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ABSTRACT

VISION-BASED TARGET LOCALIZATION FROM A SMALL, FIXED-WING

UNMANNED AIR VEHICLE

Joshua David Redding
Department of Mechanical Engineering

Master of Science

Unmanned air vehicles (UAVs) are attracting increased attention as their enve-
lope of suitable tasks expands to include activities such as perimeter tracking, search
and rescue assistance, surveillance and reconnaissance. The simplified goal of many of
these tasks is to image an object for tracking or information-gathering purposes. The
ability to determine the inertial location of a visible, ground-based object without
requiring a priori knowledge of its exact location would therefore prove beneficial.

This thesis discusses a method of localizing a ground-based object when im-
aged from a fixed-wing UAV. Using the target’s pixel location in an image, with
measurements of UAV position, attitude and camera pose angles, the target is local-
ized in world coordinates. This thesis also presents a study of possible error sources
and localization sensitivities to each source. From this study, an accuracy within
15.5 m of actual target location is expected. Also, several methods of filtering are
presented, which allow for effective noise reduction. Finally, filtered hardware results
are presented that verify these expectations by localizing a target from a fixed-wing

UAV using on-board vision to within 10.9 meters.
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Chapter 1

Introduction

Although unmanned vehicles have been in use since the 1970’s, the last decade
has seen a dramatic rise in both interest and application as the needed technology
has continued to shrink in size, weight and cost while showing significant increases in
capability. For example, the “Predator”, General Atomics’ 27 foot UAV, has logged
over 20,000 flight hours since 1994, solidly proving its reliability and functionality [1].
Likewise, Northrop Grumman’s “Global Hawk” with its 116 foot wingspan, 1900
pound payload capacity and 40,000 daily searchable square nautical miles has proved
its effectiveness with over 50 completed combat missions under Operation Enduring
Freedom in Afghanistan [1]. With track records such as these, it is no wonder that
over the next five years more than 12 billion dollars will be spent bringing UAVs to

the forefront of military and military support operations [2].

1.1 Motivation

The nature of tasks generally suited for UAVs motivates their further devel-
opment. Unmanned systems are prime candidates for activities involving risk or
repetition, what the military calls the “dull, dirty and dangerous” [2]. UAVs repre-
sent a technology that is capable of saving countless lives by performing dangerous
tactical and reconnaissance missions, decreasing response time in bringing aid to vic-
tims of natural disasters and decreasing search times in search and rescue missions.
The simplified goal of many of these tasks is to locate and image an object for track-
ing, information-gathering or delivery purposes. The ability to determine the inertial

location of a visible, ground-based object without requiring a priori knowledge of its



precise location is beneficial to the completion of these tasks. UAVs show a strong po-
tential for accommodating such a capability. Many of the current approaches to this
object localization problem involve imaging and localizing a target from unmanned
blimps or rotor craft [3, 4, 5. Due to their low-velocity and low-altitude flight ca-
pabilities, these aircraft allow the target to occupy a larger percentage of an image,
making vision-based localization much easier. However, blimps are not suited for use
in wind or weather, and the cost and complexity associated with rotor craft are high.
It is therefore reasonable to explore target localization methods involving more robust
and less-expensive flight platforms.

Fixed wing UAVs, while lacking the ability to hover, present unique benefits
such as adaptability to adverse weather, a shorter learning curve for the untrained op-
erator and extreme durability against harsh environments. Also, the multiple vantage
points offered by a fixed-wing UAV provide more usable information for localization,
tracking and other purposes. Man-packable, fixed wing UAVs are small enough to be
carried and operated by a single person while offering many of the same advantages
as their larger counterparts, which explains their recent increase in demand [6]. The
development and deployment of such UAVs is relatively inexpensive, making them
comparatively expendable [7]. This presents a significant advantage over other alter-
natives since expendable units can be justifiably placed in even the most dangerous
situations without incurring unnecessary risk. Also, many of these small UAVs are
still large enough to carry an on-board camera. An aerial camera can efficiently
relay large amounts of information to the user/operator. In addition, this research
will use the video stream as a means of localizing objects found in its field of view.
Vision-based object localization represents an effective use of on-board resources and

provides information for many practical applications.

1.2 Problem Description

The problem exists in many applications that a target needs to be found or
photographed when its exact location is not known. Such is often the case in both

military and search and rescue scenarios. The goal of this research is to determine the



location of an arbitrary ground-object in world coordinates using a gimbaled camera
on-board a fixed-wing UAV. The general, rather than exact, location of the target is
assumed to be known a priori. The process of estimating the target’s exact location
is called localization and provides similar information about the target as the global
positioning system (GPS). Since all images lack a depth dimension, vision-based
localization is a non-trivial problem. The image depth, also called A, is a measure
of the distance from the camera to the object of interest in the image. This value
is often unknown and must therefore be estimated for every snapshot taken of the
target. This research presents a simple method for estimating A from UAV altitude
measurements. The result is then used to derive the exact location of the ground-
based target using noisy and imperfect sensor data that includes UAV location and
attitude as well as camera pose angles. This method generates a location estimate to
accompany each aerial photo taken of the target, which occurs frequently enough to
allow for effective noise-reducing methods. In order to discover reasonable accuracy
expectations, a study of possible error sources and their propagation into the final
estimate of target location is also conducted.

The crux of this research is determining the inertial, or world location of a
target from visual data. However, this objective presents several smaller problems
such as initially finding and recognizing the target. A solution was found by allowing
the UAV to follow a prescribed search pattern that covers the target’s known general
area while a color-segmentation routine picks out the highly-visible target from its
surroundings when it enters the camera’s field of view. The result of the color-
segmentation routine is the (x,y) pixel location of the target in the camera image.

This pixel location corresponds to the object’s inertial location when A is known.

1.3 Previous Work

Current research in localization generally involves an application to mobile-
robots. The main focus areas are GPS/predictive-based and vision-based localization,
both of which have some degree of relevancy to this research and will be discussed

accordingly.



1.3.1 GPS/Predictive Solutions

In attempting to localize a ground-based object from a UAV, it is important
to have accurate information for aircraft attitude and position. For this research, a
simple first-order prediction is used to estimate UAV location and attitude in between
GPS updates. Other research, particularly relating to ground vehicles, uses odometry
to estimate robot position and orientation relative to an arbitrary origin. Technology
has greatly aided these processes with devices such as accelerometers, rate gyros
and optic flow sensors. Although relatively inexpensive, most of these sensors are
insufficient when used alone. Barshan [8] explains that small errors in gyros and
accelerometers can result in unbounded error growth when their measurements are
integrated to provide usable information; such as robot position, orientation, and/or
velocity. Fitting an error model to the gyros can reduce the error growth to less than
half a degree per minute. However, this is still unacceptable over time. This problem
motivates the need for a supplemental reference to true position and orientation
information. For this research, reference to GPS information flushes accumulated

errors in estimated UAV heading and location.

