
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2005-06-29

An Exposition of the Deterministic Polynomial-Time Primality An Exposition of the Deterministic Polynomial-Time Primality

Testing Algorithm of Agrawal-Kayal-Saxena Testing Algorithm of Agrawal-Kayal-Saxena

Robert Lawrence Anderson
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Mathematics Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Anderson, Robert Lawrence, "An Exposition of the Deterministic Polynomial-Time Primality Testing
Algorithm of Agrawal-Kayal-Saxena" (2005). Theses and Dissertations. 531.
https://scholarsarchive.byu.edu/etd/531

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F531&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsarchive.byu.edu%2Fetd%2F531&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/531?utm_source=scholarsarchive.byu.edu%2Fetd%2F531&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

AN EXPOSITION OF THE DETERMINISTIC POLYNOMIAL-TIME PRIMALITY

TESTING ALGORITHM OF AGRAWAL-KAYAL-SAXENA

by

Robert Lawrence Anderson

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mathematics

Brigham Young University

August 2005

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Robert Lawrence Anderson

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

_____________________ ___
Date David A. Clark, Chair

_____________________ ___
Date Jasbir S Chahal

_____________________ ___
Date Darrin M Doud

 2

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate's graduate committee, I have read the thesis of Robert Lawrence
Anderson in its final form and have found that (1) its format, citations, and bibliographical
style are consistent and acceptable and fulfill university and department style requirements,
(2) its illustrative materials including figures, tables, and charts are in place; and (3) the final
manuscript is satisfactory to the graduate committee and is ready for submission to the
university library.

______________________ __
Date David A. Clark
 Chair, Graduate Committee

Accepted for the Department __
 Tyler J. Jarvis
 Graduate Coordinator

Accepted for the College __
 G. Rex Bryce, Associate Dean
 College of Physical and Mathematical Sciences

 3

Abstract

I present a thorough examination of the unconditional deterministic polynomial-time

algorithm for determining whether an input number is prime or composite proposed by

Agrawal, Kayal and Saxena in their paper [1].

All proofs cited have been reworked with full details for the sake of completeness and

readability.

 4

Contents

Abstract ... 4
Contents .. 5
Introduction... 6
An Overview of Computational Complexity Theory ... 9
Notation... 11
Part 1 – Conceptual Foundation.. 12

Lemma 1 ... 12
Definition 0.1 .. 15
Definition 0.2 .. 15
Definition 0.3 .. 15
Theorem 0.4 .. 15
Corollary 0.5 ... 16

Part 2 – The AKS Algorithm .. 17
Part 3 – The Correctness of the AKS Algorithm .. 23

Lemma 2 ... 23
Definition 1 ... 26
Lemma 3 ... 26
Lemma 4 ... 27
Proposition 1 ... 28
Proposition 2 ... 29
Proposition 3 ... 30
Lemma 5 ... 31
Lemma 6 ... 32
Lemma 7 ... 33
Theorem 1 (Correctness Theorem) ... 34

Appendix... 35
Theorem A1 .. 35
Theorem A2 .. 36

References... 39

 5

Introduction

This work is intended to provide enough detail that an advanced undergraduate with

background in Abstract Algebra and Number Theory should be able to comprehend the

construction of this important result on primality without consulting other sources.

The references in the paper have been verified and all proofs have been checked and

we have added references to standard literature in algebra, number theory, and computational

complexity theory.

Computational complexity theory is part of the theory of computation dealing with

the resources required during computation to solve a given problem. The most common

resources are time (how many steps does it take to solve a problem) and space (how much

memory does it take to solve a problem).

In this theory, the class P consists of all those decision problems that can be solved on

a deterministic sequential machine in an amount of time that is polynomial in the size of the

input; the class NP consists of all those decision problems whose positive solutions can be

verified in polynomial time given the right information, or equivalently, whose solution can

be found in polynomial time on a non-deterministic machine.

The class RP (Randomized Polynomial-Time) consists of all those decision problems

solvable by an NP machine such that:

• If the answer is 'yes,' at least 1/2 of computation paths accept.

• If the answer is 'no,' all computation paths reject.

The class coRP is the complement of RP and consists of all those decision problems

solvable by an NP machine such that:

• If the answer is 'yes,' all computation paths accept.

 6

• If the answer is 'no,' at least 1/2 of computation paths reject.

The class ZPP (Zero-Error Probabilistic Polynomial-Time) is defined to be the

intersection of RP and coRP. It is the class of problems solvable by randomized algorithms

that always return the correct answer, and whose expected running time (on any input) is

polynomial. The relationship of these classes is given by the following diagram:

NP

P

RP

coRP

ZPP

Arguably, the biggest open question in theoretical computer science concerns the

relationship between those two classes:

Is P equal to NP?

A $1,000,000 USD prize has been offered for a correct solution. Garey[2] is an excellent

reference on the theory of NP-completeness for those interested in pursuing this prize.

The historical classification of the problem of testing whether an input integer is

prime roughly follows this timeline:

 7

Year Class By Whom

pre–1975 coNP Trivial. A single factor of n is a short certificate that can be

used to verify that n is not prime. This can be done in linear

time using the Euclidean algorithm.

1975 NP Pratt [3]

1975 ∩NP coNP

1977 RP Solovay-Strassen [4]

1987 coRP Adleman-Huang [5]

1987 ZPP = ∩RP coRP

2004 P Agrawal-Kayal-Saxena [1]

The classes RP, coRP, and ZPP were defined by Gill [6] in 1977.

Given a problem such as determining whether or not a number is prime, the question

arises, “What is the best algorithm for doing this?”. The difficulty in such a question is in

deciding what is meant by “best”.

One decision that often comes into play is as to the necessity of a deterministic

algorithm. For instance, if you are testing to see if a certain number is prime for the purpose

of using it to construct a cryptographic system, the fastest known algorithms are probabilistic

ones (e.g., the Miller-Rabin test [7]). Although they provide no guarantee of theoretical

correctness, the error bound can be made arbitrarily small so that for all practical

considerations they are reliable algorithms. However, this sort of primality testing will not

be of class of P no matter how fast it is.

The AKS algorithm is the first known deterministic algorithm for primality testing

that can be proved to run unconditionally in polynomial-time on all inputs.

 8

An Overview of Computational Complexity Theory

A deterministic one-tape Turing machine (DTM) is computational model consisting

of a finite state control, a read-write head, and a tape made up of a two-way infinite sequence

of tape squares, labeled . 2, 1, 0, 1, 2,− −… …

Let Σ be a finite set of symbols. Let *Σ denote the set consisting of the empty string

ε and all finite concatenations of elements of Σ. Then L is a language over if .

(e.g., the set of binary representations of integers is a language over {0,1}).

