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Abstract 

I present a thorough examination of the unconditional deterministic polynomial-time 

algorithm for determining whether an input number is prime or composite proposed by 

Agrawal, Kayal and Saxena in their paper [1].  

All proofs cited have been reworked with full details for the sake of completeness and 

readability. 
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Introduction 

This work is intended to provide enough detail that an advanced undergraduate with 

background in Abstract Algebra and Number Theory should be able to comprehend the 

construction of this important result on primality without consulting other sources. 

The references in the paper have been verified and all proofs have been checked and 

we have added references to standard literature in algebra, number theory, and computational 

complexity theory. 

Computational complexity theory is part of the theory of computation dealing with 

the resources required during computation to solve a given problem. The most common 

resources are time (how many steps does it take to solve a problem) and space (how much 

memory does it take to solve a problem). 

In this theory, the class P consists of all those decision problems that can be solved on 

a deterministic sequential machine in an amount of time that is polynomial in the size of the 

input; the class NP consists of all those decision problems whose positive solutions can be 

verified in polynomial time given the right information, or equivalently, whose solution can 

be found in polynomial time on a non-deterministic machine.  

The class RP (Randomized Polynomial-Time) consists of all those decision problems 

solvable by an NP machine such that: 

• If the answer is 'yes,' at least 1/2 of computation paths accept.  

• If the answer is 'no,' all computation paths reject. 

The class coRP is the complement of RP and consists of all those decision problems 

solvable by an NP machine such that: 

• If the answer is 'yes,' all computation paths accept.  
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• If the answer is 'no,' at least 1/2 of computation paths reject. 

The class ZPP (Zero-Error Probabilistic Polynomial-Time) is defined to be the 

intersection of RP and coRP.   It is the class of problems solvable by randomized algorithms 

that always return the correct answer, and whose expected running time (on any input) is 

polynomial.  The relationship of these classes is given by the following diagram: 

NP 

P 

RP 

coRP 

ZPP 

 

 

Arguably, the biggest open question in theoretical computer science concerns the 

relationship between those two classes:   

Is P equal to NP? 

A $1,000,000 USD prize has been offered for a correct solution.  Garey[2] is an excellent  

reference on the theory of NP-completeness for those interested in pursuing this prize. 

The historical classification of the problem of testing whether an input integer is 

prime roughly follows this timeline: 
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Year Class By Whom

pre–1975 coNP  Trivial.  A single factor of n is a short certificate that can be 

used to verify that n is not prime.  This can be done in linear 

time using the Euclidean algorithm. 

1975 NP  Pratt [3] 

1975 ∩NP coNP   

1977 RP  Solovay-Strassen [4] 

1987 coRP  Adleman-Huang [5] 

1987 ZPP  = ∩RP coRP  

2004 P Agrawal-Kayal-Saxena [1] 

 

The classes RP, coRP, and ZPP were defined by Gill [6] in 1977. 

Given a problem such as determining whether or not a number is prime, the question 

arises, “What is the best algorithm for doing this?”.  The difficulty in such a question is in 

deciding what is meant by “best”.  

One decision that often comes into play is as to the necessity of a deterministic 

algorithm.  For instance, if you are testing to see if a certain number is prime for the purpose 

of using it to construct a cryptographic system, the fastest known algorithms are probabilistic 

ones (e.g., the Miller-Rabin test [7]).  Although they provide no guarantee of theoretical 

correctness, the error bound can be made arbitrarily small so that for all practical 

considerations they are reliable algorithms.  However, this sort of primality testing will not 

be of class of P no matter how fast it is. 

The AKS algorithm is the first known deterministic algorithm for primality testing 

that can be proved to run unconditionally in polynomial-time on all inputs.   
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An Overview of Computational Complexity Theory 

A deterministic one-tape Turing machine (DTM) is computational model consisting 

of a finite state control, a read-write head, and a tape made up of a two-way infinite sequence 

of tape squares, labeled . 2, 1, 0, 1, 2,− −… …

Let Σ be a finite set of symbols.  Let *Σ  denote the set consisting of the empty string 

ε and all finite concatenations of elements of Σ.  Then L is a language over  if .  

(e.g., the set of binary representations of integers is a language over {0,1}). 

*Σ *L ⊂ Σ

A program for a DTM consists of  

• a finite set Γ of tape symbols, including a subset Σ ⊂ Γ of input symbols and a 

distinguished blank symbol b∈Γ −Σ ; 

• a finite set Q of states, including a distinguished start state q0 and two distinguished 

halt-states qY and qN ; 

• a transition function { }( ) { }: , 1,Y NQ q q Qδ 1− × Γ → × Γ × − + . 

A DTM program M with input alphabet Σ accepts *x∈∑  if and only if M halts in 

state qY when applied to input n. 

The language LM recognized by the program M is given 

by . *{ :  accepts }ML n M= ∈Σ n

For a DTM program which halts on all inputs *n∈Σ , its time complexity function 

 is given by: :MT + →] ]+

( )
*

2there is an  with log +1,  such that 
max :

the computation of on input  takes time M

n x n
T x m

M n m

⎧ ⎫∈Σ = ⎢ ⎥⎪ ⎪⎣ ⎦= ⎨ ⎬
⎪⎪ ⎭⎩

.  
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Any function ( )f x is considered to be ( )( )O g x  (pronounced “big-oh of g”) if given 

some function  there exists a constant c such that ( )g x ( ) ( )f x c g x≤ ⋅  for all values of 

, where x is defined to be the input length of n. 0x ≥

A DTM program which halts on all inputs *n∈Σ is called a polynomial time DTM 

program if there exists a polynomial ( )p x  such that, for all ( ) ( ), Mx T x p x+∈ ≤] .  

Alternately, a DTM program which halts on all inputs x∈Σ* , is called a polynomial time 

DTM program if its time complexity function is ( )( )O p x .  Again, x is defined to be the 

input length of n. 

The class P is the class of languages defined as follows: 

  { :  there is a polynomial time DTM program  for which }ML M= =P L L

Within this framework, the purpose of the paper is to show that with  M = “the AKS 

algorithm” and  LM = “binary representation of positive integers”, then M is a polynomial 

time DTM program with input set { }1∑ = −`  and halt states "PRIME"Yq =  and 

, and time complexity function "COMPOSITE"Nq = ( ) ( )25
2 which is MT x O x .  
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Notation 
 

We will use lo  to denote the base 2 logarithm instead of  or lg .  Base 10 

logarithms and natural logarithms will be denoted as  and  respectively. 

g n 2log n n

10log n ln n

The notation  represents the order of a modulo r, which is the smallest 

positive integer k, such that 

( )ordr a

( )1 modka r≡ . 

The notation  will be used to represent Euler’s totient function, which is defined 

as the number of positive integers less than or equal to r that are relatively prime to r. 

