pure Si. These models
provide a quantitative basis for understanding both the trends
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in the elastic constants and the various elements of the
chemical bonding. We have included volume-, radial-, and
angular-dependent contributions in the models. The volume-
dependent contribution, which reflects the presence of metal-
lic bonding, turned out to be a crucial element of the models.
The presence or absence of this term and the magnitude of
the volume force constantC0 are predominantly responsible
for the observed trend in the non-volume-conserving elastic
constants as a function of Pt concentration. In addition, the
absence of this contribution in the volume-conserving elastic
constants is largely responsible for the fact that these con-
stants have similar magnitudes in all four materials. The
variation in the sign and magnitude of the deviations from
the Cauchy relations is a specific example of these more
general trends and is once again due primarily to the varia-
tion in the magnitude ofC0. The models also provide expla-
nations for differences in magnitude between specific elastic
constants for a given material, such as the anomalously large
value of c66 in a-Pt2Si, which we find to be closely con-
nected to the three-center bonds in this material.

In addition to providing explanations for the trends in the
elastic constants, the magnitudes of the various force con-
stants themselves provide a direct indication of the nature of
the chemical bonding. The magnitude of the volume term
provides an indication of the relative importance of metallic
bonding. This analysis demonstrated that there is an impor-
tant element of metallic bonding in PtSi, despite the lack of
direct evidence in the analysis of the charge density. This
conclusion is required as a result of the specific values of the
elastic constants in this material and would not have been
possible based solely on the qualitative features of the charge
density. Similarly, the magnitudes of the radial and angular
force constants are directly connected to the importance of
covalent bonds in the material. The trends in these constants
confirm the general conclusions made on the basis of the
charge density analysis. In addition, the conclusion that there
are elements of both metallic and covalent bonding in
a-Pt2Si as well as PtSi may be connected to the fact that the
heats of formation for the two silicides are nearly the same.
One general conclusion of this study is that the elastic con-

stants contain a great deal of information about the nature of
the chemical bonding in a material but since this information
is not readily apparent, an analysis such as the one presented
here is necessary in order to extract the information. We have
attempted to make the case here that an analysis in terms of
valence force field models provides a convenient and fruitful
way to analyze the elastic constants and their connection to
the chemical bonding in a material.

Our purpose in developing the valence force field models
described in this work was to provide a quantitative means
for investigating the nature of the chemical bonding in the
platinum silicides in comparison to pure Pt and pure Si and
also to provide a more intuitive understanding of the connec-
tion between the chemical bonding and mechanical proper-
ties of these materials. Nonetheless, we can briefly consider
the possibility that these models may be useful in carrying
out future studies of silicide-silicon interfaces where first
principles methods would be vastly more CPU intensive. For
example, depending on the growth conditions, the silicide
thin film grown on a silicon substrate can be stabilized in an
amorphous phase. The only hope of treating such a structure
would be to use a more efficient semiempirical method such
as a valence force field model. We believe that in general it
should be possible to develop such a model given that our
basic formulation includes the same fundamental elements as
in other successful models, such as the embedded-atom
method and Tersoff potentials. One possible point of concern
is the well-known fact that valence force field models in
general tend to converge very slowly with respect to the
number of interaction parameters in the model. This issue
would certainly need to be explored before any attempt was
made to develop models that could be used in large-scale
simulations.
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