1.3.2 Vision Based Solutions

Vision-based localization has been studied for many years, resulting in methods
from optical flow to stereo and Monte Carlo [4, 9, 10, 11, 12]. Others, such as
Marques [13], fuse odometry and computer vision by resetting predictive errors using
updates from visual information of known landmarks. Although Marques uses an
omni-directional vision system on-board a soccer robot, his method of localization
represents a similar technology desired for this research. The main difference being
that we will estimate the landmark’s position when robot (UAV) position is known
rather than the converse. Also, this research will extend these vision-based techniques
from structured, indoor environments to unstructured, outdoor environments.

Rysdyk [14] conducted simulations to maintain constant line-of-sight with a
ground-based target from a fixed-wing UAV. He outlines camera pan and tilt control,

but emphasizes UAV path-planning for constant target viewing and assumes a priori
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knowledge of target location. Stolle [15] presents similar research, but with more
details on camera control. Both Rysdyk and Stolle assume a camera center located
at the UAV center of mass. This thesis extends the simulated camera control done by
Rysdyk and Stolle into hardware implementation and accounts for added complexities
such as an arbitrary camera location.

Aside from camera control, this research most closely relates to that of Chaimow-
icz [3], who presented the results of an experiment using a blimp to localize a station-
ary object on the ground. Flying over the target at an altitude of 18 m and equipped
with a fixed camera, two methods of target localization were employed and compared
with the target’s actual GPS location. First, a series of images were taken where
both the target and a set of at least 6 known landmarks were visible. Although this
method led to very accurate localization, it was deemed unreliable since acquiring a
sufficient number of landmarks in the image is not guaranteed. Second, GPS and IMU
measurements from the blimp were used to localize the target, which they achieved
within 8.2 m. This thesis will employ a similar method of combining GPS and IMU
information to localize a target. In addition, this experiment will include a gimbaled
camera mounted to a fixed-wing UAV flying at a nearly constant velocity of 13 m/s
and at a much higher altitude of 60 m. These additions introduce new depth and

practicality to the vision-based target localization problem.

1.4 Contributions

This thesis will discuss the development and hardware testing of a robust
algorithm for a fixed-wing UAV to localize a computer-recognizable ground object.
As discussed in the previous section, vision-based localization is not a new concept.
Most previous experiments, however, have used similar vision-based techniques for
unmanned ground vehicle self-localization, either against other robots or landmarks in
an unknown environment. The contributions of this research extend the application
of vision-based localization methods to fixed-wing UAVs. This, combined with an

inexpensive UAV platform, represent a very practical technology.



1.5 OQutline

This thesis is organized as follows: Chapter 2 gives background that explains
the groundwork for this experiment. The localization method is detailed in Chapter 3.
Chapter 4 presents a study of error sources and their propagation effects. Hardware
test results are presented in Chapter 5 with conclusions and recommendations for

future work found in Chapter 6.



Chapter 2

Background

The purpose of this chapter is to provide enough background information to
give the reader an accurate idea of the foundation on which this project was built
and the tools that helped take it to hardware demonstration. The functionality and
purpose of these tools will be discussed. An overview of the functional specifications
and capabilities of the UAV autopilot is outlined in section 2.1. A description of the
fixed-wing UAV platform follows in section 2.2. Section 2.3 describes the software
developed at BYU to control the UAV from the ground. Section 2.4 briefly explains
the vision routine used to locate the object in the camera’s image. The problem is

then formally defined in section 2.5

2.1 UAV Autopilot

The Kestrel AutoPilot (KAP) was developed at Brigham Young University
to provide a solution for the intelligent and autonomous flight control of micro/mini
air vehicles. It is comprised of a fully integrated processor and sensor suite and is

commercially available through Procerus Technologies [16].



Abs. Pressure GPS Port Modem Port

Power Port

Analog Ports <}

Serial Ports

Diff. Pressure

Servo Ports

RateGyros 12bit ADCs Microcontroller

Figure 2.1: Kestrel AutoPilot (KAP) 1.45 and components

Figure 2.1 shows the autopilot and Figure 2.2 [16] gives some key technical
specifications for the KAP 1.45, which was used for this experiment. The KAP 1.45 is
equipped with a sensor suite including two dual-axis accelerometers, three single-axis
rate gyros, absolute and differential pressure sensors and four additional analog input
pins for payload needs. Using these sensors, combined with GPS information, the
KAP estimates its own attitude, inertial position between GPS updates, altitude and
airspeed. Knowing these parameters allows the KAP to facilitate autonomous take-
offs, landings and GPS waypoint navigation. Its small size and extreme light weight
allow UAVs as small as 12 inches to perform these tasks with a single user [16]. For
a thorough and technical explanation of the KAP, including each of its components,

see [6].



Autopilot Specifications

Parameter Conditions Min Typ Max Units
INPUT VOLTAGE (MP-Power)
Operating Input Voitage Range 5.8 15 v
Quiescent Supply Current 170 mé,
Payload POWER SUPPLY
3.3V =ource 33
5V source 5.4 v
Supply current 12 ma
Accuracy H1.5 +2 %
Moise 10V s our W ras
Payload Serial & 110
Logic high 23 W
Logic low 04
Current (sink & source) 6.8 mé
Attitude Estimation ] GPS lock
Euler angles (@,2 W) static error B0° <@ < BI°, -60" < © < 80°, o
Euler angies (h, & M) dynamic eror 0
Angular Velocity measurement 300 Yae
Resciution +.005 Yeec
Acceleration measurement +2 g
Altitude at 30°C 0 10,000 ft AGL
Agcuracy -5°C to 50°C B ft
Airspeed at 30°C 5 180 rph
Accuracy -5°C to 50°C, 15mph < 3 mph
airspeed = B0mph
Dimensions 227 % 1.96 inches
Accuracy H15 e
Weight 35 56 grams
Accuracy +4 %o

*Static error iz measured during straight and level flight. Dynamic ermor iz measured during coordinated tums.

Figure 2.2: Kestrel AutoPilot (KAP) 1.45 specifications

2.2 UAYV Platform

A flight platform consists of an airframe and all of the necessary hardware
to keep it aloft. Specifically, this includes the control-surface actuators, electronic
speed control, power and propulsion system. Christiansen [6] indicates that a good
UAV flight platform should be small enough to be portable, capable of carrying the
autopilot and payload, resistant to damage caused by inevitable abuse and be able
to stay airborne long enough to complete a useful mission. With these guidelines in
mind, a commercially available Zagi'™ airframe was chosen for this and virtually all

other UAV experiments performed at BYU.



Figure 2.3: Finished UAV: Autopilot, Gimbal, GPS etc..

The Zagi THL is a simple flying wing design constructed of extremely durable,
yet pliable EPP foam, which can aptly tolerate field abuses. The foam wing design
provides plenty of volume for embedding avionics, antennas and payload components.
Figure 2.3 shows a finished Zagi airframe ready for autonomous flight after modifica-
tions and upgrades. In addition to all other platform requirements, the UAVs used
for this experiment carry a two-axis gimbaled camera, shown in Figure 2.4. Gimbal
azimuth and elevation angles are controlled indirectly by the KAP through a separate

servo-controller board.
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Figure 2.4: Two-axis Gimbal

2.3 Virtual Cockpit / Ground Station

The UAV is operated via a software program running on a laptop computer,
which is supervised by an operator. The software, appropriately named the Virtual
Cockpit, is shown in Figure 2.5 and was developed at Brigham Young University.