*Σ *L ⊂ Σ

A program for a DTM consists of

• a finite set Γ of tape symbols, including a subset Σ ⊂ Γ of input symbols and a

distinguished blank symbol b∈Γ −Σ ;

• a finite set Q of states, including a distinguished start state q0 and two distinguished

halt-states qY and qN ;

• a transition function { }() { }: , 1,Y NQ q q Qδ 1− × Γ → × Γ × − + .

A DTM program M with input alphabet Σ accepts *x∈∑ if and only if M halts in

state qY when applied to input n.

The language LM recognized by the program M is given

by . *{ : accepts }ML n M= ∈Σ n

For a DTM program which halts on all inputs *n∈Σ , its time complexity function

 is given by: :MT + →]]+

()
*

2there is an with log +1, such that
max :

the computation of on input takes time M

n x n
T x m

M n m

⎧ ⎫∈Σ = ⎢ ⎥⎪ ⎪⎣ ⎦= ⎨ ⎬
⎪⎪ ⎭⎩

.

 9

Any function ()f x is considered to be ()()O g x (pronounced “big-oh of g”) if given

some function there exists a constant c such that ()g x () ()f x c g x≤ ⋅ for all values of

, where x is defined to be the input length of n. 0x ≥

A DTM program which halts on all inputs *n∈Σ is called a polynomial time DTM

program if there exists a polynomial ()p x such that, for all () (), Mx T x p x+∈ ≤] .

Alternately, a DTM program which halts on all inputs x∈Σ* , is called a polynomial time

DTM program if its time complexity function is ()()O p x . Again, x is defined to be the

input length of n.

The class P is the class of languages defined as follows:

 { : there is a polynomial time DTM program for which }ML M= =P L L

Within this framework, the purpose of the paper is to show that with M = “the AKS

algorithm” and LM = “binary representation of positive integers”, then M is a polynomial

time DTM program with input set { }1∑ = −` and halt states "PRIME"Yq = and

, and time complexity function "COMPOSITE"Nq = () ()25
2 which is MT x O x .

 10

Notation

We will use lo to denote the base 2 logarithm instead of or lg . Base 10

logarithms and natural logarithms will be denoted as and respectively.

g n 2log n n

10log n ln n

The notation represents the order of a modulo r, which is the smallest

positive integer k, such that

()ordr a

()1 modka r≡ .

The notation will be used to represent Euler’s totient function, which is defined

as the number of positive integers less than or equal to r that are relatively prime to r.

()rφ

The notation () () ()()mod ,f x g x h x p≡ is used throughout to mean that

() ()f x g x= in the ring []
()()

p x
h x

] . In some cases, p will be prime and will have

degree d and be irreducible in

()h x

[]p x] , so that []
()()

p x
h x

] will be a finite field of order dp .

Time complexity functions will be written in “big-O” notation. A function ()f x is

considered to be ()()O g x (pronounced “big-oh of g”) if given some function there

exists a constant c such that

()g x

() ()f x c g x≤ ⋅ for all values of , where x is defined to

be the binary input length of n.

0x ≥

The function ()M n will be used to represent the time complexity function for

multiplication. The fastest known algorithm for multiplying two n digit numbers is due to

Schönhage and Strassen [17] and has time complexity ()log log logO n n n . Ordinary

multiplication (the kind you learn in school) has time complexity ()2O n .

 11

Part 1 – Conceptual Foundation

The algorithm is based upon a generalization of Fermat’s Little theorem given in the

Following lemma:

Lemma 1

Let . Then n is prime if and only if , , 2 , and (,) 1a n n a n∈ ∈ ≥ =] `

 () ()modn nx a x a n+ ≡ +

This says that if after we reduce all of the coefficients of the binomial expansion of

(n)x a+ modulo n we are left with nx a+ , then n must be prime, otherwise n is not prime.

Proof

We want since we are only interested in showing whether or not n is a

prime. If , then n will not be prime by definition. The

,n n∈ ≥` 2

2n < ()gcd , 1a n = condition is

necessary to use Fermat’s Little Theorem which this generalizes.

Instead of proving “a implies b” and then “b implies a”, we prove the contrapositive

of the second direction (i.e., instead of proving “b implies a” we prove “not a implies not b”,

which is logically equivalent).

Recall that the binomial expansion of ()nx a+ is given by

0

n
i n i

i

n
x a

i
−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ where
()

!
! !

n n
i i n i

⎛ ⎞
=⎜ ⎟ −⎝ ⎠

.

First we will prove that if n is prime then () mod ()n nx a x a n+ ≡ + .

 12

Suppose n is prime. If 0 i n< < , then ()gcd , ! 1n i = and ()()gcd , ! 1n n i− = since

both i and n are less than n and n is prime. Thus i−
()

!
! !

n n c
i n i

= ⋅
−

, where
()

(1)!
! !
nc

i n i
−

=
−

 and

, since c∈]
()

!
! !

n
i n i

∈
−

] and i! and ()!n i− contain no divisors of n. This gives us that

() ()! 0 mod
! !

n n n c n
i i n i

⎛ ⎞
= = ⋅ ≡⎜ ⎟ −⎝ ⎠

 for 0 i n< < , and hence ()0 modi n in
x a n

i
−⎛ ⎞
≡⎜ ⎟

⎝ ⎠
 for

. 0 i n< <

Thus we see that when n is prime, the middle terms of the binomial expansion are all

equivalent to zero mod n. The only thing left to show is that ()modna a n≡ . By Fermat’s

Little Theorem, we know that if n is prime, then ()(1) 1 modna n− ≡ whenever ()gcd , 1a n = .

Multiplying both sides by a, we get ()modna a n≡ as desired.

Now we will prove that if () (modn n)x a x a n+ ≡ + then n is prime by proving its

contrapositive, “if n is not prime, then () ()modn nx a x a n+ ≡ +/ ”.

Suppose n is not prime (i.e., composite since n > 1). Let q be a prime factor of n and

let k be the largest integer such that qk divides n. We can then write where q does

not divide m. Then

kn q m=

()
1! (1)...(1) (1)...(1)

! ! (1)! (1)!

k kn n q m n n q q m n n q
q q n q q q q

−⎛ ⎞ − − + − − +
= = =⎜ ⎟ − − −⎝ ⎠

.

Notice that q does not divide the product (1)...(1)m n n q− − + on the far right, since q

does not divide m and the first multiple of q less than n is n q− . Thus

since we cannot factor out another q on top to make . Also note that

does not dividek n
q

q
⎛ ⎞
⎜ ⎟
⎝ ⎠

kq gcd(,) 1k n qq a − =

 13

since and divides n. So the coefficient of ()gcd , 1a n = kq qx in the binomial expansion of

(n)x a− , given by , cannot be equivalent to zero mod n since it is not even divisible

by , let alone by n.

n qn
a

q
−⎛ ⎞

⎜ ⎟
⎝ ⎠

kq

Thus ()() (() 0 modn n)x a x a n+ − + ≡/ , since even if all other middle coefficients go

to zero, we still have

()() () ()() mod modn n n n q q n n n q qn n
x a x a x a x a x a n a x n

q q
− −⎛ ⎞⎛ ⎞ ⎛ ⎞

+ − + ≡ + + − − ≡⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

.

