
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Faculty Publications

2002-11-01

A Theoretical Framework for the Multicast Address Allocation A Theoretical Framework for the Multicast Address Allocation

Problem Problem

Daniel Zappala
daniel_zappala@byu.edu

Chris GauthierDickey

Virginia Lo

Timothy Singer

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

 Part of the Computer Sciences Commons

Original Publication Citation Original Publication Citation
Virginia Lo, Daniel Zappala, Chris GauthierDickey, and Tim Singer, "A Theoretical Framework for

the Multicast Address Allocation Problem", IEEE Globecom, Seventh Global Internet Symposium,

November 22.

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Zappala, Daniel; GauthierDickey, Chris; Lo, Virginia; and Singer, Timothy, "A Theoretical Framework for the
Multicast Address Allocation Problem" (2002). Faculty Publications. 527.
https://scholarsarchive.byu.edu/facpub/527

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more
information, please contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F527&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F527&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/527?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F527&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

A Theoretical Framework for the Multicast Address Allocation Problem

Virginia Lo, Daniel Zappala, Chris GauthierDickey, and Timothy Singer
Department of Computer Science, 1202 University ofOregon, Eugene OR 97403-1202

lolzappalalchrisgltsinger@cs.uoregon.edu

Abstrllct-The multicast address allocation problem requires Internet do­
mains to allocate unique addresses to multicast applications from a globally­
shared space. We develop a theoretical framework for multicast luloeation
algorithms that is inlluenced by subeube allocation in hypercube ""mputer
systems. Based on this framework we derive wmplexity results fo r the ad­
dress allocation problem and describe several new allocation algorithms that
use a hypercube model for address representation.

1. INTRODUCTION

The multicast address allocation problem is one of several
key problems that has delayed deployment of native [l> multi­
cast throughout the Internet While recent work in the areas of
Source-Specific Multicast (SSM) and application-layer multicast
protocols has side-stepped the maUoe problem, neither has pro­
posed fully satisfactory schemes to support any source multicast
(ASM). The rapidly increasing use of the Internet for nil man­
ner of communications makes it imperative that we continue to
seek support for minimum latency, maximally efficient multicast
services.

In this paper, we show that the multicast address allocation
problem is one instance of a well-known, general resource al­
location problem in which a block of resources is allocated and
de-allocated based on dynamic requests for sub-blocks of vary­
ing sizes. The ability to respond to requests under heavy loads
is difficult because the resource space may become fragmented
into many small non-aggregatable blocks.

The most well-known instance ofthis problem arises in mem­
ory management and disk space management in which contigu­
ous bytes of memory (or physical blocks of disk space) are al­
located and de-allocated over time. Other examples include dis­
tribution of zip codes and telephone numbers, and the processor
allocation problem in hypercubes, tori, and meshes.

We focus our attention on the latter class of problems, specif­
ically the subcube allocation problem in hypercubes..We show
how results from subcube allocation - including its compact no­
tation, complexity results, and algorithms - can be applied to the
malloc problem to overcome the limitations of current ,;chemes
for address allocation.

We first reported the close relationship between the malloc
problem and the subcube allocation problem in [1]. Here, we
continue our development ofa theoretical framework for the mul­
ticast address allocation problem and propose new algorithms
that use a hypercube-based approach. A companion paper [2J
builds on these theoretical results by studying the performance
of these algorithms within the context of the MASe architecture
[3].

In this paper, we develop a framework for the malloc prob­
lem by classifying address allocation algorithms according to

This work was supported in part by the National Science Foundation under
grants ANI·9977524 and NCR-9714680.

their recognition capability: prefix-based, contiguous, and non­
contiguous. While a prefix-based algorithm is recommended for
MASe, contiguous and non-contiguous algorithms offer a more
flexible representation for address blocks and hence provide a
greater ability to recognize free blocks in a fragmented space.

Using this framework, we derive the first complexity results
for the maUoc problem and explain their implications for address
allocation protocols. Until now, the malloe problem has not been
studied formally. Our complexity results show that address allo­
cation is a subtle and difficult problem, more so than heretofore
understood by the networking community. Our results provide
guidance towlltds approaches that are likely to reap practical ben­
efits for multicast address allocation.