The Virtual Cockpit is simply an interface for the flight control of UAVs. It is
capable of on-the-fly gain tuning, data and telemetry logging, displaying streamed
video in real-time, uploading and modifying GPS waypoints and displaying the UAV’s
attitude and location. The Virtual Cockpit communicates with the UAV via a custom
communication box that relays autonomous flight control commands to the UAV and
pilot commands from a Radio-Controlled transmitter. The KAP constantly interprets
the information obtained its sensors and adjusts its actuators according to the flight
plan uploaded from the Virtual Cockpit. The gimbaled camera receives azimuth

and elevation commands from the KAP to keep the target locked in the center of the

11
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[COME 115200-8-N-1 | [ I

Figure 2.5: Virtual Cockpit

image, but it can also be manually controlled via the Virtual Cockpit. The video from
the gimbaled camera is piped down to the ground via a 2.4GHz transmitter /receiver
and into the laptop via a framegrabber. This allows for real-time video display in
the Virtual Cockpit and data extraction for use in tracking algorithms. The overall

system architecture is mapped out in Figure 2.6.
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UAV

Kestrel Autopilot Sensors
(ELAP) P * GPS
= * Gyros
* Sensor processing ® Accelerometers, etc.
¢ Guidance/navigation
¢ communications S Actuators
900 MHz Gimbaled |€&———— | 2.4 GHz
Transceiver Camera Transmitter
- o
1 i 1
v Ground W
900 MHz 24 GHz
Transcerver Receiver
$ Laptop \L
Comm |& | & Viurtual Cockpit < Fria
Box @ Telenwpy Erabliar
= Waypoint planner
T = Human mterface
= Control-loop tuning
RC  Video processing <— Interface
Transmitter Devices

Figure 2.6: Setup of system architecture

2.4 TImage Processing

A desirable goal is to track an object using only a camera. To do this, the

to communicate large amounts of information.

A

13

tracked object must be distinctly visible in the camera’s image. “Distinctly visible”,
however, is a relative phrase since what may seem so to the human eye, may or
may not be to a computer vision algorithm. For a single sensor, a camera is able
software program called Image

Directed Control (IDC) was developed at Brigham Young University to track a target




in a video stream and output its (z,y) pixel location in each frame. Figure 2.7 shows
a screen grab of IDC and Figure 2.8 portrays the interaction between IDC and the
experimental hardware, where “VC” represents the Virtual Cockpit and “SC” the
servo controller board. IDC receives an image from the on-board camera, calculates
a pixel location of the target in the image and sends this location to the Virtual

Cockpit where it is used to calculate a world estimate of target location.

Image Directed Control |:||E”X|

File VitualCockpt  Help |-A\.f|: i Frame: 14 4t [320 b e of 403 1 e
Video: | 720480 FIGA | Algorithm: | DpenC Parachute Finder Ea|

4 v Segment on Hue (100...200)

¥ Segment on Saturation (80... 160)

0 ¥ Segment on Value (10...245)

§ I Seqment in Window (0,03-(100, 100

I_ ™ Morphological Crgaan_.i:_UD. (3x3)

| T Morphological Clean-Up (525

™ Morphological Clean-Up (large).

§ 7 Find Center (Opency)

¥ Find Center {Connected Components)
| ¥ Overlay on Video

§ v Uploadto v

| Low Pixels: Tirne out:
50 {90

Back To Auto
A HGain: ¥ Gair;
|no1 |-ouot
WPlaying AvL, 320 15 {noise) ’Zl

Figure 2.7: Image Directed Control (IDC)
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IDC VC > KAP > SC > Gimbal
Image q q desired desired

Claz, el az, el

W

W

Camera

Figure 2.8: IDC/Hardware interaction

2.5 Problem Definition

A reasonable scenario for baseline testing of the problem stated in Section 1.2
is a single UAV localizing a highly visible target using only its gimbaled camera. For
this experiment, a bright red cloth was used as the target and was placed in a known
area, its GPS location known only for a truth reference. The UAV, launched from
an arbitrary home position, then flew over the general area of the target while an
operator monitored the live video from the UAV. When the operator saw the target
the UAV was sent into a radial orbit over the user’s guess of the target’s location.
While circling this location, the UAV’s gimbal was actively controlled via IDC to
keep the target centered in the video image. IDC calculated and sent target pixel
locations to the Virtual Cockpit where the information was recorded and used to
localize the target in the inertial frame. This newly estimated target location then
updated the user’s initial guess and the UAV adjusted its orbit center and gimbal
angles accordingly. This procedure allowed the UAV to maintain an effective circular
orbit directly over the approximated target location while keeping the target within

the camera’s field of view.

2.6 Summary

This project was built on a foundation of previous research conducted in the

areas of computer vision and UAV control. The building blocks of this experiment

15



include: 1) a functional UAV equipped with autopilot and gimbaled camera, 2) a
software interface for communication with and control of the UAV, and 3) a color-
segmentation algorithm inside a color-tracking routine that is capable of recognizing
a target in its surroundings and producing the necessary commands to track it with a
camera. Granted, minor adjustments and additions were necessary incorporate these
building blocks into this experiment, however, without the foundation they provide,
this research would not be possible. Now that these tools are in place, the next step

is to introduce the mathematics of localization.
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Chapter 3

Mathematics of Localization

The crux of this project is to determine the inertial location of a visible and
stationary object from the vantage point of a fixed-wing UAV. The mathematics un-
derlying such a task require measurements of the UAV’s attitude and inertial position
as well as its camera pose, i.e. azimuth and elevation angles. In addition, the local-
ization algorithm must be robust to typical noise and disturbances in each of these
measurements, since the resulting inaccuracies will be magnified by the UAV’s alti-
tude. An investigation of error sources and methods of error minimization is covered
in Chapter 4.

In this chapter, an outline and derivation of the mathematical underpinnings
of vision-based localization are presented. Using the target location in pixels from a
UAV image, an estimate of the target location relative to the world reference frame is
calculated. This estimate is continuously updated as more pictures of the target are
captured, and sent to the UAV as the new desired center of its circular orbit path over
the target. Section 3.1 begins by reviewing necessary terminology and outlining the
process as a whole. Section 3.2 explains the steps of transformation between world
and camera frame coordinates. Section 3.3 details the camera’s calibration matrix,
which correlates the target’s three-dimensional camera frame coordinates with its
two-dimensional pixel coordinates and a scale factor A. A method for estimating this
scale factor is discussed in Section 3.4. In conclusion, Section 3.6 provides a concise

summary of the localization algorithm.
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3.1 Getting Started

The purpose of this section is to discuss some important terms and concepts
before delving into precise details. First, Section 3.1.1 shows and explains the sets of
coordinate frames used in the localization routine. Second, the problem and proposed

solution are thoroughly outlined in Section 3.1.2.