Therefore, () (modn n)x a x a n+ ≡ +/ .

In order to reduce the number of coefficients that need to be examined, the authors

decided to consider Lemma 1 after reducing modulo the ideal generated by for a

sufficiently small r. This way at most

1rx −

1r − coefficients need to be examined.

There is one small problem. Lemma 1 is not generally true modulo (. It turns

out, however, that if r is chosen to be the smallest positive integer such that the order of n in

1)rx −

(r
×Z

Z) is greater than , then n can be shown to be a prime power if 2log n

() (mod 1 ,)n n rx a x a x n+ ≡ + − for all integer values of a ranging from 1 to

2 () logr nφ⎢
⎣

⎥
⎦ . This will be shown in Lemma 7.

Next we will review some definitions and theorems from finite field theory that will

be necessary to show the correctness of the algorithm.

 14

Definition 0.1

Let n be a positive integer. The splitting field of 1nx − over a field K is called the nth

cyclotomic field over K and is denoted by . The roots of ()nK 1nx − in are called the n()nK th

roots of unity over K and the set of all these roots is denoted by . ()nE

Definition 0.2

Let K be a field of characteristic p and n a positive integer not divisible by p. Then a

generator of the cyclic group is called a primitive n()nE th root of unity over K.

Definition 0.3

Let K be a field of characteristic p, n a positive integer not divisible by p, and ζ a

primitive nth root of unity over K. Then the polynomial

 () ()
()

1
gcd , 1

n
s

n
s
s n

x x ζ
=

=

= −∑Q

is called the nth cyclotomic polynomial over K.

Theorem 0.4

Let with qK = F ()gcd , 1q n = . Then factors into nQ
()n

d
φ distinct monic

irreducible polynomials in []K x of the same degree d, is the splitting field of any such

irreducible factor over K, and

()nK

() :nK K⎡ ⎤ d=⎣ ⎦ , where d is the least positive integer such that

. ()1 moddq n≡

 15

Proof

Let η be a primitive nth root of unity over K. Then kq
η∈F if and only if

kqη η= and

the later identity is equivalent to ()1 modkq ≡ n . The smallest positive integer for which

this holds is , and so k d= η is in but in no proper subfield thereof. Thus the minimal

polynomial of

dq
F

η over K has degree d, and since η is an arbitrary root of , the desired

result follows.

nQ

Corollary 0.5

()ordr n divides . ()rφ

Proof

In Theorem 0.4, d is by definition ()ordn q , which divides ()nφ .

 16

Part 2 – The AKS Algorithm

The Agrawal-Kayal-Saxena (AKS) algorithm consists of six steps:

1. Test n to see if it is a perfect power.

 Output COMPOSITE if it is.

This computationally inexpensive step is necessary to allow us to generalize Lemma

1 to the quotient ring []
()1

n
r

x
x −

] . Bernstein [8] has devised an algorithm to perform such

a test in time ()
log log log log log1

log

log
n n

n

O n
⎛ ⎞
⎜ + ⎟⎜ ⎟
⎝

⎛ ⎞
⎜
⎜ ⎟
⎝ ⎠

⎠ ⎟ , which is essentially linear on the binary length of n.

The algorithm is essentially a binary search to find a root z of . The midpoint

of an interval R containing a root is evaluated. Then depending on the sign of , R is

replaced with the left or right half R and the process is repeated. The middle half of the

interval is taken if the approximation is too close to zero to be sure of the sign. To save time,

the calculation of at the midpoint is approximated. This method effectively

determines the binary representation of z one bit at a time. The algorithm outputs ()

1kz y −

1kz y −

1kz y −

,x p

where if n is a perfect power, and pn x= (),1n otherwise.

The proofs of the correctness and time complexity of this algorithm are beyond the

scope of this paper and will not be given here. The interested reader may consult Bernstein’s

paper [8] for a more complete treatment .

The algorithm is as follows:

1. Set log 2f n= ⎢ ⎥⎣ ⎦

 17

2. Compute ()3 / 2nroot ,1fy n+⎡ ⎤⎢ ⎥
← . The algorithm for computing

immediately follows this main algorithm. (jnroot ,y k)

3. For each prime number p f< :

a. Set . 3 /b f= + ⎡ ⎤⎢ ⎥p

b. Compute ()nroot ,br y← p .

c. Find an integer x with 5
8r x− ≤ .

d. If 0x = or 1
4r x− ≥ , start over with the next prime.

e. Compute the sign of pn x− :

i. Set . 1b ←

ii. Compute ()lg8 ,b pr pow x p+⎡ ⎤⎢ ⎥
← . The algorithm for computing

is given on the next page. (pow ,b r k)

iii. If , output n r< 1− and stop.

iv. If , output 1 and stop. ()1 2 br −+ ≤ n

v. If , output 0 and stop. b f≥

vi. Set { }min 2 ,b b← f . Go back to step ii.

f. If pn x= , output (),x p and stop.

g. Start over with the next prime.

4. Output () . ,1n

 18

To compute (a floating point number): (nroot ,b y k)

1. Find the exponent g satisfying 12 2g gy− < ≤ .

2. Set , so that /a g k= −⎢⎣ ⎥⎦
n1/ 12 2a ky− +≤ < .

3. Set . ()()log 66 2 1B k⎡ ⎤= +⎢ ⎥

4. Set . 12 2 ,a az j−← + ←1

5. Now . If ()nroot ,j y k z= j b= , stop.

6. Compute ()(trunc pow , truncB B Br z k←)y , where the function is the

truncation of r to b bits.

truncb r

7. If , set 993 /1024r ≤ 12a jz z − −← + .

8. If , set . 1r > 12a jz z − −← −

9. Set . Go back to step 5. 1j j← +

To compute (the b-bit approximate k(pow ,b r k) th power of r):

1. If , output and stop. 1k = truncb r

2. If k is even, compute ()2pow , k
b r , output ()()2

2btrunc pow , k
b r and stop.

3. Compute and output (pow , 1b r k −) ()()btrunc pow , 1 truncb br k r− .

Examples:

() ()() ()() ()
22pow ,7 trunc trunc trunc trunc trunc truncb b b b b b br r⎛ ⎞= ⎜ ⎟

⎝ ⎠
r r .

 19

() ()()
222pow ,8 trunc trunc trunc truncb b b b br r

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

.