Finally, we develop several new polynomial time algorithms
for address allocation that use a hypercube model for address
aggregation. These algorithms are defined by their recognition
capability and their fit model (first fit, ARBE fit, best fit, or
worst fit). These new algorithms hold promise for use within
the MAse architecture.

II. BACKGROUND AND TERMINOLOGY

We begin by describing the concept of an address expression
and formally defining the malloc problem. We then show that
there is a straightforward correspondence between the subcube
allocation problem in hypercubes and the malloc problem.

A. Address Ex:pressions

An address expression is a compact notation for repre~enting

block or set or addresses. We use the standard don't care nota­
tion ofhypercubes for expressions, e.g., the set of four addresses
0000,0001,0010, 0011 can be represented as the address ex­
pression OOXX, in which the X's represent don 'I care bits. This
notation is similar to that ofaddress masks, which are commonly
used in Internet routing protocols.

We define the following taxonomy of address expressions,
based on the allowable patterns of the don 'I care bits.

• Prefix-Based: Address expressions must have aU all the
don 'I care bits in the rightmost positions.

• Contigu()us: Address expressions must haveconti guous
don 'I care bits, with wraparound allowed.

• Non-Contiguous: Address expressions may have the don 'I

care bits in arbitrary positions.

For example, given a block of 25 addresses allocated from
a 210 bit address space, 00100XXXXX denotes a prefix-based
address expression, 001XXXXX01 and XX0011QXXX both de­
note contiguous address expressions, and XOOXX1 OXXO denotes
a non-contiguous expression. Each class is contained in the next,
with non-contiguous being the most general class.

0-7803-7632-3/02/$17.00 ©2002 IEEE 2108

Fig. I. The correspondence between address allocation and subcube allocation

........ Addn:SlIBJodl:

@ ooxx (,mi.,
I

4ll!l IX)((J(~).. XIXI (noo-cunfi@:Ul"lQ)

4-Dhypm:ui)e

1100 1110

adaptive mechanism triggers request or release of blocks based
on low and high utilization thresholds. Later in this paper, we
examine ARBE more closely, in the context of our taxonomy of
allocation algorithms, and discuss its advantages and disadvan­
tages.

C. Subcube Allocation ami the Malloc Problem

The hypercube is an elegant recursive mathematical structure
that served as the underlying communication network ofthe [ntel
iPSC and N-Cube parallel processors back in the late 19805 and
early 1990s. In a hypercube, the 2" processors are each labeled
with an n-bit address; processors whose labels differ in exactly
one bit position are connected.

A subcube is a subset of the nodes and edges of a hypercube
that themselves fom a smaller hypercube. In a hypercube ma­
chine, parallel applications request subcubes, hold them for the
runtime of tbe application, and then release the subcubes back
to the operating system scheduler. The algorithm used by the
scheduler to handle the requests and releases of the subcubes is
the subcuhe allocation algorithm and has been the target of in­
tensive research for many years [5), [6], [7], [8]

A key observation is the fact that a subcube is equivalent to
a block of addresses described by a single address expression.
Thus, as shown in Figure 1, a given subcube - or its equiva­
lent block of addresses - can be described using prefix-based,
contiguous, or non-contiguous address expressions. This equiva­
lence means that subcube recognition techniques can be applied
to the problem of multicast address allocation. However,a num­
ber of key differences and practical constraints associated with
the malloc problem require that results from hypercube theory
be applied to the address allocation problem with great care.

III. COMPLEXITY OF ADDRESS ALLOCATION

Any practical allocation scheme must be able to double and
migrate efficiently. [n this paper, we seek algorithms that yield
optimal solutions in polynomial time and space. Where this is not
possible we sacrifice optimality in order to maintain a polynomial
solution.

Below, we summarize complexity results for the three classes
of address allocation schemes: prefix-based, contiguous, and
non-contiguous.

A. Doubling Complexity

[n any prefix.-based allocation scheme, there is only one choice
for doubling, Le., doubling can occur only by converting the
rightmost instantiated bit to a don't care bit. For example, if
child domain CI holds address block OOOXX, it can only double
into the block OOxxx..

