Brigham Young University

BYU ScholarsArchive

Theses and Dissertations

2006-07-13

A Microformatted Registry Alternative

Thomas R. Warne
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

b Part of the Computer Sciences Commons

BYU ScholarsArchive Citation
Warne, Thomas R., "A Microformatted Registry Alternative" (2006). Theses and Dissertations. 523.
https://scholarsarchive.byu.edu/etd/523

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F523&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F523&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/523?utm_source=scholarsarchive.byu.edu%2Fetd%2F523&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

A MICROFORMATTED REGISTRY ALTERNATIVE

by

Thomas R. Warne

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Computer Science Department
Brigham Young University

August 2006

Copyright © 2006 Thomas R. Warne

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Thomas R. Warne

This thesis has been read by each member of the following graduate committee
and by majority vote has been found to be satisfactory.

Date Phillip J. Windley, Chair

Date Kevin D. Seppi

Date Eric G. Mercer

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Thomas
R. Warne in its final form and have found that (1) its format, citations, and
bibliographical style are consistent and acceptable and fulfill university and
department style requirements; (2) its illustrative materials including figures,
tables, and charts are in place; and (3) the final manuscript is satisfactory to the
graduate committee and is ready for submission to the university library.

Date Phillip J. Windley
Chair, Graduate Committee

Accepted for the Department

Parris K. Egbert
Graduate Coordinator

Accepted for the College

Thomas W. Sederberg
Associate Dean, College of
Physical and Mathematical
Sciences

ABSTRACT

A MICROFORMATTED REGISTRY ALTERNATIVE

Thomas R. Warne
Computer Science Department

Master of Science

To effectively use Web services, providers and consumers need to be
connected by a registry. Several registry solutions exist today, including UDDI
and WSIL. Also, many organizations simply use Web pages to list available Web
services and their descriptions. This research describes a microformat for
representing Web service description documents. These microformatted
documents can be converted back to the original format for use by machines.
They can also contain additional information, making them more useful to
people. A registry, allowing indexing and searching of microformatted service
descriptions, is also described. The benefits of this solution include: using

existing standards; allowing customization of presentation for people; allowing

existing search tools to find descriptions; and providing for future, context-based

searching to make locating Web services even easier.

ACKNOWLEDGMENTS

I am grateful for the wonderful support of my wife, Emily, through this entire
degree process. I also wish to thank Dr. Windley for his encouragements and

ideas that helped to shape this thesis.

Table of Contents

GRADUATE COMMITTEE APPROVAL.......cccciiiiiiiiiiiciicccece iii
ABSTRACT ... \
ACKNOWLEDGEMENTS.......cccooiiiiiiiiieci e vii
Chapter 1 INtroduction..........cccceiiiiiniiiiiiiii s 1
1.1 REGISTIIES....eiviiiiiiiicici 1
1.2 Problem Statement...........cccccuviviiiiiiiiniiiiiiiic e 4
1.3 Thesis Statement...........ccccccvviiiiiiiiiiii 4
1.4 Thesis Organization..........cccceveiiiiiininiiiiic e 5
Chapter 2 Background...........ccccooiiiiiiiiniiic s 6
21 XMLt 6
2.2 XED it 6
23 XHTML...oiiiiiiiiiic s 7
24 XSLT ..o 7
2.5 MICTOfOImMaAtS......ccvcviiiiiiiiiiicic s 8
2.0 WSDLou...o e 11
Chapter 3 Related WoOTK.........ccccooiiiiiiiiiiiiiiiciccce 13
3.1 WED SEIVICES......cuviiiiiiiiiiiiccc s 13
3.2 MACTOfOIMALS.....cocuiiiiiiiiiiccc s 14
Chapter 4 Shortcomings of Existing Registries.............cccocevviieiiiniiiicn, 16

viii

4.1 UDDLL ..ottt s 16

4.2 WSILe .o 18
4.3 Ad-NOC...uiiiiiiiiiici e 22
4.4 SUIMNIMATYovimiiiiiiiiiicic e r st 23
Chapter 5 AMRA Architecture and Overview..........cccccveiciniiniinincinciniicne, 25
Chapter 6 AMRA Microformat.........ccoeeeireiniiininicinieiincinieceecieeesieeeeeesnenenes 28
6.1 Base MICIOfOIMALccueeviiuiieiiiniciiicicnccc et 28
6.2 Microformat SErUCEUTE.........c.coueveirieiniiiiniciiccc e 28
6.3 Additional information........c..ccecveriecirininiiininc e 32
6.4 EXaMPIeS....c.ooiimiiiiiiiiiiiic s 34
Chapter 7 Converter and Generator.............cccccecivueiniiininiiiniiiniicincecieecneae 36
7.1 Back@IroUnd.......cc.ccoviiiiiniiiiiiiiiciiccccce e 36
7.2 XSLT-based Implementation............cccoeeeiviniiiiiiiiininiiiciniiicccneccns 37
7.3 CONVETILET SEIVICE.....cuiiuiiiiiiiiiiiiiiiiricietrte ettt 40
Chapter 8 Search ENGiNeccoooviiiiiiiiiiiiiiicccc s 41
8.1 OVEIVIEW ...cuiiiiiiiiiiicccccee et 41
8.2 CLaWIer.. ..o 42
8.3 INAEXET ... e 43
8.4 SEATCRET ...t 44

iX

Chapter 9 Demonstration............cceeuiiiiiniiiiininiic s 46

9.1 Populating the search indeX..........ccooeeieiiiiiiiiiniiiic, 46
9.2 Searching the INdeX.........ccoiiiiiiiiiiic 47
9.3 INteGIation.......covviiiiiiiiiiiiici 49
Chapter 10 Analysis of AMRA.........cccoiiiiiiiiicc e 51
10.1 Advantages of @ Microformatccceeevieueinieiniininicincccccceennes 51
10.2 Resolution of Shortcomings...........cccoevvivirivinininininininininie, 53
Chapter 11 Conclusion and Future Work............cccocooiiiiiic 58
11.1 Future Directions...........cccvviiiiiiiiiiiiiiicccccc e 58
11.2 SUMMATY ...ooviiiiiiiiic e 59
Appendix A Microformatted WSDL.........ccccccoiiiiiiniiniiiiiicicccee, 62
ATIWSDL...oiiii e 62
A2 WSDL.oiiiiiiiii s 66
A3 COTTESPONAEIICE. ...ttt 68
Appendix B Microformatted WSIL..........ccccocoiiiiiiiiiiccc 69
B.IMWSIL...oiiiiiiii s 69
B2 WSIL...oo e 71
B.3 COrreSpondence...........cueueueivieiniiiniiiiinicinieeeeee s 72
Appendix C GeNeTator.........cociiiiiiiiiiiiiiiiicci e 73

C.1 WSILXHTMLXSL .ttt 73

C.2amra_XhtmLXSL. ..o e et 73
C.3 INSPECHON. XS] ..viviiiiiiiiciicc 75
Cid WSI-UAAIXSL e 78
C.5 WSIL-WSALXSL..eiiiiiiii s 81
ApPendixX D CONVEIteT.......cccviiiiiiiiiiiiiciictree et 83
D1 MWSILXSLeiiiiiciiiceccc e 83
D.2 amra.XSkuuoociiiiiiiciiiic e 83
D.3 INSPeCtioN.XSL....c.cuiiiiiiiiiiiiccc 86
D4 WSI-UA AL XS]t 86
D.5 WSI-WSALXSL...oeiiiiiiiiiiic e 87
Appendix E Other SOftWare...........cccoeiviiiiniiiniiiiiciicccccce e 89
BibliogIraphy.....cccueueieieictetctcictctctctc e 90

xi

Table of Figures

Figure 1: Rendered hCard.........c.coooiiiiiiiiiiic e, 10
Figure 2: AMRA OVeIVIEW......ccoiiieiiiiiiict s 25
Figure 3: Microformatted Description with hCardccccocoiiii 33
Figure 4: Master Transform for Generator............c.cccccveiviiiniiiiiniiniciiciccne, 37
Figure 5: Search Results.........cccccooeoiiiiiiiiiiiiiiiiiiiccccs 48
Figure 6: Results of the running the integration application.............cccccccviininnnee. 49
List of Listings

Listing 1: hCard Example.........ccoooiiiiiiiiiic e, 10
Listing 2: vCard Example..........cccooiiiiiininiiiiiiiccccc e 10
Listing 3: Sample WSIL.......cccccuiiiiiiiiiiiiiiiiciicce e 20

xii

Chapter 1 Introduction

Since the advent of the Internet, many different methods have been
devised for disparate computers to communicate and collaborate. Among these,
proprietary protocols, as well as protocols such as CORBA and RMI, have
dominated the landscape for many years [Campbell 1999, Adamopoulos 1999,
Lemahieu 2001]. Recently, there has been a move towards using Web services in
order to achieve inter-organization collaboration [Kreger 2003].

Web services refer to services made available over the Internet in standard
formats. Although the name has certain implications, standards related to Web
services focus more on the formats of the messages than on the transport
protocol (such as HTTP) that those messages use [Kreger 2003]. As Web services
began to enable businesses to interact (both internally and externally) more
easily, additional technologies and concepts were developed to ease using the
Web services. The Web service registry is one of the most important of these
concepts. The registry is also the focus of this thesis.

1.1 Registries

In the introduction to the UDDI Specification, Clement states, “Web
services are meaningful only if potential users may find information sufficient to
permit their execution” [Clement 2004]. Helping users to find this information is

the purpose of Web service registries. Having a registry is important for several

reasons. In some cases, it enables applications to move the service binding
decision to runtime. Then as Web services come and go, or when the interface
changes, the application can still use the new services. Also, a registry functions
as a single point-of-reference for registered web services. Whenever updates are
needed or desired, the registry is the place that developers and machines can go
to find out about those updates. Since developers and machines can find out all
of the relevant information about a web service in a registry, the registry makes
web services more usable.

Several different implementations of registries exist today. These can be
grouped into three categories. First, is Universal Description, Discovery and
Integration (UDDI). Second is the Web Services Inspection Language (WSIL).
Third is a broad grouping of ad-hoc solutions. The following sections will briefly
introduce each registry. A more in-depth discussion of each registry is contained
in Chapter 4.

1.1.1 UDDI

UDDI was proposed by Microsoft and IBM in 2000 and is now a standard
administered by the OASIS group. The specification is currently in version 3.0
[Clement 2004]. UDDI is often described as having three different roles:
discovery, description and integration [Bloomberg 2004]. For discovery, UDDI

acts as the white pages, containing contact and basic information about

businesses whose services are contained in the registry. The description aspect of
UDDI refers to the registry being like the yellow pages, advertising offered
services and classifying both the businesses and services. Finally, with respect to
integration, UDDI can be like “green pages,” containing technical information
about web services. UDDI is widespread, though its complexity and bulk make
it unsuitable for many organizations.
1.1.2 WSIL

In November 2001, IBM and Microsoft proposed a new technology called
Web Services Inspection Language (WSIL or WS-Inspection). WSIL was meant
to complement UDDI [Ballinger 2001]. Targeted to those organizations who
either could not or did not want to use UDDI, WSIL allows providers to publish
information about Web services on their own website in a simple XML
document. WSIL documents contain location information about Web service
descriptions and links to other WSIL documents. Unlike UDDI, WSIL
documents do not describe the web service — they only indicate where the
description can be found. Though a simple solution with a low entry barrier,
WSIL is not widely used today.
1.1.3 Ad-hoc

Many organizations with widely used Web services do not publish their

information in a formal registry. Instead, some organizations that provide

publicly accessible web services, such as Amazon and Google, publish a human-
readable API on their Web site describing the methods and endpoints available
through their Web services [Google, Amazon]. Other organizations provide
downloadable descriptions and code libraries so that people can use their
services. These pseudo-registries fulfill part, but not all, of the duties of a Web
services registry.
1.2 Problem Statement

Due to the shortcomings of each of these registry solutions, an alternative
registry solution is needed. Regardless of the intended consumer, an
organization that wants to allow others access to their Web services, whether
internally, externally, or publicly, must provide some form of human
documentation as well as the technical information needed to connect to the
service. Combining new technologies with existing standards, this thesis will
create an alternative registry that will allow organizations to publish information
about their Web services in a way that is more convenient for both humans and
computers. This alternative solution is named AMRA (A Microformatted
Registry Alternative).
1.3 Thesis Statement

Many organizations, rather than using heavyweight UDDI, simply create

lists of the Web services that are available. Often these lists are created in human

readable form and are distributed around the organization's Web.
Microformatted Web pages can be created that allow organizations to create
human readable lists of Web services in a way that also allows machines to find
and bind to services. These Web pages constitute a simple and novel method for
machines and humans to find and use Web services.
1.4 Thesis Organization

The thesis will proceed as follows. First, background information will be
presented that will lay the groundwork for the remainder of the thesis. Next,
will be a review related research and present additional information on the
shortcomings of UDDI, WSIL and ad-hoc registries. Following this in-depth
discussion of the three competing solutions, the new registry format will be
discussed. The demonstration of the new format's viability will immediately

precede the conclusions that can be drawn from this work.

Chapter 2 Background

To provide context for the rest of the discussion, this chapter will
introduce the key technologies that will be used and discussed in the completion
of this thesis. These technologies include various XML-based technologies,
microformats, WSIL and WSDL.
21 XML

Extensible Markup Language (XML) is a flexible, structured markup
language. Of itself, XML has no elements, or tags. Rather, XML defines how
documents should be formatted so that they can be parsed in a standard manner.
XML tags are simple text strings. As a result, XML documents are often said to
be self-describing. This can be misleading, however. Although tags are useful
for humans to read and decipher using context clues, a computer cannot
decipher the meaning of a tag. Between documents (and sometimes within a
document) a given tag can mean more than one thing. To a computer the tags
are merely identifiers, uniquely identifiable by name and position.
22 XSD

In order to provide some meaning to XML documents, XML schema
(XSD) can be provided. A schema defines how elements (tags) and attributes can
be combined to create a valid XML document. Schemas are useful so that

software can be written which can use XML documents from any source as long

as they validate against a certain schema. A schema document is also valid XML.

While a schema document might describe the structure of a valid XML
document, it cannot provide any computer-usable information about the
semantics of the format. It can only be used to describe how the document
should be built so that others can read it. This does not minimize the importance
of schema documents. Rather, it provides the basis on which semantic
interpretation of XML documents can proceed. Without a common, documented
structure, it would be impossible for a computer to interpret an XML document.
2.3 XHTML

A very important schema is the XHTML schema. XHTML 1.0 is similar to
HTML, with some very specific differences. The most important difference is
that XHTML is valid XML, whereas HTML is not. This allows XHTML to be
manipulated and used in many of the same ways as XML. Modern browsers
support the XHTML standard.

XHTML is not just valid XML, it is a specific form of XML, conforming to
a specific schema. Since it conforms to a well-known schema, a valid XHTML
document can be displayed in a Web browser. The browser has been written to
understand and display XHTML, though it cannot meaningfully display an
arbitrary XML document.

24 XSLT

Another important XML-based technology is XML Stylesheets (XSLT).
XSLT documents describe a transformation from one XML format to another.
One common use of stylesheets is to transform an XML document conforming to
a certain schema into XHTML. Since XSLT is also valid XML, described by a
schema, it too can be the subject or result of a transformation, as can an XSD
(XML Schema) document. Related to XSLT is XPath. XPath provides a sort of
query and path specification language for use both within and without XSLT.
Version 1.0 of both of these specifications has been integrated into the major
browsers and programming environments. Version 2.0, released in November,
2005, builds on the foundations of 1.0 and adds far greater functionality [Kay
2005]. Support for version 2.0 of XSLT and XPath is currently limited to a few
implementations, limiting its usefulness.
2.5 Microformats

There are many different ways of combining the preceding XML-based
technologies. An important emerging method is to use microformats. A
microformat is the name given to data formats that adhere to certain principles.
These principles guide the development of microformats [microformats A].
Microformats should:

Solve a specific problem

Start as simple as possible

Design for humans first, machines second
Reuse building blocks from widely adopted standards
Embrace Modularity/embeddability
Enable and encourage decentralized development, content, services
The goal of microformats is to look at existing uses of information and
adapt it so that it is more usable by both humans and machines, with human
consumption receiving the primary focus. Microformats are not concerned with
developing new ways of doing things, but rather codifying the existing methods.
This has been referred to in the microformats community as “paving the cow-
paths” [Celik 2005a]. In other words, rather than creating a new standard and
trying to get people to follow, developers of microformats attempt to look at
what people are currently doing and to see if it is possible to make it easier for
everyone to do that same thing. At the same time, it is important to realize that
microformats do not, and should not, apply to every problem. Instead, the
problem at hand should be analyzed for the applicability of microformats.
Microformats are strongly related to XHTML. This is due in large part to
the focus on presentation to people. By using XHTML, the information can be
easily formatted for display. The information can also be used by a computer,
since XHTML is valid XML.