2. Find the smallest r such that () 2ord logr n n> .

Lemma 2 guarantees the existence of such an 5logr n⎡ ⎤≤ ⎢ ⎥ . Since each r can be tested

using at most multiplications, this step has time complexity (2logO)n

() () () ()2 7log log log logO r n M n O n M n= , where ()M x is the time complexity function

for multiplication. So using fast Fourier multiplication, we get a time complexity of

. ()8log log log log log logO n n n

Improving this bound for r is the key to improving the expected run time of the

algorithm. It is believed that r is bounded by ()2logO n

)n

)

 – a far better result than the bound

of used in this proof. Agrawal [1] claims that this result has actually been proven

by Hendrik Lenstra, Jr. and Carl Pomerance in a private communication. I have not been

able to verify this since this source is not available to me.

(5logO

3. Compute for each (gcd ,n a 2 a r≤ ≤ .

 Output COMPOSITE if ()1 gcd ,n a n< < for some a r≤ .

This is just some basic trial division. Computing the GCD of r numbers takes

, so using the bound in step 2, this step can be computed in time . (logO r n) ()6logO n

 20

4. Output PRIME if . n r≤

This is a result of the trial division in step 3. This step takes no time of any

consequence. Note that since 5logr n⎡ ⎤≤ ⎢ ⎥ , this step is only relevant when . In

practice, one would generally look up such a small number in a table of primes.

Furthermore, reducing the bound on r decreases the likelihood of this step occurring. For

instance, with , this step is only relevant when

5,690,034n ≤

3logr ⎡≤ ⎢ n⎤⎥ 982n ≤ . There are only 165

primes less than 982, with 983 being the 166th prime.

5. Compute () mod (1 ,)n rx a x+ − n for each () ()1 loa rφ g n⎢ ⎥≤ ≤ ⎣ ⎦ .

 Output COMPOSITE if () (mod 1 ,)n n rx a x a x n+ ≡ + −/ for some a.

Lemma 1 guarantees that if the test fails for any a, then n is composite. On the other

hand, if step 5 is satisfied for each a, a group can be defined with a lower bound on its order.

Lemma 6 will show that n must be some power of a prime p by showing that on the contrary

that the order of this same group would be too small. Step 1 of the algorithm will guarantee

that that power is 1, thus making n a prime.

In this step there are () logr nφ⎢
⎣

⎥
⎦) equations which require multiplications

of degree r polynomials with coefficients of size

(logO n

()logO n

)

 to verify. Each equation then

takes time to verify. This gives a time complexity of () (2log logO r n M n

()() () () () () (3 21
2 23 3log log log log log logO r r n M n O r n M n O n M nφ = =) . This step then

represents the time complexity of the algorithm, since it dominates all others. Thus using

 21

even classical multiplication, we get () ()2log logM n O n= , so that the overall time

complexity of the algorithm is ()25
2logO n , which is polynomial on the binary length of n.

This allows the categorization of this algorithm in P, the collection of deterministic

polynomial-time algorithms after the algorithm is proved to be correct in Theorem 1. Fast

Fourier multiplication, gives a time complexity of ()23
2log log log log log logO n n n .

6. Output PRIME

We will show in Theorem 1 that the algorithm outputs prime if and only if n is prime.

 22

Part 3 – The Correctness of the AKS Algorithm

The following lemma validates step 2 by setting an upper bound for finding a suitable

r. It is the principal theorem used to show that the AKS algorithm is polynomial-time.

Lemma 2

There exists an { }5max 3 , logr n⎡ ⎤≤ ⎢ ⎥ such that () 2ord logr n n> .

The proof uses a Chebyshev type bound on the lcm of the first n numbers by Nair [9].

This bound is given with proof in Theorem A2 in the Appendix. The authors opted to use this

result instead of the sieve theory result of Fouvry [10] in order to keep the proof as

elementary as possible.

Proof

For , satisfies the lemma, so we may let . Let be all

integers such that either or . The first condition implies that

for each there exists such that , or in other words,

 for some integer q, so that

2n = 3r = 2n > 1 2, , ... , tr r r

() 2ord log
ir

n n≤ divides ir n

n r

r q

ir
2logik ≤ 1 mod ()ik

in ≡

1ik
in − = ()divides 1ik

ir n − . Each of the must divide the

product , since the fact that each ensures

that is one of the terms of this product. This gives us that

ir

(
2log

1

1
n

i

i

n n
⎢ ⎥
⎣ ⎦

=

⋅ ∏)− 2is less than or equal to logik n

1ikn −

() ()
2log

1 2
1

lcm , , ... , 1
n

i
t

i

r r r n n
⎢ ⎥
⎣ ⎦

=

≤ ⋅ −∏ .

 23

We also know that

()
2

4
log

log

1

1
n

i n

i

n n n
⎢ ⎥
⎣ ⎦

=

⋅ − <∏ .

To prove this, first notice that for , . And since

, we have

0 and 1k x> > (1

1

1

1

k

i

i k
i

i

x =

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠

=

∑
> ∏)x −

2n >

()
()()

2log

2 22

1 4

1 log log 1log
1 log2

1

1

n

i

i n nn
i n

i

n n n n n

⎢ ⎥
⎢ ⎥⎣ ⎦

=

⎛ ⎞
⎜ ⎟

+ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ +⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎜ ⎟ +⎜ ⎟
⎝ ⎠

=

∑
⋅ − < = <∏ .

Thus since , we have that log2 nn =

() ()
2

5
log

log
1 2

1

lcm , , ... , 1 2
n

i n
t

i

r r r n n
⎢ ⎥
⎣ ⎦

=

≤ ⋅ − <∏ .

Since , we have and we may apply Theorem A2 to get 2n > 5log 10n⎡ ⎤ >⎢ ⎥

() 5log5lcm 1,2,..., log 2 nn
⎡ ⎤
⎢ ⎥⎡ ⎤ ≥⎢ ⎥ .

Therefore there must exist an 5logs n⎡ ⎤< ⎢ ⎥ such that { }1 2, , ... , ts r r r∉ . If (), 1s n =

then and we are done. If () 2ord logs n > n (),s n >1, then since s does not divide n and

() { }1 2, , , ... , ts n r r r∈ ,
() { }1 2, , ... ,

, t
sr r r

s n
= ∉ r and so () 2ord logr n n> .

For the remainder of this paper we will assume that the algorithm returns PRIME and

show that n must be prime. This result will be restated later as Lemma 7.

Let p be prime and suppose that |p n . In order to pass through step 1 without

getting an output of COMPOSITE, we must have that bn a≠ for any positive integers a and

b.

 24

In step 2, no output is given.

In order to pass through step 3 without getting an output of COMPOSITE, we need

or n for all a . Since ()gcd , 1a n = r≤ |p n , this means that p must be greater than r,

otherwise step 3 would have output COMPOSITE. Since p is prime, we have ()gcd , 1r p = .

If , then step 3 amounts to trial division and is a complete test on the primality

of n. So we can pass over step 4 by assuming that n without any loss of generality.

Recall that since , this step is only relevant when

n r≤

r>

5logr ⎡≤ ⎢ n⎤⎥ 5,690,034n ≤ .