B. MASC and the Malloc Problem

We assume the widely-accepted model for interdomain multi­
cast defined by Kumar et. al. [3] and the proposals of the IETF's
MALLOC working group [4]. Under this model, domains use the
Multicast Address-Set Claim (MASC) protocol to dynamically
assign address blocks along the existing provider-subscriber hi­
erarchy. A subdomain claims blocks of addresses from a parent
domain in order to satisfy multicast address requests from inter­
nal applications as well as from its own child domains.

The heart of the MASC protocol lies in the scheme used for
allocation and de-allocation ofaddress blocks. This fundamental,
yet difficult problem is what we refer to as the malloc problem,
which can be defined as follows for a single hierarchy composed
ofa parent domain and m child domains. The definition is easily
extended to a multi-level hierarchy.

The Malloe Problem: A domain is given a contiguous set of
2" multicast addresses, represented as binary numbers from 0 10
2" - 1. Initially, all addresses are available for allocation. Child
domains Co through em request blocks ofaddresses whose sizes
are powers of2. The challenge of the malloc problem is to allo­
cate blocks of addresses to child domains under heavy demand,
as the address space becomes fragmented over time. A good al­
location algorithm should satisfy as many requests as possible,
while attempting to minimize the number of blocks a child do­
main holds (to keep routing tables small) and the number oftimes
a child must change addresses (to reduce routing table flux).

A child domain that requests additional addresses may be sat­
isfied in three different ways:

• expansion: A child is given a new block in addition to its
current blocks. Each new block increases the size of the
domain's routing table.

• doubling: One of the child's blocks is combined with a
free buddy block, which has the same address expression
except for one different instantiated bit. By combining with
a buddy, the new block can still be represented with a sin­
gle address expression, namely one where the differing bit
is changed to a don't care bit. Growth by doubling is desir­
able because it keeps routing table sizes stable and reduces
the scope of routing table updates.

• migration: A child exchanges one or more of its blocks
for a new block that is as large as all of the old blocks com­
bined. Following a migration, the child then tries to grow by
expansion; migration followed by expansion is used to keep
the total number of blocks assigned 10 a child within some
bound. This helps reduce the size of the domain's routing
table at the expense of some routing table flux.

In the MASC architecture, the allocation algorithm uses
prefix-based expressions and allocates new blocks using a worst­
fit placement mechanism called ARB,E. Worst-fit placement gen­
erally leaves free space adjacent to each newly allocated block,
which can be used in the future for doubling. When a child needs
more addresses, it first checks whether it has free addresses avail­
able in one of its current blocks. Otherwise it tries to expand to
an additional block or do~ble one of its existing blocks. If this
fails then it tries to migrate all its holdings to a new block. An

2109

Recognition for n bit address space, k bit subcubeiblock

TABLE I
RECOGNITION CAPABILITY Of ALl.OCATION SCHEMES

In any contiguous allocation scheme, there are two l:hoices
for doubling, Le. by converting either the leftmost or riBhtmost
instantiated bit to a dOli 't care bit. For example, ifCl holds block
oxxoo, it can double into either block XXXOO or block OXXXO.

The complexity of doubling for prefix and contiguous alloca­
tion is O(C), where C is the number of child domains. The
algorithm simply generates the address expression for the candi­
date buddy block and then tests whether that block is available
by checking for intersection with the other children's blocks via
bitwise comparison of address expressions.

In any non-contiguous allocation scheme there are '11. - k
choices for doubling, where '11. is the total number of bits in the
full address space and k is the number of dOli 't care bits in the
current address expression. Doubling occurs by converting any
one of the instantiated bits to a don't care.

The complexity of doubling for non-contiguous allocation is
O(C * '11.) since it may have to examine all n - k choices for
doubling, testing each for intersection with the other children's
blocks.

B. Migration Complexity

The ability of an allocation scheme to migrate to a new block
in a highly fragmented address space is a function of its ability
to recognize blocks of the desired size in the free address space.

