
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Faculty Publications

2002-07-01

An Enterprise-Based Grid Resource Management System An Enterprise-Based Grid Resource Management System

Mark J. Clement
clement@cs.byu.edu

Joseph Ekstrom

Quinn O. Snell
snell@cs.byu.edu

Kevin B. Tew

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

 Part of the Computer Sciences Commons

Original Publication Citation Original Publication Citation
An Enterprise Based Grid Resource Management System, Quinn Snell, Kevin Tew, Joseph

Ekstrom, Mark Clement. Proceedings of the Eleventh IEEE International Symposium on High

Performance Distributed Computing (HPDC-11), Edinburgh, Scotland, July 22, pages 83-9.

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Clement, Mark J.; Ekstrom, Joseph; Snell, Quinn O.; and Tew, Kevin B., "An Enterprise-Based Grid Resource
Management System" (2002). Faculty Publications. 538.
https://scholarsarchive.byu.edu/facpub/538

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more
information, please contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/538?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

An Enterprise-Based Grid Resource Management System

Quinn Snell, Kevin Tew, Joseph Ekstrom, Mark Clement
Brigham Young University, Provo, Utah 84602

{snell, tewk, jce, clement}@cs.byu.edu

Abstract

As the Internet began its exponential growth into a global
information environment, software was often unreliable,
slow and had dif£culty in interoperating with other sys-
tems. Supercomputing node counts also continue to fol-
low high growth trends. Supercomputer and grid resource
management software must mature into a reliable compu-
tational platform in much the same way that web services
matured for the Internet. DOGMA The Next Generation
(DOGMA-NG) improves on current resource management
approaches by using tested off-the-shelf enterprise tech-
nologies to build a robust, scalable, and extensible resource
management platform. Distributed web service technolo-
gies constitute the core of DOGMA-NG’s design and pro-
vide fault tolerance and scalability. DOGMA-NG’s use of
open standard web technologies and ef£cient management
algorithms promises to reduce management time and ac-
commodate the growing size of future supercomputers. The
use of web technologies also provides the opportunity for
a new parallel programming paradigm, enterprise web ser-
vices parallel programming, that also gains bene£t from the
scalable, robust component architecture.

1 Introduction

Much like the evolution of the electronic marketplace,
supercomputer resource management must also evolve. Ini-
tially the web was too unreliable and insecure to ade-
quately support electronic commerce. As standards and
software evolved, companies could take advantage of a sta-
ble web server (Apache, others), secure data transmission
(SSL, etc), standard database connectivity (JDBC, ODBC),
and £le transfer and communication protocols (HTTP, FTP,
etc.).
Supercomputer resource management can also take ad-

vantage of this evolution. Queue management can be per-
formed through a database which yields support for trans-
actions, persistent data, and performance. In the case of a
distributed database, scalability and performance can also

be attained through redundant database machines. Commu-
nication over a standard protocol such as HTTP or HTTPS
yields ease in programming, secure data transfer, simple £le
transfer and, where proxies are present, caching and scala-
bility.
Supercomputing resource managers provide a way of

monitoring jobs and hardware state in a supercomputing
system. The resource manager starts and stops jobs and can
stage data that will be used by a parallel application. When
a set of supercomputers or clusters owned by different ad-
ministrative authorities is used to compute the solution to
a single problem, the resource managers from these differ-
ent systems are used to start jobs in this metacomputer. As
metacomputing systems become larger, resource managers
must have the following characteristics.

1. Reliability becomes essential when multiple systems
are used to solve a single problem. Bugs or failures are
nearly impossible to track down across administrative
domains. Most organizations have £rewalls in place
between their network and the Internet. Processors
from different administrative domains must be able to
communicate in a reliable and secure way.

2. Scalability is important since metacomputing systems
will have many more processors and jobs than single-
site systems. Any system with a single point of failure
or bottleneck will cause problems as the system grows.
Resource managers must be able to start jobs using a
”shared nothing” environment since shared memory or
shared £le systems do not scale to systems that cross
administrative boundaries.