Several microformats standards have been proposed. These include

hCard and hCalendar, XOXO, VoteLinks, and rel-tag. The hCard and hCalendar
standards define the representation of vCard [Dawson 1998a] and iCal [Dawson
1998b] information in XHTML. For example, the hCard listed in Listing 1
represents the vCard listed in Listing 2. Figure 1 shows the microformat as

rendered in a Web browser.

<div class="vcard">
Tom Warne
<div class="org">BYU</div>
<div class="adr">
Provo,
UT
84602
</div>
<div class="tel">801-555-1234</div>
</div>

Listing 1: hCard Example

BEGIN:VCARD

PRODID:-//suda.co.uk//X2V 0.6.26
(BETA)//EN

SOURCE:

NAME :

VERSION:3.0

N; CHARSET=UTF-8:Warne;Tom;;;;

FN; CHARSET=UTF-8:Tom Warne

ORG:BYU

ADR; CHARSET=UTF-8:;;;Provo;UT;84602;;

TEL:801-555-1234

URL:http://www.cs.byu.edu/

END:VCARD

Listing 2: vCard Example

& AMRA hCard - Mozilla Firefox |~ |(0/E3)

File Edit View Go Bookmarks Tools Help dell

@'Ql"@ @Eﬁme (D4

i @[] AMRA hCard B

Tom Warne
BYU

123 Adams Hall
Provo, UT 84604
801-555-2004

Done Adblock

Figure 1: Rendered hCard

10

Some items of interest with respect to this thesis are the use of the XHMTL
class attribute to define the meaning of the various XHTML tags. Also, the
authors of this standard strove to use semantically appropriate tags. In other
words, rather than use a <p> or a
 or any of a number of other tags, they
decided to use the <div> and tags. These provide the necessary styling
flexibility without attaching too much erroneous information about the meaning
of the tag. From the point of view of semantics, though the <p> tag has no
meaning in and of itself, the developer of the browser has caused the browser to
interpret that <p> in a certain way. Using that same interpretation with the

microformat would attach incorrect semantics to the microformat.

2.6 WSDL

Web Services Description Language (WSDL) documents are perhaps one
of the most important pieces of a Web services deployment today. WSDL
documents are provided to describe a multitude of Web services that are both
publicly and privately available. Though not required since it has its own
description format, UDDI registries can point to WSDL descriptions. WSIL
registries are specifically targeted towards pointing to WSDL files as descriptors.
Online services, such as Google, provide a WSDL file for simple access to their

Web services. Perhaps most importantly, developers who create Web services

11

often use WSDL files for describing them.

In a Web services environment, the description document is the common
link that ties the various pieces together. The service provider publishes the
service's description in the registry and the consumer uses the registry to locate
the description document. While this description may be in any format, most
registries provide access to WSDL documents for the description.

Once a consumer has located the WSDL document, many tools are
available to create a binding to the Web service described in the document. For
example, Apache Axis includes tools to generate Java data types and method
stubs to access Web services through Java. Similarly, Microsoft's Visual Studio
can generate bindings that allow programmatic access to Web services through
C#. The wide availability of these tools make WSDL documents incredibly
valuable. A developer can easily use any Web service that has a valid WSDL

description.

12

Chapter 3 Related Work

This thesis focuses on two primary technology areas. The first is Web
services. The second is microformats. This chapter will discuss external work
related to each of these areas.

3.1 Web services

Semantic Web [Narayanan 2002] is an increasingly popular attempt to
imbue Web pages with semantic information so that machines can make use of
the information. Although the goals may be similar, this thesis is very different.
The semantic Web relies on additional formats, such as RDF and OWL, to give
meaning to the data for both people and machines. This thesis seeks to merge an
existing machine-readable data format (a Web service description) and an
existing human-readable format (XHTML). This thesis makes no evaluation on
the merits of the semantic Web; it is outside of the scope of this research.

Some Web sites, most notably Xmethods.com, have created common Web-
based repositories of Web services. These sites provide listings of the services
and allow the services to be searched. These types of sites are a combination of
the centralized UDDI (as descriptions are hosted by the aggregator) and ad hoc
Web-based registries. Although these are valid and useful services, this thesis
attempts to break away from the centralization notion. This thesis also tries to

provide a standard way of defining the relationship between human- and

13

machine-readable descriptions.
3.2 Microformats

As discussed previously, several standards exist for microformats. The
XOXO microformat is used centrally in the AMRA solution and will be discussed
in depth later on. Two other microformats in particular also seem to relate to the
topic of this thesis. These are the REST Web services microformat and the search
results microformat.

The REST microformat is design work that has been done with a
microformat for REST Web services [microformats C]. The goal of the design
work is to create a specification for simplifying access to RESTful services in
XHTML, by making the services more standardized. Though this is an
interesting problem, this thesis is focusing on providing simplified access to Web
service descriptions in a microformatted registry. RESTful Web services that
conform to the eventual result of the microformat community's work in this
regard could be included, along with any other web service, in this thesis' AMRA
registry.

The search results microformat was designed to codify XHTML for search
results [microformats B]. Though the registry proposed by this thesis includes a
search component that returns search results, this component is merely a proof-

of-concept and does not include this search results microformat. A production

14

implementation could incorporate the search results microformat.

15

Chapter 4 Shortcomings of Existing Registries

UDDI, WSIL and ad-hoc solutions represent the most common
implementations of Web service registries. Each of these, however, has flaws.
Beginning with UDDI, followed by WSIL and finally ad-hoc solutions, this
chapter will present the shortcomings of each of these registries along with some
background information on each.

4.1 UDDI

The Universal Description, Discovery and Integration standard is the
primary industry standard for registry services. With initial development and
backing from Microsoft and IBM in 2000, UDDI has now gained the support of
numerous companies (such as Infravio and Systinet). Many enterprise server
solutions (including J2EE application servers like Jboss, BEA WebLogic, and IBM
WebSphere as well as Microsoft's Windows Server 2003) include an
implementation of UDDI for publishing information about Web services
contained or provided by that server.

The UDDI standard consists of a set of data structures and services. The
data structures allow description and categorization of providers and services.
For each provider, contact information, related providers, and categorization
information is kept. For each service, the associated provider, technical access

information, and categorization information is kept. UDDI provides services that

16

allow search and retrieval of providers and services.

As the primary standard for Web services registries, UDDI has support
from many companies. Although support is high, the barriers to using UDDI are
also high. This section will discuss three main problems with UDDI that raise the
barriers to use.

4.1.1 Information Centralization

Originally, UDDI was envisioned as a centralized registry [Bloomberg
2004]. Providers would register their services and business information with
common registries run by Microsoft, IBM, and others. Those who wished to use
a service could go to just one place to find information on services and providers
from across the industry. These registries would help to fulfill the vision of Web
services — namely businesses easily seamlessly interoperating.

However, the Internet is not well suited to centralized control. Instead,
each organization maintains control over its own data and information. Whether
out of a desire to maintain control over their own data or for other reasons,
businesses did not support centralized registries and instead set up internal
UDDI registries [Mimoso 2004, Rodgers 2003]. However, these internal registries
are difficult to setup and use. They are also very expensive. For organizations
with relatively few Web services, deploying a full scale UDDI server is excessive

[Rodgers 2003].

17

4.1.2 Human Readability

As noted above, UDDI provides services to access Web service
descriptions and provider information. These services are not human readable.
Complex XML files are required as input and similarly complex XML-based
results are returned. Many implementations do provide a user interface to ease
use of these services.
413 Aggregation

The original UDDI proposal called for unified registries. Such a scheme
made searching for a Web service simple — since all of the services were listed in
one place. With individual and disparate registries, though, searching became
much more difficult. Each registry must be located individually and queried for
information on its services. However, this is rarely done. Instead, providers
resort to advertising Web services on Web sites or through word of mouth.
42 WSIL

The Web Services Inspection Language (WSIL or WS-Inspection) proposal
[Ballinger 2001] provides a lightweight alternative to UDDI. WSIL documents
use a simple yet extensible XML format to describe the location of Web service
descriptions. Although UDDI provides extensive information about a Web
service, including provider information and service classification information,

WESIL focuses only on providing the location of the description of the Web

18

service. Version 1 of the WSIL standard [Ballinger 2001] includes two means of
locating description documents. The first is through a simple URL. The second
is through an existing UDDI registry. The specification also allows additional
future service description and repository types to be included, with no need to
modify the specification [Appnel 2002].

The WSIL specification was released in November, 2001. In that time, few
tools have been created for it and no major success stories have come to light. It
seems that many people do not understand the relationship between UDDI and
WESIL, due to the number of articles written attempting to demystify it [Appnel
2002, Modi 2002, Nagy 2001]. The perception that WSIL is merely an inferior,
less full featured alternative to UDDI may be hurting adoption. Lack of
standardization, human readability and aggregation is also damaging to WSIL's
adoption rates.

A Web service provider that wants to use WSIL simply creates a hierarchy
of WSIL documents on their Web server. These documents contain both
references to service descriptions and links to other WSIL documents. The
service description references are primarily Web-accessible WSDL documents or
UDDI service keys. A simple WSIL file is shown in Listing 3. Two services are
described. The first contains two descriptions, one from a WSDL file, the other

from a UDDI registry. The second service is unnamed, and includes only a

19

WSDL description. Finally, there is a link to another WSIL document.

<inspection xmlns="http://schemas.xmlsoap.org/ws/2001/10/inspection/"

xmlns:wsiluddi="http://schemas.xmlsoap.org/ws/2001/10/inspection/uddi/">
<service>
<abstract>A stock quote service with two descriptions</abstract>
<name>Stocks</name>
<description
referencedNamespace="http://schemas.xmlsoap.org/wsdl/"
location="http://example.com/stockquote.wsdl" />
<description referencedNamespace="urn:uddi-org:api">
<wsiluddi:serviceDescription
location="http://www.example.com/uddi/inquiryapi">
<wsiluddi:serviceKey>
4FA28580-5C39-11D5-9FCF-BB3200333F79
</wsiluddi:serviceKey>
</wsiluddi:serviceDescription>
</description>
</service>
<service>
<description
referencedNamespace="http://schemas.xmlsoap.org/wsdl/"
location="ftp://anotherexample.com/tools/calculator.wsdl" />
</service>
<link

referencedNamespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
location="http://example.com/moreservices.wsil" />
</inspection>

Listing 3: Sample WSIL

Part of the allure of using WSIL as an alternative to a Web service registry
is the ability to access the documents over the Web. Although this is an
important feature, WSIL has other problems that are difficult to work around.
The following sections describe these problems.

42.1 Meta Information

In addition to the technical specification of a service, additional
information is often needed. This meta data about the service, such as the service
provider's contact information, is as important to the human consumer of the

registry information as the technical information is to the machine using the

20

service. Such information may be included in the description tag of a WSIL
service block, but the specification does not dictate inclusion of such information.
4.2.2 Human Readability

Web service registries should provide human-readable documentation.
Though XML files such as WSDL and WSIL documents use meaningful tag
names, such files are meant primarily for machine consumption. A person who
is unfamiliar with the format would have a hard time understanding the
relationships expressed in the document. WSIL relies solely on XML files. The
human-readability of WSIL is low.
423 Standardization

WHSIL is meant to be a distributed solution. As with more traditional Web
content, WSIL allows each provider to maintains its own WSIL documents on its
Web server. One major difference between the two types of content is that
starting documents use standard names on the Web, easing document discovery.
For example, while allowing for some variation based on platform, if a request is
made to http://www.example.com/, that request will return the index.html
document located on the server. No such standard exists for WSIL. Appnel
notes that using the same index naming convention would be good [Appnel
2002]. However, the specification does not require that. Due to the lack of

standardization, locating a WSIL document is difficult.

21

http://www.example.com/

4.3 Ad-hoc

The final category of Web service registry is the ad-hoc registry. This
diverse collection of solutions includes many alternatives. Each alternative
attempts to solve the same problem — providing a Web service consumer with
the information he needs to use the service.

An oft-repeated pattern in ad-hoc Web service registries is for a Web
service provider (such as Google or Amazon) to provide Web service information
on a Web site. This Web site often includes human readable documentation. The
Web site also often contains links to access the WSDL as well as bindings for
various programming languages.

Another common solution is to use a Web service framework such as
Apache Axis [Apache Software Foundation]. Axis includes functionality to list
each Web service provided within the framework. This list is on a simple,
dynamically generated Web page. Service description information, in the form
of a WSDL document, can also be obtained by appending “?wsdl” to the end of
the service address.

These various ad-hoc Web service registry solutions are common place
because they are simple to set up and maintain. As with WSIL and UDD], these
solutions suffer from problems that impact their overall usability.

4.3.1 Standardization

22

Because of their very nature, ad-hoc solutions are not standardized.
Although there is some standardization within a solution, such as with Apache
Axis, there is no standardization between solutions. This causes several
difficulties. Since each solution is implemented differently, there can be no
common discovery, as discussed in the next section. Human consumers must
adapt to the differences in each implementation. People are good at adapting;
machines are not. Due to the lack of standardization, machines are unable to use
ad-hoc registry solutions.

43.2 Aggregation

A major side effect of the lack of standardization is the inability of a third
party to aggregate service information. Information presented in ad-hoc
registries is usually Web based. Standard Web content aggregators, such as
Google or Yahoo, can index this information for searching. However, the
aggregator knows only that the ad-hoc registry is presenting Web pages, and so
they are indexed as such. There is no way to identify search results as containing
Web service description information. Consumers are forced to locate Web
services by contacting each provider individually.

4.4 Summary
UDDI, WSIL and ad-hoc registry solutions each have problems that make

them difficult to use. To summarize, these problems include:

23

1. Information centralization: Web service providers should be able to
maintain control over their own service information.

2. Supporting Information: Web service consumers need additional,
non-technical information about a Web service.

3. Human-readability: Humans must be able to read and understand
the Web service description as easily as machines.

4. Aggregation: Web service descriptions should be available for
aggregation, similar to Web searching.

5. Standardization: Web service registries should follow standards to
allow for simpler, more uniform access.
In order to solve these problems, a new solution is required. The

following chapters will discuss the proposal of this thesis, A Microformatted

Registry Alternative (AMRA), a microformat-based solution.

24

Chapter 5 AMRA Architecture and Overview

The technologies and tools described in the preceding sections can be
combined to create a powerful new form of registry, based on microformatted
documents. The name of this registry is “A Microformatted Registry
Alternative” (AMRA). The AMRA registry addresses the five main
shortcomings of other registry solutions. It is a simple and novel solution for a

web service registry.

I
: :
0 I
. 8 '
g (50
N |wsoL _
I | service
: : consumer
HTTP Server . _ _ _ _ . _._ 9

mwSDL l
1

3 3
< < browser
- <]

4(URLD —

search engine
Figure 2: AMRA Overview

/&

An overview of the AMRA registry is depicted in Figure 2. The registry

functions as follows:

25

1. The search engine, which may be a general search engine or a
specific Web service search engine, crawls Web servers to find
microformatted documents.

2. The Web server responds with the mWSDL and mWSIL
documents, which are then indexed by the search engine.

3. A user can query the search engine to find information about
existing Web services. The query may include specific technical
information about the service as well as information on the provider and
any other information included in the microformatted description.

4. The search engine responds with a list of results matching the user's
criteria. The results include a link to the human-readable microformatted
description residing on the Web server.

5. The user can request the microformatted description from the Web
server.

6. The Web server provides the human-readable service description.
The user can use this document to determine whether the service fulfills
his needs or not.

7. The URL provided in the search results refers both to the human-
readable description and the machine readable description, since they are

the same document. This URL is provided to the service consumer to

26

locate the machine readable description.

8. When the service consumer requests the service description, the
Web server converts the microformatted version into the machine-
readable version before returning it.

9. The service consumer receives the standard, machine-readable
service description which it can easily integrate to use the described Web
service.