Table I shows the recognition capacity for a spectrum of sub­
cube allocation schemes all of which can be invoked for the mal­
loc problem. The table gives the general formula for the total
number of subcubes/blocks of size 2k that can be recogni;~ed in a
hypercube/address space of size 2n . It is clear that relaxing con­
straints on the format ofthe address expression from prefix-based
to non-contiguous vastly improves the potential recognition ca­
pacity. This potential may not necessarily lead to better migration
performance, due to fragmentation. Nevertheless, the increased
recognition capability provides strong motivation to explore con­
tiguous and non-contiguous algorithms.

Prefix-based allocation was proved to be polynomial time in
[6]. Under prefix schemes, blocks are allocated and deallocated
in a rigid pattern using a free list organized by block size.

We have developed the first known polynomial time algorithm
for contiguous allocation. Earlier work with hypercubes under
this model focused on parallel algorithms which use an expo­
nentiai number of processors [9]. Our algorithm, which we call
Cydic, exploits the fact that there are only n classes of cyclic

-Subcube
Allocation Scheme

Buddy (prefix)
Gray (non-contig)
Dbl Gray (non-contig)
Partners {non-contig}
Cyclic (contiguous)
Full (non-contig)

Total blocks recognized
General Exampll~:

formula n "" 8, k := 3
2"-1< 32

2,,-1<+1 64
not given 128

(n-k+l)x2n
-

k 192
n x 2n - k 256
mx2,,-k 1792

blocks, categorized by the position of the rightmost don't care
bit. It uses techniques for logic design that are are exponen­
tial time fOT logic circuits [IO}, but polynomial time for cyclic
address allocation. In the next section we give an overview of
Cyclic; the algorithm is fairly complex and described more thor­
oughly in [II].

B./ Non-Contiguous Allocatioll

Non-contiguous allocation is not as straightforward because
subtly different statements of the problem have been proposed
with different complexity results. We first give the complexity
results, then discuss their implications for address allocation pro­
tocols. In the following, afeasible set of requests is one in which
the sum of the all the requested blocks does not exceed the full
address space.

Problem lSin gle-Request Address Allocation. Given child
domains C1 through Cm which have already been successfully
allocated (disjoint) blocks B I through B m , respectively, does
there exist a free block ofsize 210, k <= n?

Theorem lSin gle-Request Address Al1~ation is NP-hard.
We prove this by reduction from SAT. We establish a direct cor­
respondence between clauses and subcubes, showing that a set of
clauses is satisfied if.fthere is a free subcube ofdimension k after
the subcubes corresponding to those clauses are allocated to the
child domains. The full proofcan be found in [11].

Problem 2Un ordered-Requests Address Allocation. Given a
feasible ullordered set ofrequests for blocks ofsizes 81 through
8m. is there an allocation that satisfies this set ofrequests regard­
less ofthe order in which they are issued?

Theorem 2Un ordered-Requests Address AliocatioD is NP­
hard. This is an instance of a more general problem involving
offline subcube allocation that was proved NP-hard by Dutt and
Hayes [5].

Problem 30r dered-Requests Address ADocation. Given an
ordered sequence ofrequests for blocks ofsizes 81 through 8 m is
there Gil allocatioll that assigns a block to each request ifa free
block exists at the time ofthe request?

Ordered-Requests Address Allocation is an open problem. We
conjecture that it is solvable in polynomial time and outline an
algorithm for this problem. The reason this problem may admit a
polynomial time solution, while the others do not, lies in the fact
that with ordered requests we know which of the past requests
have been satisfied and which blocks have been allocated to each
child. In other words, past history and current state are known
at the time of each given request. Problem 2 requires that an
algorithm be able to satisfy all n! possible request sequences,
while Problem I requires that the algorithm be able to reconstruct
the sequence of requests that led to the current situation.

B.2 Implications for the MASC Architecture

Theorem 1 implies that it is not sufficient to determine the cur­
rent allocation state and then satisfY a given request. For exam­
ple, a child domain that needs a new block ofaddresses may want

2110

o

o

Fig. 2. Allocation trees for prefix and contiguous allocation

(.) First Fit: nr:Ii i?n~! li:j·i 6 7 8 9 ~O 11 ~2 13 ~4 ~5

(b) ARBE: [lUi 2 3 ~'i 5 6 7 l~) 9 10 11 ii-:r:n:l14 ~5

(b) Fragmented ARBE: 19.·.jj 2 3 l-i] 5 6 7 [iii 9 ~'Qi 11 14 li~!