3. Resource managers must be modular so that compo-
nents can be replaced in order to customize behav-
ior. Many new resource managers have been written
from scratch because an existing system did not sup-
port some necessary feature.

The original Distributed Object Group Metacomputing
Architecture (DOGMA) system [1, 2, 3] was developed
in 1998 to address several important metacomputing is-
sues. DOGMA provided a management system for hetero-

Proceedings of the 11 th IEEE International Symposium on High Performance Distributed Computing HPDC-11 2002 (HPDC’02)
1082-8907/02 $17.00 © 2002 IEEE

geneous collections of workstations. It also provided for
idle workstations to dynamically be used in a master-worker
application just as idle nodes are utilized in the Condor [4]
system. Initially, the resource manager was combined with
the application and tasks were started using Java RMI. This
integration of the resource manager with the application was
similar to that found in the Legion system [5]. This origi-
nal version of DOGMAwas essentially a single user system
and did not allow for native application execution.
The resource manager was separated from the appli-

cation environment to create the BYU Resource Manager
(YRM)[6]. This resource manager was integrated with the
Maui Scheduler [7] to allow many users to run jobs at the
same time in a space sharing system while still allowing for
the use of volunteer idle-time workstation nodes. Several
issues emerged as the system evolved that in¤uenced the
design goals of DOGMA-NG.

• Security was always lacking. Custom security imple-
mentations are never as good as off the shelf web based
systems such as HTTPS and SSL.

• Since the resource manager was written using custom
communications transport routines, messages had to
be parsed using custom code. XML, or some other
standard command system are much easier to use and
debug.

• Although the system was fairly reliable with 100 pro-
cessors, when the system scaled up to 700 nodes, the
resource manager became a bottleneck and network
bandwidth was exhausted.

The DOGMA-NG resource manager addresses these
problems as well as other shortcomings that have been
observed in other resource managers. It is built using
Commercial-Off-The-Shelf (COTS) components used in
web server infrastructures. The Globus system [8] is de-
signed to work over the Internet and recent work has fo-
cused on using web resources to discover services [9, 10].
DOGMA-NG not only uses web services, it is built out of
web servers and other information infrastructure.
As redundant web servers and databases are used, the

reliability and scalability can be increased to any desired
level. Since the system is component based, administra-
tors can replace security methods or select a different ven-
dor in order to customize their implementation. The web
service resource management implementation also lends it-
self to a different model of parallel computation where the
Internet infrastructure is used to distribute and maintain in-
formation used in the parallel computation. Many appli-
cations are amenable to this type of parallel programming
model. Further discussion of the web service parallel pro-
gramming paradigm follows. The remainder of the paper

£rst addresses the architecture of DOGMA, its bene£ts, and
how it meets the needs presented above.

2 Architecture

The design of the next generation of DOGMA is based
on the features needed to manage our grid system at BYU.
The system must manage over 1000 idle time workstations
in student labs and several small clusters between 8 and
64 nodes. It also must interact with other supercomputer
schedulers that exist on our two IBM SP-2 machines. To
accomplish this, the resource management system must be
scalable to thousands of nodes that are connected via a wide
variety of network connection speeds.
Each of the individual systems at BYU share nothing.

There is no shared £le system or namespace. Scalability
becomes more of an issue in a shared-nothing environment.
Not only must the resource management system scale to
handle all the resource information and keeping it up to
date, but the distribution of program data must also be done
ef£ciently. A system that pushes out the data sequentially
to each node will create a bottleneck where slow intercon-
necting network links are concerned.
Traditional resource management systems such as PBS,

and LoadLeveler are inappropriate in this environment.
They each have a single point of information gathering
and/or do not provide the infrastructure for a shared noth-
ing environment. Systems like these also have special-
ized database and queue management engines and special-
ized communication protocols which have dif£culty by-
passing £rewalls, etc. Our philosophy is, “Don’t reinvent
the wheel–the reinvented version is never as reliable.” Let
the experts do their job.
We have built DOGMA-NG using COTS database en-