( )rφ

The notation ( ) ( ) ( )( )mod ,f x g x h x p≡  is used throughout to mean that 

( ) ( )f x g x=  in the ring  [ ]
( )( )

p x
h x

] .   In some cases, p will be prime and  will have 

degree d and be irreducible in 

( )h x

[ ]p x] , so that [ ]
( )( )

p x
h x

]  will be a finite field of order dp . 

Time complexity functions will be written in “big-O” notation.  A function ( )f x is 

considered to be ( )( )O g x  (pronounced “big-oh of g”) if given some function  there 

exists a constant c such that 

( )g x

( ) ( )f x c g x≤ ⋅  for all values of , where x is defined to 

be the binary input length of n.   

0x ≥

The function ( )M n  will be used to represent the time complexity function for 

multiplication.  The fastest known algorithm for multiplying two n digit numbers is due to 

Schönhage and Strassen [17] and has time complexity ( )log log logO n n n .  Ordinary 

multiplication (the kind you learn in school) has time complexity ( )2O n . 
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Part 1 – Conceptual Foundation 

The algorithm is based upon a generalization of Fermat’s Little theorem given in the 

Following lemma: 

Lemma 1 

Let .  Then n is prime if and only if , , 2 , and ( , ) 1a n n a n∈ ∈ ≥ =] `

 ( ) ( )modn nx a x a n+ ≡ +   

This says that if after we reduce all of the coefficients of the binomial expansion of 

( n)x a+  modulo n we are left with nx a+ , then n must be prime, otherwise n is not prime. 

 

Proof 

We want  since we are only interested in showing whether or not n is a 

prime.  If , then n will not be prime by definition.  The 

,n n∈ ≥` 2

2n < ( )gcd , 1a n =  condition is 

necessary to use Fermat’s Little Theorem which this generalizes. 

Instead of proving “a implies b” and then “b implies a”, we prove the contrapositive 

of the second direction (i.e., instead of proving “b implies a” we prove “not a implies not b”, 

which is logically equivalent). 

Recall that the binomial expansion of ( )nx a+  is given by 

0

n
i n i

i

n
x a

i
−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  where 
( )

!
! !

n n
i i n i

⎛ ⎞
=⎜ ⎟ −⎝ ⎠

. 

First we will prove that if n is prime then ( ) mod ( )n nx a x a n+ ≡ + . 
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Suppose n is prime.  If  0 i n< < , then ( )gcd , ! 1n i =  and ( )( )gcd , ! 1n n i− =  since 

both i and n are less than n and n is prime.  Thus i−
( )

!
! !

n n c
i n i

= ⋅
−

, where 
( )

( 1)!
! !
nc

i n i
−

=
−

 and 

, since c∈]
( )

!
! !

n
i n i

∈
−

]  and i! and ( )!n i−  contain no divisors of n.  This gives us that 

( ) ( )! 0 mod
! !

n n n c n
i i n i

⎛ ⎞
= = ⋅ ≡⎜ ⎟ −⎝ ⎠

 for 0 i n< < , and hence ( )0 modi n in
x a n

i
−⎛ ⎞
≡⎜ ⎟

⎝ ⎠
 for 

. 0 i n< <

Thus we see that when n is prime, the middle terms of the binomial expansion are all 

equivalent to zero mod n.  The only thing left to show is that ( )modna a n≡ .  By Fermat’s 

Little Theorem, we know that if n is prime, then ( )( 1) 1 modna n− ≡  whenever ( )gcd , 1a n = .  

Multiplying both sides by a, we get ( )modna a n≡  as desired. 

Now we will prove that if ( ) (modn n )x a x a n+ ≡ +  then n is prime by proving its 

contrapositive, “if n is not prime, then ( ) ( )modn nx a x a n+ ≡ +/ ”. 

Suppose n is not prime (i.e., composite since n > 1).  Let q be a prime factor of n and 

let k be the largest integer such that qk divides n.  We can then write  where q does 

not divide m.  Then 

kn q m=

( )
1! ( 1)...( 1) ( 1)...( 1)

! ! ( 1)! ( 1)!

k kn n q m n n q q m n n q
q q n q q q q

−⎛ ⎞ − − + − − +
= = =⎜ ⎟ − − −⎝ ⎠

. 

Notice that q does not divide the product ( 1)...( 1)m n n q− − +  on the far right, since q 

does not divide m and the first multiple of q less than n is n q− .  Thus  

since we cannot factor out another q on top to make .  Also note that 

does not dividek n
q

q
⎛ ⎞
⎜ ⎟
⎝ ⎠

kq gcd( , ) 1k n qq a − =  
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since  and  divides n.  So the coefficient of ( )gcd , 1a n = kq qx in the binomial expansion of 

( n)x a− , given by , cannot be equivalent to zero mod n since it is not even divisible 

by  , let alone by n. 

n qn
a

q
−⎛ ⎞

⎜ ⎟
⎝ ⎠

kq

Thus ( )( ) (( ) 0 modn n )x a x a n+ − + ≡/ , since even if all other middle coefficients go 

to zero, we still have  

( )( ) ( ) ( )( ) mod modn n n n q q n n n q qn n
x a x a x a x a x a n a x n

q q
− −⎛ ⎞⎛ ⎞ ⎛ ⎞

+ − + ≡ + + − − ≡⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

Therefore, ( ) (modn n )x a x a n+ ≡ +/ .  

In order to reduce the number of coefficients that need to be examined, the authors 

decided to consider Lemma 1 after reducing modulo the ideal generated by  for a 

sufficiently small r.  This way at most 

1rx −

1r −  coefficients need to be examined.  

There is one small problem.  Lemma 1 is not generally true modulo ( .  It turns 

out, however, that if r is chosen to be the smallest positive integer such that the order of n in 

1)rx −

( r
×Z

Z)  is greater than , then n can be shown to be a prime power if 2log n

( ) (mod 1 , )n n rx a x a x n+ ≡ + −  for all integer values of a ranging from 1 to 

2 ( ) logr nφ⎢
⎣

⎥
⎦ .  This will be shown in Lemma 7. 

Next we will review some definitions and theorems from finite field theory that will 

be necessary to show the correctness of the algorithm.   
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Definition 0.1 

Let n be a positive integer.  The splitting field of 1nx −  over a field K is called the nth 

cyclotomic field over K and is denoted by .  The roots of ( )nK 1nx −  in  are called the n( )nK th 

roots of unity over K and the set of all these roots is denoted by . ( )nE

Definition 0.2 

Let K be a field of characteristic p and n a positive integer not divisible by p.  Then a 

generator of the cyclic group  is called a primitive n( )nE th root of unity over K. 