Fig. 3. Allocation for requests 2, I, 1,2 under Prefix-FF and ARBE fits

5 (; 7 aJ...: n~~. It Yj 1~•.~J:l] 15

OOXX (prefix) ixxo (contiguous)

(a) A prefix·based llock anda contiguous block in allocation tree 10

B. Contiguous algorithm: Cyclic

Assuming the initial allocations shown in Figure 3(a) and (b),
contiguous allocation improves over prefix-based allocation: all
of the children can double and migration requests of sizes 2,4,
and 8 can be satisfied under either FF or ARBE fits.

We have developed a polynomial time algorithm for contigtl­
ous address allocation called Cyclic. The key features of the al­
gorithm are (l) it inspects only n allocation trees, (2) it simplifies
the task offinding a k-cube into that offinding a single free node
in a truncated allocation tree, and (3) it uses binary search and
the consensus operation from logic design to locate a single free
node and thus a free k-cube.

Cyclic inspects n allocation trees, one corresponding to each
of the possible bit positions occupied by the rightmost don't care
bit. Figure 2(b) shows the representation of block OOXX in To
and block 1XXO as they appear in trees To and Tt .

Within a given allocation tree T;, Cyclic transforms the task
of searching for a free k - cube into the task of finding a sin­
gle free node in two steps. First, the child holdings are repre-·
sented as prefix-based holdings in the current allocation tree 11.
via wraparound right-shift ofi bits. Then, the last k bits are trun­
cated from each child's holding.

Once a tree is transformed, then Cyclic does a binary search
of the tree to find a free node. Ifthe search is successful, it yields
a free node in tree n that can be translated back to the address
expression for the corresponding free k - cube. If the search is

TI label. 0 I 2 3 :'4"··5"···6'''·1: 8 9 to II 12 13 14 15

TO labels 0 2 4 6/?i::::l:O::l:1::1:.j; I 3 5 7 9 11 13 15
OIXX (in rJ ······· .. ··-·,:::·j'XXO(in TO)

(b) The roltiguous block IXXO in 10 above has been transfol'm1d
into a prefix N<K'k OIXX in TI

to query its siblings to find out what blocks they hold, or a par­
ent domain may simply track its allocations. In both cases, it is
not possible for the child or the parent to find a free block of the
desired size in polynomial time.

Theorem 2 states that there is no polynomial time algorithm
that can satisfy a feasible set of unordered requests. However,
we note that in a realistic setting requests for blocks may occur
in a fixed, ordered sequence; hence it is not necessary to optimize
over aU possible orderings.

Problem 3 is a more natural statement of the maUoe problem,
and we believe this can lead to a polynomial time algorithm for
non-contiguous address allocation. The algorithm we present in
the following section is framed in tenns ofa request-reply proto­
col, but the same results should apply to any protocol that main­
tains ordering for requests.

IV. MULTICAST ADDRESS ALLOCATION ALGORITHMS

We present several address allocation algorithms within the
context of our theoretical framework, including those from the
networking community and those we have adapted or developed
that are hypercube-based. Because doubling is a straightforward
operation for all algorithms, we focus on migration. Recall that
with MASC a child domain tries to migrate when it is unable to
double one of its current blocks.

Migration algorithms can be characterized by their recognition
capacity~tifix, guous, non-contiguous) and by theirfit type
(first fit, last fit, best fit, and worst fit). Due to space limitations,
we give only a high level description of our algorithms; details
can be found in [I1J.

Our discussion uses a simple example throughout: a single­
level domain hierarchy, an address space of 24 addresses, and
the following sequence of requests for addresses (given as block
sizes): 2,1, 1,2.

A. Prefix-based algorithms: Prefix-FF and Prefix-ARBE

Prefix-based algorithms can be best understood through the
use of an allocation tree in which the leaf nodes are labeled left
to right with the binary addresses 0 through 2/t -1. Left edges are
labeled with 0 and right edges labeled with 1. See Figure 2(a).