Next we assume that n and p are fixed and set () logr nφ⎢ ⎥= ⎣ ⎦A . Step 5 of the

algorithm verifies equations. Since the algorithm does not output COMPOSITE in this

step, we have

A

 () ()mod 1,n n rx a x a x n+ ≡ + − for every a, 0 a≤ ≤ A .

This implies that

 () ()mod 1,n n rx a x a x p+ ≡ + − for every a, 0 a≤ ≤ A . (1)

By Lemma 1, we have

 () ()mod 1,p p rx a x a x p+ ≡ + − for every a, 0 a≤ ≤ A . (2)

 Since p divides n, from (2) we get

 () ()() () ()mod 1,
n np pn p p rx a x a x a x+ ≡ + ≡ + − p for every a, , (3) 0 a≤ ≤ A

and from (1) we get

 () () ()mod 1,
n

pn n p rx a x a x a x p+ ≡ + = + − for every a, . (4) 0 a≤ ≤ A

 25

(3) and (4) imply that

() () ()mod 1,
n n

p pp p rx a x a x+ ≡ + − p for every a, 0 . a≤ ≤ A

Replacing px with x, we get

() ()mod 1,
n n

p p rx a x a x+ ≡ + − p for every a, 0 a≤ ≤ A .

Thus both n and n
p

 behave like prime p in the above equation. At this point we give

the following definition:

Definition 1

For polynomial ()f x and number m∈` , we say that m is introspective for ()f x if

() () (mod 1,)
m m rf x f x x⎡ ⎤ ≡ −⎣ ⎦ p .

The next two lemmas show that the set of introspective numbers for a given

polynomial is closed under multiplication, and that the set of polynomials for which m is

introspective is also closed under multiplication.

Lemma 3

If and m m′ are introspective for ()f x , then so is m m′⋅ .

Proof

By definition, () () (mod 1,)
m m rf x f x x⎡ ⎤ ≡ −⎣ ⎦ p . Thus

 () () (mod 1,)
mmm m rf x f x x
′′ ⎡ ⎤⎡ ⎤ ≡⎣ ⎦ ⎣ ⎦ p− . (1)

 26

Since is also introspective, replacing x with m′ mx gives:

() () (mod 1,)
mm mm mrf x f x x
′

′⎡ ⎤ ≡ −⎣ ⎦ p .

Notice that there exists an injective map

[]
()

[]
():

1 1
p p

r m
x x

x x
ϕ → r− −

]] .

Or in other words, since

 , () ()

1

1 1
m

m i rmr r

i

x x x −

=

⎛ ⎞− = − ⎜ ⎟
⎝ ⎠
∑

we can see that divides 1rx − 1mrx − , and so the ideal generated by contains the ideal

generated by . Thus any congruence modulo

1rx −

1mrx − ()1mrx − must also hold modulo the

larger ideal (in precisely the same way that any number divisible by 6 must also be

divisible by 2 or 3. Thus we see that

)1rx −

 () () (mod 1,)
mm mm rf x f x x
′

′⎡ ⎤ ≡⎣ ⎦ p− , (2)

and from (1) and (2) we get

 () () (mod 1,)
mm mm rf x f x x

′ ′⎡ ⎤ ≡ −⎣ ⎦ p .

Lemma 4

If is introspective form ()f x and ()g x , then is introspective form () ()f x g x⋅ .

 27

Proof

First we have that () () () ()m m m
f x g x f x g x=⎡ ⎤ ⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎦ ⎣ ⎤⎦ . And since m is introspective

for both ()f x and , we get ()g x () () () () ()mod 1,rm m mf x g x f x g x x p= −⎡ ⎤⎣ ⎦ .

We next define the following sets:

 { }| , 0i jI n p i j= ≥

 ()
1

| 0ae
a

a

P x a e
=

⎧ ⎫
= + ≥⎨ ⎬
⎩ ⎭
∏
A

Notice that since Step 5 guarantees that () (mod 1 ,)n n rx a x a x n+ ≡ + − for

, it follows immediately from Lemma 4 and Lemma 5 that every is

introspective for every

1 a≤ ≤ A m I∈

()f x P∈ .

Proposition 1

{ }mod |G i r i I= ∈ is a multiplicative subgroup of ()r
×]

] .

Proof

Since G is a finite set, it is sufficient to show that G is a multiplicatively closed subset

of the multiplicative group (r)×]
] . We can see that ()G r

×
⊂]

] since . Now let

. Then

,n p +∈]

() (mod , modi j k lg n p r g n p r′= =) ()modik jlgg n p r G′ = ∈ .

 28

Proposition 2

Let ()r xQ be the rth cyclotomic polynomial over . Let p] ()h x be any irreducible

factor of ()r xQ of degree ()ordr p . Theorem 0.4 guarantees the existence of such an ()h x .

Then

() ()() (){ }mod , 0 |f x h x p f x= ≠G P∈ is a subgroup of []
()()

p x
h x

×
⎛ ⎞
⎜ ⎟
⎝ ⎠

] .

Proof

Again it is sufficient to show closure under multiplication since it is a finite set. It is

clear that G is a subset of the multiplicative group since we are taking non-zero residues of

polynomials in P. Let . Recall that ,f g∈ G

()
1

0ae
a

a

P x a e
=

⎧ ⎫
= + ≥⎨ ⎬
⎩ ⎭
∏
A

.

Then

() ()() () ()()
1 1

mod , , mod ,a ae e

a a

f x a h x p g x a h x p′

= =

= + = +∏ ∏
A A

() ()() () ()()
1 1

mod , mod ,a ae e

a a

fg x a h x p x a h x′

= =

= + +∏ ∏
A A

p

 . () ()()
1

mod ,a ae e

a

x a h x p′+

=

⎛ ⎞
= + ∈⎜ ⎟
⎝ ⎠
∏
A

G

 29

Proposition 3

Let []
()()

p xF
h x

=
] . If () (),f x g x are distinct elements of P, then they are

distinct in F.

Proof

We show by way of contradiction that if f and g are not distinct in F, then a

polynomial with degree less than t has t distinct roots in F, which is impossible. ()Q y

Let () (),f x g x be distinct elements of P. Suppose () ()f x g x= in F. Let m I∈ .

Then () ()m m
f x g x=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ in F. Recall that every m I∈ is introspective for every

()f x P∈ . Since m is introspective for f and g, we have

() () []
()

() () []
()

in ,
1

in .
1

m m p
r

m m p
r

xf x f x
x

xg x g x
x

=⎡ ⎤⎣ ⎦ −

=⎡ ⎤⎣ ⎦ −

]

]

And since , then () | r
r x x −Q 1 () | 1rh x x − .

Thus the equalities above also hold in F, and we have that () () in .m mf x g x= F

This implies that mx is a root of the polynomial () () ()Q y f y g y= − for every y G∈ . By

proposition 1, we have (G r)×≤]
] . Thus ()gcd , 1m r = , and each such mx is a primitive

rth root of unity. Thus there will be t G= distinct roots of ()Q y in F. But the degree of

 must be less than t, since deg()Q y , degf g t< in F.