The flexibility and power of this AMRA registry solution will be discussed
and demonstrated in the following chapters. Chapter 6 outlines the structure of
the microformats, mWSDL and mWSIL, and discusses their flexibility. Chapter 7
discusses the converter and generator and Chapter 8 reviews the sample search
engine. Finally in Chapter 9 a demonstration is described that shows that the

registry has overcome the shortcomings noted above.

27

Chapter 6 AMRA Microformat

The AMRA microformat allows WSDL and WSIL documents to be
contained in standard XHTML. A microformatted WSDL document is referred
to as an mWSDL and a microformatted WSIL document is referred to as an
mWSIL. The microformat allows a lossless transformation of the information
contained in the WSDL and WSIL documents. Many parts of this microformat
are common; those that are specific to either source format will be noted. After
talking briefly about the basis for this microformat, the specific components that
make up the microformat will be reviewed, followed by a discussion of
additional information that may be contained in the microformat.
6.1 Base Microformat

The AMRA Microformat is an extension of the XOXO microformat [Celik
2004]. The XOXO specification describes a format for outlined or hierarchical
data. These hierarchies are contained in XHTML lists (or). Each
element in the list is represented by an XHTML list entry () element, which
may contain another list. The XOXO microformat also notes that attributes may
be added to a list entry by means of a definition list (<dl>). The AMRA
microformat takes advantage of these features.
6.2 Microformat Structure

This section introduces the structure of the microformat. The important

28

components of this microformat are the root, elements, text elements, attributes,
namespaces, and class names. Each of these components will be discussed in the
following sections.
6.2.1 Root

A document that is formatted according to the AMRA microformat will
begin with the top level XOXO-classed list element. Inside of this list element are
one or more document representations. Each document representation consists
of a list entry element, with one of the class entries as the name of the top level
element in the source format, with the name modified as specified below. For a
WSIL document, the class will be “amra_wsil_inspection.” For a WSDL
document, the class will be “amra_wsdl_inspection.”
6.2.2 Elements

Each element, including the root, will be formatted as follows. The
element will be formatted as a list entry () element. The class of the list entry
element will include the prefixed name of the element, formatted as specified
below. If the element has any attributes, they must be included in a definition list
(<dI>) inside the list entry element, with contents as defined below. Any
namespace declarations that occur on this element (not those declared in a
parent) must also be included in this definition list, as specified below. After the

attribute definition list, a list (or) element is provided to include any

29

children elements. This list does not have any AMRA-specific class.
6.2.3 Text elements

For elements whose content is defined to be a single text node, a single list
entry element will be present as a child of the list (or) element in the
parent element. This single list entry element will have the value of the text node
for its content. The single list entry element will also have a class that contains
the string “amra_text.”
6.2.4 Attributes

Any attributes that are present on an element must be included as
children of the definition list (<dl>) element. Each attribute should be
represented by a definition term/definition (<dt>/<dd>) pair. The definition term
(<dt>) element should contain a human-readable form of the name of the
attribute. No AMRA-specific class is attached to the definition term element.
The definition term element is not used when converting the document back to
the source format. The definition element should contain the unmodified value
of the attribute. The definition element should also have a class which contains
the prefixed name of the attribute, formatted as specified below.
6.2.5 Namespaces

Any namespaces that are declared on the element must be represented in

the attribute definition list. To indicate that namespaces are present, a definition

30

term/definition pair will mark the beginning of the namespaces. The definition
term in this pair can include any text, and no AMRA-specific class is required.
The definition element must include the class “amrans” to indicate that the
contents of the definition will be namespace information. The contents of the
definition element must include a definition list (<dl>) element. The definition
list element does not need any AMRA-specific class. The definition list element
must contain a definition term/definition pair for each namespace declared on
the element. The definition term (<dt>) element may include any markup
representing the human-readable form of the namespace prefix. Note that this
should usually just be the prefix, as various portions of the document may refer
specifically to these namespaces. Providing the prefix in human-readable form
will allow users to identify the referenced namespace. The definition element
must contain the unmodified value of the namespace. The definition element
must also include a class that contains the prefix of the namespace, formatted as
specified below.
6.2.6 Class names

The various class names should be formatted as follows. The class names
for microformatted elements and attributes should consist of three pieces,
separated by underscores. Note that this does not restrict the use of the

underscore character in element or attribute names. The first piece is the string

31

“amra.” The second piece is the declared prefix of the namespace of the element
or attribute. When an element or attribute is in the default namespace, this
second piece will be empty. The third piece is the local name of the element or
attribute.

The class names for microformatted namespace declarations consist of
two pieces, separated by an underscore. The first piece is the string “amrans.”
The second piece is the prefix of the namespace that is being declared.

6.3 Additional information

Additional information can be included in the microformatted document.
This information is not required for the microformat. It is used to enhance the
experience of a person using the microformatted document. Except for certain
places specified above (such as the content of a definition attribute), additional
markup can be included in any element. For example, a human-meaningful
name can be placed at the beginning of any list entry element. Hyperlinks can be
included to link to resources referenced in the microformat. Additional classes
(e.g. for styling) can be used on any element in the microformat in addition to the
classes defined by this microformat.

As the standard for describing Web services, WSDL provides the
information that a computer needs in order to use the service. Humans can use

additional information to give context to the service and to make decisions about

32

its use. Since standard WSDL documents must conform to the schema,
additional information cannot be added easily. In an mWSDL or mWSIL
document, though, such information can be included. It can also be formatted
(using XHTML) in a way that makes sense for human, rather than machine,
consumption. This chapter explores some additional information that may be
added to microformatted Web service descriptions.

As information about Web services is aggregated and made searchable, an
important piece of information is the identity of the service provider. This
information may be used to collect information on services provided by a certain

organization. It may also be used to judge the reliability of the service and its

& AMRA Stock Service - Mozilla Firefox =Jo&d

File Edit View Go Bookmarks Tools Help del.ico.us

; i)
IJ:I - I_l - @1 @ EE tag | L] http:flocalhost:3080/AMRAWeb/sample/combined. xhtml [l @ Go @,
(& | L] AMRA Stock Service B8

AMRA Stock Services

]

Web services administered by:

Tom Warne
BYU

123 Adams Hall
Provo, UT 84604
801-555-2004

~ StockQuote(Definitions)

Inspection
Mamespaces
Service
7 Abstract
» A stock quote service with two descriptions
7 Name
» Stocks
7 Description
referencediamespace
http://schemas xmilsoap.org/wsdl/ ™
Done Adblock

Figure 3: Microformatted Description with hCard

33

results. Though this information is not included in a WSDL or WSIL document,
the hCard microformat may be used to embed this information directly into the
microformatted document, as shown in Figure 3.

The hCard microformat specification describes a means of encoding vCard
information in XHTML. Standard transforms exist to return this information to
the vCard format. A vCard contains essential contact information and is a good
tit for partnering with microformatted descriptions.

For a person reading a microformatted service description, such as the one
in Figure 3, the hCard is immediately identifiable on an XHTML page. Styling
can enhance the hCard appearance. Many existing computer systems that may
be able to take advantage of a converted microformatted Web service description
will not be able to take advantage of this additional piece of information.
Providing the information for human consumption alone would be sufficient
justification for inclusion on the page. New systems, though, may be made
aware that this information is available. Then they may take advantage of it by
tiltering available services by known providers, or automatically updating
contact information for a service that is being used. Uses such as these increase
the value of the description — it is no longer simply a technical document, but
includes information related to the organization behind the service.

6.4 Examples

34

See Appendix A for a sample WSDL document and the corresponding
mWSDL document. Appendix B contains a sample WSIL document and the
corresponding mWSIL document. The final section in each of these appendices

shows a side-by-side comparison of the source format and the microformat.

35

Chapter 7 Converter and Generator

The converter and generator are tools used to generate microformatted
documents and to convert microformatted documents back to their source
format. Two factors have motivated the creation of these tools.

First, the microformatted documents described in the previous chapter are
geared towards human readability. Since they use standard XHTML, human
readability is high. All of the information required by machines is contained in
these documents — machines are tuned to read and understand the source
formats, though. The converter is necessary so that legacy software can continue
to use Web service descriptions contained in this new registry.

The second motivating factor is the vast pool of existing WSDL
documents. Since it is the primary standard for describing Web services, almost
any organization that provides Web services uses WSDL documents. In
addition, many tools exist to create WSDL documents. Though equivalent
mWSDL documents could be created by hand, a generator eases the process of
converting existing descriptions into the new format.

7.1 Background

Due to their similar structures, the converter and generator were largely

developed in parallel. Initially, these tools were implemented using Java and the

Document Object Model (DOM), but some problems appeared. It may have been

36

possible to resolve the problems through a careful examination and optimization
of the code, but instead the needs and purposes of the conversion system were
reexamined and the decision was made to use XML Stylesheets.
7.2 XSLT-based Implementation

XML Stylesheets (XSLT) simply transform XML documents from one
format to another. Since the documents to be converted and generated are

XHTML and WSIL or WSDL, the use of XSLT is a natural fit.

Master

Transforml | Generator

Figure 4: Master Transform for Generator

The structure of a microformat generator and converter is very repetitive —
each element and attribute are handled the same way. The structure of the
generator or converter is necessarily based on the format specified in the relevant
XML Schema. XML Schema itself is also described by an XML Schema
document. The converter and generator are themselves generated from an XSLT
transform that transforms the various XML Schema files required for a given
format into the set of transforms that would actually work on the format itself.

In Figure 4, the schemas, on the left, that contribute to the WSDL generator are

37

shown. A master transform converts those schema documents into the transform
that is used as the mWSDL generator. The same is done to create a converter to
convert from the microformat back to the original format. Since the converter
and generator are both XSLT stylesheets, they can be used from any service that
provides XSLT processing support. This section will first discuss the generator
created by this process, followed by the converter.

7.2.1 Generator

This section discusses the generator, though much of the discussion is also
relevant to the converter. The next section will review those pieces that are
specific to the converter.

The generator is based on the elements defined in the schema. For each
element, the generator creates an XSLT template to match the element and
output the correct XHTML to create a list element () in the output. The
XHTML class of this list element is based on the name of the element, as
described in Section 6.2.5. The generated template then calls a generic template
to convert any attributes that exist on the element into the appropriate definition
term/definition form. It also converts any namespace declarations on the
element to the appropriate form. After generating this simple list element, the
template instructs the XSLT processor to continue applying additional templates.

The transform that is created from the XML Schema is very repetitive. A few

38

common templates are referenced throughout the rest of the templates. The
XSLT comprising the mWSIL generator is contained in Appendix C.

Although the XML Schema document is used to create the generator
transform, there is no reliance on the specific structure of the various types
defined in the XML Schema. Instead, the responsibility falls to the document
maintainer to ensure that the source format document conforms to the schema.
This is similar to standard tools requiring that documents conform to existing
schemas.

7.2.2 Converter

The transform to convert back to the original format is even simpler than
the generator. Each element in the schema is represented, and each merely
outputs an element with the correct name and namespace and then calls a
generic template to add any attributes contained in definition term/definition
elements into the element. The processor is then requested to continue applying
templates. These simple transformations allow a lossless conversion to occur
between the original format and the microformat. The XSLT comprising the
WSIL converter is contained in Appendix D.

As with the generator, the converter performs no validation. Any
attribute represented in the microformatted document is added to the resulting

source format document, regardless of validity. External validation tools must

39

be used to ensure that erroneous documents are not used.
7.3 Converter Service

The converter transformation may be used to manually convert
microformatted documents into source formats. It may also be used by other
tools to allow microformatted descriptions to be converted and used as source
format descriptions. Within the registry Web application, the converter is
exposed as a service. Any URL may be passed to this service. If a valid
microformatted document is contained at that location, the corresponding source

document is returned.

40

Chapter 8 Search Engine

The power of any registry lies in its ability to help people and machines
find the services that they are looking for. As simple XHTML documents that
can be converted back to their source format, microformatted WSDL and WSIL
documents are immediately more usable than as XML documents. To further
explore the usability of these formats, a Java-based Web application was created
to allow the documents to be crawled, indexed, and searched — to function as a
true Web services registry.

The application described here is merely a demonstration of using
microformatted documents as a registry. Though usable, this application was
created to facilitate this research. Ideally, these registry services of crawling,
indexing and searching will be provided by services such as Google or Yahoo.
Such services could be made to recognize properly formatted mWSDL and
mWSIL documents and create a global registry, as they currently do with other
types of information, such as directory and product data [Google B, Yahoo]. As
will be discussed later, one of the advantages of using mWSDL and mWSIL is
their ability to be used with standard web tools and online services immediately.
8.1 Overview

The registry is structured as a Java-based Web application using JSPs and

servlets. See Appendix E for a list of the specific technologies and tools used.

41

The three main pieces of this registry, comprising the “Search Engine” shown in
Figure 2, are the crawler, indexer and searcher. These components are discussed
in the following sections. An example of using these components is contained in
Chapter 9.
8.2 Crawler

The purpose of the crawler is to locate microformatted WSDL and WSIL
documents on the Internet or on an intranet. Although more powerful general
purpose crawlers are available (and may well be suitable), this crawler fulfills its
intended function — finding documents to be indexed. Even though the crawler
is meant only as a proof-of-concept application, the implementation strives to be
a good net citizen. The crawler observes standard restrictions, such as the
robots.txt restrictions, and keeps track of the URLs that have been crawled to
prevent endless crawling of cyclical references.

The crawler presents a simple Web-based interface. The user can enter the
URL of any XHTML document. The crawler retrieves this document and
extracts any microformatted WSDL or WSIL documents contained in the page. It
also locates an hCard instance, if present. Each of these documents is converted
to the source format (using the transforms described above) and presented for
indexing as described in the next section. The crawler also follows any links that

might be specified in the WSIL document and adds those documents to the

42

index.
8.3 Indexer
The indexer is an important part of the overall strategy for providing a
registry service. The purpose of the indexer is to extract relevant information
from the documents and add it to the document index. The current
implementation of the registry uses the open source Lucene text search engine,
though not as a general Web search engine. Instead, since a registry is primarily
concerned with helping users to locate services, the indexer focuses on services.
Both WSDL and WSIL documents have portions that describe a service. For each
service description that is found (in either format), the indexer adds the following
information to the index:
1. Source URL — The URL of the document that contained the service
description.
2. Retrieval Date — The date that the document was retrieved.
3. Name(s) — The names that are provided for the service.
4. Description(s) — The descriptions (or abstracts for WSIL) of the
service.
5. Source document type — The type of the converted source
document (WSIL or WSDL).

6. Source format index on page — The index of the service source

43

document within the set of source documents of the same type (WSIL or

WSDL)

7. vCard name — Value of the full name field of the first hCard
appearing on the page.

8. vCard organization — Value of the org field on the first hCard
appearing on the page.

Since the indexer is aware of the formats being indexed, these specific
pieces of information can be extracted. Indexing this set of information for each
document allows meaningful queries to be performed by the searcher described
in the next section.

8.4 Searcher

Since the Web application uses the Lucene search engine, searching the
indexed documents is relatively simple. A simple Web-based interface is
provided that allows the user to enter queries. Lucene has an advanced query
parser that allows complex searches to be performed. Once the search has been
performed, the results are formatted for display to the user. Each result is scored
by the search engine. The search results page presents the following information
to the user:

1. Name of the service

2. Score

44

3. Description

4. Source document type (WSDL or WSIL)

5. Link to the original document (microformatted)

6. Link to the converted source document

7. Name and organization of the service provider

This set of information allows the user to make simple decisions about the

suitability of certain services (based on the description or provider, for example).
It also provides the user with resources, such as the location of the
microformatted original document, to find more information about the service
(still in a human readable format). Finally, it provides the user with the location
of the technical information that is needed to use external tools for integration
with the Web service. The user of the registry can quickly find the information

he needs to use the Web services that he wants.

45

Chapter9 Demonstration

The microformatted registry is a simple way for humans and machines to
find and use Web services. To verify this statement, a simple experiment was
performed. The registry described above was used to index WSDL documents
from several sources. A search was performed to find a desired service. The
URL of the converted description was used in Microsoft Visual Studio 2005 to
create a binding to the Web service found in the registry. The bound application
is able to use the Web service. Each of these steps is described in the following
sections.
9.1 Populating the search index

A registry is of no use if there are no Web services listed in it. To fill the
experimental registry, several WSDL documents were found on the Internet.
The WSDLs used were: Google Search API [Google A]; Amazon's AlexaTopSites
service [Amazon]; and Invesbot's CompanySearch [Invesbot]. These WSDLs
describe real services that may be found and used today. None of these
documents was microformatted, so the generator was wused to create
microformatted versions of them. As would be done by an organization using
this microformat, the human readable names were updated to be meaningful and
an hCard, containing the actual provider's information, was added to each page.