X,
X im Z
Y, Py
Xe — | :
1 :
(@) SN . ’ Zc
S
Y. N y

Figure 3.1: Camera frames

3.1.1 Coordinate Frames

Understanding Figures 3.1, 3.2, and 3.3 is critical to comprehending the fol-
lowing problem description and derivation. Figure 3.1 shows a target at location
(%, Ye, 2c) Telative to several coordinate frames, including the camera frame, denoted

with subscript ¢, the image pixel frame, ¢p and the image meter frame, tm. Figure 3.1
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assumes a simple projection camera model and the origin is marked by O. The cam-
era’s focal length is denoted by f and has units of meters. However, this will later be
scaled in the z and y directions and become f, and f, respectively, yielding units of
pixels.

The individual coordinate frames associated with the UAV are shown in Fig-
ures 3.2 and 3.3, with subscripts defined in Table 3.1. All coordinate frames follow a
right-hand rule. The origin of the camera frame is at the camera’s center, with the
positive camera Z-axis, Z., representing the optical axis of the camera. The origin
of the gimbal frame is the center of the two-axis gimbal. The axes correspond to
the UAV body axes when gimbal azimuth and elevation angles are zero. The UAV
body frame is centered at the center of mass, with the X-axis, X}, out the nose of the
aircraft and the Y-axis, Yj, out the right wing. The UAV vehicle frame is identical
to the inertial frame but is translated so the UAV center of gravity is the origin. It

will prove helpful for the reader to become familiar with these coordinate frames.

Table 3.1: Index to coordinate frame sub/superscripts.

Coordinate Frame subscript
Image frame (pixels) ip
Image frame (meters) im

Camera frame
Gimbal frame

UAV Body frame
UAV Vehicle frame
World/Inertial frame

~NeS o o
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Figure 3.2: Coordinate frames

X[-Ig7 Plane

Figure 3.3: Coordinate frames
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3.1.2 Problem Outline

The goal of the localization algorithm is to transform an object’s pixel location
from an image to its inertial location in meters. To give a mathematical overview
of this routine, Table 3.2 shows parameters representing the UAV’s attitude, inertial

location, camera gimbal angles and camera calibration constants.

Table 3.2: UAV and camera parameters

Parameter Symbol | Units
UAV roll angle 0] rad
UAV pitch angle 0 rad
UAV yaw angle Y rad
UAV east position YUAV m
UAV north position TUAV m
UAV altitude huav m
Gimbal azimuth angle Oy rad
Gimbal elevation angle gl rad
Camera focal length f m
Camera X image scaler Sy m /pixel
Camera Y image scaler Sy m /pixel
Image center X offset 0z pixels
Image center Y offset 0y pixels

In addition, a (4 x 4) camera calibration matrix C, and four (4 x 4) homoge-
neous transformation matrices (HTMs) are needed to take a target location in pixels
to an estimate in the camera frame and then to the inertial frame. A detailed deriva-
tion of these HTMs is given in Section 3.2 and C' is derived in Section 3.3. Assuming
the parameters in Table 3.2 and the HTMs are known or measured for each image
captured, the relationship between an object’s [x y 1 1]T pixel location, denoted g,

and it’s [z y z 1]" inertial coordinates, denoted pf;, can be described by

qa= CT;Té’Tngpgbj- (3.1)
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The right hand side of Equation (3.1) (from right to left) consists of the men-
tioned HTMs, which transform an object’s inertial location into an uncalibrated es-
timate of the object’s location in the camera frame. This estimate is then calibrated
and scaled using the matrix C, which contains the image’s depth, or scaling factor,
A. The problem with Equation (3.1) is that both pf,; and the A portion of C' are not

known. Solving for pf,; and extracting A from C, Equation (3.1) becomes
Pony = ACT{TT T g (3.2)

which allows for the easy calculation of pébj, assuming A is known. This motivates the
need for a method of estimating A. Before this is accomplished, however, the HTMs

and camera calibration matrix should be explained in more detail.

3.2 Transformations

A homogeneous transformation matrix (HTM) combines both rotation and
translation between coordinate frames into a single matrix. This section will visit
each HTM individually, discussing its elements and purpose. The sub/super-script
naming convention for the HTMs in Equations (3.1) and (3.2) is shown by 7¢° . and
the function of each HTM is described in Table 3.3.

Table 3.3: Homogeneous transformation matrices.

HTM Description
Ty Transformation from Inertial to UAV Vehicle frame
T? | Transformation from UAV Vehicle to UAV Body frame
T; Transformation from UAV Body to Gimbal frame
T, Transformation from Gimbal to Camera frame

The structure of an arbitrary HTM, Tij , is shown in Equation (3.3), where R
represents a (3 x 3) rotation matrix and d’ represents a (3 x 1) translation vector.
Both rotation and translation occur from the i to the j** coordinate frame. However,

when written in this manner, the rotation occurs first, followed by the translation.
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Therefore the translation vector must be resolved in the j* coordinate frame and
negated to avoid pre-multiplying it by Rg .
R -d

7 = 00 0 1Z (3:3)

3.2.1 Transformation 77}

Since the transformation from the inertial to the vehicle frame is actually a
single translation, 77 will only depend on the UAV’s GPS location and barometric

altitude measurements shown by

I —dj
7 = , Where
0 1
TUAV
dy = yuay | and
—hyav

TuAy = 1\-Torth location of UAV as measured by GPS
yuav = FRast location of UAV as measured by GPS

huay = Altitude of UAV as measured by barometric pressure sensor
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3.2.2 Transformation 7T

The transformation from the vehicle frame to the UAV body frame, T?, consists

of a single rotation based on measurements of Euler angles, shown by

Tf = By 0 , where
0 1
R’ = Rotation from vehicle to body frame
[ CoCy CoSy —Sg
= SpS0Cy — CpSy  SpSpSy + CoCy  SpCp | and
| CpSoCy + SpSy  CpSeSy — SeCy  CpCh

¢ = UAV roll angle

= UAV pitch angle
¥ = UAV heading angle
ce = cos(x)

Se = sin(x)

3.2.3 Transformation 7}

The transformation from the UAV body to the gimbal frame, 7}, will depend
on the location of the UAV’s center of mass with respect to the gimbal’s rotation
center. This vector, denoted by dj, is resolved in the gimbal frame. 7} will also
depend on the rotation that aligns the gimbal’s coordinate frame with the UAV’s
body frame. This rotation is denoted Rj and requires measurements of the camera’s

azimuth and elevation angles o, and «,; respectively, both of which are known. This
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transformation is shown by

17 = By —dy -I , where
—
Ry = éy,aesz,aaz
- Ca 0 Sg Caz Saz O
= 0O 1 0 —Saz Caz O
—Sg 0 cg 0 0 1

CelCaz CelSaz Sel

= —Sel Caz 0 and

—SelCaz  —SelSaz Cel

d] = Vector from gimbal center to cm of UAV ,

where

¢ = cos(x)
S, = sin(x)
0, = Azimuth angle of rotation about Z,
ag = Elevation angle of rotation about Y, after o,.