 30

Lemma 5

Let be defined as in Proposition 2. Then G
1

t
t
+⎛ ⎞

≥ ⎜ ⎟−⎝ ⎠

A
G .

Proof

Let []
()()

p xF
h x

=
] . Since ()h x is a factor of ()r xQ , then any root of ()h x is a

primitive rth root of unity in F. By Lemma 2, r was chosen such that . By

Corollary 0.5,

() 2ord logr n n>

() (ord |r n φ)r . Thus we have () ()ordr n rφ r< < . Thus , and 2logr n < 2r

logr n < r .

Recall that () logr nφ⎢= ⎣A ⎥
⎦

≤ 2 , ,

. This gives A < r and we have already chosen p > r.

Thus . Thus in for 1pi j i j≠ ≤ ≠] A , 1 ,x x x x+ + +… A are all distinct in P. So by

Proposition 3, , 1 , 2 , ,x x x x+ + … + A are all distinct in F.

Selecting with repetition 1t − of 1+A distinct objects gives us the number of distinct

polynomials of degree , and is given by the formula [16]: 1t −

() ()()

() ()
1 1 1 ! 1

11 ! !
t t

tt
+ + − − + −⎛ ⎞

= ⎜ ⎟−− ⎝ ⎠

A A
A

.

Similarly counting polynomials of degree d, 1 1d t≤ ≤ − , we get

1

1

1
1

t

a

t t
t a t

−

=

+ − +⎛ ⎞ ⎛
≥⎜ ⎟ ⎜

⎞
⎟− −⎝ ⎠ ⎝

∑
A A

⎠

2

, since

1 1
1 1

t t t
t t t
+ + − + −⎛ ⎞ ⎛ ⎞ ⎛

= +⎜ ⎟ ⎜ ⎟ ⎜− − −⎝ ⎠ ⎝ ⎠ ⎝

A A A ⎞
⎟
⎠

⎞
⎟

.

Thus there are at least distinct polynomials of degree < t in G .
1

t
t
+⎛

⎜ −⎝ ⎠

A

 31

Lemma 6

If n is not a power of p then tn≤G .

Proof

Consider Î I⊂ where

 ˆ 0 ,
i

jnI p i j t
p

⎧ ⎫⎛ ⎞⎪ ⎪⎢ ⎥= ≤ ≤⎨ ⎬⎜ ⎟ ⎣ ⎦⎝ ⎠⎪ ⎪⎩ ⎭
.

If n is not a power of p, then by taking 0 i t⎢ ⎥≤ ≤ ⎣ ⎦ , we see that Î has at least

()2
1t⎢ ⎥ + >⎣ ⎦ t distinct elements, namely

() () () ()

2

2

2

1 , , , ,

, , , ,

, , , ,

t

tn n n n
p p p p

t t t t tn n n n
p p p p

p p p

p p p

p p

⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
.p

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⋅ ⋅ ⋅

⋅ ⋅ ⋅

…

…

#

…

Since G t= , at least two elements of Î must be equal mod r. Let these be

. And we have, 1 2 1and ,m m m m> 2

 ()1 2 mod 1m m rx x x≡ − (1)

Let ()f x P∈ . Since is introspective, 1m

() () ()1 1 mod 1,
m m rf x f x x≡ −⎡ ⎤⎣ ⎦ p .

From (1), we get

 () () ()1 2 mod 1,
m m rf x f x x≡ −⎡ ⎤⎣ ⎦ p ,

 32

and since is introspective, 2m

 () () ()1 2 mod 1,
m m rf x f x x≡ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ p

2m

.

Thus in the field F. Therefore, () ()1m
f x f x=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ()f x ∈G is a root of the

polynomial in the field F. And since () 1mQ Y Y Y′ = − 2m ()f x is an arbitrary element of ,

the polynomial has at least

G

()Q Y′ G distinct roots in the field F. The degree of ()Q Y′ is

1

t
tnm p

p

⎢ ⎥⎣ ⎦⎛ ⎞
≤ ⋅ ≤⎜ ⎟
⎝ ⎠

n . Thus tn≤G .

Lemma 7

If the algorithm returns PRIME, then n is prime.

Proof

Suppose that the algorithm returns PRIME. Lemma 5 implies that for t G= and

() logr nφ⎢ ⎥= ⎣ ⎦A :

1

t
t
+⎛ ⎞

≥ ⎜ ⎟−⎝ ⎠

A
G

Since G is generated by n and p, and () 2logro n n> , we have:

() 2

2 2

log

log

log log .

rt o n n

t t n

t t n t n

> >

>

⎢ ⎥> ≥ ⎣ ⎦

 33

Thus

1 log

log

t n

t n

⎛ ⎞⎢ ⎥+ + ⎣ ⎦⎜ ⎟≥ ⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

A
G .

Since G is a subgroup of , which has order *
r] ()rφ ,

 () (); log lor t r n t nφ φ⎢ ⎥ g .⎢ ⎥≥ = ≥ ⎣ ⎦⎣ ⎦A

Thus

2 log 1

log

t n

t n

⎛ ⎞⎢ ⎥ +⎣ ⎦⎜ ⎟≥ ⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

G .

Now 2log log 1t n n⎢ ⎥ ⎢ ⎥> ≥⎣ ⎦⎣ ⎦ since , so by Theorem A1 in the Appendix, 2logt > n

 log 1 log2 2t n t n tn
⎢ ⎥+⎣ ⎦> > =G .

By Lemma 6, tn≤G if n is not a power of p. Therefore kn p= for some . If ,

then the algorithm will output COMPOSITE in step 1. Therefore,

0k > 1k >

1k = and . n p=

Theorem 1 (Correctness Theorem)

The algorithm returns PRIME if and only if n is prime.

Proof

Suppose that n is prime. Step 1 cannot output COMPOSITE since n is not a perfect

power. Step 3 cannot output COMPOSITE since ()gcd , 1a n = or n for all . Step 5

cannot output COMPOSITE by Lemma 1. Thus the algorithm correctly outputs PRIME in

either step 4 or step 6.

a r<

The converse was proved in Lemma 7.

 34

Appendix

Theorem A1

If , then 1n ≥ 12 1
2nn

n
++⎛ ⎞

>⎜ ⎟
⎝ ⎠

.

Proof

Expanding the notation, we get:

 ()
()

()() ()2 1 2 1 ! 2 1 2 2
! 1 ! !

n n n n
n n n n
+ n+ + +⎛ ⎞

= =⎜ ⎟ +⎝ ⎠

"
.