These microformatted descriptions were placed on a locally hosted Web server.

46

Although each organization would normally host their own Web service
descriptions, co-hosting the descriptions does not change the use or functionality
of the microformatted registry. From the point of view of the registry, these
descriptions could just as easily be on disparate servers.

Once the descriptions were microformatted, updated and locally hosted,
each local URL was entered into the crawler, which added the documents to the
index. The indexed documents were then ready to be searched. This test
focused on the use of WSDL documents within the AMRA microformat registry.
9.2 Searching the Index

The Google Web search service was used for testing. For this service,
Google provides a download package containing the WSDL and sample code for
various programming languages. The Google Web Search service provides
various RPC-style calls that allow a user to perform Web searches over SOAP.
Specifically, the service provides three operations: doGetCachedPage,
doSpellingSuggestion, and doGoogleSearch. In the query field on the search
screen, the term “Google*” was entered to search for all services related to
Google. As expected, the search service returned one result. The result, shown
in Figure 5, listed the name of the service as a hyperlink to the microformatted
entry, the score, retrieval date, and a link to the original format WSDL (converted

on-the-fly from the microformatted version).

47

& AMRA Search - Mozilla Firefox =Joed

Eile Edit Wew Go Bookmarks Tools Help delicio.us

= pu :
‘(}:I - A L‘—E—j’j 'Q/;\[EH tag | L] http:/flocalhost: 8080 /AMRAWeb search findex. jsp?query | @ Go |G,|,

Ay Latest Headlines By Global Toolbar By Development Links

'3),21? Disabler |2| Cookiss~ E::: 55+ (S Formse & Imagess @ Information~ (=] Miscellaneous+ Lf' Cutline~ Resizev ';E," Tools= L View Source™

€ | | AMRA Search (5

The index currently has: 3 documents.

Query:
[Submﬂﬁuay][ﬁesa]
Found 1 resulis

1. GoogleSearchService 1.0
o Description: Mone
o Dafte Indexed: 09 February 2006 20:06:40

o WSDL

Daone Adblock

Figure 5: Search Results

9.3 Integration

B C:\WINDOWS\system32icmd.exe -0 ﬂ

Result: http: 2wwu._xmethods.com”

An organization dedicated to promoting the development. deployment. and
use of
 ueb services{ bh>. O0ffers a directory of publicly-available <bhX ueh
services<{sh>,. {(h>.._{sh>
Result: http: 7wwy.uddi.org”

By emphasizing the interaction of private and public <bhlregistries<~h>.
Version 3 of<hbr> the specification helps to bring the vision of wide deployment
of <h>weh services{sh> <{h>_.._<{sh>
Result: http:/7uddi.microsoft.coms

A searchable UDDI <bXregistryi-sb> of <bXuweh services{r h>. By Microsoft.
Hezult: http: 7wwu—3_ibm.consservices uddi/

Registries{sb> based on UDDI have heen estahlizhed within enterprizes
and organizations<bhr> and have an important role in <bh>Weh services<-b> busine
s applications. <bh>...{/h>
Result: http: 7uwwu.ariadne.ac.uks/izsuwe2?/gardner”

DI is a specification for distributed registries<~ bh> of uweb zerv
ices</h>. A UDDI web{s/b>{br> <bhrservices registry{sh> is itself a <h>web ser
vice{ b> which can bhe accessed via SO0AP from ...<{sbh>
Result: http:-ssjava.zun.comswebszervicessdocss1.6-tutorial-doc~

Chapter 7: Using the <h*3ervice Registry Webh<-b>* Console. Getting Starte
d With the <bX*Web{ bX{br> Console. Starting the <{hXlebh{rb> Console. Changing th
e Default Language <h>...<sh>
Result: http:-/sjava.zun.comsdeveloperstechnicalArticles-UehServices/jaxrus~s
Learn how to use JARR to publish your <h>Webh sewrvices<~h} in {and guery>
HXML—based<{br> <{brregistries<{sh>. The ample code excerpts in thiszs article will

Figure 6: Results of the running the integration application

A registry provides access to service descriptions so that the services

48

described may be integrated into external applications. A simple integration
application was created to use the result found by the registry search. The goal
of the application was to search the Web for the string “Web services registry.”
Using Microsoft Visual Studio 2005, a new C# project was created. A new Web
Reference was added to the project. Using the URL from the WSDL link in the
search results, which points to the converted version of the microformatted
WSDL, the address of the description was entered. Using that dynamically
converted WSDL, Visual Studio was able to generate the necessary bindings to
allow the program to use the discovered Web service. The Web service was then
used to search for the string, “Web services registry.” The results are shown in

Figure 6.

49

Chapter 10 Analysis of AMRA

AMRA is a viable alternative to UDDI, WSIL and ad-hoc registries. This
chapter summarizes the advantages of a microformatted registry and then
specifically addresses the five shortcomings listed above.
10.1 Advantages of a Microformat

Using microformats offers several advantages over other solutions. In
particular, microformats increase the human understandability of service
descriptions. They also lend themselves to fitting established patterns. These
two specific advantages will be discussed in this section.
10.1.1 Readability

One powerful advantage that microformatted WSIL and WSDL
documents have is the inclusion of additional information. Although the original
format documents contain all of the information that a computer needs (and,
frankly, can handle), a human can benefit from the inclusion of additional
information. For example, rather than relying on the simple service name
allowed by the WSDL specification, a more expressive, human readable name
can be maintained in the microformatted document. The original name is still
available (and visible in the microformatted document), but additional
information is provided to the people who read the document.

In a WSIL document, both links and descriptions reference external

50

resources. Often, these resources are accessible through an HTTP interface. For
these resources, it is trivial to add a hyperlink to the resource. Once again, this
information is specifically for the humans reading the document. The conversion
back to the original format will only include those parts that are necessary; it will
not include parts that have been extrapolated.

Using these microformatted documents has a distinct advantage over
merely providing a stylesheet to present a WSDL or WSIL document. The
conversion from the original format document to the microformatted document
and back again is lossless. = However, often the conversion from the
microformatted document to the original format document and back again will
be lossy. This is due to the inclusion of additional information in the
microformatted document. This information was not present in the original
format document and, in fact, there is no place for it in that document. A
microformatted document, then, provides great added benefits to the humans,
while maintaining the current level of support required by machines.

10.1.2 Patterns

When using the Web today, people rely on certain patterns. They expect
that they will be able to find human-readable information about whatever it is
they are looking for. They also expect to be able to search to find what they are

looking for. If they know the provider of the information, they should be able to

51

search for it directly on the provider's site. If they do not care who the provider
is, they should be able to use an Internet-wide search engine, such as Google or
Yahoo to find the information that they seek.

The AMRA Microformat allows the Web service registry to fit this same,
established pattern. Organizations that list their Web services using this
microformat can easily support internal indexing and searching of those services.
Since these are microformatted documents, the searching extends beyond just
indexing a Web page and returning relevant results. An AMRA-aware search
engine, as was shown above, can take advantage of its knowledge of the format
to provide better, more meaningful searches and to return more appropriate
information (such as a link to the converted document).

To summarize, the advantages of a microformatted registry are:

+ Continues to use standard description formats

+ Builds on existing Web paradigms such as Web search

- Enables more powerful, content-specific searches

« Includes additional, human-centric information

« Layout and style of descriptions can be customized according to user's

needs without affecting machine readability
10.2 Resolution of Shortcomings

After analyzing each of the competing registry solutions, Chapter 4 noted

52

five major shortcomings. These shortcomings were:
1. Information Centralization
2. Supporting Information
3. Human Readability
4. Aggregation
5. Standardization

The previous chapters described the AMRA registry. This registry
overcomes each of these shortcomings. This section will address each
shortcoming and how AMRA overcomes it.

10.2.1 Information Centralization and Aggregation

Businesses on the Internet desire to maintain control of their own
information. Centralization of Web service information runs counter to the
notion of distributed control. AMRA allows each provider to retain all
descriptions. Access to those descriptions is available only through the
provider's Web site.

Seemingly contradictory to a desire to stay away from information
centralization is the desire to aggregate Web service information to make it
globally searchable. In this regard, AMRA follows the model provided by the
general Web. Provider information, such as Web service descriptions and

contact information, is maintained on the provider's Web server. Since this

53

information is Web-accessible and in a standard format and location, third
parties can easily aggregate the information. Just as Google provides a single
source for searching all Web sites, another tool could be used to search all service
descriptions. Thus, providers do not need to centralize their information, but
aggregation is still possible.
10.2.2 Supporting Information

Standard service descriptions, such as WSDL, contain just enough
information for a machine to be able to use the Web service. Additional
information is not, and cannot be, included in the description. For a person,
information regarding the service provider is just as important as the technical
information. Using microformatted documents, AMRA allows additional
information to be included in the service description. Using the converter, this
information is removed when returning the document to its source format for
use by a machine. Though this thesis only described including provider contact
information, any other information desired by a provider could be included.
Those tools that know how to take advantage of it can; those that do not can
ignore it.
10.2.3 Human Readability

As noted in the previous section, people must be able to read service

descriptions just as much as machines need to. Though WSDL and WSIL

54

documents are XML and use descriptive tags, they are not easily human
readable. XHTML, on the other hand, was designed expressly to present
information to people. Formatting, hyperlinking, and dynamic display all
increase the readability and usability of a document on the Web. AMRA uses
microformatted service descriptions. These documents, in mWSDL and mWSIL
format, are XHTML. Cascading Style Sheets (CSS) can be easily and naturally
used to change the look and feel of the human readable description without
affecting the machine's ability to read the converted document. Javascript can
also be added to allow more user friendly interaction with service descriptions.
Being microformatted, these documents take advantage of the power of XHTML
for presenting information to people. AMRA is human readable.
10.2.4 Standardization

In some respects, AMRA is similar to ad-hoc solutions. Ad-hoc solutions,
as noted in Chapter 4, suffer from a lack of standardization. AMRA, on the other
hand, uses microformatted documents so a standard is in place at the level that
standards are important — for inter-machine communication. Formatting and
display of the documents can be customized by the provider. The underlying
microformat is unaffected by such customization and so can continue to be used
automatically by machines. Standardization is present within AMRA, allowing

powerful third party uses of the Web service information.

55

10.2.5 Summary

The registries reviewed in Chapter 4 each suffered from shortcomings.
The AMRA registry overcomes each of these problems through using
microformatted documents. This registry is a powerful, yet simple approach to

the registry problem.

56

Chapter 11 Conclusion and Future Work

For Web services to be useful, they must be described and discovered. In
any organization, this is done using a registry. A Microformatted Registry
Alternative presents an alternative to UDDI, WSIL and ad-hoc registry solutions.
This chapter describes areas of future, related research and presents a summary
of AMRA.
11.1 Future Directions

Several additional areas should be investigated in relation to this work.
Additional microformats could be incorporated into the microformatted Web
page. For example, standards exist for microformats that tag pages. Such
microformat tags could be useful for categorizing microformatted service
descriptions. These categories could become another criteria for searching
against microformatted serviced descriptions. Another standardized
microformat allows authors of Web pages to indicate a vote for or against a
certain linked Web page. A Web crawler could determine the value of a Web
service by the votes for or against the microformatted service description.

Research is also needed to investigate the general nature of the AMRA
microformat. The microformat was designed generally and could technically be
applied to any XML document. What document types would benefit from being

made accessible in this way? Can general transforms be created to handle any

57

type of document? The benefits to Web service descriptions are numerous. Such
benefits may be available to other types of documents also.
11.2 Summary

A Microformatted Registry Alternative presents a novel approach to the
problem of providing Web service description information. The solution
combines microformatted documents with converters, generators and indexers to
create a simple and powerful registry.

Using the AMRA microformat, Web service description documents can be
formatted for display to people. These same documents can then be converted
back to the original format so that machines can continue to use them. The
AMRA registry solution was built around these microformats.

The relationship between the machine-readable service description and
the human-meaningful Web page is clearly established. In accordance with the
principles of microformats, the description is made useful for people first, and
then machines. In other words, design paths were taken that made the
description more accessible to people and care was taken to ensure that the
conversion remained lossless. The process of obtaining a valid service
description (WSDL) from a microformatted description is simple and standard,
using the standard conversion transform.

Using a microformatted service description allows additional information

58

to be included for those to whom it means something — people. Although
computers cannot accept or use more information than is in a standard
description, people can handle more information. Oftentimes, more information
is required to make complete sense of a document. For example, the registry
solution described in this document adds provider information (in the form of an
hCard). Rather than simply a description, the microformatted description allows
a person to find the provider of the Web service in a simple and easily
identifiable way. Since the microformat contains all of the technical information
that is needed to consume the Web service, as well as additional information
useful to people, it is more valuable than a standard description.

Web services are not generally useful unless they can be found. Service
descriptions formatted according to the AMRA microformat are Web pages in
standard XHTML. Because of this, they can, as can other Web-based descriptors,
be indexed and searched using standard Web search tools. Microformatted
descriptions have the added advantage of using a standard format for describing
Web services. General Web search tools can be made to be aware of this format
and can present these pages specifically to users searching for Web services.

As a result of this thesis, the community has proposals for WSDL and
WSIL microformats, as well as sample code to convert these microformats into

the original formats. They also have transforms capable of generating

59

microformatted Web Service descriptions and a crawler that is able to index the
microformatted documents. By combining these tools, as was demonstrated,
individuals and organizations will be able to publish human and machine
readable descriptions of their Web services quickly and easily and consumers

will be able to find and use Web services more easily.

60

Appendix A Microformatted WSDL

A.1 mWSDL

<?xml version="1.0" encoding="UTF-8"7?>

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:wsil="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
xmlns:wsiluddi="http://schemas.xmlsoap.org/ws/2001/10/inspection/uddi/">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>AMRA</title>

</head>

<body>

<ul class="xo0xo0">
<xhtml:1i xmlns:xhtml="http://www.w3.0rg/1999/xhtml"
class="amra wsdl definitions">
<xhtml:span xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
class="element name">Definitions</xhtml:span>
<xhtml:dl xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<dt>name</dt>
<dd class="amra name">StockQuote</dd>
<dt>targetNamespace</dt>
<dd class="amra_ _targetNamespace">http://example.com/stockquote.wsdl</dd>
<dt>Namespaces</dt>
<dd class="amrans">
<dl>
<dt>xsdl</dt>
<dd class="amrans xsdl">http://example.com/stockquote.xsd</dd>
<dt>xml</dt>
<dd class="amrans xml">http://www.w3.0rg/XML/1998/namespace</dd>
<dt>soap</dt>
<dd class="amrans_soap">http://schemas.xmlsoap.org/wsdl/soap/</dd>
<dt>Default</dt>
<dd class="amrans Default">http://schemas.xmlsoap.org/wsdl/</dd>
<dt>tns</dt>
<dd class="amrans_tns">http://example.com/stockquote.wsdl</dd>
</d1>
</dd>
</xhtml:dl>
<xhtml:ul xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xhtml:1i class="amra wsdl types">
<xhtml:span class="element name">Types</xhtml:span>
<xhtml:dl></xhtml:dl>
<xhtml:ul>
<xhtml:1i class="amra xs schema">
<xhtml:span
xmlns:hfp="http://www.w3.0rg/2001/XMLSchema-hasFacetAndProperty"
class="element name">Schema</xhtml:span>
<xhtml:dl
xmlns:hfp="http://www.w3.0rg/2001/XMLSchema-hasFacetAndProperty">
<dt>targetNamespace</dt>
<dd
class="amra__targetNamespace">http://example.com/stockquote.xsd</dd>
</xhtml:d1l>
<xhtml:ul
xmlns:hfp="http://www.w3.0rg/2001/XMLSchema-hasFacetAndProperty">
<xhtml:1i class="amra xs element">
<xhtml:span class="element name">Element</xhtml:span>
<xhtml:dl>
<dt>name</dt>
<dd class="amra__name">TradePriceRequest</dd>
</xhtml:dl>
<xhtml:ul>