3.2.4 Transformation Tgc

T is the transformation from gimbal to camera reference frames. It will de-
pend on the vector dg, which describes the location of the gimbal’s rotation center
relative to the camera center and is resolved in the camera’s coordinate frame. 7

also depends on a simple rotation R{, which aligns the camera’s coordinate frame
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with that of the gimbal. It is shown by

R¢ —d¢

T, = g 91, where
0 1

R; = 3 dimensional rotation from the gimbal to the camera frame
0 0 —1

= 01 0 since we chose X, = —Z, and Z, = X

10 0

d, = Vector from camera center to gimbal center, resolved in camera frame

We now have four HTMs that are based on a priori calibrations and mea-
surements from on-board sensors. Following Equation (3.2), the next step before

estimating a target location is to develop the camera calibration matrix.

3.3 The Calibration Matrix

The image captured from a video feed, as with any image, is a two-dimensional
representation of three-dimensional information. The purpose of the calibration ma-
trix is to bring the target’s location in pixels into the three-dimensional camera frame
in meters. The camera’s calibration matrix defines a line from the camera center
through the target’s location in the image frame, (Zin, Yim). In inertial coordinates,
the target lies some distance A along this line and can be pin-pointed when A is known.
Simply put, the calibration matrix allows the image to be scaled so that meters can
be derived from pixels. Figure 3.1 shows the image frame in pixels (ip) and meters
(#m). The change of axes between meter and pixel frames is meant to allow easier
comparison between image (meter) and camera frames. Trucco, et al [17] show that

the change from pixels to meters in the image frame is
Tim = (_yip + Oy)Sy

Equation (3.4) yields meters in the image frame. Using a perspective cam-

era model, Equation (3.5) extends this to the camera frame and is simply a matrix
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representation of the law of similar triangles, see Figure 3.1.

x 1/f 0 0 x
y| =2 0o yrolly]| . (3.5)
P o o0 1] /|1]

Combining Equations (3.4) and (3.5), we achieve a relationship between pixels

in the image frame and meters in the camera frame. This is shown by

T 0 s_fm 0, T
1 f
Yy = X s, 0 Oy Yy : (36)
, 0 1 z
ip c

A closer look at Figure 3.1 reveals that z;, relates to y. and y;;, to z. in
Equation (3.6) since there was a change of axes between the ip and im coordinate

frames. By moving A to the other side and letting Sim = f, and siy = fy, we achieve

Oy Y ’ (37)

p c

where C' represents the camera calibration matrix. This representation shows that
A can be extracted from C' as another parameter. More complex calibration matri-
ces exist that account for image skewing and radial and tangential distortions [18],
however, with a square CCD array and a narrow angle lens, these can be justifiably
ignored without serious consequence.

We now know, or have measurements for, all parameters in Equation (3.2)
with the exception of target location, pgbj, and image depth, A. Therefore, the next

section presents a method of estimating .

3.4 Image Depth and Target Location

This section presents a method of generating an estimate for A using measure-

ments of UAV altitude. It is beneficial to first understand what A represents and
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discuss its place in camera model equations before discussing the method further. In
computer vision, the term “image depth” refers to the distance along the camera’s
optical axis, Z., to the object of interest in the image (see Figure 3.1). Its value is
often unknown, and is therefore replaced with an arbitrary scalar A [19]. Solving

Equation (3.5) for A yields

L

A= f
Tim

Ye
= 3.8

where A, z. and y. are unknown. This equation effectively represents a ray of length
A, whose origin is the camera center and whose direction is defined by the target’s
calibrated pixel location (Zn, ¥im). Since Equation (3.8) contains two equations and
three unknowns, there are an infinite number of solutions, which motivates the need
to estimate A. However, before A can be estimated, the center of the camera must
be represented relative to world coordinates. To accomplish this, the (3 x 1) vector
needed to describe the camera center in world coordinates is appended with a 1 to
create a (4 x 1) vector, p!_, for multiplication with the (4 x 4) transformation matrices.

pl. is defined as

B 11 B q¢
xz T
Y . I
p(I:c = = [Tg TbgT;JTI] ' ’ (39)
z z
1 1

where the vector [z y z 15" is equal to [0 0 0 1]7, since it describes the location of
the camera center in camera coordinates. Note the absence of the calibration matrix,
C, in Equation (3.9). This is due to the fact that the camera is fixed to the airframe,
whose position is known in world coordinates, and its center can be calculated without

knowledge of \.
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Dobi XY Plang

Figure 3.4: Localization vectors

Figure 3.4 shows the camera center, cc, and the vectors describing the tar-
get location with respect to both camera and inertial coordinate frames. The vector
pgbj describes the true location of the target in the inertial frame, while ﬁgbj repre-
sents the unscaled target location in the inertial frame. In addition to pl., given in
Equation (3.9), ﬁgbj is also needed to estimate ), and ultimately p{)bj. Calculating

ﬁgbj requires the target’s pixel location, ¢, and the camera calibration matrix, C, as

shown by
- a1
z
= g c v]—
pcl;bj = = [CTgTI;qTQ?T[] 'q, (3.10)
Z
1
L 4 obj
where ¢ is defined as
q= [xip Yip 1 1]T . (311)

Referring again to Figure 3.4, the inertial location of the target can be de-

scribed using the location of the camera center in inertial coordinates, p’., the image
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depth, A, and the unscaled location of the target in inertial coordinates, pgbj. This

relationship is shown by

Pon; = = Doc + A (Donj — Pec) (3.12)

L - obj
which remains dependent on the image depth, A. However, recalling the assumption
that the target lies on the plane of zero altitude, as calibrated by the UAV, the z

components of Equation (3.12) form the relationship

0=zl +A(zh; —2.) - (3.13)

CC

From Equations (3.9) and (3.10), both 2/, and z[,; are known, allowing Equa-

tion (3.13) to be solved for A, as shown by
(Zgbj - ch)
Since the inertial Z-axis, 77, is defined positive toward the center of the earth,
z!. will be negative for flight altitudes greater than what was calibrated as zero. Thus,
Equation (3.14) yields a positive value for A, as expected. Now that A\ is known, it

can be used to approximate the location of the target according to Equation (3.12).

3.5 Filtering

Each image of the target, combined with a measurement of UAV altitude is
capable of target localization. However, bandwidth constraints restrict the number of
usable images to about five per second. Fortunately, five estimates of target location
per second is frequent enough to allow for effective filtering. For this research, several
filtering methods were tested, including true average, moving average, recursive least
squares and Kalman filters. Each of these filters will be detailed in this section, and

the results of hardware tests are presented and discussed in Chapter 5.
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3.5.1 True Average

An average, T or arithmetic mean, is simply the sum of all the observations,

z;, divided by the number of observations, N, as shown by

where N represents the total number of observations made. The average of a set of

normally distributed samples represents the value of maximum likelihood.