gines, web services, and enterprise components (J2EE) to
promote standardization, pluggable and con£gurable com-
ponents, and reliability. Figure 1 is a high-level portrayal
of the architecture. All communication between the com-
pute nodes and the resource management system is done
via XML data over HTTP connections in a simple re-
quest/response architecture. This includes node and system
information, job control, and program data. Using HTTP
promotes transparent scalability and reduces bottlenecks.
This is shown in Figure 1. The cluster separated from the
resource management system by a slower network link in a
shared nothing environment is problematic when large data
£les are needed. However, a transparent proxie placed in
the connecting link provides caching so that data need only
traverse the slow network link once.
The DOGMA-NG system uses Enterprise Java Beans

(EJB) [11] to abstract database interaction and provide for
performance and scalability. Database queries are reduced
to simple variable assignment and method calls that are im-

Proceedings of the 11 th IEEE International Symposium on High Performance Distributed Computing HPDC-11 2002 (HPDC’02)
1082-8907/02 $17.00 © 2002 IEEE

Resource Database�
(may be a distributed database)�

EJB� EJB�EJB� EJB�

Enterprise Java Beans (may be distributed)�

Dedicated Cluster�
Idle-time�

Workstation nodes�

Web�
Proxie�

Web Server�
(may be distributed)�

Slow Network�
Connection�

Dedicated Cluster�

Maui�
Scheduler�

Figure 1. DOGMA-NG Architecture

plemented by the bean container in the case of container
managed entity beans. J2EE containers also abstract com-
munication, provide security and transaction management,
and provide thread pooling for performance. The EJBs are
pluggable components that can be easily changed, main-
tained, and developed. During the development phase, we
have often taken down various beans and replaced others
while the system and jobs remained running.

The database interaction abstraction is particularly ben-
e£cial as database speci£c coding is not necessary. This al-
lows for local customization of the database engine. A sim-
ple database may be used (we use PostgreSQL) or a more
complex distributed database may be used for better perfor-
mance. The J2EE container simply requires a Java Database
Connectivity (JDBC) driver for the installed system. Such
drivers are widely available for many databases. Open soft-
ware and commercial databases provide stable and tested
services, reducing the amount of custom code and bug po-
tential.

The database also provides persistent storage of queue
and resource information. All updates to the database are
done via transactions that may be rolled back in erroneous
conditions. Even when pieces of the resource management
system are down or a node goes down in the process of sys-
tem update, the database remains consistent. Transactions
also solve synchronization issues in a highly threaded sys-
tem.

Many of the interactions between the resource manage-
ment system and the nodes are SOAP calls [12]. SOAP is
a high-level remote procedure call mechanism that provides

standardized, universal marshalling and transport. All data
is marshaled in XML. Also, the endpoint services can be de-
scribed in the Web Services Description Language (WSDL)
[13] thus allowing language independent development and
dynamic discovery of services.
Where possible, the interactions take place over an SSL

connection. This includes interactions between the resource
management system and the individual nodes. The en-
crypted SSL connection provides secure transmission of
data and also secure £le transmission when needed.
Figure 2 diagrams the software architecture employed

in the current version of DOGMA-NG. The architecture is
based on standards, open software and a small amount of
glue code. Although the system is currently running under
speci£c products, the code is standards based. Thus any of
the software products can be replaced with another product
that implements the standard. For instance, PostgreSQL can
easily be replaced with Oracle, and JBOSS can just as eas-
ily be replaced withWebsphere. However, Apache, Tomcat,
JBoss, and PostgreSQL provide stable, high performance
services.