61

<xhtml:1li class="amra xs _complexType">

<xhtml:span class="element name">ComplexType</xhtml:span>

<xhtml:dl></xhtml:d1>
<xhtml:ul>

<xhtml:1i class="amra_xs_all">

<xhtml:span class="element name">All</xhtml:span>
<xhtml:dl></xhtml:d1>

<xhtml:ul>

<xhtml:1i class="amra xs element">

<xhtml:span
class="element name">Element</xhtml:span>

<xhtml:d1>

<dt>name</dt>

<dd
class="amra__name">tickerSymbol</dd>

<dt>type</dt>

<dd class="amra__type">string</dd>

</xhtml:dl>
<xhtml:ul></xhtml:ul>
</xhtml:li>
</xhtml:ul>
</xhtml:1li>
</xhtml:ul>
</xhtml:1i>
</xhtml:ul>
</xhtml:li>

<xhtml:1i class="amra_xs_element">

<xhtml:span class="element name">Element</xhtml:span>
<xhtml:dl>

<dt>name</dt>

<dd class="amra__name">TradePrice</dd>
</xhtml:dl>
<xhtml:ul>

<xhtml:1i class="amra xs_ complexType">

<xhtml:span class="element name">ComplexType</xhtml:span>
<xhtml:dl></xhtml:dl>

<xhtml:ul>
<xhtml:1li class="amra xs all">
<xhtml:span class="element name">All</xhtml:span>
<xhtml:dl></xhtml:d1>
<xhtml:ul>

<xhtml:1i class="amra xs element">
<xhtml:span
class="element name">Element</xhtml:span>

<xhtml:d1>
<dt>name</dt>

<dd class="amra__name">price</dd>
<dt>type</dt>
<dd class="amra__type">float</dd>
</xhtml:d1>
<xhtml:ul></xhtml:ul>
</xhtml:1li>
</xhtml:ul>
</xhtml:li>
</xhtml:ul>
</xhtml:li>
</xhtml:ul>
</xhtml:1li>
</xhtml:ul>
</xhtml:li>
</xhtml:ul>
</xhtml:1li>

<xhtml:1i class="amra wsdl message">

<xhtml:span class="element name">Message</xhtml:span>
<xhtml:dl>

<dt>name</dt>

<dd class="amra__name">GetlLastTradePriceInput</dd>
</xhtml:d1l>

<xhtml:ul>

62

<xhtml:1i class="amra_wsdl part">
<xhtml:span class="element_name">Part</xhtml:span>
<xhtml:d1l>
<dt>name</dt>
<dd class="amra__name">body</dd>
<dt>element</dt>
<dd class="amra__element">xsdl:TradePriceRequest</dd>
</xhtml:dl>
<xhtml:ul></xhtml:ul>
</xhtml:li>
</xhtml:ul>
</xhtml:li>
<xhtml:1i class="amra wsdl message">
<xhtml:span class="element name">Message</xhtml:span>
<xhtml:dl>
<dt>name</dt>
<dd class="amra__name">GetlLastTradePriceOutput</dd>
</xhtml:dl>
<xhtml:ul>
<xhtml:1i class="amra_wsdl part">
<xhtml:span class="element name">Part</xhtml:span>
<xhtml:d1l>
<dt>name</dt>
<dd class="amra__name">body</dd>
<dt>element</dt>
<dd class="amra__element">xsdl:TradePrice</dd>
</xhtml:d1l>
<xhtml:ul></xhtml:ul>
</xhtml:1li>
</xhtml:ul>
</xhtml:li>
<xhtml:1i class="amra wsdl portType">
<xhtml:span class="element name">PortType</xhtml:span>
<xhtml:dl>
<dt>name</dt>
<dd class="amra__name">StockQuotePortType</dd>
</xhtml:dl>
<xhtml:ul>
<xhtml:1i class="amra wsdl operation">
<xhtml:span class="element name">Operation</xhtml:span>
<xhtml:dl>
<dt>name</dt>
<dd class="amra__name">GetlLastTradePrice</dd>
</xhtml:d1l>
<xhtml:ul>
<xhtml:1i class="amra wsdl input">
<xhtml:span class="element name">Input</xhtml:span>
<xhtml:d1l>
<dt>message</dt>
<dd class="amra_ message">tns:GetlLastTradePriceInput</dd>
</xhtml:d1l>
<xhtml:ul></xhtml:ul>
</xhtml:1li>
<xhtml:1i class="amra wsdl output">
<xhtml:span class="element name">Qutput</xhtml:span>
<xhtml:dl>
<dt>message</dt>
<dd class="amra_ message">tns:GetlLastTradePriceOutput</dd>
</xhtml:dl>
<xhtml:ul></xhtml:ul>
</xhtml:li>
</xhtml:ul>
</xhtml:li>
</xhtml:ul>
</xhtml:li>
<xhtml:1i class="amra wsdl binding">
<xhtml:span class="element name">Binding</xhtml:span>
<xhtml:dl>
<dt>name</dt>

63

<dd class="amra__name">StockQuoteSoapBinding</dd>
<dt>type</dt>
<dd class="amra__type">tns:StockQuotePortType</dd>
</xhtml:dl>
<xhtml:ul>
<xhtml:1i class="amra soap binding">
<xhtml:span xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
class="element name">Binding</xhtml:span>
<xhtml:dl xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

<dt>style</dt>
<dd class="amra__style">document</dd>
<dt>transport</dt>

<dd class="amra_ _transport">http://schemas.xmlsoap.org/soap/http</dd>
</xhtml:dl>
<xhtml:ul
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"></xhtml:ul>
</xhtml:li>
<xhtml:1i class="amra wsdl operation">
<xhtml:span class="element name">Operation</xhtml:span>
<xhtml:dl>
<dt>name</dt>
<dd class="amra__name">GetLastTradePrice</dd>
</xhtml:dl>
<xhtml:ul>
<xhtml:1i class="amra_soap_operation">
<xhtml:span xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
class="element name">0Operation</xhtml:span>
<xhtml:dl xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
<dt>soapAction</dt>
<dd
class="amra__soapAction">http://example.com/GetLastTradePrice</dd>
</xhtml:dl>
<xhtml:ul
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"></xhtml:ul>
</xhtml:li>
<xhtml:1i class="amra wsdl input">
<xhtml:span class="element name">Input</xhtml:span>
<xhtml:dl></xhtml:dl>
<xhtml:ul>
<xhtml:1li class="amra_soap_ body">
<xhtml:span xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
class="element name">Body</xhtml:span>
<xhtml:dl xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
<dt>use</dt>
<dd class="amra__use">literal</dd>
</xhtml:d1l>
<xhtml:ul
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"></xhtml:ul>
</xhtml:1li>
</xhtml:ul>
</xhtml:1li>
<xhtml:1i class="amra wsdl output">
<xhtml:span class="element name">0Output</xhtml:span>
<xhtml:dl></xhtml:d1>
<xhtml:ul>
<xhtml:1i class="amra_soap_ body">
<xhtml:span xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
class="element name">Body</xhtml:span>
<xhtml:dl xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
<dt>use</dt>
<dd class="amra_ _use">literal</dd>
</xhtml:dl>
<xhtml:ul
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"></xhtml:ul>
</xhtml:li>
</xhtml:ul>
</xhtml:li>
</xhtml:ul>
</xhtml:1li>

64

</xhtml:ul>
</xhtml:li>
<xhtml:1li class="amra wsdl service">
<xhtml:span class="element name">Service</xhtml:span>
<xhtml:d1l>
<dt>name</dt>
<dd class="amra__name">StockQuoteService</dd>
</xhtml:dl>
<xhtml:ul>
<xhtml:1i class="amra wsdl documentation">
<xhtml:span class="element name">Documentation</xhtml:span>
<xhtml:dl></xhtml:dl>
<xhtml:ul>
<li class="text">My first service
</xhtml:ul>
</xhtml:1li>
<xhtml:1i class="amra wsdl port">
<xhtml:span class="element name">Port</xhtml:span>
<xhtml:dl>
<dt>name</dt>
<dd class="amra__name">StockQuotePort</dd>
<dt>binding</dt>
<dd class="amra__binding">tns:StockQuoteSoapBinding</dd>
</xhtml:d1l>
<xhtml:ul>
<xhtml:1i class="amra soap_address">
<xhtml:span xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
class="element name">Address</xhtml:span>
<xhtml:dl xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
<dt>location</dt>
<dd class="amra__location">http://example.com/stockquote</dd>
</xhtml:dl>
<xhtml:ul
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"></xhtml:ul>
</xhtml:li>
</xhtml:ul>
</xhtml:li>
</xhtml:ul>
</xhtml:li>
</xhtml:ul>
</xhtml:li>

</body>
</html>

A2 WSDL

<definitions name="StockQuote"
targetNamespace="http://example.com/stockquote.wsdl"
xmlns:tns="http://example.com/stockquote.wsdl"
xmlns:xsdl="http://example.com/stockquote.xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<schema targetNamespace="http://example.com/stockquote.xsd"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<element name="TradePriceRequest">
<complexType>
<all>
<element name="tickerSymbol" type="string"/>
</all>
</complexType>
</element>
<element name="TradePrice">
<complexType>
<all>

<element name="price" type="float"/>
</all>
</complexType>
</element>
</schema>
</types>

<message name="GetlLastTradePriceInput">
<part name="body" element="xsdl:TradePriceRequest"/>
</message>

<message name="GetlLastTradePriceOutput">
<part name="body" element="xsdl:TradePrice"/>
</message>

<portType name="StockQuotePortType">
<operation name="GetlLastTradePrice">
<input message="tns:GetlLastTradePriceInput"/>
<output message="tns:GetLastTradePriceOQutput"/>
</operation>
</portType>

<binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="GetlLastTradePrice">
<soap:operation soapAction="http://example.com/GetLastTradePrice"/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>

<service name="StockQuoteService">
<documentation>My first service</documentation>
<port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">
<soap:address location="http://example.com/stockquote"/>
</port>
</service>

</definitions>

66

A.3 Correspondence

This diagram shows the correspondence between the WSDL and the mWSDL.

mWwsDL

WSsDL

(1) =xhtml:li class="amra_wsdl_service"=
=<xhtml:span class="element_name"=Service</xhtml:span=
=xhtml:dl=
=dt=name=/dt=
=dd class="amra__name"=5tockQuoteService=/dd=
=fxhtml:dl=
=xhtml:ul=
(2)=xhtml:li class="amra_wsdl_documentation"=
<xhtml:span class="element_name"=Documentation</xhtml:span=
=xhtml:dl=</xhtml:d|=
=xhtmlul=<li class="text"=My first service=/li=</xhtml:ul=
=/xhtml:li=
(3) =xhtml:li class="amra_wsdl_port"=
=xhtml:span class="element_name"=Port</<html:span=
=xhtml:dl=
=dt=name=</dt><=dd class="amra__name"=5tockQuotePort=/dd>
=dt=binding=/dt=>
=dd class="amra__binding">tns:5teckQuoteScapBinding=/dd=
=/xhtrml:dl=
=xhtml:ul=
(4) =xhtml:li class="amra_soap_address"=
=xhtml:span xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/
class="element_name"=Address=</xhtml:span=
=xhtml:dl xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/"=
=dt=location=/dt=
=dd class="amra__location"=http:/fexample.com/stockquote</dd=>
=/xhtml:dl=
=xhtml:ul xmins:soap= "http://schemas.xmlsoap.org/wsdl/soap/" =
=/xhtml:ul=
=/xhtml:li=
=/xhtrml:ul=
=/xhtml:li=
=fxhtml:ul=
=/xhtml:li=

(1) =service name="5StockQuoteService"=

12} =documentation=My first service=/documentation=

(3) =port name="5tockQuotePort”
binding="tns:StockQuoteSoapBinding"=

(4} =soap:address location="http:/fexample.com/stockquote"/=
=/port=
=/service=

67

Appendix B Microformatted WSIL

B.1 mWSIL

<?xml version="1.0" encoding="UTF-8"7?>

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:wsil="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
xmlns:wsiluddi="http://schemas.xmlsoap.org/ws/2001/10/inspection/uddi/">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>AMRA</title>

</head>

<body>

<ul class="xo0xo0">
<xhtml:1i xmlns:xhtml="http://www.w3.0rg/1999/xhtml"

class="amra wsil inspection">

<xhtml:span xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.w3.0rg/2001/XMLSchema"

class="element name">Inspection</xhtml:span>

<xhtml:dl xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<dt xmlns="http://www.w3.0rg/1999/xhtml">Namespaces</dt>
<dd xmlns="http://www.w3.0rg/1999/xhtml" class="amrans">

<d1>
<dt>xml</dt>
<dd class="amrans xml">http://www.w3.0rg/XML/1998/namespace</dd>
<dt>wsiluddi</dt>
<dd
class="amrans wsiluddi">http://schemas.xmlsoap.org/ws/2001/10/inspection/uddi/</dd>
<dt>Default</dt>
<dd
class="amrans Default">http://schemas.xmlsoap.org/ws/2001/10/inspection/</dd>
</d1>
</dd>

</xhtml:d1l>
<xhtml:ul xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<xhtml:1i class="amra wsil service">
<xhtml:span class="element_name">Service</xhtml:span>
<xhtml:dl></xhtml:dl>
<xhtml:ul>
<xhtml:1i class="amra wsil abstract">
<xhtml:span class="element name">Abstract</xhtml:span>
<xhtml:dl></xhtml:dl>
<xhtml:ul>
<li xmlns="http://www.w3.0rg/1999/xhtml" class="amra_ text">A
stock quote service with two descriptions
</xhtml:ul>
</xhtml:li>
<xhtml:1i class="amra wsil name">
<xhtml:span class="element name">Name</xhtml:span>
<xhtml:dl></xhtml:d1>
<xhtml:ul>
<li xmlns="http://www.w3.0rg/1999/xhtml"
class="amra_text">Stocks</1i>
</xhtml:ul>
</xhtml:1li>
<xhtml:1i class="amra_wsil_description">
<xhtml:span class="element name">Description</xhtml:span>
<xhtml:dl>
<dt xmlns="http://www.w3.0rg/1999/xhtml">referencedNamespace</dt>
<dd xmlns="http://www.w3.0rg/1999/xhtml"

class="amra__referencedNamespace">http://schemas.xmlsoap.org/wsdl/</dd>

<dt xmlns="http://www.w3.0rg/1999/xhtml">location</dt>
<dd xmlns="http://www.w3.0rg/1999/xhtml"

68

class="amra__location">http://example.com/stockquote.wsdl</dd>
</xhtml:dl>
<xhtml:ul></xhtml:ul>
</xhtml:li>
<xhtml:1i class="amra_wsil description">
<xhtml:span class="element name">Description</xhtml:span>
<xhtml:dl>
<dt xmlns="http://www.w3.0rg/1999/xhtml">referencedNamespace</dt>
<dd xmlns="http://www.w3.0rg/1999/xhtml"
class="amra__referencedNamespace">urn:uddi-org:api</dd>
</xhtml:dl>
<xhtml:ul>
<xhtml:1i class="wsiluddi serviceDescription">
<xhtml:span xmlns:uddi="urn:uddi-org:api"
class="element name">ServiceDescription</xhtml:span>
<xhtml:dl xmlns:uddi="urn:uddi-org:api">
<dt xmlns="http://www.w3.0rg/1999/xhtml">location</dt>
<dd xmlns="http://www.w3.0rg/1999/xhtml"
class="amra__location">http://www.example.com/uddi/inquiryapi</dd>
</xhtml:d1l>
<xhtml:ul xmlns:uddi="urn:uddi-org:api">
<xhtml:1i class="amra wsiluddi serviceKey">
<xhtml:span class="element name">ServiceKey</xhtml:span>
<xhtml:dl></xhtml:d1l>
<xhtml:ul>
<li xmlns="http://www.w3.0rg/1999/xhtml" class="amra_ text">
4FA28580-5C39-11D5-9FCF-BB3200333F79</11i>
</xhtml:ul>
</xhtml:1li>
</xhtml:ul>
</xhtml:li>
</xhtml:ul>
</xhtml:li>
</xhtml:ul>
</xhtml:li>
<xhtml:1i class="amra wsil service">
<xhtml:span class="element name">Service</xhtml:span>
<xhtml:dl></xhtml:dl>
<xhtml:ul>
<xhtml:1i class="amra wsil description">
<xhtml:span class="element name">Description</xhtml:span>
<xhtml:dl>
<dt xmlns="http://www.w3.0rg/1999/xhtml">referencedNamespace</dt>
<dd xmlns="http://www.w3.0rg/1999/xhtml"

class="amra__referencedNamespace">http://schemas.xmlsoap.org/wsdl/</dd>
<dt xmlns="http://www.w3.0rg/1999/xhtml">location</dt>
<dd xmlns="http://www.w3.0rg/1999/xhtml"
class="amra__location">ftp://anotherexample.com/tools/calculator.wsdl</dd>
</xhtml:dl>
<xhtml:ul></xhtml:ul>
</xhtml:li>
</xhtml:ul>
</xhtml:li>
<xhtml:1i class="amra_wsil_link">
<xhtml:span class="element name">Link</xhtml:span>
<xhtml:dl>
<dt xmlns="http://www.w3.0rg/1999/xhtml">referencedNamespace</dt>
<dd xmlns="http://www.w3.0rg/1999/xhtml"

class="amra__referencedNamespace">http://schemas.xmlsoap.org/ws/2001/10/inspection/</dd>
<dt xmlns="http://www.w3.0rg/1999/xhtml">location</dt>
<dd xmlns="http://www.w3.0rg/1999/xhtml"
class="amra_location">http://localhost:8080/AMRAWeb/sample/combined.xhtml</dd>
</xhtml:dl>
<xhtml:ul></xhtml:ul>
</xhtml:li>
</xhtml:ul>
</xhtml:1li>