3.5.2 Moving Average

A moving average filter is a special case of the average. Instead of using all
observations to calculate a mean, only the n most recent are used. The moving

average, T, is calculated by
1 n
771 = — E 79 316
’ n =1 ! ( )

where n represents the number of samples used to calculate this average. In effect,
data older than n time steps is no longer counted toward the average, hence it “moves”
to keep up with the most recent samples. This method needs far less storage space
than a true average, but has the tendency to be more affected by outlying data points

and is therefore less stable.

3.5.3 Recursive Least Squares

Recursive Least Squares (RLS) is a simple method of recursively fitting a set
of points to some function of choice by minimizing the sum of the squares of the
offsets of the points. Typically, an RLS algorithm is used to fit a set of points to a
characteristic line or quadratic, however, it can be also be used to find a characteristic
point as shown in the following table. In this case, the result of the RLS algorithm
is identical to the result of the true average, only obtained through a more efficient

process.
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RLS filter summary

Inputs:

I l]T

1. Camera center location, pf. = [zl , yI, 2L,

2. Unscaled target location, ply: = [Zly;, Ul Zepp 117

3. Image depth estimate, A

Matlab Pseudo-Code for X:
persistent Py, Ay, by;

an, = Il><1 (317)

by, = | ol + Al - at,) | (3.18)

if( isempty(Ay) )

AN = [CLNI] (319)
by = [bw] (3.20)
Py = (AyTAx)™ (3.21)
Xy, = PyAyxTby (3.22)

else

PNG,N TCLN PN

P = Py -— ! ! 3.23
M N 1+ an, Pvan, ™ (3.23)
ANl = [AN CLNI]T (324)
by, = [bn bw,]" (3.25)
Xy, = Py AxTby, (3.26)

end
Py = Py, (3.27)
Ay = Ap, (3.28)
by = bn (3.29)

return Xy,

* I1x1 refers to the (1 x 1) identity matrix

** The same equations apply for Y, only by, = [yl + MTly; — Yec)]
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3.5.4 Kalman Filter

A Kalman filter recursively calculates an optimal estimate of the states of a
dynamic system. This estimate is optimal in the sense that it will have a lower error
covariance than any other unbiased, linear estimate. The Kalman filter will fuse the
state estimates calculated from the system model with those calculated from system
measurements according to the matrices () and R, respectively. () represents the
expected variance in the system model and R represents the expected variance in the
system measurements. In other words, the values in () and R indicate how much
the filter will trust the system model and sensor measurements respectively when
calculating individual state estimates. The benefit of this structure is the versatility
it affords since both ) and R can be time-varying. In this case, where the target
is assumed stationary, the system model has zero dynamics and is considered very
accurate. This creates a () matrix with very small numbers along the diagonal, which
represent small variances in the model of the target.

If a moving target is to be localized in future work, the non-zero dynamics
of the target model would then be used in place of the previous model and the
Kalman filter would adjust its state estimates accordingly. Note that changing the
system model also changes the confidence in model predictions, which is represented
by . Also, in contrast to the averaging routine outlined previously, no record of
earlier samples is required to yield a solution. This presents a distinct advantage for
implementation on a micro-controller where memory space is limited. The pseudo-

code outlining this filter is shown in the table below.
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Kalman filter summary

Inputs:

1. Camera center location, pf. = [zl , yI, 2I., 1]T

2. Unscaled target location, ply: = [Zly;, Ul Zepp 117

3. Image depth estimate, A

Matlab Pseudo-Code:
persistent 4, Pya, @, R;

if( isempty(zoq) )

Taa = [0, 0]
Payq = (1200)I5x9;
(.01) I5yo;
R = (100)Izx2;

O
|

else
% Q & R could change dynamically here

end
1 1 1
Tee + )‘(mobj - xcc)

Yeo + MTob; — Yec)
% update P, find K, update x & P, propagate = & P
P = Pu+Q;
K = P(P+R)™
r = Toq+ K(Y — oa);
P = (laxe — K)P;
Lold = T

P,y = P;

return =

*where Iy refers to the (2 x 2) identity matrix
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3.6 Summary

The goal of this research was to determine the inertial location of a stationary,
ground-based target from a fixed-wing UAV using computer vision. The mathematics
required to accomplish this were presented and thoroughly discussed. The first piece
of information needed for localization is the target’s pixel location in an image taken
by the overhead UAV. This location, combined with knowledge of the UAV’s position,
attitude and camera pose angles at the time the image was taken, as well as the
camera’s intrinsic properties, provide an unscaled estimate for the inertial location of
the target. When the scaling parameter, or image depth, A, is known, this location can
be scaled into a meaningful estimate of actual target position in world coordinates.
Since a pixel location and image depth exist for each image taken of the target, several

filtering methods are used to combine each new estimate into a single location.
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Chapter 4

Error Analysis

Current research in localization uncertainty and error propagation is typically
restricted to ground-based mobile robots [20, 21, 22, 23]. This chapter will present
a study of uncertainties in the parameters of UAV flight and how these propagate
into errors in target localization. Like all aircraft, UAVs are susceptible to outside
influences. These include wind gusts, jet streams, variations in atmospheric pressures,
air densities and temperatures. These phenomena, among others, add unwanted
noise to aircraft sensors. This noise, combined with sensor errors and inaccuracies,
contaminates each measurement of position, altitude, airspeed and heading as well
as roll, pith and yaw rates. The purpose of this chapter is to explore the main error
sources in UAV and gimbal control and to study how each one individually affects the
target localization result. First, the main error sources are discussed in Section 4.1.
Section 4.2 then studies how sensitive the estimated target location is to each source
and determines which are most significant. Finally, Section 4.3 discusses methods of

minimizing these major errors and ways in which to handle noise in general.

4.1 Error Sources

In the equation

pébj = A[CT;TfoTf]_lq, (4.1)

each term introduces inaccuracies to the end result. Since ) is calculated from mea-

surements of UAV altitude, its associated errors will be accounted for through altitude
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uncertainty. Errors in the camera calibration matrix, C, are comparatively small since
they originate in the calibration routine itself and are therefore neglected. T depends
on the location of the UAV center of mass with respect to the camera center. The
errors associated with this measurement are on the order of millimeters and can also
be ignored. T} on the other hand, will depend on camera gimbal angles, which are
not known. The camera gimbal is controlled via commercially available hobby ser-
vos, for which no feedback exists. Thus, the commanded camera angles are known,
while actual angles are not. Despite this, laboratory tests have shown servo errors to
be accurate to less than half a degree and precise to less than one fifth of a degree.
Though impressive, these numbers are only valid when the servos are given sufficient
time to reach their desired angles. The time required to do so is on the order of 5
ms/deg, which should be sufficiently fast for typical changes in desired angles.