There are exactly n terms in the product in the numerator, so we can rewrite this as:

1 1

2 1 1 2n n

i i

n n i i
n i i= =

+⎛ ⎞ 1+ + +
= >⎜ ⎟

⎝ ⎠
∏ ∏ ,

since . Since each term in this last product is greater than 2, we have: 1n ≥

 .
2 1

2nn
n
+⎛ ⎞

>⎜ ⎟
⎝ ⎠

Noticing that
3

4

1

2 1 3 5 7 35 16 2
1 2 3 2i

i
i=

+ ⋅ ⋅
= = > =

⋅ ⋅∏ , we see that indeed

 12 1
2nn

n
++⎛ ⎞

>⎜ ⎟
⎝ ⎠

.

 35

Theorem A2

Let denote the least common multiple of the first n positive integers. ()
1n m n

d lcm m
≤ ≤

=

Then for any integer , . 7n ≥ 2n
nd ≥

Proof

For 1≤ m ≤ n , consider the integral, ()
1

1

0

1 n mmI x x −−= −∫ . Using the binomial

expansion for , we get ()1 n mx −−

 () ()
1 1

1 1

0 00 0

1 1
n m n m

r rm r

r r

n m n m
I x x x

r r

− −
− +

= =

− −⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑∫ ∫ m r−

 ()
0

11
n m

r

r

n m
I

r m r

−

=

−⎛ ⎞
= − ⎜ ⎟ +⎝ ⎠
∑

Since , and we see that 0 r n m≤ ≤ − | nm r d+ nId ∈` .

On the other hand, integration by parts gives us:

() ()

()()

() ()

1
1 1

0

1

1
1

1

00

0

1 , , 1

 , 1

1
1 ,

n m n mm m

m
n m

n mm
n mm

I x x dv x u x

xv du n m x
m

x x n mI x x
m m

− −− −

− −

−
− −

= − = = −

= = − − −

− −
= + −

∫

∫
���	��

and repeated integration by parts after this manner then yields,

 () () ()! ! 1 ! 1
(1) !

n m n m m
I

nn n m n
m

m

− − −
= = =

⋅ − ⋅ ⋅ ⎛ ⎞
⎜ ⎟
⎝ ⎠

…
.

 36

Alternately, recognizing that I is an Eulerian integral of the 1st kind, we could use the

well-known (and more general) identity,

 () () ()
()

1
11

0

(,) 1 qp p q
B p q x x dx

p q
−− Γ Γ

= − =
Γ +∫ .

And since for positive integers, () ()1 !z zΓ = − , we get that

 () () ()
()

() ()1 1 ! ! 1, 1
1 !

m n m m n m
I B m n m

nn n
m

m

Γ Γ − + − −
= − + = = =

Γ + ⎛ ⎞
⎜ ⎟
⎝ ⎠

as before.

But we have already shown that nId ∈` ; therefore, divides for all

. In particular, divides .

n
m

m
⎛ ⎞
⎜ ⎟
⎝ ⎠

nd

1 m n≤ ≤
2n

n
n

⎛ ⎞
⎜ ⎟
⎝ ⎠

2nd

Notice, however, that

() () () ()

() ()
() ()

2 2 ! 2 1 !
2 1 2 1

! ! ! !
2 12 1 !

1 1
11 ! !

n n n
n n

n n n n n
nn

n n
nn n

+⎛ ⎞
+ = + =⎜ ⎟ ⋅ ⋅⎝ ⎠

++ ⎛ ⎞
= + = + ⎜ ⎟++ ⋅ ⎝ ⎠

so that divides ()
2

2 1
n

n
n

⎛ ⎞
+ ⎜

⎝ ⎠
⎟ 2 1nd + . We also know that divides since, in

general, divides . And since

2n
n

n
⎛ ⎞
⎜ ⎟
⎝ ⎠

2 1nd +

1nd − nd ()gcd , 2 1 1n n + = , we deduce that

divides . Also, since is the largest of the terms in the

binomial expansion of (, we have that

()
2

2 1
n

n n
n

⎛ ⎞
+ ⎜ ⎟

⎝ ⎠
2 1nd +

2n
n

⎛
⎜
⎝ ⎠

⎞
⎟ 12n +

)21 1 n+

 37

 . ()2 1

2
2 1 4n

n

n
d n n n

n+

⎛ ⎞
≥ + ≥⎜ ⎟

⎝ ⎠

Thus, if 2 1
2 12, 2 n

nn d +
+≥ ≥ and if 2 2

2 2 2 14, 2 n
n nn d d +
+ +≥ ≥ ≥ . And since,

{ }2 1, 2 2 , 0n n n n+ + ∈ > =] ` , we have that . 2 , 9N
Nd N≥ ≥

It can be verified by direct computation that this also holds for . 7N ≥

 38

References

 [1] Agrawal, M.; Kayal, N.; Saxena, N. PRIMES is in P. Ann. of Math. (2) 160 (2004), no. 2,

781--793. MR2123939

 [2] Garey, M. R.; Johnson, D. S. Computers and intractability. A guide to the theory of NP-

completeness. A Series of Books in the Mathematical Sciences. W. H. Freeman and Co., San

Francisco, Calif., 1979. x+338 pp. ISBN: 0-7167-1045-5 MR0519066 (80g:68056)

 [3] Pratt, Vaughan R. Every prime has a succinct certificate. SIAM J. Comput. 4 (1975), no. 3,

214--220. MR0391574 (52 #12395)

 [4] Solovay, R.; Strassen, V. A fast Monte-Carlo test for primality. SIAM J. Comput. 6 (1977),

no. 1, 84--85. MR0429721 (55 #2732)

 [5] Adleman, L.; Huang, M. Recognizing primes in random polynomial time. Proc. ACM

STOC'87, (1987), 462-470.

 [6] Gill, J. Computational complexity of probabilistic Turing machines. SIAM J. Comput. 6

(1977), no. 4, 675--695. MR0464691 (57 #4616)

 [7] Rabin, M. O. Probabilistic algorithm for testing primality. J. Number Theory 12 (1980), no.

1, 128--138. MR0566880 (81f:10003)

 [8] Bernstein, D. J. Detecting perfect powers in essentially linear time. Math. Comp. 67 (1998),

no. 223, 1253--1283. MR1464141 (98j:11121).

 [9] Nair, M. On Chebyshev-type inequalities for primes. Amer. Math. Monthly 89 (1982), no. 2,

126--129. MR0643279 (83f:10043)

 [10] Fouvry, Étienne. Théorème de Brun-Titchmarsh: application au théorème de Fermat.