Definition 0.3 

Let K be a field of characteristic p, n a positive integer not divisible by p, and ζ a 

primitive nth root of unity over K.  Then the polynomial 

 ( ) ( )
( )

1
gcd , 1

n
s

n
s
s n

x x ζ
=

=

= −∑Q  

is called the nth cyclotomic polynomial over K. 

Theorem 0.4 

Let  with qK = F ( )gcd , 1q n = .  Then  factors into nQ
( )n

d
φ  distinct monic 

irreducible polynomials in [ ]K x  of the same degree d,  is the splitting field of any such 

irreducible factor over K, and 

( )nK

( ) :nK K⎡ ⎤ d=⎣ ⎦ , where d is the least positive integer such that 

. ( )1 moddq n≡
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Proof 

Let η  be a primitive nth root of unity over K.  Then kq
η∈F  if and only if 

kqη η=  and 

the later identity is equivalent to ( )1 modkq ≡ n .  The smallest positive integer for which 

this holds is , and so k d= η  is in but in no proper subfield thereof.  Thus the minimal 

polynomial of 

dq
F

η  over K has degree d, and since η  is an arbitrary root of , the desired 

result follows.  

nQ

Corollary 0.5 

( )ordr n  divides . ( )rφ

Proof 

In Theorem 0.4, d is by definition ( )ordn q , which divides ( )nφ .    
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Part 2 – The AKS Algorithm 

The Agrawal-Kayal-Saxena (AKS) algorithm consists of six steps:  

1. Test n to see if it is a perfect power.   

 Output COMPOSITE if it is. 

This computationally inexpensive step is necessary to allow us to generalize Lemma 

1 to the quotient ring [ ]
( )1

n
r

x
x −

] .  Bernstein [8] has devised an algorithm to perform such 

a test in time ( )
log log log log log1

log

log
n n

n

O n
⎛ ⎞
⎜ + ⎟⎜ ⎟
⎝

⎛ ⎞
⎜
⎜ ⎟
⎝ ⎠

⎠ ⎟ , which is essentially linear on the binary length of n. 

The algorithm is essentially a binary search to find a root z of  .  The midpoint 

of an interval R containing a root is evaluated.  Then depending on the sign of , R is 

replaced with the left or right half R and the process is repeated.    The middle half of the 

interval is taken if the approximation is too close to zero to be sure of the sign.  To save time, 

the calculation of  at the midpoint is approximated.  This method effectively 

determines the binary representation of  z one bit at a time. The algorithm outputs ( )

1kz y −

1kz y −

1kz y −

,x p  

where  if n is a perfect power, and pn x= ( ),1n  otherwise. 

The proofs of the correctness and time complexity of this algorithm are beyond the 

scope of this paper and will not be given here.  The interested reader may consult Bernstein’s 

paper [8]  for a more complete treatment . 

The algorithm is as follows: 

1. Set log 2f n= ⎢ ⎥⎣ ⎦  
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2. Compute ( )3 / 2nroot ,1fy n+⎡ ⎤⎢ ⎥
← .  The algorithm for computing 

immediately follows this main algorithm. (jnroot ,y k )

3. For each prime number p f< : 

a. Set . 3 /b f= + ⎡ ⎤⎢ ⎥p

b. Compute ( )nroot ,br y← p . 

c. Find an integer x with 5
8r x− ≤ . 

d. If 0x =  or 1
4r x− ≥ , start over with the next prime. 

e. Compute the sign of pn x− : 

i. Set . 1b ←

ii. Compute ( )lg8 ,b pr pow x p+⎡ ⎤⎢ ⎥
← . The algorithm for computing 

is given on the next page. (pow ,b r k )

iii. If , output n r< 1−  and stop. 

iv. If , output 1 and stop. ( )1 2 br −+ ≤ n

v. If , output 0 and stop. b f≥

vi. Set { }min 2 ,b b← f . Go back to step ii. 

f. If pn x= , output ( ),x p and stop. 

g. Start over with the next prime. 

4. Output ( ) . ,1n
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To compute  (a floating point number): (nroot ,b y k )

1. Find the exponent g satisfying 12 2g gy− < ≤ . 

2. Set , so that /a g k= −⎢⎣ ⎥⎦
n1/ 12 2a ky− +≤ < . 

3. Set . ( )( )log 66 2 1B k⎡ ⎤= +⎢ ⎥

4. Set . 12 2 ,a az j−← + ←1

5. Now .  If ( )nroot ,j y k z= j b= , stop. 

6. Compute ( )(trunc pow , truncB B Br z k← )y , where the function  is the 

truncation of r to b bits. 

truncb r

7. If , set 993 /1024r ≤ 12a jz z − −← + . 

8. If , set . 1r > 12a jz z − −← −

9. Set . Go back to step 5. 1j j← +

 

To compute  (the b-bit approximate k(pow ,b r k ) th power of r): 

1. If , output  and stop. 1k = truncb r

2. If k is even, compute ( )2pow , k
b r , output ( )( )2

2btrunc  pow , k
b r and stop. 

3. Compute  and output (pow , 1b r k − ) ( )( )btrunc  pow , 1 truncb br k r− . 

 

Examples: 

( ) ( )( ) ( )( ) ( )
22pow ,7 trunc trunc trunc trunc trunc truncb b b b b b br r⎛ ⎞= ⎜ ⎟

⎝ ⎠
r r . 

 19



( ) ( )( )
222pow ,8 trunc trunc trunc truncb b b b br r

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. 

2. Find the smallest r such that ( ) 2ord logr n n> . 

Lemma 2 guarantees the existence of such an 5logr n⎡ ⎤≤ ⎢ ⎥ .  Since each r can be tested 

using at most  multiplications, this step has time complexity ( 2logO )n

( ) ( ) ( ) ( )2 7log log log logO r n M n O n M n= , where ( )M x is the time complexity function 

for multiplication.  So using fast Fourier multiplication, we get a time complexity of 

. ( )8log log log log log logO n n n

Improving this bound for r is the key to improving the expected run time of the 

algorithm.  It is believed that r is bounded by ( )2logO n

)n

)

 –  a far better result than the bound 

of  used in this proof.  Agrawal [1] claims that this result has actually been proven 

by Hendrik Lenstra, Jr. and Carl Pomerance in a private communication.  I have not been 

able to verify this since this source is not available to me.  

( 5logO

 

3. Compute  for each (gcd ,n a 2 a r≤ ≤ .   

 Output COMPOSITE if ( )1 gcd ,n a n< <  for some a r≤ . 

This is just some basic trial division.  Computing the GCD of r numbers takes 

, so using the bound in step 2, this step can be computed in time . ( logO r n) ( )6logO n

 

 

 

 20



4. Output PRIME if . n r≤

This is a result of the trial division in step 3.  This step takes no time of any 

consequence.  Note that since 5logr n⎡ ⎤≤ ⎢ ⎥ , this step is only relevant when .  In 

practice, one would generally look up such a small number in a table of primes.  