T? introduces further inaccuracies through errors in UAV attitude estimation.
Euler angles ¢, 6, and 9 are calculated from gyro measurements of roll, pitch and yaw
rates as well as accelerometer readings with reference to the gravity vector [24, 25].
Unfortunately, gyros tend to drift, causing accumulating errors in . Estimates of ¢
and 6 are generated by subtracting the gravity vector from accelerometer measure-
ments, a technique which works well under static conditions. However, this subtrac-
tion yields corrupted results when the UAV is experiencing accelerations, a dynamic
condition quite common during flight. Due to these limitations, Euler angle estimates
are considered decent at best. Through laboratory tests, ¢, 6 and 1) have been shown
to be statically accurate to within five degrees, and dynamically accurate to within
ten degrees. When the UAV is in a large orbit, static conditions can be assumed.

The translation from inertial to vehicle frames, accomplished by 77, adds in-
accuracies that stem from both GPS measurements and barometric altitude readings.
The major GPS inaccuracies are attributed to a variety of sources that combine to
achieve an accuracy of roughly 10 m in the horizontal plane, and 25 m in the vertical
plane [26]. However, since the bias portion of this error equally effects both UAV
and target, it can be neglected leaving only random errors, which can measure up to

roughly 5 m in the horizontal plane. With the addition of an absolute pressure sensor,
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altitude inaccuracies are reduced to roughly 8 m [16]. Although altitude errors have
a direct influence on the estimation of image depth, as discussed in Section 3.4, it is
intuitively expected that target localization will be most sensitive to inaccuracies in

camera and UAV attitude angles.

Table 4.1: Uncertainties, U,

Source | + Value
gz .D deg
gl .D deg

10) 5 deg

0 5 deg
Y 5 deg
Tyav 5 m
Yuav 5 m
hoay 8 m
Tip 5 pixels
Yip 5 pixels

The target pixel location, ¢, is determined by IDC and is subject to the adverse
effects of visual occlusions and lighting changes. Accounting for these error sources,
it is believed that ¢ accurately represents the target location in the image within 5
pixels in both z;, and y;,. Although actual uncertainties are not known, the values
shown in Table 4.1 are the results of laboratory tests and it is assumed that they

represent a 95% probability.

4.2 Sensitivities

For this research, the process and result of estimating a target’s inertial lo-
cation is referred to as target localization. In this section, a study of localization
sensitivity to uncertainties in measurements of UAV location and attitude as well
as camera gimbal angles is presented. For the purpose of experiment, a simulation

was created in which all UAV sensors yielded perfect signals with zero error. These
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perfect measurements were taken from nominal flight conditions listed in Table 4.2

and were used to form the HTMs of Equation (4.1).

The camera was placed at

Table 4.2: Nominal UAV conditions for localization,

Source | + Value
Qg 90 deg
g 30 deg

[0) 20 deg

0 5 deg

Y 0 deg
Tyav 0m
Yuav 0 m
huav 60 m
Tip 320 pixels
Yip 240 pixels

90 deg azimuth and 30 deg elevation angles and the UAV was placed 60 m over the

home position flying a 0 deg heading with 20 deg roll and 5 deg pitch angles. The

target was assumed to be located at the image center, and with all other variables of

Equation (4.1) known, finding the target location, p{)bj, became a simple calculation.

This location was considered truth and was then compared to the target locations

calculated as each of the parameters in Table 4.2 was incrementally perturbed by plus

and minus its uncertainty, while all others were held constant. Figures 4.1 through 4.3

show the error from truth as a function of uncertainty in each of these parameters.

As expected, increasing uncertainty results in increasing localization error. Figure 4.1

shows the sensitivity of target localization to uncertainties in UAV attitude and cam-

era gimbal angles.
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Localization Error due to UAV Attitude and Camera Angle Inaccuracies
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Figure 4.1: Sensitivity of localization to uncertainties in camera and UAV attitude
angles

As shown in Figure 4.1, good estimates of UAV roll angle and camera elevation
angle are important since the estimated target location is most sensitive to deviations
in these parameters. The fact that localization is equally sensitive to both UAV roll
and camera elevation angles is expected since during a localization flight the camera
is panned to roughly ninety degrees, which aligns Y}, the axis about which elevation
occurs, nearly parallel to Xj, the axis about which aircraft roll occurs. This alignment
means the localization algorithm cannot differentiate between changes in elevation

angle and changes in UAV roll angle.

pgbj = A[CT‘;TI?T,I?T})]_IQ = F(aaza e, ¢a 07 sza (‘Ta Y, h)UAV) (42)

Since the sensitivity plots from Figures 4.1, 4.2 and 4.3 are linear over the

expected error range, the partial derivative of target location F'; Equation (4.2), with
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Localization Error due to UAV Location Inaccuracies
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Figure 4.2: Sensitivity of localization to uncertainties in UAV location

respect to each error source can be estimated as simply the slope of each curve. For
increased confidence in these partials, the method of Sequential Perturbation (SP)
discussed in [27] was also used and the results of both methods are tabulated in

Table 4.3.
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Figure 4.3: Sensitivity of localization to uncertainties in target pixel location

Table 4.3: Estimated partial derivatives, %—f

i | Source Slope SP

1 Qg 1.2 m/deg 1.1 m/deg
2 Qe 2.0 m/deg 1.7 m/deg
3 ) 2.0 m/deg 1.7 m/deg
4 6 1.1 m/deg 1.1 m/deg
5 (0 0.8 m/deg 0.8 m/deg
6 | Zyay 1.0 m/m 1.0 m/m
7T | Yuav 1.0 m/m 1.0 m/m

8 | hyav 0.8 m/m 0.8 m/m

9 Tip 0.2 m/pixel | 0.15 m/pixel
10 Yip 0.16 m/pixel | 0.19 m/pixel

Using Table 4.1 in conjunction with the partials from the slope method in
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Table 4.3, it is possible to determine the expected localization error, I', resulting
from the combination of all error sources [27]. For example, Table 4.1 shows that the

uncertainty in UAV roll angle, Uy, is 5 deg. From Table 4.3, the partial derivative of

OF
a3_¢a

target location with respect to UAV roll is approximately 2 m/deg. This means
5 deg in roll uncertainty yields roughly 10 m of error in the estimated target position,
which is added into the total localization uncertainty by
N 2
oF
r = —U;
Z ( Oi )
=1
= 15.5 m Slope

= 14.6 m Sequential Perturbation , (4.3)

where i refers to each of the N parameters on which F' is dependent, as shown in
Equation (4.2) and listed in Table 4.3. By applying the appropriate values found in
Tables 4.1 and 4.3, it is theoretically possible to locate a target within 15.5 m using

computer vision from a fixed-wing UAV at an altitude of 60 m.