(French) [The Brun-Titchmarsh theorem: application to the Fermat theorem] Invent. Math. 79

(1985), no. 2, 383--407. MR0778134 (86g:11052)

 39

http://www.ams.org/mathscinet-getitem?mr=MR2123939
http://www.ams.org/mathscinet-getitem?mr=MR0519066
http://www.ams.org/mathscinet-getitem?mr=MR0391574
http://www.ams.org/mathscinet-getitem?mr=MR0429721
http://www.ams.org/mathscinet-getitem?mr=MR0464691
http://www.ams.org/mathscinet-getitem?mr=MR0566880
http://www.ams.org/mathscinet-getitem?mr=MR1464141
http://www.ams.org/mathscinet-getitem?mr=MR0643279
http://www.ams.org/mathscinet-getitem?mr=MR0778134

[11] Baker, R. C.; Harman, G. The Brun-Titchmarsh theorem on average. Analytic number

theory, Vol. 1 (Allerton Park, IL, 1995), 39--103, Progr. Math., 138, Birkhäuser Boston,

Boston, MA, 1996. MR1399332 (97h:11096)

 [12] Lidl, R.; Niederreiter, H. Introduction to finite fields and their applications. Revision of the

1986 first edition. Cambridge University Press, Cambridge, 1994. xii+416 pp. ISBN: 0-521-

46094-8 MR1294139 (95f:11098)

 [13] Apostol, T. M. Introduction to analytic number theory. Undergraduate Texts in Mathematics.

Springer-Verlag, New York-Heidelberg, 1976. xii+338 pp. MR0434929 (55 #7892)

 [14] Rosser, J. B.; Schoenfeld, L. Approximate formulas for some functions of prime numbers.

Illinois J. Math. 6 1962 64--94. MR0137689 (25 #1139)

 [15] von zur Gathen, J.; Gerhard, J. Modern computer algebra. Cambridge University Press,

New York, 1999. xiv+753 pp. ISBN: 0-521-64176-4 MR1689167 (2000j:68205)

 [16] Grimaldi, R. P. Discrete and combinatorial mathematics : an applied introduction. third

edition. Addison-Wesley, Massachusetts, 1994. xvi+874 pp. ISBN: 0-201-54983-2

 [17] Schönhage, A. ; Strassen, V. Schnele multiplikation grosser zahlen. (German) [Fast

multiplication of large numbers] Computing, 7 1971 281-292

 40

http://www.ams.org/mathscinet-getitem?mr=MR1399332
http://www.ams.org/mathscinet-getitem?mr=MR1294139
http://www.ams.org/mathscinet-getitem?mr=MR0434929
http://www.ams.org/mathscinet-getitem?mr=MR0137689
http://www.ams.org/mathscinet-getitem?mr=MR1689167

	An Exposition of the Deterministic Polynomial-Time Primality Testing Algorithm of Agrawal-Kayal-Saxena
	BYU ScholarsArchive Citation

	Title Page
	Graduate Committee Approval
	College Approval
	 Abstract
	Table of Contents
	 Introduction
	An Overview of Computational Complexity Theory
	 Notation
	Part 1 – Conceptual Foundation
	Lemma 1
	Proof

	A new idea
	Definition 0.1
	Definition 0.2
	Definition 0.3
	Theorem 0.4
	Proof

	Corollary 0.5
	Proof

	 Part 2 – The AKS Algorithm
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6

	 Part 3 – The Correctness of the AKS Algorithm
	Lemma 2
	Proof

	On Introspective Numbers
	Definition 1
	Lemma 3
	Proof

	Lemma 4
	Proof

	Sets I and P defined
	Proposition 1
	Proof

	 Proposition 2
	Proof

	Proposition 3
	Proof

	Lemma 5
	Proof

	Lemma 6
	Proof

	Lemma 7
	Proof

	Theorem 1 (Correctness Theorem)
	Proof

	Appendix
	Theorem A1
	Proof

	Theorem A2
	Proof

	 References
	 [1] Agrawal, M.; Kayal, N.; Saxena, N. PRIMES is in P. Ann. of Math. (2) 160 (2004), no. 2, 781--793. MR2123939
	 [2] Garey, M. R.; Johnson, D. S. Computers and intractability. A guide to the theory of NP-completeness. A Series of Books in the Mathematical Sciences. W. H. Freeman and Co., San Francisco, Calif., 1979. x+338 pp. ISBN: 0-7167-1045-5 MR0519066 (80g:68056)
	 [3] Pratt, Vaughan R. Every prime has a succinct certificate. SIAM J. Comput. 4 (1975), no. 3, 214--220. MR0391574 (52 #12395)
	 [4] Solovay, R.; Strassen, V. A fast Monte-Carlo test for primality. SIAM J. Comput. 6 (1977), no. 1, 84--85. MR0429721 (55 #2732)
	 [5] Adleman, L.; Huang, M. Recognizing primes in random polynomial time. Proc. ACM STOC'87, (1987), 462-470.
	 [6] Gill, J. Computational complexity of probabilistic Turing machines. SIAM J. Comput. 6 (1977), no. 4, 675--695. MR0464691 (57 #4616)
	 [7] Rabin, M. O. Probabilistic algorithm for testing primality. J. Number Theory 12 (1980), no. 1, 128--138. MR0566880 (81f:10003)
	 [8] Bernstein, D. J. Detecting perfect powers in essentially linear time. Math. Comp. 67 (1998), no. 223, 1253--1283. MR1464141 (98j:11121).
	 [9] Nair, M. On Chebyshev-type inequalities for primes. Amer. Math. Monthly 89 (1982), no. 2, 126--129. MR0643279 (83f:10043)
	 [10] Fouvry, Étienne. Théorème de Brun-Titchmarsh: application au théorème de Fermat. (French) [The Brun-Titchmarsh theorem: application to the Fermat theorem] Invent. Math. 79 (1985), no. 2, 383--407. MR0778134 (86g:11052)
	[11] Baker, R. C.; Harman, G. The Brun-Titchmarsh theorem on average. Analytic number theory, Vol. 1 (Allerton Park, IL, 1995), 39--103, Progr. Math., 138, Birkhäuser Boston, Boston, MA, 1996. MR1399332 (97h:11096)
	 [12] Lidl, R.; Niederreiter, H. Introduction to finite fields and their applications. Revision of the 1986 first edition. Cambridge University Press, Cambridge, 1994. xii+416 pp. ISBN: 0-521-46094-8 MR1294139 (95f:11098)
	 [13] Apostol, T. M. Introduction to analytic number theory. Undergraduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1976. xii+338 pp. MR0434929 (55 #7892)
	 [14] Rosser, J. B.; Schoenfeld, L. Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 1962 64--94. MR0137689 (25 #1139)
	 [15] von zur Gathen, J.; Gerhard, J. Modern computer algebra. Cambridge University Press, New York, 1999. xiv+753 pp. ISBN: 0-521-64176-4 MR1689167 (2000j:68205)
	 [16] Grimaldi, R. P. Discrete and combinatorial mathematics : an applied introduction. third edition. Addison-Wesley, Massachusetts, 1994. xvi+874 pp. ISBN: 0-201-54983-2
	 [17] Schönhage, A. ; Strassen, V. Schnele multiplikation grosser zahlen. (German) [Fast multiplication of large numbers] Computing, 7 1971 281-292