It is easy to see that the binary sequence on the path from the
root to any leaf node is precisely the label of that leaf node. Any
interior node in the tree corresponds to a block ofaddresses con­
tained in the subtree rooted at that node. The expression for this
block is the binary sequence on the path from the root to that
interior node, followed by don't cares.

Prefix-FF allocates addresses using first-fit; it is identical to the
Buddy Subcube Algorithm [6]. Prefix-ARBE allocates blocks
using a worst-fit, reverse-bit ordering [12]. Figures 3(a) and
(b) show how Prefix-FF and Prefix-ARBE would handle the
above sequence of addresses. With Prefix-FF, the requests are
aU packed into the low numbered addresses. As a result, no child
block can double into its buddy block, but migration requests for
2, 4, or 8 addresses can be accommodated. Under Prefix-ARBE,
the four initial requests are spaced out so that all children can
double. However, no migration requests of size 4 or 8 can be
satisfied.

211l

not successful, there is no free node in the tree and the operation
must be repeated on the next allocation tree.

To detennine whether there is a free node in a given subtree,
Cyclic uses the consensus operation [10]. Consensus is a binary
operation that finds the common block ofaddresses for two adja­
cent blocks. If consensus is applied to two buddies, the result is
the combination of the buddies into a larger block. Cyclic staTts
with a list of the child holdings and repeatedly applies consen­
sus to all pairs of adjacent blocks. Any blocks that are covered
by a larger block are removed from the list. This procedure is
repeated until no buddies remain. At most, a block can be com­
bined with its buddy n times since each buddy changes an in­
stantiated bit to a don 'f care. Thus, we are guaranteed that the
algorithm tenninates after n iterations. These repeated invoca­
tions of the consensus operation will yield the whole subtree iff
the subtree is covered by the chiidren. This indicates a fililure to
find a free node in the subtree.

The complexity of Cyclic is O{C", n3).

C. Non-contiguous algorithm: MaxQ

The advantages ofnon-contiguous allocation can be seen from
the highly fragmented situation in Figure 3(c). Cyclic <:an only
migrate to new blocks of size 2, while a non-contiguous algo­
rithm can migrate to blocks of sizes 2 and 4. For example, a free
non-contiguous block is OX1X.

We have developed a non-contiguous address alloc<ltion al­
gorithm for the Ordered-Requests problem called MaxQ. MaxQ
uses the consensus operation to maintain a free list that ':lontains
a maximal free subcube. This free list is a weaker type of free
list than that proposed by (5] which is a maximal free list that
is greater than all other maximal free lists. Our free list only at­
tempts to find one of all the maximal free blocks of addresses,
of whiCh there may be several, and then the rest of the list con­
tains a sub-optimal list of free address blocks. For example, if
the free list contained the free addresses 000,001, 110, lOa,
the algorithm in [5] would be guaranteed to find OOX and 1XO as
the maximal free list. While MaxQ might find this list, it could
also find the free list of 001 ,XO O,and 110.

Using the consensus operation, MaxQ compares the dements
of the free list to each other and find the consensus between all
pairs. Any new consensus which covers a pair of addresses is
kept and the covered pairs are removed. We apply the consensus
operation to all pairs in the free list repeatedly until there are no
new consensus blocks. As with Cyclic, we are guaranteed that
this will execute at most n iterations. Once we have a list of
maximal free blocks given from the pairs in the original list, we
can choose any of the largest blocks and then keep the results of
this block with the subtractions of the other blocks in a new list
and maintain'a polynomial sized free list.

Using a free list allows us to ensure that if a migratiol1, needs a
block of size k, then a simple traversal through the list in search
of a k-sized block will reveal if one exists. Since we know our
free list will contain a maximal free block, then if there is not a k­
sized block in the list. there js nllt a maximal block of that size in
the address space. f>roving MaxQ is polynomial time consists of
proving that the free list will always remain polynomial in size.