4.3 Error Minimization

Now that a reasonable grasp of expected errors is obtained, the logical question
that follows is: What can be done to minimize them? The solution to the problem
underlying this question involves acquiring more accurate UAV information, especially
for roll angle and altitude. Improvements in these two values would result in a large
increase in overall accuracy since target localization is very sensitive to # and the
uncertainty in altitude is high. For example, if UAV roll was known to 3 deg, rather
than 5 deg, and altitude was known to within 5 m, rather than 8 m, the localization
accuracy would theoretically drop from 15.5 m to 12.2 m. For this research, dealing
with the error sources directly means a careful calibration of KAP accelerometers,
rate gyros, pressure sensors and camera gimbal angles before each flight. However,
the practical answer to the question has more to do with minimizing the effects of

these errors rather than minimizing the errors themselves.
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To minimize the effects of these uncertainties, localization estimates are gen-
erated from multiple vantage points as the UAV orbits over the target. The benefit
of multiple estimates is that their variation can be characterized by a normal distri-
bution about an estimated target location [27]. As the number of estimates increases,
the uncertainty of this estimated location decreases. As the uncertainty decreases,
the estimated location will approach the true target location. In other words, each
additional result will tend the mean of all results toward its central value, the true
target location. However, this assumes that each estimate is unbiased, and since
this is intuitively doubtful, even the filtering methods discussed in section 3.5 will be

subject to bias errors.
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Chapter 5

Results

The focus of this research is the vision-based localization of a ground-based
target when imaged from a fixed-wing UAV. Since an image is two-dimensional in
nature, its depth, or A, must be estimated. Chapter 3 of this thesis presented a
method of estimating this dimension, and showed how this estimate leads to a target
location in world coordinates. Since a A, and thereby an estimated target location,
was calculated specific to each image of the target captured, Chapter 3 also discussed
several methods of combining these locations through filters designed to cancel noise.
This chapter will present the results of actual tests run in hardware to localize a
target from a small, fixed-wing UAV.

The results of an initial hardware experiment are shown in Figure 5.1. The
plot shows actual, estimated and filtered target locations from a UAV flying at 60 m

altitude in a 50 m radius circular orbit around an initial guess of the target location.
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Localization Experimental Data: Altitude = 60 m

UAV Path
Raw Estimate
True Avg
Moving Avg: 100 bins
RLS
. Kalman: Q=0.1,R=100
I Target
[ 115.5m Error

40

20~

North (m)

-60

-80

1
-80 -60 -40 -20 0 20 40
East (m)

Figure 5.1: Localization results

As can be seen in Figure 5.1, the majority of the individual estimates are
not within the expected accuracy range of 15.5 m derived in Chapter 4. To improve
these results, the effect of factors such as steady winds should be considered and
accounted for. Even a mild wind can introduce significant errors in UAV heading and
roll. The term UAV heading is used rather loosely here since there is currently no
accurate method of measuring true heading. Instead, a GPS heading is measured,
which provides the ground course rather than the true heading of the UAV. The
difference between heading and ground course can be significant, especially when
winds are perpendicular to the aircraft’s direction of travel. An aircraft traveling

crosswind must adjust its true heading slightly into the wind, or “crab”, to maintain
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a desired ground course. This crabbing causes the aircraft’s heading and direction
of travel to be misaligned, resulting in higher uncertainty in . As discussed in
Chapter 4, this uncertainty will propagate into the estimated target location, causing
degraded results. To compensate for wind, the data from the same experiment was
post-processed, disregarding all target location estimates generated when the UAV
was traveling perpendicular to the 5 mph wind. This resulted in the convergence of
the estimated target location within 10.9 meters of the actual target location, as seen

in Figure 5.2.

Localization Experimental Data: Altitude = 60 m, Winds 5 mph from 290 deg

UAV Path
Raw Estimate
True Avg
Moving Avg: 100 bins
RLS
. Kalman: Q=0.1,R=100
I Target
[ 115.5mError

20

-20

North (m)

-60

-80

Figure 5.2: Localization results accounting for wind
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Localization Experimental Data: Altitude = 60 m, Winds 5 mph from 290 deg
-10

UAV Path
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+ Moving Avg: 100 bins
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I Target
[ 115.5m Error
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Figure 5.3: Closeup of localization results

Figure 5.3 shows a closer look at the region of convergence and shows the
pattern of the filtered estimates. As expected, the true average and RLS filters
provide the most stable estimate to target location, however, they also require the
most calculations and storage space. A moving average, on the other hand, is more
easily affected by a single estimate and therefore never really settles in on a value.
With the Kalman filter, accuracy is only slightly sacrificed for a gain in computational
storage efficiency. Table 5.1 shows the values on which each filter converged, with

and without wind correction.
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Table 5.1: Errors in filtering methods

Method Without Wind Correction | With Wind Correction
True Avg 11.5 m 10.9 m
Moving Avg 12.0 m 11.9 m
RLS 11.5m 109 m
Kalman 12.2 m 11.6 m

Convergence of Localization Errors

40 T T T T T T
True Avg
— — — Moving Avg
S RLS T
Kalman

Localization Error (m

5 | | | |

0 20 40 60 80 100 120 140
Time (s)

Figure 5.4: Filter error convergence

Figure 5.4 gives an idea of how fast these filters settle on a value for target

location. As shown, the true average data is occluded by the RLS data since they
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are mathematically identical for the estimation of a characteristic point when given
a sequence of measured points. A moving average has the benefit of keeping only
the data from the most current complete orbit over the target, however, as shown in
Figure 5.4 its results do not settle as well over time. Recursive least squares (RLS)
finds the point that minimizes the sum of the squares of the distances to each target
location estimate and, in this case, is a true average. As shown, the Kalman filter
also settles quickly, and although it yields slightly more exaggerated results over the
orbit time, it requires minimal storage since only the covariance matrix is propagated,
making it a viable choice.

It is interesting to note that none of the filters converge near zero localization
error. This indicates that the estimates entering the filters were biased. Although
the bias likely consists of multiple, unkown sources, it can be estimated by the error
associated with the value at which the filter settles out, which is just over 10 m

according to Figure 5.4.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis shows that a ground-based target can be accurately localized from
an overhead UAV using a vision-based approach in real-time. The localization is ac-
complished from a fixed wing UAV at an altitude of 60 m in orbit of 50 m in radius.
The resulting estimate is within 11 m of actual GPS target location after approxi-
mately 50 samples. This shows that when UAV altitude is known with reasonable
accuracy, the image depth, A can be reliably estimated. Overall, the hardware results
demonstrate the successful implementation of a very practical technology capable of
increasing the efficiency of tasks such as reconnaissance, search and rescue and many

others.

6.2 Future Work

Although the initial results of hardware testing are very promising, there is still
room for improvement. Suggestions for accomplishing this improvement include such
ideas as using stereo vision to create an estimate for image depth and attempting to
decrease the latency in the sensor measurements used for localization. Implementing
these items would provide useful comparison and could serve to increase the accuracy

and reliability of vision-based target localization from a fixed wing UAV.
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Other methods of estimating image depth exist, and a more thorough study
would provide a useful and interesting comparison on localization accuracy. For
example, the use of stereo vision to estimate A would eliminate the need to assume
that the target lies on the plane of zero-altitude, effecting localization results.

The problem of sensor latency stems from the fact that sensors are sampled at
various times, placing these sampled values into variables that are then used simul-
taneously in the calculation of target location. Particularly, the image data supplied
from IDC significantly lags the data sampled from on-board sensors. Reconciling
this disparity could yield a more accurate convergence of the localization algorithm,

motivating further study of the issue.
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