3 Use and Setup

3.1 Server Installation

Installation and setup of DOGMA-NG Server is rela-
tively simple. The default installation only requires the fol-
lowing components:

• Java JRE 1.4

Proceedings of the 11 th IEEE International Symposium on High Performance Distributed Computing HPDC-11 2002 (HPDC’02)
1082-8907/02 $17.00 © 2002 IEEE

PostgreSQL DB Persistent Storage�

JBOSS EJB Server�

SOAP RPC�

Java Client�

OS Dependent DOGMA Service�

O S� Screen Saver�

Command-�
line�
Job�

Submission�

Web�
Browser�

Job�
Submission�

Web�
Management�

Reporting�
Statistics�

Status, etc.�

Other�
Extermal�
Programs�

Maui�
Scheduler�

WIKI�

DOGMA Server Daemon�

SOAP RPC�

SSL�

SOAP RPC Servlet Module�

Tomcat Servlet Engine�

Apache Web Server�

SSL Secure Connection�

Figure 2. DOGMA-NG Software Architecture

The compile once run everywere nature of Java
has made it the prefered development platform for
DOGMA-NG. Although Java has its quirks and id-
iosyncracies, it is the most stable, platform indepen-
dent, developement environment currently available.
Version 1.4 of the Java class library includes useful
packages such as cryptography, SSL, logging, non-
blocking IO, threading, etc that allow the developer to
focus his or her attention on the core issues of resource
management developement instead of worring about
low level communication, threading, and syncroniza-
tion. Finally, Java’s automated memory allocation and
deallocation, frees the developer from memory man-
agement concerns and allows more rapid product de-
velopment.

• Tomcat Catalina 4.0.3 [14] or another Servlet/JSP
2.3/1.2 compatible container
The Java Servlet/JSP contianer provides SOAP object
deserializtion, web based management, and http trans-
port services. The only needed change to the Tom-
cat default installation is to ensure that the appropriate
JNDI jars for communicating with the J2EE container
are in the Tomcat classpath. This is a crucial step given
that JNDI is the mechanism for obtaining EJB remote
interfaces. The default DOGMA-NG installation as-
sumes the use of the JBoss J2EE container on the lo-
calhost interface of the Tomcat server.

• JBoss 2.4.4 [15] or another J2EE version 1.3 compati-
ble enterprise bean container
Enterprise Java Beans provide the core services of
the DOGMA-NG enterpise resource manager. BYU’s
DOGMA-NG uses JBoss due to its convient features

such as automatic table creation and default EJB Bean
to RDBMS SQL mapping. JBoss ships with the Java
native Hypersonic database which can be used out
of the box for small installations. The DOGMA-
NG project elected to replace Hypersonic with Post-
greSQL. Implementing PostgreSQL as the EJB persis-
tant store entailed de£ning two additional JMX beans
in the jboss.jcml con£g£le and including the Post-
greSQL JDBC jar in JBoss’ library directory.

• A RelationalDB such as PostgresSQL [16] or Oracle
Database setup is dependent on the RDBMS used. Us-
ing PostgreSQL only requires that the inital DOGMA-
NG database be created using the createdb
dogmang command and enabling the Postgres
TCP/IP listner by placing the -i argument on the post-
master command line. One last note is that the Red-
Hat Postgres default installation only allows client
database connections from the DB server localhost.

After installing the necessary industry standard servers,
the DOGMA Server installation is as simple as dropping a
few Web Archives (WAR) into the servlet container’s we-
bapps directory and deploying the DOGMA-NG EJB jar
into the EJB container. For the more complicated environ-
ment, the JAR £les contain default properties £les that can
be modi£ed to further customized and tune the DOGMA-
NG installation.

3.2 Client Installation

The only prequisite for compute node installation is the
Java runtime environment. Client installation simply in-
volves downloading the platform speci£c client distribution

Proceedings of the 11 th IEEE International Symposium on High Performance Distributed Computing HPDC-11 2002 (HPDC’02)
1082-8907/02 $17.00 © 2002 IEEE

and running install. The compute client architecture con-
sists of the following components:

• Native Code Daemon
On Linux or Unix clients, the native code daemon
is just a PERL script that detaches from the tty and
launches java in the background. If enabled, the PERL
daemon can restrict computation to during speci£c
time periods during the day or whenever the machine
utilization is below a certain threshold. The native
code daemon on Windows clients consists of a Win-
dows service and the DOGMA screen saver. The
DOGMA screen saver, acts much like the PERL dae-
mon, in the sense that it only permits computation
when the screensaver is active. In our environment
at BYU, all programs must be terminated immediately
whenever the screen saver is deactivated by a user. The
only exception to this rule is when the computer labs
are closed.