Furthermore, reducing the bound on r decreases the likelihood of this step occurring.  For 

instance, with , this step is only relevant when 

5,690,034n ≤

3logr ⎡≤ ⎢ n⎤⎥ 982n ≤ .   There are only 165 

primes less than 982, with 983 being the 166th prime.  

 

5. Compute ( ) mod ( 1 , )n rx a x+ − n  for each  ( ) ( )1 loa rφ g n⎢ ⎥≤ ≤ ⎣ ⎦ .   

 Output COMPOSITE if ( ) (mod 1 , )n n rx a x a x n+ ≡ + −/  for some a. 

Lemma 1 guarantees that if the test fails for any a, then n is composite.  On the other 

hand, if step 5 is satisfied for each a, a group can be defined with a lower bound on its order.  

Lemma 6 will show that n must be some power of a prime p by showing that on the contrary 

that the order of this same group would be too small.  Step 1 of the algorithm will guarantee 

that that power is 1, thus making n a prime.   

In this step there are ( ) logr nφ⎢
⎣

⎥
⎦ ) equations which require  multiplications 

of degree r polynomials with coefficients of size 

(logO n

( )logO n

)

 to verify. Each equation then 

takes time  to verify.  This gives a time complexity of ( ) (2log logO r n M n

( )( ) ( ) ( ) ( ) ( ) (3 21
2 23 3log log log log log logO r r n M n O r n M n O n M nφ = = ) .  This step then 

represents the time complexity of the algorithm, since it dominates all others.  Thus using 
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even classical multiplication, we get ( ) ( )2log logM n O n= , so that the overall time 

complexity of the algorithm is ( )25
2logO n  , which is polynomial on the binary length of n.  

This allows the categorization of this algorithm in P, the collection of deterministic 

polynomial-time algorithms after the algorithm is proved to be correct in Theorem 1.  Fast 

Fourier multiplication, gives a time complexity of ( )23
2log log log log log logO n n n . 

 

6. Output PRIME 

We will show in Theorem 1 that the algorithm outputs prime if and only if n is prime. 
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Part 3 – The Correctness of the AKS Algorithm 

The following lemma validates step 2 by setting an upper bound for finding a suitable 

r.  It is the principal theorem used to show that the AKS algorithm is polynomial-time. 

Lemma 2 

There exists an { }5max 3 , logr n⎡ ⎤≤ ⎢ ⎥  such that ( ) 2ord logr n n> . 

The proof uses a Chebyshev type bound on the lcm of the first n numbers by Nair [9].  

This bound is given with proof in Theorem A2 in the Appendix. The authors opted to use this 

result instead of the sieve theory result of Fouvry [10] in order to keep the proof as 

elementary as possible.   

 

Proof  

For ,  satisfies the lemma, so we may let .  Let  be all 

integers such that either  or .   The first condition implies that 

for each  there exists  such that , or in other words, 

 for some integer q, so that 

2n = 3r = 2n > 1 2, , ... , tr r r

( ) 2ord log
ir

n n≤ divides ir n

n r

r q

ir
2logik ≤ 1 mod ( )ik

in ≡

1ik
in − = ( )divides 1ik

ir n − .  Each of the  must divide the 

product , since the fact that each  ensures 

that  is one of the terms of this product.  This gives us that  

ir

(
2log

1

1
n

i

i

n n
⎢ ⎥
⎣ ⎦

=

⋅ ∏ )− 2is less than or equal to logik n

1ikn −

( ) ( )
2log

1 2
1

lcm , , ... , 1
n

i
t

i

r r r n n
⎢ ⎥
⎣ ⎦

=

≤ ⋅ −∏ . 
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We also know that  

( )
2

4
log

log

1

1
n

i n

i

n n n
⎢ ⎥
⎣ ⎦

=

⋅ − <∏ . 

To prove this, first notice that for ,   .   And since 

, we have 

0 and 1k x> > (1

1

1

1

k

i

i k
i

i

x =

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠

=

∑
> ∏ )x −

2n >

( )
( )( )

2log

2 22

1 4

1 log log 1log
1 log2

1

1

n

i

i n nn
i n

i

n n n n n

⎢ ⎥
⎢ ⎥⎣ ⎦

=

⎛ ⎞
⎜ ⎟

+ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ +⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎜ ⎟ +⎜ ⎟
⎝ ⎠

=

∑
⋅ − < = <∏ . 

Thus since , we have that log2 nn =

( ) ( )
2

5
log

log
1 2

1

lcm , , ... , 1 2
n

i n
t

i

r r r n n
⎢ ⎥
⎣ ⎦

=

≤ ⋅ − <∏ . 

Since , we have  and we may apply Theorem A2 to get 2n > 5log 10n⎡ ⎤ >⎢ ⎥

( ) 5log5lcm 1,2,..., log 2 nn
⎡ ⎤
⎢ ⎥⎡ ⎤ ≥⎢ ⎥ . 

Therefore there must exist an 5logs n⎡ ⎤< ⎢ ⎥  such that { }1 2, , ... , ts r r r∉ .   If ( ), 1s n =  

then  and we are done.  If ( ) 2ord logs n > n ( ),s n >1, then since s does not divide n and 

( ) { }1 2, , , ... , ts n r r r∈ , 
( ) { }1 2, , ... ,

, t
sr r r

s n
= ∉ r  and so ( ) 2ord logr n n> .  

For the remainder of this paper we will assume that the algorithm returns PRIME and 

show that n must be prime.  This result will be restated later as Lemma 7. 

Let p be prime and suppose that |p n .  In order to pass through step 1 without 

getting an output of COMPOSITE, we must have that bn a≠  for any positive integers a and 

b. 
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In step 2, no output is given. 

In order to pass through step 3 without getting an output of COMPOSITE, we need 

or n for all a .  Since ( )gcd , 1a n = r≤ |p n , this means that p must be greater than r, 

otherwise step 3 would have output COMPOSITE.  Since p is prime, we have  ( )gcd , 1r p = . 

If  , then step 3 amounts to trial division and is a complete test on the primality 

of n.  So we can pass over step 4 by assuming that n  without any loss of generality.  

Recall that since , this step is only relevant when 

n r≤

r>

5logr ⎡≤ ⎢ n⎤⎥ 5,690,034n ≤ .  

Next we assume that n and p are fixed and set ( ) logr nφ⎢ ⎥= ⎣ ⎦A .  Step 5 of the 

algorithm verifies  equations. Since the algorithm does not output COMPOSITE in this 

step, we have  

A

                      ( ) ( )mod 1,n n rx a x a x n+ ≡ + −  for every a, 0 a≤ ≤ A . 