69

</body>
</html>

B.2 WSIL

<?xml version="1.0"7>
<inspection xmlns="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
xmlns:wsiluddi="http://schemas.xmlsoap.org/ws/2001/10/inspection/uddi/">
<service>
<abstract>A stock quote service with two descriptions</abstract>
<name>Stocks</name>
<description
referencedNamespace="http://schemas.xmlsoap.org/wsdl/"
location="http://example.com/stockquote.wsdl" />
<description referencedNamespace="urn:uddi-org:api">
<wsiluddi:serviceDescription
location="http://www.example.com/uddi/inquiryapi">
<wsiluddi:serviceKey>
4FA28580-5C39-11D5-9FCF-BB3200333F79
</wsiluddi:serviceKey>
</wsiluddi:serviceDescription>
</description>
</service>
<service>
<description
referencedNamespace="http://schemas.xmlsoap.org/wsdl/"
location="ftp://anotherexample.com/tools/calculator.wsdl" />
</service>
<link
referencedNamespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
location="http://example.com/moreservices.wsil" />
</inspection>

70

B.3 Correspondence

This diagram shows the correspondence between the WSIL and the mWSIL.

mWSIL

WSIL

(1)

(2)

(3)

(4)

(5)

=xhtml:li class="amra_wsil_description"= o
=xhtml:span class="element_name"=Description</xhtml:span=
=xhtml:dl=
=dt xmins="http:/fwww.w3.org/1999/xhtm|" =referencedMamespace</dt>
=dd xmins="http://www.w3.0rg/1999/xhtml"
class="amra__referencedNamespace”=urn:uddi-org:api</dd=>
= /xhtml:dl=>
=xhtml:ul=
=xhtml:li class="wsiluddi_serviceDescription™=
=xhtml:span xmins:uddi="urn:uddi-org:api"
class="element_name"=5ServiceDescription</xhtml:span=
=xhtml:dl xmins:uddi="urn:uddi-org:api"=
<dt xmins="http://www.w3.0rg/1999/xhtml"=location</dt=
=dd xmins="http:/fwww.w3.0rg/1999/xhtm[" . . .
class="amra__location"=http://www.example.com/fuddifinquiryapi</dd=
=/xhtml:dl= . . .
=<xhtml:ul xmins:uddi="urn:uddi-org:api">
=xhtml:li class="amra wsiluddi_serviceKey">
<xhtml:span class="element_name"=5ServiceKey</xhtml:span=
=xhtml:dl=</xhtml:dl=
=xhtml:ul=
=li xmins="http://www.w3.0rg/1999/xhtm!" class="amra_text">
4FAZB5B0-5C39-11D05-9FCF-BB3200333F79</li=
=/[xhtml:ul=
=fxhtml:li=
=[xhtml:ul=
<fxhtml:li=
=/xhtmlul=

< fxhtml:li=

(1} =description referencedNamespace="urn:uddi-org:api"=

(2)

(3)

(4)

(3)

=wsiluddi:serviceDescription

location="http://www.example.comfuddi/inquiryapi"

=wsiluddi:serviceKey=

AFAZE580-5C39-11D5-9FCF-BE3200333F79
<fwsiluddi:serviceKey>
</wsiluddi:serviceDescription=

</description=>

=

71

Appendix C Generator
This appendix presents the XSLT code for the generator for WSIL. For
brevity, the XSLT for the UDDI and XML Schema schemas have been omitted.

C.1 WSILXHTML.xsl

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xhtml="http://www.w3.0rg/1999/xhtml"
version="2.0">
<xsl:include href="amra xhtml.xsl"/>
<xsl:include href="WSIL/inspection.xsl"/>
<xsl:include href="WSIL/uddi.xsl"/>
<xsl:include href="WSIL/wsil-uddi.xsl"/>
<xsl:include href="WSIL/wsil-wsdl.xsl"/>
<xsl:include href="WSIL/XMLSchema.xsl"/>
</xsl:stylesheet>

C.2 amra_xhtml.xsl

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:wsil="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
xmlns:wsiluddi="http://schemas.xmlsoap.org/ws/2001/10/inspection/uddi/"
xmlns="http://www.w3.0rg/1999/xhtml">

<xsl:template match="/">
<html>
<head>
<meta http-equiv="Content-Type"
content="application/xhtml+xml; charset=IS0-8859-1" />
<title>AMRA</title>
</head>
<body>
<ul class="xo0xo0">
<xsl:apply-templates />

</body>
</html>
</xsl:template>

<xsl:template match="text()">
<xsl:call-template name="AMRA text node" />
</xsl:template>

<xsl:template name="AMRA text node">
<li class="text">
<xsl:value-of select="." />
</1i>
</xsl:template>

<xsl:template name="AMRA add def">

<xsl:param name="attribute" />
<xsl:param name="label" />
<xsl:param name="class" />
<xsl:if test="$attribute">

<dt>

<xsl:value-of select="$label" />
</dt>

72

<dd class="{$class}">
<xsl:value-of select="$attribute" />
</dd>
</xsl:if>
</xsl:template>

<xsl:template name="AMRA generate namespace defs">
<xsl:param name="context" />
<xsl:variable name="distinct prefixes" as="item()*">
<xsl:variable name="parent prefixes" as="item()*">
<xsl:if test="$context/.. instance of element()">
<xsl:sequence
select="in-scope-prefixes($context/..)" />
</xsl:if>
</xsl:variable>
<xsl:for-each select="in-scope-prefixes($context)">
<xsl:if
test="not(index-of ($parent prefixes,current()))">
<xsl:sequence select="current()" />
</xsl:if>
</xsl:for-each>
</xsl:variable>
<xsl:message>
<xsl:text>Distinct prefixes:</xsl:text>
<xsl:value-of select="$distinct prefixes" />
</xsl:message>
<xsl:if test="not(empty($distinct prefixes))">

<dt>Namespaces</dt>
<dd class="amrans">
<dl>

<xsl:for-each select="$distinct prefixes">
<xsl:variable name="prefix">
<xsl:choose>
<xsl:when test="current() eq >
<xsl:value-of select="'Default'" />
</xs1l:when>
<xsl:otherwise>
<xsl:value-of select="current()" />
</xsl:otherwise>
</xsl:choose>
</xsl:variable>
<dt>
<xsl:value-of select="$prefix" />
</dt>
<dd>
<xsl:attribute name="class">
<xsl:value-of
select="concat('amrans_', $prefix)" />
</xsl:attribute>
<xsl:value-of

select="namespace-uri-for-prefix(current(), $context)" />

</dd>
</xsl:for-each>
</dl>
</dd>
</xsl:if>
</xsl:template>
<xsl:template name="AMRA generate attribute defs">
<xsl:for-each select="./@*">
<xsl:variable name="attribute name"
select="name(current())" />
<xsl:variable name="label">
<xsl:call-template name="AMRA create label">
<xsl:with-param name="node" select="current()" />
</xsl:call-template>
</xsl:variable>
<xsl:variable name="class">
<xsl:call-template name="AMRA create class">
<xsl:with-param name="node" select="current()" />

73

</xsl:call-template>
</xsl:variable>
<dt>
<xsl:value-of select="$label" />
</dt>
<dd class="{$class}">
<xsl:value-of select="current()" />
</dd>
</xsl:for-each>
</xsl:template>

<xsl:template name="AMRA create label">
<xsl:param name="node" />

<!-- With a 2.0 processor, we could at least capitalize the first letter -->

<xsl:variable name="name">
<xsl:value-of select="local-name($node)" />
</xsl:variable>
<xsl:value-of select="$name" />
</xsl:template>

<xsl:template name="AMRA create class">
<xsl:param name="node" />
<xsl:variable name="prefix"
select="substring-before(name($node),':"')" />
<xsl:variable name="post prefix">
<xsl:choose>
<xsl:when test="contains(name($node),"':"')">
<xsl:value-of
select="substring-after(name($node),"':")" />
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="name($node)" />
</xsl:otherwise>
</xsl:choose>
</xsl:variable>
<xsl:value-of select="concat('amra ', $prefix,' ', $post prefix)" />
</xsl:template>
</xsl:stylesheet>

C.3 inspection.xsl

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xhtml="http://www.w3.0rg/1999/xhtml"
xmlns:wsil="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
xmlns="http://www.w3.0rg/2001/XMLSchema"
version="2,0">
<xsl:strip-space elements="*"/>
<xsl:template match="wsil:abstract">
<xsl:element name="xhtml:li">
<xsl:attribute name="class" select="'wsil abstract'"/>
<xhtml:span class="element name">
<xsl:choose>
<xsl:when test="./@name">
<xsl:value-of select="./@name"/>
<xsl:text>(</xsl:text>Abstract<xsl:text>)</xsl:text>
</xsl:when>
<xsl:otherwise>Abstract</xsl:otherwise>
</xsl:choose>
</xhtml:span>
<xhtml:dl>
<xsl:call-template name="AMRA generate attribute defs"/>
<xsl:call-template name="AMRA generate namespace defs'>
<xsl:with-param name="context" select="."/>
</xsl:call-template>
</xhtml:dl>
<xhtml:ul>

74

<xsl:message>
<xsl:for-each select="child::*">
<xsl:variable name="cur name" select="name()"/>
<xsl:text/>
<xsl:value-of select="name()"/>
<xsl:text>:</xsl:text>
<xsl:value-of select="count(../$cur name)"/>
<xsl:text/>
</xsl:for-each>
</xsl:message>
<xsl:apply-templates/>
</xhtml:ul>
</xsl:element>
</xsl:template>
<xsl:template match="wsil:name">
<xsl:element name="xhtml:1li">
<xsl:attribute name="class" select=
<xhtml:span class="element name">
<xsl:choose>
<xsl:when test="./@name">
<xsl:value-of select="./@name"/>
<xsl:text>(</xsl:text>Name<xsl:text>)</xsl:text>
</xsl:when>
<xsl:otherwise>Name</xsl:otherwise>
</xsl:choose>
</xhtml:span>
<xhtml:d1l>
<xsl:call-template name="AMRA generate attribute defs"/>
<xsl:call-template name="AMRA generate namespace defs">
<xsl:with-param name="context" select="."/>
</xsl:call-template>
</xhtml:dl>
<xhtml:ul>
<xsl:message>
<xsl:for-each select="child::*">
<xsl:variable name="cur name" select="name()"/>
<xsl:text/>
<xsl:value-of select="name()"/>
<xsl:text>:</xsl:text>
<xsl:value-of select="count(../$cur _name)"/>
<xsl:text/>
</xsl:for-each>
</xsl:message>
<xsl:apply-templates/>
</xhtml:ul>
</xsl:element>
</xsl:template>
<xsl:template match="wsil:description">
<xsl:element name="xhtml:1li">
<xsl:attribute name="class" select="'wsil description'"/>
<xhtml:span class="element name">
<xsl:choose>
<xsl:when test="./@name">
<xsl:value-of select="./@name"/>
<xsl:text>(</xsl:text>Description<xsl:text>)</xsl:text>
</xsl:when>
<xsl:otherwise>Description</xsl:otherwise>
</xsl:choose>
</xhtml:span>
<xhtml:dl>
<xsl:call-template name="AMRA generate attribute defs"/>
<xsl:call-template name="AMRA generate namespace defs">
<xsl:with-param name="context" select="."/>
</xsl:call-template>
</xhtml:dl>
<xhtml:ul>
<xsl:message>
<xsl:for-each select="child::*">
<xsl:variable name="cur name" select="name()"/>

wsil name'"/>

75

<xsl:text/>
<xsl:value-of select="name()"/>
<xsl:text>:</xsl:text>
<xsl:value-of select="count(../$cur name)"/>
<xsl:text/>
</xsl:for-each>
</xsl:message>
<xsl:apply-templates/>
</xhtml:ul>
</xsl:element>
</xsl:template>
<xsl:template match="wsil:inspection">
<xsl:element name="xhtml:1li">
<xsl:attribute name="class" select=
<xhtml:span class="element name">
<xsl:choose>
<xsl:when test="./@name">
<xsl:value-of select="./@name"/>
<xsl:text>(</xsl:text>Inspection<xsl:text>)</xsl:text>
</xsl:when>
<xsl:otherwise>Inspection</xsl:otherwise>
</xsl:choose>
</xhtml:span>
<xhtml:d1>
<xsl:call-template name="AMRA generate attribute defs"/>
<xsl:call-template name="AMRA generate namespace defs'>
<xsl:with-param name="context" select="."/>
</xsl:call-template>
</xhtml:dl>
<xhtml:ul>
<xsl:message>
<xsl:for-each select="child::*">
<xsl:variable name="cur name" select="name()"/>
<xsl:text/>
<xsl:value-of select="name()"/>
<xsl:text>:</xsl:text>
<xsl:value-of select="count(../$cur name)"/>
<xsl:text/>
</xsl:for-each>
</xsl:message>
<xsl:apply-templates/>
</xhtml:ul>
</xsl:element>
</xsl:template>
<xsl:template match="wsil:service">
<xsl:element name="xhtml:1li">
<xsl:attribute name="class" select=
<xhtml:span class="element name">
<xsl:choose>
<xsl:when test="./@name">
<xsl:value-of select="./@name"/>
<xsl:text>(</xsl:text>Service<xsl:text>)</xsl:text>
</xsl:when>
<xsl:otherwise>Service</xsl:otherwise>
</xsl:choose>
</xhtml:span>
<xhtml:d1>
<xsl:call-template name="AMRA generate attribute defs"/>
<xsl:call-template name="AMRA generate namespace defs'">
<xsl:with-param name="context" select="."/>
</xsl:call-template>
</xhtml:d1l>
<xhtml:ul>
<xsl:message>
<xsl:for-each select="child::*">
<xsl:variable name="cur name" select="name()"/>
<xsl:text/>
<xsl:value-of select="name()"/>
<xsl:text>:</xsl:text>

wsil inspection'"/>

wsil service'"/>

76

<xsl:value-of select="count(../$cur _name)"/>
<xsl:text/>
</xsl:for-each>
</xsl:message>
<xsl:apply-templates/>
</xhtml:ul>
</xsl:element>
</xsl:template>
<xsl:template match="wsil:link">
<xsl:element name="xhtml:li">
<xsl:attribute name="class" select="'wsil link'"/>
<xhtml:span class="element name">
<xsl:choose>
<xsl:when test="./@name">
<xsl:value-of select="./@name"/>
<xsl:text>(</xsl:text>Link<xsl:text>)</xsl:text>
</xsl:when>
<xsl:otherwise>Link</xsl:otherwise>
</xsl:choose>
</xhtml:span>
<xhtml:d1l>
<xsl:call-template name="AMRA generate attribute defs"/>
<xsl:call-template name="AMRA generate namespace defs">
<xsl:with-param name="context" select="."/>
</xsl:call-template>
</xhtml:d1>
<xhtml:ul>
<xsl:message>
<xsl:for-each select="child::*">
<xsl:variable name="cur name" select="name()"/>
<xsl:text/>
<xsl:value-of select="name()"/>
<xsl:text>:</xsl:text>
<xsl:value-of select="count(../$cur name)"/>
<xsl:text/>
</xsl:for-each>
</xsl:message>
<xsl:apply-templates/>
</xhtml:ul>
</xsl:element>
</xsl:template>
</xsl:stylesheet>