• BootStrap Java Code
The bootstrap Java code allows for automatic updat-
ing of the compute node software. Upon initial exe-
cution, the bootsrap code inspects the manifest of the
currently installed client code and compares the lo-
cal code version with the advertised version from the
DOGMA-NG server. If a new version is available
from the DOGMA-NG server, the client proceeds to
use getURL to retreive the updated code. After re-
trieval and installation of the updated code, the boot-
strap launches the actual compute node client.

• Compute Node Java Client
All local resource management occurs in the compute
node java client. The client uses SSL and SOAP to
communicate with the global resource management
server. Periodically, the compute node client updates
the server with both total and currently available local
system resource statistics. Finally, the client is respon-
sible for local process creation, task launch, and task
tear-down.

BYU uses DOGMA-NG to manage several clusters and
a large pool of dynamic non-dedication workstations. The
BYU cluster environment consists of a 48 node single
processor PII 266Mhz cluster, a 16 node dual processor
733Mhz PIII cluster, and a 16 node single processor mixed
PII/PIII cluster. We also use it on a new 32 node dual
933Mhz PIII / dual Athlon 2000+ cluster. Our largest re-
source is a pool of over a 1000 nondedicated linux and win-
dows workstations spread across campus. Future plans call
for possible integration of BYU’s two IBM SP-2 supercom-
puters and other supercomputing systems into the DOGMA
resource management system.

Jobs and Nodes in the DOGMA-NG system are currently
divided into two classes dedicated and non-dedicated. Ded-
icated nodes include the clusters and a few nodes from the
linux and windows workstation pool. These nodes are ded-
icated for computation. The majority of the linux and win-
dows workstation pool fall into the non-dedicated class dur-
ing the day. After the labs close at night, those same ma-
chines check-in to the system as dedicated nodes until the
lab reopens in the morning. Dedicated Jobs require that all
their tasks run concurrenty and without interruption, MPI
jobs are one example of dedicated jobs. Non-dedicated jobs
on the other hand consist of tasks that can be interrupted
and do not necessarily have to run concurrently.
DOGMA-NG includes a custom round robin scheduler

for scheduling non-dedicated nodes and jobs. For all dedi-
cated nodes and jobs, DOGMA-NG uses the MAUI sched-
uler. This combination provides an advanced scheduling
mechanism that also has the ¤exibility to use idle and un-
scheduled resources for dynamic jobs. Dynamic jobs may
schedule resources for master programs and then request
that the resource manager launch a worker process on all
available idle resources. Thus, the master process is not
in danger of being interrupted. Alternatively, a user may
also write a web services parallel program which will be
described in the next section.
To improve £le and program transfer performance in

the shared-nothing environment, transparent web caching
bridges have been placed at various locations. The bridge
intercepts all web traf£c and sends it through the Squid
proxie server. The interception does not require any
changes on the cluster, lab machines, or DOGMA server.
This allows the caching bridge to be transparently placed
where it is needed. When a lab full of machines behind
a slow connection requests a £le or program, the caching
server requests the £le over the slow connection and then
all other requests for it are local. We have seen dramatic de-
creases in startup time and network congestion using these
bridges.

4 Web Service Parallel Programming

The web services architecture of DOGMA-NG presents
the programmer with the opportunity to employ a new par-
allel programming paradigm using web services. Since the
resource management system is a J2EE service, other pro-
grams can also take advantage of the J2EE architecture.
Figure 3 displays a diagram of an application using this
paradigm.
Given a java jar £le and a web application archive (war)

containing the servlet and necessary java classes, DOGMA-
NG can deploy the jar and the war, then schedule and launch
worker processes. Figure 4 shows an xml job description in-
structing DOGMA-NG to load PhyloTreeBean.jar into the