This implies that   

           ( ) ( )mod 1,n n rx a x a x p+ ≡ + − for every a, 0 a≤ ≤ A .  (1) 

By Lemma 1, we have  

          ( ) ( )mod 1,p p rx a x a x p+ ≡ + − for every a, 0 a≤ ≤ A . (2) 

 Since p divides n, from (2) we get 

  ( ) ( )( ) ( ) ( )mod 1,
n np pn p p rx a x a x a x+ ≡ + ≡ + − p  for every a, , (3) 0 a≤ ≤ A

and from (1) we get 

          ( ) ( ) ( )mod 1,
n

pn n p rx a x a x a x p+ ≡ + = + −  for every a, . (4) 0 a≤ ≤ A
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(3) and (4) imply that 

( ) ( ) ( )mod 1,
n n

p pp p rx a x a x+ ≡ + − p  for every a, 0 . a≤ ≤ A

Replacing px with x, we get 

( ) ( )mod 1,
n n

p p rx a x a x+ ≡ + − p  for every a, 0 a≤ ≤ A . 

Thus both n and n
p

  behave like prime p in the above equation.  At this point we give 

the following definition: 

Definition 1 

For polynomial ( )f x  and number m∈` , we say that m is introspective for ( )f x  if  

( ) ( ) (mod 1, )
m m rf x f x x⎡ ⎤ ≡ −⎣ ⎦ p .  

The next two lemmas show that the set of introspective numbers for a given 

polynomial is closed under multiplication, and that the set of polynomials for which m is 

introspective is also closed under multiplication. 

Lemma 3 

If  and m m′  are introspective for ( )f x , then so is m m′⋅ . 

 

Proof 

By definition,  ( ) ( ) (mod 1, )
m m rf x f x x⎡ ⎤ ≡ −⎣ ⎦ p .  Thus  

 ( ) ( ) (mod 1, )
mmm m rf x f x x
′′ ⎡ ⎤⎡ ⎤ ≡⎣ ⎦ ⎣ ⎦ p− . (1) 
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Since  is also introspective, replacing x with m′ mx gives: 

( ) ( ) (mod 1, )
mm mm mrf x f x x
′

′⎡ ⎤ ≡ −⎣ ⎦ p . 

Notice that there exists an injective map  

[ ]
( )

[ ]
( ):

1 1
p p

r m
x x

x x
ϕ → r− −

] ] . 

Or in other words, since 

 , ( ) ( )

1

1 1
m

m i rmr r

i

x x x −

=

⎛ ⎞− = − ⎜ ⎟
⎝ ⎠
∑

we can see that  divides 1rx − 1mrx − , and so the ideal generated by  contains the ideal 

generated by . Thus any congruence modulo 

1rx −

1mrx − ( )1mrx −  must also hold modulo the 

larger ideal (  in precisely the same way that any number divisible by 6 must also be 

divisible by 2 or 3.  Thus we see that 

)1rx −

 ( ) ( ) (mod 1, )
mm mm rf x f x x
′

′⎡ ⎤ ≡⎣ ⎦ p− , (2) 

and from (1) and (2) we get 

 ( ) ( ) (mod 1, )
mm mm rf x f x x

′ ′⎡ ⎤ ≡ −⎣ ⎦ p .  

Lemma 4 

If  is introspective form ( )f x  and ( )g x , then is introspective form ( ) ( )f x g x⋅ . 
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Proof 

First we have that ( ) ( ) ( ) ( )m m m
f x g x f x g x=⎡ ⎤ ⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎦ ⎣ ⎤⎦ .   And since m  is introspective 

for both ( )f x  and , we get ( )g x ( ) ( ) ( ) ( ) ( )mod 1,rm m mf x g x f x g x x p= −⎡ ⎤⎣ ⎦ .  

 

We next define the following sets: 

 { }| , 0i jI n p i j= ≥  

 ( )
1

| 0ae
a

a

P x a e
=

⎧ ⎫
= + ≥⎨ ⎬
⎩ ⎭
∏
A

 

Notice that since Step 5 guarantees that ( ) (mod 1 , )n n rx a x a x n+ ≡ + −  for 

, it follows immediately from Lemma 4 and Lemma 5 that every  is 

introspective for every 

1 a≤ ≤ A m I∈

( )f x P∈ . 

Proposition 1 

{ }mod |G i r i I= ∈  is a multiplicative subgroup of ( )r
×]

] . 

 

Proof 

Since G is a finite set, it is sufficient to show that G is a multiplicatively closed subset 

of the multiplicative group ( r )×]
] .   We can see that ( )G r

×
⊂ ]

]  since .  Now let 

.  Then 

,n p +∈]

( ) (mod , modi j k lg n p r g n p r′= = ) ( )modik jlgg n p r G′ = ∈ .    
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Proposition 2 

Let ( )r xQ be the rth cyclotomic polynomial over .  Let p] ( )h x  be any irreducible 

factor of ( )r xQ  of degree ( )ordr p . Theorem 0.4 guarantees the existence of such an ( )h x .  

Then 

( ) ( )( ) ( ){ }mod , 0 |f x h x p f x= ≠G P∈ is a subgroup of [ ]
( )( )

p x
h x

×
⎛ ⎞
⎜ ⎟
⎝ ⎠

] . 

 

Proof 

Again it is sufficient to show closure under multiplication since it is a finite set.  It is 

clear that G is a subset of the multiplicative group since we are taking non-zero residues of 

polynomials in P.  Let .  Recall that  ,f g∈ G

( )
1

0ae
a

a

P x a e
=

⎧ ⎫
= + ≥⎨ ⎬
⎩ ⎭
∏
A

. 

Then  

( ) ( )( ) ( ) ( )( )
1 1

mod , , mod ,a ae e

a a

f x a h x p g x a h x p′

= =

= + = +∏ ∏
A A

 

( ) ( )( ) ( ) ( )( )
1 1

mod , mod ,a ae e

a a

fg x a h x p x a h x′

= =

= + +∏ ∏
A A

p  

                                        .   ( ) ( )( )
1

mod ,a ae e

a

x a h x p′+

=

⎛ ⎞
= + ∈⎜ ⎟
⎝ ⎠
∏
A

G
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Proposition 3 

Let [ ]
( )( )

p xF
h x

=
] .  If ( ) ( ),f x g x  are distinct elements of P, then they are 

distinct in F. 

 

Proof 

We show by way of contradiction that if f and g are not distinct in F, then a 

polynomial with degree less than t has t distinct roots in F, which is impossible. ( )Q y

Let ( ) ( ),f x g x  be distinct elements of P.  Suppose ( ) ( )f x g x=  in F.  Let m I∈ .  

Then ( ) ( )m m
f x g x=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  in F.  Recall that every m I∈  is introspective for every 

( )f x P∈ .  Since m is introspective for f and g, we have 

( ) ( ) [ ]
( )

( ) ( ) [ ]
( )

in  ,
1

in  .
1

m m p
r

m m p
r

xf x f x
x

xg x g x
x

=⎡ ⎤⎣ ⎦ −

=⎡ ⎤⎣ ⎦ −

]

]
 

And since , then ( ) | r
r x x −Q 1 ( ) | 1rh x x − . 