C.4 wsil-uddi.xsl

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xhtml="http://www.w3.0rg/1999/xhtml"
xmlns:wsiluddi="http://schemas.xmlsoap.org/ws/2001/10/inspection/u
ddi/"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:uddi="urn:uddi-org:api"
version="2.0">
<xsl:strip-space elements="*"/>
<xsl:template match="wsiluddi:discoveryURL">
<xsl:element name="xhtml:li">
<xsl:attribute name="class" select="'wsiluddi discoveryURL'"/>
<xhtml:span class="element name">
<xsl:choose>
<xsl:when test="./@name">
<xsl:value-of select="./@name"/>
<xsl:text>(</xsl:text>DiscoveryURL<xsl:text>)</xsl:text>
</xsl:when>
<xsl:otherwise>DiscoveryURL</xsl:otherwise>
</xsl:choose>
</xhtml:span>
<xhtml:dl>

77

<xsl:call-template name="AMRA generate attribute defs"/>
<xsl:call-template name="AMRA generate namespace defs'>
<xsl:with-param name="context" select="."/>
</xsl:call-template>
</xhtml:d1l>
<xhtml:ul>
<xsl:message>
<xsl:for-each select="child::*">
<xsl:variable name="cur name" select="name()"/>
<xsl:text/>
<xsl:value-of select="name()"/>
<xsl:text>:</xsl:text>
<xsl:value-of select="count(../$cur name)"/>
<xsl:text/>
</xsl:for-each>
</xsl:message>
<xsl:apply-templates/>
</xhtml:ul>
</xsl:element>
</xsl:template>
<xsl:template match="wsiluddi:businessDescription">
<xsl:element name="xhtml:li">
<xsl:attribute name="class" select=
<xhtml:span class="element name">
<xsl:choose>
<xsl:when test="./@name">
<xsl:value-of select="./@name"/>
<xsl:text>(</xsl:text>BusinessDescription<xsl:text>)</xsl:text>
</xsl:when>
<xsl:otherwise>BusinessDescription</xsl:otherwise>
</xsl:choose>
</xhtml:span>
<xhtml:dl>
<xsl:call-template name="AMRA generate attribute defs"/>
<xsl:call-template name="AMRA generate namespace defs'">
<xsl:with-param name="context" select="."/>
</xsl:call-template>
</xhtml:dl>
<xhtml:ul>
<xsl:message>
<xsl:for-each select="child::*">
<xsl:variable name="cur name" select="name()"/>
<xsl:text/>
<xsl:value-of select="name()"/>
<xsl:text>:</xsl:text>
<xsl:value-of select="count(../$cur _name)"/>
<xsl:text/>
</xsl:for-each>
</xsl:message>
<xsl:apply-templates/>
</xhtml:ul>
</xsl:element>
</xsl:template>
<xsl:template match="wsiluddi:businessKey">
<xsl:element name="xhtml:li">
<xsl:attribute name="class" select="'wsiluddi businessKey'"/>
<xhtml:span class="element name">
<xsl:choose>
<xsl:when test="./@name">
<xsl:value-of select="./@name"/>
<xsl:text>(</xsl:text>BusinessKey<xsl:text>)</xsl:text>
</xsl:when>
<xsl:otherwise>BusinessKey</xsl:otherwise>
</xsl:choose>
</xhtml:span>
<xhtml:dl>
<xsl:call-template name="AMRA generate attribute defs"/>
<xsl:call-template name="AMRA generate namespace defs">
<xsl:with-param name="context" select="."/>

wsiluddi businessDescription'"/>

78

</xsl:call-template>
</xhtml:dl>
<xhtml:ul>
<xsl:message>
<xsl:for-each select="child::*">
<xsl:variable name="cur name" select="name()"/>
<xsl:text/>
<xsl:value-of select="name()"/>
<xsl:text>:</xsl:text>
<xsl:value-of select="count(../$cur name)"/>
<xsl:text/>
</xsl:for-each>
</xsl:message>
<xsl:apply-templates/>
</xhtml:ul>
</xsl:element>
</xsl:template>
<xsl:template match="wsiluddi:serviceDescription">
<xsl:element name="xhtml:li">
<xsl:attribute name="class" select=
<xhtml:span class="element name">
<xsl:choose>
<xsl:when test="./@name">
<xsl:value-of select="./@name"/>
<xsl:text>(</xsl:text>ServiceDescription<xsl:text>)</xsl:text>
</xsl:when>
<xsl:otherwise>ServiceDescription</xsl:otherwise>
</xsl:choose>
</xhtml:span>
<xhtml:dl>
<xsl:call-template name="AMRA generate attribute defs"/>
<xsl:call-template name="AMRA generate namespace defs">
<xsl:with-param name="context" select="."/>
</xsl:call-template>
</xhtml:dl>
<xhtml:ul>
<xsl:message>
<xsl:for-each select="child::*">
<xsl:variable name="cur name" select="name()"/>
<xsl:text/>
<xsl:value-of select="name()"/>
<xsl:text>:</xsl:text>
<xsl:value-of select="count(../$cur_name)"/>
<xsl:text/>
</xsl:for-each>
</xsl:message>
<xsl:apply-templates/>
</xhtml:ul>
</xsl:element>
</xsl:template>
<xsl:template match="wsiluddi:serviceKey">
<xsl:element name="xhtml:li">
<xsl:attribute name="class" select="'wsiluddi serviceKey'"/>
<xhtml:span class="element name">
<xsl:choose>
<xsl:when test="./@name">
<xsl:value-of select="./@name"/>
<xsl:text>(</xsl:text>ServiceKey<xsl:text>)</xsl:text>
</xsl:when>
<xsl:otherwise>ServiceKey</xsl:otherwise>
</xsl:choose>
</xhtml:span>
<xhtml:dl>
<xsl:call-template name="AMRA generate attribute defs"/>
<xsl:call-template name="AMRA generate namespace defs'>
<xsl:with-param name="context" select="."/>
</xsl:call-template>
</xhtml:d1l>
<xhtml:ul>

wsiluddi serviceDescription'"/>

79

<xsl:message>
<xsl:for-each select="child::*">
<xsl:variable name="cur name" select="name()"/>
<xsl:text/>
<xsl:value-of select="name()"/>
<xsl:text>:</xsl:text>
<xsl:value-of select="count(../$cur name)"/>
<xsl:text/>
</xsl:for-each>
</xsl:message>
<xsl:apply-templates/>
</xhtml:ul>
</xsl:element>
</xsl:template>
</xsl:stylesheet>

C.5 wsil-wsdl.xsl

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xhtml="http://www.w3.0rg/1999/xhtml"
xmlns:wsilwsdl="http://schemas.xmlsoap.org/wsil/wsdl/"
xmlns="http://www.w3.0rg/2001/XMLSchema"
version="2.0">
<xsl:strip-space elements="*"/>
<xsl:template match="wsilwsdl:referencedService">
<xsl:element name="xhtml:1li">
<xsl:attribute name="class" select=
<xhtml:span class="element name">
<xsl:choose>
<xsl:when test="./@name">
<xsl:value-of select="./@name"/>
<xsl:text>(</xsl:text>ReferencedService<xsl:text>)</xsl:text>
</xsl:when>
<xsl:otherwise>ReferencedService</xsl:otherwise>
</xsl:choose>
</xhtml:span>
<xhtml:d1l>
<xsl:call-template name="AMRA generate attribute defs"/>
<xsl:call-template name="AMRA generate namespace defs'>
<xsl:with-param name="context" select="."/>
</xsl:call-template>
</xhtml:dl>
<xhtml:ul>
<xsl:message>
<xsl:for-each select="child::*">
<xsl:variable name="cur name" select="name()"/>
<xsl:text/>
<xsl:value-of select="name()"/>
<xsl:text>:</xsl:text>
<xsl:value-of select="count(../$cur _name)"/>
<xsl:text/>
</xsl:for-each>
</xsl:message>
<xsl:apply-templates/>
</xhtml:ul>
</xsl:element>
</xsl:template>
<xsl:template match="wsilwsdl:implementedBinding">
<xsl:element name="xhtml:li">
<xsl:attribute name="class" select="'wsilwsdl implementedBinding'"/>
<xhtml:span class="element name">
<xsl:choose>
<xsl:when test="./@name">
<xsl:value-of select="./@name"/>
<xsl:text>(</xsl:text>ImplementedBinding<xsl:text>)</xsl:text>
</xsl:when>

wsilwsdl referencedService'"/>

80

<xsl:otherwise>ImplementedBinding</xsl:otherwise>
</xsl:choose>
</xhtml:span>
<xhtml:dl>
<xsl:call-template name="AMRA generate attribute defs"/>
<xsl:call-template name="AMRA generate namespace defs'">
<xsl:with-param name="context" select="."/>
</xsl:call-template>
</xhtml:dl>
<xhtml:ul>
<xsl:message>
<xsl:for-each select="child::*">
<xsl:variable name="cur name" select="name()"/>
<xsl:text/>
<xsl:value-of select="name()"/>
<xsl:text>:</xsl:text>
<xsl:value-of select="count(../$cur name)"/>
<xsl:text/>
</xsl:for-each>
</xsl:message>
<xsl:apply-templates/>
</xhtml:ul>
</xsl:element>
</xsl:template>
<xsl:template match="wsilwsdl:reference">
<xsl:element name="xhtml:li">
<xsl:attribute name="class" select="'wsilwsdl reference'"/>
<xhtml:span class="element name">
<xsl:choose>
<xsl:when test="./@name">
<xsl:value-of select="./@name"/>
<xsl:text>(</xsl:text>Reference<xsl:text>)</xsl:text>
</xsl:when>
<xsl:otherwise>Reference</xsl:otherwise>
</xsl:choose>
</xhtml:span>
<xhtml:dl>
<xsl:call-template name="AMRA generate attribute defs"/>
<xsl:call-template name="AMRA generate namespace defs">
<xsl:with-param name="context" select="."/>
</xsl:call-template>
</xhtml:dl>
<xhtml:ul>
<xsl:message>
<xsl:for-each select="child::*">
<xsl:variable name="cur name" select="name()"/>
<xsl:text/>
<xsl:value-of select="name()"/>
<xsl:text>:</xsl:text>
<xsl:value-of select="count(../$cur _name)"/>
<xsl:text/>
</xsl:for-each>
</xsl:message>
<xsl:apply-templates/>
</xhtml:ul>
</xsl:element>
</xsl:template>
</xsl:stylesheet>

81

Appendix D Converter

This appendix presents the XSLT code for the converter for mWSIL. For

brevity, the XSLT for the UDDI and XML Schema schemas have been omitted.

D.1 mwsil.xsl

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xhtml="http://www.w3.0rg/1999/xhtml"
version="2.0">
<xsl:param name="amra_index" select="1"/>
<xsl:param name="top element" select="'amra wsil inspection'"/>
<xsl:include href="amra.xsl"/>
<xsl:include href="mWSIL/inspection.xsl"/>
<xsl:include href="mWSIL/uddi.xsl"/>
<xsl:include href="mWSIL/wsil-uddi.xsl"/>
<xsl:include href="mWSIL/wsil-wsdl.xsl"/>
<xsl:include href="mWSIL/XMLSchema.xsl"/>
<xsl:strip-space elements="*"/>
<xsl:output method="xml" indent="yes"/>
</xsl:stylesheet>

D.2 amra.xsl

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xhtml="http://www.w3.0rg/1999/xhtml">

<!-- AMRA Specific Templates -->

<xsl:template match="/">
<xsl:message>Applying at root</xsl:message>
<xsl:apply-templates select="/xhtml:html/xhtml:body" />

</xsl:template>

<xsl:template match="/xhtml:html/xhtml:body">
<xsl:message>Applying in body</xsl:message>
<xsl:apply-templates

select=".//xhtml:ul[contains(concat(' ',@class,' '),' xoxo ')]" />
<xsl:apply-templates
select=".//xhtml:ol[contains(concat(' ',@class,' '),' xoxo ')I]" />
</xsl:template>
<xsl:template match="xhtml:ul[contains(concat(' ',@class,' '),' xoxo ')]">
<xsl:apply-templates select=".//xhtml:li[contains(concat(' ',@class,"
"),concat(' ',$top _element,' '))][$amra_index]"/>
</xsl:template>
<xsl:template match="xhtml:ol[contains(concat(' ',@class,' '),' xoxo ')]">
<xsl:apply-templates select=".//xhtml:li[contains(concat(' ',@class,"
"),concat(' ',$top _element,' '))][$amra_index]"/>

</xsl:template>

<xsl:template match="xhtml:ul">
<xsl:message>Applying in list</xsl:message>
<xsl:apply-templates select="./xhtml:li" />

</xsl:template>

<xsl:template match="xhtml:ol">
<xsl:message>Applying in list</xsl:message>
<xsl:apply-templates select="./xhtml:li" />

</xsl:template>

<!-- Ignore any text that might be present (Any thing that we need will still
used) -->

be

82

<xsl:template match="xhtml:li/text()"></xsl:template>
<xsl:template match="xhtml:span/text()"></xsl:template>
<xsl:template match="xhtml:dd/text()"></xsl:template>
<xsl:template match="xhtml:dt/text()"></xsl:template>

<!-- OQutput text node -->

<xsl:template match="xhtml:li[contains(@class, 'text')]">
<xsl:value-of select="." />

</xsl:template>

<!-- Process namespaces -->
<xsl:template name="AMRA process namespaces">

<xsl:param name="ns node" />

<!-- match="xhtml:dd[contains(concat(' ',normalize-space(@class),' '),"'

amrans ')]"> -->
<xsl:for-each select="$ns node/*/xhtml:dd[contains(@class, 'amrans')]">
<xsl:variable name="prefix">
<xsl:variable name="spaced class"

select="concat(' ',normalize-space(@class),' ')" />
<xsl:value-of
select="substring-before(substring-after($spaced class,' amrans '),"' ')"

</xsl:variable>
<xsl:message>
<xsl:text>Prefix:</xsl:text>
<xsl:value-of select="$prefix" />
<xsl:text>:</xsl:text>
<xsl:value-of select="." />
</xsl:message>
<xsl:choose>
<xsl:when test="'Default' ne $prefix">
<xsl:namespace name="{$prefix}" select="." />
</xsl:when>
<xsl:otherwise>
<xsl:namespace name="" select="." />
</xsl:otherwise>
</xsl:choose>
</xsl:for-each>
</xsl:template>

<!-- Process attributes from dds -->
<xsl:template name="AMRA process dd attr">
<xsl:for-each select="./xhtml:dl/xhtml:dd[@class]">
<xsl:choose>
<xsl:when test="not(contains(@class, 'amrans'))">
<xsl:variable name="attribute">
<xsl:call-template name="convert class name">
<xsl:with-param name="class_name"
select="./@class" />
</xsl:call-template>
</xsl:variable>
<xsl:variable name="namespace">

<xsl:variable name="prefix" select="substring-before($attribute,':"')"/>
<xsl:choose>
<xsl:when test="$prefix eq ''">
<xsl:value-of select="'"'"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="namespace-uri-for-prefix($prefix,.)"/>
</xsl:otherwise>
</xsl:choose>
</xsl:variable>
<xsl:message><xsl:text>Attribute: </xsl:text><xsl:value-of
select="¢$attribute"/></xsl:message>
<xsl:message><xsl:text>Namespace: </xsl:text><xsl:value-of
select="$namespace"/></xsl:message>
<xsl:attribute name="{$attribute}" namespace="{$namespace}">
<xsl:value-of select="." />
</xsl:attribute>

83

</xsl:when>
<xsl:otherwise>

<!-- In this case, we have come to a amrans class, so process it! -->

<xsl:call-template name="AMRA process namespaces">
<xsl:with-param name="ns_node" select="." />
</xsl:call-template>
</xsl:otherwise>
</xsl:choose>
</xsl:for-each>
</xsl:template>

<xsl:template name="AMRA dd attr">
<xsl:param name="class" />
<xsl:variable name="attribute">
<xsl:call-template name="convert class name">
<xsl:with-param name="class name" select="$class" />
</xsl:call-template>
</xsl:variable>
<xsl:if test="./xhtml:dl/xhtml:dd[contains(@class,$class)]">
<xsl:attribute name="{$attribute}">
<xsl:value-of
select="./xhtml:dl/xhtml:dd[contains(@class, $class)]" />
</xsl:attribute>
</xsl:if>
</xsl:template>
<xsl:template name="convert class name">
<xsl:param name="class name" />
<!-- First, take off the first part of the attribute name (from amra_and
earlier) -->
<xsl:variable name="class sans amra"
select="substring-after($class name, 'amra_')" />
<!-- Now, get rid of anything afterwards -->
<xsl:variable name="unconverted attribute name">
<xsl:choose>