Proceedings of the 11 th IEEE International Symposium on High Performance Distributed Computing HPDC-11 2002 (HPDC’02)
1082-8907/02 $17.00 © 2002 IEEE

<job>
<name>Zilla</name>
<user>snell</user>
<type>PhylogeneticNondedicated</type>
<class>NonDedicated</class>
<totaltasks>10000</totaltasks>
<maxnodes>30</maxnodes>
<initialstate>ready</initialstate>
<taskwallclocklimit>60000</taskwallclocklimit>
<jobwallclocklimit>600000</jobwallclocklimit>
<controllerjndiname>PhyloTreeBean</controllerjndiname>
<ejbjars>

<ejbjarurl>http://dogma-store.cs.byu.edu/Phylo/PhyloTreeBean.jar</ejbjarurl>
</ejbjars>
<servletwars>

<warurl>http://dogma-store.cs.byu.edu/Phylo/PhyloTreeBean.war</warurl>
</servletwars>

<architectures>
<architecture-os>
<id>WINDOWSI86</id>
<executable>
<url>http://dogma-store.cs.byu.edu/Phylo/phyloclient.exe</url>

</executable>
<arguments>

-cp /tmp/dogma-ng/ wrapper.PaupWrapper
-c ./paup4b4a-x86windows -p ./zilla.nex
-o ./qdogma -w 0.1
-u http://clotho:8080/˜snell/TestApps/servlet/PhyloTreeBeanServlet</arguments>

<inputfiles>
<url>http://dogma-store.cs.byu.edu/Phylo/zilla.nex</url>

</inputfiles>
<outputdir>
<url>http://dogma-store.cs.byu.edu/Phylo/${jobid}/</url>

</outputdir>
</architecture-os>

<architecture-os>
<id>LINUXI86</id>

... similar to previous architecture-os block ...

</architecture-os>
</architectures>
</job>

Figure 4. DOGMA-NG job description for the parallel ratchet.

Proceedings of the 11 th IEEE International Symposium on High Performance Distributed Computing HPDC-11 2002 (HPDC’02)
1082-8907/02 $17.00 © 2002 IEEE

Resource Database�
(may be a distributed database)�

EJB�J2EE�
Container�

Web Server�
(may be distributed)�

Master�
Servlet�

Worker�
Process�

Worker�
Process�

Worker�
Process�

G�E�T� �U�R�L�

W
�o�r�k�

P�O�S�T� �U�R�L� �(�R�e�s�u�l�t�s�)�
W

�o�r�k�

Simple set and get functions�
Advanced Finders�

Figure 3. Web Services Parallel Programming
Model

Figure 5. Number of nodes used for the par-
allel ratchet over a 24 hour period.

J2EE container, load PhyloTreeBean.war into the web ap-
plication container, then schedule and launch 10000 total
tasks for a wallclock limit of 60000 seconds each. Note that
the jar and war £les need only to be accessible via URL.
They can also be on the £le system local to the resource
management system. When all tasks have completed the
jar and war £les are undeployed. If the wallclock limit has
expired, all tasks will be terminated and the jar and war
£les undeployed. DOGMA-NG interfaces are currently be-
ing developed that allow applications to request more tasks
and/or more time.
We have developed the parallel parsimony and likelihood

ratchet for phylogenetic analysis [17] using this paradigm.
Because of its detached communication, not only is it suited
for general parallel machines, but it also is ideal for idle
time processing. In our environment at BYU, jobs on
the idle-time workstations must be immediately terminated
when a student begins using a machine. The web services
allow machines to come and go without any specialized
coding in the master process (HTTP and the web server al-
ready deal with this). Figure 5 shows a graph of the number
nodes used over time for a run of the parallel ratchet.
Another advantage of this system is that results are auto-

matically persisted to the database. Thus the application can
be restarted from where it left off in the event of machine
failures or time limit expiration. For extremely long jobs,

this promotes fair use of the computing resources. Web ser-
vice based jobs can be scheduled for shorter time periods
and then rescheduled to allow other jobs time on the sys-
tem.