Note that a non-contiguous model for address expressions
called kampai was introduced in [13] for unieast routing. How­
ever, the kampai algorithm was restricted to growth through dou­
bling only,

D. Conclusion

In this paper we have established a theoretical framework for
the multicast address allocation problem by showing its close
resemblance to the subcube allocation problem in hypercubes.
We developed a classification scheme for address expressions
into prefix-based, contiguous, and non-contiguous, based on con­
straints on the location of don't care bits. We then proved com­
plexity results for each class, showing prefix and contiguous al­
location to be polyrtomial time, and showing two non-contiguous
allocation problems (Single Request and Unordered Requests) to
be NP-hard. We presented Cyclic, the first polynomial time al­
gorithm for contiguous allocation. Finally, we conjectured that
Non-Contiguous Ordered Requests is polynomial time and pre­
sented the MaxQ algorithm for this problem. Throughout, we
focused on the implications of our results and on finding practi­
cal algorithms for the malloc problem.

Based on their recognition capability, contiguous and non­
contiguous algorithms appear to hold great promise for multicast
address allocation. In our companion paper [2], we investigate
the perfonnance of these algorithms within a general model of
the malloc problem.

RBFERENCBS

[I] M. Livingston, V. Lo, K. Windisch, and D. Zappala, "C)lclic Block
Allocation: A New Scheme for Hienm:hical Multicast Address Alloca­
tion," in First International Workshop on Networked Group Communica­
tion, L. Rizzo and S. Fdida, Ells., November 1999.

[2] D. Zappala, C. GauthierDickel', and V. Lo, "Modeling the Multicast Ad­
dn::ss Allocation Problem," in IEEE Globecom 2002, Globall...ternet Sym­
posium. November 2002.

[3J S. Kumar, P. Radoslavov. D. Thaler, C. Alaeltinoglu, D.Estrin, ll1ld M. Han­
dley, "The MASCIBGMP Architecture for Inter-domain Multicast Rout­
ing," inACM SIGCOMM, August 1998.

[4] P. Radoslavov, D. Estrin, R. Govindan, M. Handley, S. 1(umar, and
D. Thaler, "The Multicast Address-Sel Claim (MASC) ProtOCOl," RFC
2909, September 2000.

[5J S. Dull and J. P. Hayes, "Subcube Allocation in Hypercube Compurers,"
IEEE Transactions on Computers. vol. 40, no. 3, March 199 L

[6J M. Chen and K. G. Shin, "Process Allocation in an N-Cube Multiproces­
sor Using Gray Code," IEEE Transactions On Computers, vol, 36, no. 12,
December 1987.

[7] A. AlDhelaan and B. Bose, "A New Straregy for Processor Allocation in
an n-Cube Multiprocessor;' in Proceedings of the Internatimral Phoenix
Conference on Computers and Communication, March 1989.

(8) V. M. Lo, W. Liu, B. Nitzberg, and K. Windisch, "Noncontiguous Pro­
cessor Allocation Algorithms for Mesh-Connected Multicomputers," IEEE
Transactions on Parallel and Distributed Sysrems,1 nly 1997.

(9] M. LivingslOll and Q. I'. Stout, "Fault Tolerance of the Cyclic Buddy Sub­
cube Location Scbeme in Hypercubes;' ill Proceedings of Ihe 6th Dis­
tributed Memory Computing Conference (DMCC6), 1991.

[10] M. R. Dagenais, V. K. Agarwal, and N. C. Rumin, "McBOOLE: A
New Procedure for Exact Logic Minimization," IEEE Tlr:msactions on
Computer-Aided Design,v 01. CAD-5, no. I, January 1986.

[Il] V. Lo, D. Zappala, C. GauthierDickel', and T. Singer, "A Theoretical
Framework for Multicast Address Allocation;' Tech. Rep. UO-TR-20ll2­
01, University ofOregon, 2002.

[12J P.1. Radoslavov, D. Estrin, and R. Govindan, "A Claim-Collide Mechanism
for Robust Distributed Resource Allocation," Tech. Rep. USC'CS-99-71I,
Computer Science, Universitr..ofSouthern California, 1999.

[13J P. Tsuchiya, "Efficient and Flexible Hierarchical Address Allocation," in
INET92, June 1992.

2112

	A Theoretical Framework for the Multicast Address Allocation Problem
	Original Publication Citation
	BYU ScholarsArchive Citation

	A Theoretical Framework_Page_1
	A Theoretical Framework_Page_2
	A Theoretical Framework_Page_3
	A Theoretical Framework_Page_4
	A Theoretical Framework_Page_5