Thus the equalities above also hold in F, and we have that ( ) ( ) in .m mf x g x= F   

This implies that mx  is a root of the polynomial ( ) ( ) ( )Q y f y g y= −  for every y G∈ .  By 

proposition 1, we have (G r )×≤ ]
] .  Thus ( )gcd , 1m r =  , and each such mx  is a primitive 

rth root of unity.  Thus there will be t G=  distinct roots of ( )Q y  in F.  But the degree of 

 must be less than t, since deg( )Q y , degf g t<  in F.   
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Lemma 5 

Let  be defined as in Proposition 2.  Then G
1

t
t
+⎛ ⎞

≥ ⎜ ⎟−⎝ ⎠

A
G . 

Proof 

Let [ ]
( )( )

p xF
h x

=
] .  Since ( )h x  is a factor of ( )r xQ , then any root of ( )h x  is a 

primitive rth root of unity in F.  By Lemma 2, r was chosen such that .  By 

Corollary 0.5, 

( ) 2ord logr n n>

( ) (ord |r n φ )r .  Thus we have ( ) ( )ordr n rφ r< < .  Thus , and 2logr n < 2r

logr n < r . 

Recall that ( ) logr nφ⎢= ⎣A ⎥
⎦

≤ 2 , ,

.  This gives A < r  and we have already chosen p > r.  

Thus .  Thus  in  for 1pi j i j≠ ≤ ≠] A , 1 ,x x x x+ + +… A  are all distinct in P.  So by 

Proposition 3, , 1 , 2 , ,x x x x+ + … + A  are all distinct in F. 

Selecting with repetition 1t −  of 1+A  distinct objects gives us the number of distinct 

polynomials of degree , and is given by the formula [16]: 1t −

 
( ) ( )( )

( ) ( )
1 1 1 ! 1

11 ! !
t t

tt
+ + − − + −⎛ ⎞

= ⎜ ⎟−− ⎝ ⎠

A A
A

. 

Similarly counting polynomials of degree d, 1 1d t≤ ≤ − , we get 

 
1

1

1
1

t

a

t t
t a t

−

=

+ − +⎛ ⎞ ⎛
≥⎜ ⎟ ⎜

⎞
⎟− −⎝ ⎠ ⎝

∑
A A

⎠

2

,  since 

1 1
1 1

t t t
t t t
+ + − + −⎛ ⎞ ⎛ ⎞ ⎛

= +⎜ ⎟ ⎜ ⎟ ⎜− − −⎝ ⎠ ⎝ ⎠ ⎝

A A A ⎞
⎟
⎠

⎞
⎟

. 

Thus there are at least  distinct polynomials of degree < t in G .  
1

t
t
+⎛

⎜ −⎝ ⎠

A
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Lemma 6 

If n is not a power of p then tn≤G . 

 

Proof 

Consider Î I⊂  where 

 ˆ 0 ,
i

jnI p i j t
p

⎧ ⎫⎛ ⎞⎪ ⎪⎢ ⎥= ≤ ≤⎨ ⎬⎜ ⎟ ⎣ ⎦⎝ ⎠⎪ ⎪⎩ ⎭
. 

If n is not a power of p, then by taking 0 i t⎢ ⎥≤ ≤ ⎣ ⎦ , we see that Î  has at least 

( )2
1t⎢ ⎥ + >⎣ ⎦ t  distinct elements, namely 

( ) ( ) ( ) ( )

2

2

2

1 , , , ,

, , , ,

, , , ,

t

tn n n n
p p p p

t t t t tn n n n
p p p p

p p p

p p p

p p

⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
.p

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⋅ ⋅ ⋅

⋅ ⋅ ⋅

…

…

# #

…

 

Since G t= , at least two elements of Î must be equal mod r.  Let these be 

.  And we have,  1 2 1and ,m m m m> 2

                    ( )1 2 mod 1m m rx x x≡ −  (1)    

Let ( )f x P∈ .  Since is introspective, 1m

( ) ( ) ( )1 1 mod 1,
m m rf x f x x≡ −⎡ ⎤⎣ ⎦ p . 

From (1), we get 

 ( ) ( ) ( )1 2 mod 1,
m m rf x f x x≡ −⎡ ⎤⎣ ⎦ p , 
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and since is introspective, 2m

 ( ) ( ) ( )1 2 mod 1,
m m rf x f x x≡ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ p

2m

. 

Thus  in the field F.  Therefore, ( ) ( )1m
f x f x=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ( )f x ∈G  is a root of the 

polynomial  in the field F.   And since ( ) 1mQ Y Y Y′ = − 2m ( )f x  is an arbitrary element of , 

the polynomial  has at least 

G

( )Q Y′ G distinct roots in the field F.  The degree of ( )Q Y′  is 

1

t
tnm p

p

⎢ ⎥⎣ ⎦⎛ ⎞
≤ ⋅ ≤⎜ ⎟
⎝ ⎠

n .  Thus tn≤G .  

Lemma 7 

If the algorithm returns PRIME, then n is prime. 

 

Proof 

Suppose that the algorithm returns PRIME.  Lemma 5 implies that for t G=  and 

( ) logr nφ⎢ ⎥= ⎣ ⎦A : 

 
1

t
t
+⎛ ⎞

≥ ⎜ ⎟−⎝ ⎠

A
G  

Since G is generated by n and p, and ( ) 2logro n n> , we have:  

 

( ) 2

2 2

log

log

log log .

rt o n n

t t n

t t n t n

> >

>

⎢ ⎥> ≥ ⎣ ⎦
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Thus 

 
1 log

log

t n

t n

⎛ ⎞⎢ ⎥+ + ⎣ ⎦⎜ ⎟≥ ⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

A
G . 

Since G is a subgroup of , which has order *
r] ( )rφ ,  

 ( ) ( ); log lor t r n t nφ φ⎢ ⎥ g .⎢ ⎥≥ = ≥ ⎣ ⎦⎣ ⎦A  

Thus 

 
2 log 1

log

t n

t n

⎛ ⎞⎢ ⎥ +⎣ ⎦⎜ ⎟≥ ⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

G . 

Now 2log log 1t n n⎢ ⎥ ⎢ ⎥> ≥⎣ ⎦⎣ ⎦  since , so by Theorem A1 in the Appendix,  2logt > n

 log 1 log2 2t n t n tn
⎢ ⎥+⎣ ⎦> > =G . 

By Lemma 6, tn≤G if n is not a power of p.    Therefore kn p= for some .  If , 

then the algorithm will output COMPOSITE in step 1.  Therefore, 

0k > 1k >

1k =  and .  n p=

Theorem 1 (Correctness Theorem) 

The algorithm returns PRIME if and only if n is prime. 