5 Conclusion

As systems continue to grow and workstations become
available for dynamic grid computing, reliability fault tol-
erance, and scalability in a resource management system
becomes more important. In this paper, we have described
the DOGMA-NG resource management system. DOGMA-
NG is a highly scalable resource management system built
on tested COTS components. Together, these components
and the DOGMA-NG system form a robust and extensible
grid resource management system. The web services and
enterprise components which constitute the core of the sys-
tem provide fault tolerance as well as high performance and
scalability.
The DOGMA-NG system also provides the opportunity

for web services parallel programming. This is a very reli-
able and fault tolerant paradigm for master-worker parallel
applications. Using this model, we have been very succesful
at achieving high performance on large numbers of nodes.

References

[1] Glenn Judd, Mark Clement, and Quinn Snell.
DOGMA: Distributed object group metacomputing
architecture. Concurrency Practice and Experience,
10(1):1–7, 1998.

[2] Quinn Snell, Glenn Judd, and Mark Clement. The
DOGMA approach to parallel and distributed comput-
ing. Parallel and Distributed Computing Practices,
2(2), June 1999.

[3] Glenn Judd, Mark J. Clement, and Quinn O. Snell.
The DOGMA approach to high-utilization supercom-
puting. In Proceedings of the Seventh Internatational
Symposium on High Performance Distributed Com-
puting (HPDC-7), Chicago, Illinois, 1998.

[4] Michael J. Litzkow, Miron Livny, and Matt W. Mutka.
Condor - a hunter of idle workstations. In Proceed-
ings of the Eighth Internatational Conference on Dis-
tributed Computer Systems, 1988.

[5] A Grimshaw et. al. The legion vision of a worldwide
virtual computer. Communications of the ACM, 40(1),
1997.

[6] Daniel L. Reese, Scott V. Hansen, Quinn O. Snell, and
Mark J. Clement. YRM: An advanced resource man-

Proceedings of the 11 th IEEE International Symposium on High Performance Distributed Computing HPDC-11 2002 (HPDC’02)
1082-8907/02 $17.00 © 2002 IEEE

ager. In Proceedings of the Conference on Parallel
and Distributed Computing Systems (PDCS), 2000.

[7] David Jackson, Quinn Snell, and Mark Clement. Core
algorithms of the maui scheduler. Job Scheduling
Strategies for Parallel Processing, (LNCS) Editors:
Dror G. Feitelson and Larry Rudolph, 2221, June
2001.

[8] Ian Foster and Carl Kesselman. Globus: A Toolkit-
Based Grid Architecture. Morgan Kaufmann, 1999.

[9] Ian Foster, Carl Kesselman, and Steven Tuecke. The
anatomy of the grid: Enabling scalable virtual organi-
zations. International Journal on Supercomputer Ap-
plications, 15(3), 2001.

[10] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and
Steven Tuecke. The physiology of the grid.
http://www.globus.org/research/papers/ogsa.pdf.

[11] Java 2 platform enterprise edition speci£cation, v1.3.
http://java.sun.com/j2ee.

[12] Simple object access protocol (SOAP) W3C.
http://www.w3.org/2002/ws/.

[13] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web services description language 1.1, W3C
note 15 march 2001. http://www.w3.org/TR/wsdl.

[14] Jakarta tomcat. http://jakarta.apache.org.

[15] Jboss. http://www.jboss.org.

[16] Postgresql. http://www.postgresql.org.

[17] Quinn Snell, Michael Whiting, Mark Clement, and
David McLaughlin. Parallel phylogenetic inference.
In Proceedings of Supercomputing 2000, Dallas,
Texas, November, 2000.

Proceedings of the 11 th IEEE International Symposium on High Performance Distributed Computing HPDC-11 2002 (HPDC’02)
1082-8907/02 $17.00 © 2002 IEEE

	An Enterprise-Based Grid Resource Management System
	Original Publication Citation
	BYU ScholarsArchive Citation

	An enterprise-based grid resource management system - High Performance Distributed Computing, 2002. HPDC-11 2002. Proceedings. 11th IEEE International S