<xsl:when test="contains($class sans amra,' ')">
<!-- There is a space, so there is another class -->
<xsl:value-of
select="substring-before($class _sans amra,' ')" />

</xsl:when>
<xsl:otherwise>
<!l-- If there is no space, then this is it -->
<xsl:value-of select="$class sans amra" />
</xsl:otherwise>
</xsl:choose>
</xsl:variable>
<xsl:variable name="prefix"
select="substring-before($unconverted attribute name,' ')" />
<xsl:variable name="post prefix">
<xsl:choose>

<xsl:when
test="contains($unconverted attribute name,' ')">
<xsl:value-of
select="substring-after($unconverted attribute name,' ')" />

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="$unconverted attribute name" />
</xsl:otherwise>
</xsl:choose>
</xsl:variable>
<xsl:choose>
<xsl:when test="$prefix eq ''">
<xsl:value-of select="$post prefix" />
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="concat($prefix,':"',$post prefix)" />
</xsl:otherwise>
</xsl:choose>
</xsl:template>
</xsl:stylesheet>

D.3 inspection.xsl

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xhtml="http://www.w3.0rg/1999/xhtml"
xmlns:wsil="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
version="2.0">
<xsl:template match="xhtml:1li[contains(concat(' ',normalize-space(@class),'
")," wsil abstract ')][$amra_index]">
<xsl:element name="wsil:abstract"
namespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/">
<xsl:call-template name="AMRA process dd attr"/>
<xsl:apply-templates/>
</xsl:element>
</xsl:template>
<xsl:template match="xhtml:li[contains(concat(' ',normalize-space(@class),'
")," wsil name ')][$amra_index]">
<xsl:element name="wsil:name"
namespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/">
<xsl:call-template name="AMRA process dd attr"/>
<xsl:apply-templates/>
</xsl:element>
</xsl:template>
<xsl:template match="xhtml:li[contains(concat(' ',normalize-space(@class),"
"),' wsil description ')][$amra_index]">
<xsl:element name="wsil:description"
namespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/">
<xsl:call-template name="AMRA process dd attr"/>
<xsl:apply-templates/>
</xsl:element>
</xsl:template>
<xsl:template match="xhtml:1li[contains(concat(' ',normalize-space(@class),'
wsil inspection ')][$amra_index]">
<xsl:element name="wsil:inspection"
namespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/">
<xsl:call-template name="AMRA process dd attr"/>
<xsl:apply-templates/>
</xsl:element>
</xsl:template>
<xsl:template match="xhtml:li[contains(concat(' ',normalize-space(@class),"
wsil service ')][$amra_index]">
<xsl:element name="wsil:service"
namespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/">
<xsl:call-template name="AMRA process dd attr"/>
<xsl:apply-templates/>
</xsl:element>
</xsl:template>
<xsl:template match="xhtml:li[contains(concat(' ',normalize-space(@class),"
"), wsil link ')][$amra_index]">
<xsl:element name="wsil:link"
namespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/">
<xsl:call-template name="AMRA process dd attr"/>
<xsl:apply-templates/>
</xsl:element>
</xsl:template>
</xsl:stylesheet>

~

~

D.4 wsil-uddi.xsl

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xhtml="http://www.w3.0rg/1999/xhtml"
xmlns:wsiluddi="http://schemas.xmlsoap.org/ws/2001/10/inspection/u
ddi/"
version="2.0">

85

~

i/">

~

i/">

~

i/">

~

i/u>

~

i/">

<xsl:template match="xhtml:li[contains(concat(' ',normalize-space(@class),"
wsiluddi discoveryURL ')][$amra_index]">
<xsl:element name="wsiluddi:discoveryURL"
namespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/udd

<xsl:call-template name="AMRA process dd attr"/>
<xsl:apply-templates/>
</xsl:element>
</xsl:template>
<xsl:template match="xhtml:li[contains(concat(' ',normalize-space(@class),"
wsiluddi businessDescription ')][$amra_ index]">
<xsl:element name="wsiluddi:businessDescription"
namespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/udd

<xsl:call-template name="AMRA process dd attr"/>
<xsl:apply-templates/>
</xsl:element>
</xsl:template>
<xsl:template match="xhtml:li[contains(concat(' ',normalize-space(@class),"
wsiluddi businessKey ')][$amra_index]">
<xsl:element name="wsiluddi:businessKey"
namespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/udd

<xsl:call-template name="AMRA process_dd_attr"/>
<xsl:apply-templates/>
</xsl:element>
</xsl:template>
<xsl:template match="xhtml:li[contains(concat(' ',normalize-space(@class),"
wsiluddi serviceDescription ')][$amra_index]">
<xsl:element name="wsiluddi:serviceDescription"
namespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/udd

<xsl:call-template name="AMRA process dd attr"/>
<xsl:apply-templates/>
</xsl:element>
</xsl:template>
<xsl:template match="xhtml:li[contains(concat(' ',normalize-space(@class),'
wsiluddi serviceKey ')][$amra_index]">
<xsl:element name="wsiluddi:serviceKey"
namespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/udd

<xsl:call-template name="AMRA process dd attr"/>
<xsl:apply-templates/>
</xsl:element>
</xsl:template>
</xsl:stylesheet>

D.5 wsil-wsdl.xsl

|)'|

|)'|

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xhtml="http://www.w3.0rg/1999/xhtml"
xmlns:wsilwsdl="http://schemas.xmlsoap.org/wsil/wsdl/"
version="2.0">
<xsl:template match="xhtml:li[contains(concat(' ',normalize-space(@class),"
wsilwsdl referencedService ')][$amra_index]">
<xsl:element name="wsilwsdl:referencedService"
namespace="http://schemas.xmlsoap.org/wsil/wsdl/">
<xsl:call-template name="AMRA process dd_attr"/>
<xsl:apply-templates/>
</xsl:element>
</xsl:template>
<xsl:template match="xhtml:li[contains(concat(' ',normalize-space(@class),"
wsilwsdl _implementedBinding ')][$amra_index]">
<xsl:element name="wsilwsdl:implementedBinding"
namespace="http://schemas.xmlsoap.org/wsil/wsdl/">
<xsl:call-template name="AMRA process dd attr"/>

86

<xsl:apply-templates/>
</xsl:element>
</xsl:template>
<xsl:template match="xhtml:li[contains(concat(' ',normalize-space(@class),"
")," wsilwsdl reference ')][$amra_index]">
<xsl:element name="wsilwsdl:reference"
namespace="http://schemas.xmlsoap.org/wsil/wsdl/">
<xsl:call-template name="AMRA process dd attr"/>
<xsl:apply-templates/>
</xsl:element>
</xsl:template>
</xsl:stylesheet>

87

Appendix E Other Software

The registry Web application is implemented using Apache Tomcat 5.5
[Apache Software Foundation]. WSDL and WSIL documents are represented
internally using WSDL4J and WSIL4]J. The several JSPs involved in the Web
application use custom tags to separate, in some degree, the presentation from
the business logic. To utilize XSLT 2.0 and XPath 2.0, this application also uses
the Saxon B [Kay] open source XSLT engine. In some places hCard support is
needed - for this an XSLT transform [Suda], mentioned on the microformats.org
hCard site, is used. To provide search capabilities, the Apache Lucene [Apache

Software Foundation] Java search engine is used.

88

Bibliography

Adamopoulos, D, et al. 1999. Distributed Object Platforms in
Telecommunications: A Comparison between DCOM and CORBA. British
Telecommunications Engineering Journal 18, 2, 43-49.

Amazon. Alexa Top Sites. http://aws.amazon.com/alexatopsites.

Apache Software Foundation. Axis User's Guide.
http://ws.apache.org/axis/java/user-guide.html.

Apache Software Foundation. Apache Lucene. http://lucene.apache.org/.
Apache Software Foundation. Apache Tomcat. http://tomcat.apache.org/.

Appnel, T. 2002. An Introduction to WSIL. Onjava.com.
http://www.onjava.com/pub/a/onjava/2002/10/16/wsil.html. Accessed on 1
September 2005.

Ballinger, K, et al. 2001. Web Services Inspection Language (WS-Inspection) 1.0.
IBM DeveloperWorks. http://www-
128.ibm.com/developerworks/library/specification/ws-wsilspec/. Accessed on 1
September 2005.

Bloomberg, J. 2004. UDDI: Straw Man Or Ugly Duckling?
SearchWebServices.com.
http://searchwebservices.techtarget.com/originalContent/0,289142,sid26_gci99048
8,00.html. Accessed on 1 September 2005.

Campbell, A. T., Coulson, G., and Kounavis, M. E. 1999. Managing Complexity:
Middleware Explained. IT Professional 1, 5, 22-28.

Celik, T. 2004. Extensible Open XHTML Outlines.
http://microformats.org/wiki/xoxo_. Microformats.org.

Celik, T. 2005a. So You Wanna Develop a New Microformat? Microformats.org.
http://microformats.org/wiki/process. Accessed on 1 September 2005.

Celik, T., Meyer, E. A., and Mullenweg, M. 2005b. XHTML Meta Data Profiles.
WWW ‘05: Special Interest Tracks and Posters of the 14th International Conference on
World Wide Web (Chiba, Japan). ACM Press, New York, 994-995.

Celik, T. 2006. hCard. http://microformats.org/wiki/hcard.

Chinnici, R., Moreau, J., Ryman, A., and Weerawarana, S. 2005. Web Services
Description Language (WSDL) Version 2.0 Part 1: Core Language. W3C .
http://www.w3.0org/TR/2005/WD-wsd120-20050803/. Accessed on 13 September
2005.

89

http://microformats.org/wiki/xoxo
http://tomcat.apache.org/

Clement, L., Hately, A., von Riegen, C., and Rogers, T. 2004. UDDI Version
3.0.2. OASIS Open.

Dawson, F., Howes, T. 1998. vCard MIME Directory Profile. The Internet
Society. http://www ietf.org/rfc/rfc2426.txt.

Dawson, F., Stenerson, D. 1998. Internet Calendaring and Scheduling Core
Object Specification (iCalendar). The Internet Society.
http://www ietf.org/rfc/rfc2445.txt.

Gisolfi, D. 2001. Web Services Architect, Part 1: An Introduction to Dynamic e-
Business. IBM DeveloperWorks. http://www-
106.ibm.com/developerworks/webservices/library/ws-arcl/. Accessed 1
September 2005.

Google A. Google Web APIs. http://www.google.com/apis/.

Google B. Google Web Search Features.
http://www.google.com/help/features.html.

Hoschek, W. 2002. The Web Service Discovery Architecture. In Proceedings of
the 2002 ACM/IEEE conference on Supercomputing (Baltimore, MD). IEEE
Computer Society Press, Los Alamitos, CA, 1-15.

Invesbot. CompanySearch. http://ws.invesbot.com/companysearch.asmx.

Kay, M. Saxon: The XSLT and XQuery Processor. http://saxon.sourceforge.net/.

Kay, M. 2005. XSL Transformations (XSLT) Version 2.0.
http://www.w3.org/TR/xslt20/. World Wide Web Consortium.

Kreger, H. 2003. Fulfilling the Web Services Promise. Communications of the
ACM 46, 6, 29-34.

Liang, Q., Su, S.Y.W,, Li, H., and Chung, J.-Y. 2003. A united approach to
discover multimedia Web services. In Proceedings. Fifth International Symposium
on Multimedia Software Engineering, 2003. IEEE, 62-69.

Lemahieu, W. 2001. Web Service Description, Advertising, and Discovery:
WSDL and Beyond. New Directions in Software Engineering (Eds. |. Vandenbulcke
and M. Snoeck), First ed., Leuven University Press, Leuven, Belgium. 135-152.

microformats.org A. About Microformats. http://microformats.org/about/.
Accessed on 1 September 2005.

microformats.org B. Search Results — Example.
http://microformats.org/wiki/search-results-example.

microformats.org C. XHTML-REST Brainstorming.

90

http://www.w3.org/TR/xslt20/
http://www.google.com/apis/
http://www.ietf.org/rfc/rfc2445.txt
http://www.ietf.org/rfc/rfc2426.txt

http://microformats.org/wiki/rest-brainstorming.

Miles, S., Papay, J., Dialani, V., Luck, M., Decker, K., Payne, T., and Moreau, L.
2003. Personalised Grid service Discovery. Software, IEE Proceedings 150, 4, 252-
256 .

Mimoso, M. S. 2004. Insurance that SOA Works. SearchWebServices.com.
http://searchwebservices.techtarget.com/original Content/0,289142,sid26_gci10300
44,00.html. Accessed 1 September 2005.

Modi, T. 2002. WSIL: Do we need another Web Services Specification?
WebServices Architect.com.

http://www.webservicesarchitect.com/content/articles/modi0Ol.asp. Accessed on
10 June 2005.

Nagy, W. and Ballinger, K. 2001. The WS-Inspection and UDDI Relationship.
IBM DeveloperWorks . http://www-
128.ibm.com/developerworks/webservices/library/ws-wsiluddi.html. Accessed
on 13 September 2005.

Narayanan, S, and Mcllraith, S. 2002. Simulation, Verification, and Automated
Composition of Web Services. In Proceedings of the 11" International conference on
World Wide Web . ACM Press, New York, 77-88.

Peeters, J. 2003. WSDL Tales from the Trenches, Part 1. O’Reilly
webservices.xml.com. http://webservices.xml.com/pub/a/ws/2003/05/27/wsdl.html.
Accessed on 1 September 2005.

Rodgers, K. 2003. UDDI finds a role after all. LooselyCoupled.com.
http://www looselycoupled.com/stories/2003/uddi-role-infr0220.html. Accessed
on 10 September 2005.

Suda, B. X2V. http://suda.co.uk/projects/X2V/.
Yahoo. Search Services. http://tools.search.yahoo.com/about/forsearchers.html.

Yu, J, and Zhou, G. 2004. Dynamic Web service invocation based on UDDI. In
E-Commerce Technology for Dynamic E-Business, 2004. IEEE International Conference
on . 154-157.

91

http://suda.co.uk/projects/X2V/
http://microformats.org/wiki/rest-brainstorming

	A Microformatted Registry Alternative
	BYU ScholarsArchive Citation

	Title Page
	Copyright Page
	Department Approval Form
	University Approval Form
	Abstract
	Acknowledgments
	Table of Contents
	Table of Figures
	Chapter 1 Introduction
	1.1Registries
	1.1.1UDDI
	1.1.2WSIL
	1.1.3Ad-hoc

	1.2Problem Statement
	1.3Thesis Statement
	1.4Thesis Organization

	Chapter 2 Background
	2.1XML
	2.2XSD
	2.3XHTML
	2.4XSLT
	2.5Microformats
	2.6WSDL

	Chapter 3 Related Work
	3.1Web services
	3.2Microformats

	Chapter 4 Shortcomings of Existing Registries
	4.1UDDI
	4.1.1Information Centralization
	4.1.2Human Readability
	4.1.3Aggregation

	4.2WSIL
	4.2.1Meta Information
	4.2.2Human Readability
	4.2.3Standardization

	4.3Ad-hoc
	4.3.1Standardization
	4.3.2Aggregation

	4.4Summary

	Chapter 5 AMRA Architecture and Overview
	Chapter 6 AMRA Microformat
	6.1Base Microformat
	6.2Microformat Structure
	6.2.1Root
	6.2.2Elements
	6.2.3Text elements
	6.2.4Attributes
	6.2.5Namespaces
	6.2.6Class names

	6.3Additional information
	6.4Examples

	Chapter 7 Converter and Generator
	7.1Background
	7.2XSLT-based Implementation
	7.2.1Generator
	7.2.2Converter

	7.3Converter Service

	Chapter 8 Search Engine
	8.1Overview
	8.2Crawler
	8.3Indexer
	8.4Searcher

	Chapter 9 Demonstration
	9.1Populating the search index
	9.2Searching the Index
	9.3Integration

	Chapter 10 Analysis of AMRA
	10.1Advantages of a Microformat
	10.1.1Readability
	10.1.2Patterns

	10.2Resolution of Shortcomings
	10.2.1Information Centralization and Aggregation
	10.2.2Supporting Information
	10.2.3Human Readability
	10.2.4Standardization
	10.2.5Summary

	Chapter 11 Conclusion and Future Work
	11.1Future Directions
	11.2Summary