 

Proof 

Suppose that n is prime.  Step 1 cannot output COMPOSITE since n is not a perfect 

power.  Step 3 cannot output COMPOSITE since ( )gcd , 1a n = or n for all .  Step 5 

cannot output COMPOSITE by Lemma 1.  Thus the algorithm correctly outputs PRIME in 

either step 4 or step 6.  

a r<

The converse was proved in Lemma 7.   
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Appendix 

Theorem A1 

If , then 1n ≥ 12 1
2nn

n
++⎛ ⎞

>⎜ ⎟
⎝ ⎠

. 

 

Proof 

Expanding the notation, we get: 

 ( )
( )

( )( ) ( )2 1 2 1 ! 2 1 2 2
! 1 ! !

n n n n
n n n n
+ n+ + +⎛ ⎞

= =⎜ ⎟ +⎝ ⎠

"
. 

There are exactly n terms in the product in the numerator, so we can rewrite this as: 

 
1 1

2 1 1 2n n

i i

n n i i
n i i= =

+⎛ ⎞ 1+ + +
= >⎜ ⎟

⎝ ⎠
∏ ∏ , 

since .  Since each term in this last product is greater than 2, we have: 1n ≥

 . 
2 1

2nn
n
+⎛ ⎞

>⎜ ⎟
⎝ ⎠

Noticing that 
3

4

1

2 1 3 5 7 35 16 2
1 2 3 2i

i
i=

+ ⋅ ⋅
= = > =

⋅ ⋅∏ , we see that indeed 

 12 1
2nn

n
++⎛ ⎞

>⎜ ⎟
⎝ ⎠

. 
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Theorem A2 

Let  denote the least common multiple of the first n positive integers. ( )
1n m n

d lcm m
≤ ≤

=

Then for any integer , . 7n ≥ 2n
nd ≥

 

Proof 

For 1≤ m ≤ n , consider the integral, ( )
1

1

0

1 n mmI x x −−= −∫ .  Using the binomial 

expansion for , we get ( )1 n mx −−

  ( ) ( )
1 1

1 1

0 00 0

1 1
n m n m

r rm r

r r

n m n m
I x x x

r r

− −
− +

= =

− −⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑∫ ∫ m r−

 ( )
0

11
n m

r

r

n m
I

r m r

−

=

−⎛ ⎞
= − ⎜ ⎟ +⎝ ⎠
∑  

Since ,  and we see that 0 r n m≤ ≤ − | nm r d+ nId ∈` .   

On the other hand, integration by parts gives us: 

 

( ) ( )

( )( )

( ) ( )

1
1 1

0

1

1
1

1

00

0

1 ,   ,  1

  , 1

1
1 ,

n m n mm m

m
n m

n mm
n mm

I x x dv x u x

xv du n m x
m

x x n mI x x
m m

− −− −

− −

−
− −

= − = = −

= = − − −

− −
= + −

∫

∫
���	��


 

and repeated integration by parts after this manner then yields, 

 ( ) ( ) ( )! ! 1 ! 1
( 1) !

n m n m m
I

nn n m n
m

m

− − −
= = =

⋅ − ⋅ ⋅ ⎛ ⎞
⎜ ⎟
⎝ ⎠

…
. 
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Alternately, recognizing that I is an Eulerian integral of the 1st kind, we could use the 

well-known (and more general) identity, 

 ( ) ( ) ( )
( )

1
11

0

( , ) 1 qp p q
B p q x x dx

p q
−− Γ Γ

= − =
Γ +∫ . 

And since for positive integers, ( ) ( )1 !z zΓ = − , we get that 

 ( ) ( ) ( )
( )

( ) ( )1 1 ! ! 1, 1
1 !

m n m m n m
I B m n m

nn n
m

m

Γ Γ − + − −
= − + = = =

Γ + ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

as before. 

But we have already shown that nId ∈` ; therefore, divides for all 

.  In particular, divides .   

n
m

m
⎛ ⎞
⎜ ⎟
⎝ ⎠

nd
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It can be verified by direct computation that this also holds for .  7N ≥

 

 

 

 

 38



References 

 [1] Agrawal, M.; Kayal, N.; Saxena, N. PRIMES is in P. Ann. of Math. (2) 160 (2004), no. 2, 

781--793. MR2123939

 [2] Garey, M. R.; Johnson, D. S. Computers and intractability. A guide to the theory of NP-

completeness. A Series of Books in the Mathematical Sciences. W. H. Freeman and Co., San 

Francisco, Calif., 1979. x+338 pp. ISBN: 0-7167-1045-5 MR0519066 (80g:68056)

 [3] Pratt, Vaughan R. Every prime has a succinct certificate. SIAM J. Comput. 4 (1975), no. 3, 

214--220. MR0391574 (52 #12395) 

 [4] Solovay, R.; Strassen, V. A fast Monte-Carlo test for primality. SIAM J. Comput. 6 (1977), 

no. 1, 84--85. MR0429721 (55 #2732) 

 [5] Adleman, L.; Huang, M. Recognizing primes in random polynomial time. Proc. ACM 

STOC'87, (1987), 462-470. 

 [6] Gill, J. Computational complexity of probabilistic Turing machines. SIAM J. Comput. 6 

(1977), no. 4, 675--695. MR0464691 (57 #4616)

 [7] Rabin, M. O. Probabilistic algorithm for testing primality. J. Number Theory 12 (1980), no. 

1, 128--138. MR0566880 (81f:10003)

 [8] Bernstein, D. J. Detecting perfect powers in essentially linear time. Math. Comp. 67 (1998), 

no. 223, 1253--1283. MR1464141 (98j:11121).    

 [9] Nair, M. On Chebyshev-type inequalities for primes. Amer. Math. Monthly 89 (1982), no. 2, 

126--129. MR0643279 (83f:10043) 

 [10] Fouvry, Étienne. Théorème de Brun-Titchmarsh: application au théorème de Fermat. 

(French) [The Brun-Titchmarsh theorem: application to the Fermat theorem] Invent. Math. 79 

(1985), no. 2, 383--407. MR0778134 (86g:11052)

 

 39

http://www.ams.org/mathscinet-getitem?mr=MR2123939
http://www.ams.org/mathscinet-getitem?mr=MR0519066
http://www.ams.org/mathscinet-getitem?mr=MR0391574
http://www.ams.org/mathscinet-getitem?mr=MR0429721
http://www.ams.org/mathscinet-getitem?mr=MR0464691
http://www.ams.org/mathscinet-getitem?mr=MR0566880
http://www.ams.org/mathscinet-getitem?mr=MR1464141
http://www.ams.org/mathscinet-getitem?mr=MR0643279
http://www.ams.org/mathscinet-getitem?mr=MR0778134


[11] Baker, R. C.; Harman, G. The Brun-Titchmarsh theorem on average. Analytic number 

theory, Vol. 1 (Allerton Park, IL, 1995), 39--103, Progr. Math., 138, Birkhäuser Boston, 

Boston, MA, 1996. MR1399332 (97h:11096)

 [12] Lidl, R.; Niederreiter, H. Introduction to finite fields and their applications. Revision of the 

1986 first edition. Cambridge University Press, Cambridge, 1994. xii+416 pp. ISBN: 0-521-

46094-8 MR1294139 (95f:11098)

 [13] Apostol, T. M. Introduction to analytic number theory. Undergraduate Texts in Mathematics. 

Springer-Verlag, New York-Heidelberg, 1976. xii+338 pp. MR0434929 (55 #7892)

 [14] Rosser, J. B.; Schoenfeld, L. Approximate formulas for some functions of prime numbers. 

Illinois J. Math. 6 1962 64--94. MR0137689 (25 #1139)

 [15] von zur Gathen, J.; Gerhard, J. Modern computer algebra. Cambridge University Press, 

New York, 1999. xiv+753 pp. ISBN: 0-521-64176-4 MR1689167 (2000j:68205)

 [16] Grimaldi, R. P. Discrete and combinatorial mathematics : an applied introduction. third 

edition. Addison-Wesley, Massachusetts, 1994.  xvi+874 pp.  ISBN: 0-201-54983-2

 [17] Schönhage, A. ; Strassen, V. Schnele multiplikation grosser zahlen. (German) [Fast 

multiplication of large numbers] Computing, 7 1971 281-292 

 

 40

http://www.ams.org/mathscinet-getitem?mr=MR1399332
http://www.ams.org/mathscinet-getitem?mr=MR1294139
http://www.ams.org/mathscinet-getitem?mr=MR0434929
http://www.ams.org/mathscinet-getitem?mr=MR0137689
http://www.ams.org/mathscinet-getitem?mr=MR1689167

	An Exposition of the Deterministic Polynomial-Time Primality Testing Algorithm of Agrawal-Kayal-Saxena
	BYU ScholarsArchive Citation

	Title Page
	Graduate Committee Approval
	College Approval
	 Abstract 
	Table of Contents
	 Introduction 
	An Overview of Computational Complexity Theory 
	 Notation 
	Part 1 – Conceptual Foundation 
	Lemma 1 
	Proof 

	A new idea
	Definition 0.1 
	Definition 0.2 
	Definition 0.3 
	Theorem 0.4 
	Proof 

	Corollary 0.5 
	Proof 


	 Part 2 – The AKS Algorithm 
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6

	 Part 3 – The Correctness of the AKS Algorithm 
	Lemma 2 
	Proof  

	On Introspective Numbers
	Definition 1 
	Lemma 3 
	Proof 

	Lemma 4 
	Proof 

	Sets I and P defined
	Proposition 1 
	Proof 

	 Proposition 2 
	Proof 

	Proposition 3 
	Proof 

	Lemma 5 
	Proof 

	Lemma 6 
	Proof 

	Lemma 7 
	Proof 

	Theorem 1 (Correctness Theorem) 
	Proof 


	Appendix 
	Theorem A1 
	Proof 

	Theorem A2 
	Proof 


	 References 
	 [1] Agrawal, M.; Kayal, N.; Saxena, N. PRIMES is in P. Ann. of Math. (2) 160 (2004), no. 2, 781--793. MR2123939 
	 [2] Garey, M. R.; Johnson, D. S. Computers and intractability. A guide to the theory of NP-completeness. A Series of Books in the Mathematical Sciences. W. H. Freeman and Co., San Francisco, Calif., 1979. x+338 pp. ISBN: 0-7167-1045-5 MR0519066 (80g:68056) 
	 [3] Pratt, Vaughan R. Every prime has a succinct certificate. SIAM J. Comput. 4 (1975), no. 3, 214--220. MR0391574 (52 #12395) 
	 [4] Solovay, R.; Strassen, V. A fast Monte-Carlo test for primality. SIAM J. Comput. 6 (1977), no. 1, 84--85. MR0429721 (55 #2732) 
	 [5] Adleman, L.; Huang, M. Recognizing primes in random polynomial time. Proc. ACM STOC'87, (1987), 462-470. 
	 [6] Gill, J. Computational complexity of probabilistic Turing machines. SIAM J. Comput. 6 (1977), no. 4, 675--695. MR0464691 (57 #4616) 
	 [7] Rabin, M. O. Probabilistic algorithm for testing primality. J. Number Theory 12 (1980), no. 1, 128--138. MR0566880 (81f:10003) 
	 [8] Bernstein, D. J. Detecting perfect powers in essentially linear time. Math. Comp. 67 (1998), no. 223, 1253--1283. MR1464141 (98j:11121).    
	 [9] Nair, M. On Chebyshev-type inequalities for primes. Amer. Math. Monthly 89 (1982), no. 2, 126--129. MR0643279 (83f:10043) 
	 [10] Fouvry, Étienne. Théorème de Brun-Titchmarsh: application au théorème de Fermat. (French) [The Brun-Titchmarsh theorem: application to the Fermat theorem] Invent. Math. 79 (1985), no. 2, 383--407. MR0778134 (86g:11052) 
	[11] Baker, R. C.; Harman, G. The Brun-Titchmarsh theorem on average. Analytic number theory, Vol. 1 (Allerton Park, IL, 1995), 39--103, Progr. Math., 138, Birkhäuser Boston, Boston, MA, 1996. MR1399332 (97h:11096) 
	 [12] Lidl, R.; Niederreiter, H. Introduction to finite fields and their applications. Revision of the 1986 first edition. Cambridge University Press, Cambridge, 1994. xii+416 pp. ISBN: 0-521-46094-8 MR1294139 (95f:11098) 
	 [13] Apostol, T. M. Introduction to analytic number theory. Undergraduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1976. xii+338 pp. MR0434929 (55 #7892) 
	 [14] Rosser, J. B.; Schoenfeld, L. Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 1962 64--94. MR0137689 (25 #1139) 
	 [15] von zur Gathen, J.; Gerhard, J. Modern computer algebra. Cambridge University Press, New York, 1999. xiv+753 pp. ISBN: 0-521-64176-4 MR1689167 (2000j:68205) 
	 [16] Grimaldi, R. P. Discrete and combinatorial mathematics : an applied introduction. third edition. Addison-Wesley, Massachusetts, 1994.  xvi+874 pp.  ISBN: 0-201-54983-2 
	 [17] Schönhage, A. ; Strassen, V. Schnele multiplikation grosser zahlen. (German) [Fast multiplication of large numbers] Computing, 7 1971 281-292 


