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Abstract: Advances in experimental methods for determination of the geometrically-
necessary dislocation (GND) tensor, based on electron backscattering diffraction, are 
described. Data are presented for directionally-solidified 99.999% Aluminum possessing a 
strong <001> columnar texture, with the primary focus being the interactions of the plastic 
deformation field with grain boundaries. Alternate methods of solving for the GND content 
are illustrated and compared. Implications of the observations for strain-gradient plasticity 
theory are discussed. 
 

1. Introduction 
 
Historically, experimental observation has shown that the constituent grains of 
polycrystalline materials develop complex patterns of heterogeneity over a wide range of 
length scales during plastic deformation.  The classical theory of crystal plasticity, however, 
is limited to those interactions arising from the enforcement of mechanical compatibility [1]. 
It is evident that an understanding of the behavior of grain boundaries, and how they interact 
with deformation mechanisms as they change their structure to accommodate deformation, 
has been missing.  These interactions are anticipated to set the necessary length scale(s) as 
discussed in the context of strain and gradient plasticity [2] and as seen clearly in the Hall-
Petch relationship. 
 
Recent work has shown that utilizing information obtained by electron backscattering 
diffraction (EBSD) and the use of Orientation Imaging Microscopy (OIM), which provides 
automated scanning measurements of the lattice orientation near grain boundaries may be a 
useful experimental technique to help provide this length scale.  Computing the lattice 
curvature from these orientation measurements and consequently relating this curvature to 
estimates of the geometrically necessary dislocation (GND) density provides a promising 
experimental vehicle for the study of plasticity in crystalline materials [3].  The primary 
driving force behind the work presented here is to further exploit this experimental method by 
investigating the most reliable GND estimation method.  
 

2. Theoretical 
 

2.1. Basic Relationships  
 
GND, from a continuum perspective, are the dislocations that are required to support a 
particular curvature in the crystallographic lattice at any given point in a deformed structure 
[4]. The fundamental equation of continuum dislocation theory establishes a link between the 
elastic distortion tensor βe and the dislocation tensor α  [5]: 
 

α = curl β e  .         (1) 
 



Relating the dislocation tensor to the curvature of the elastic strain and lattice orientation [3] 
yields the following simplified form: 
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where eikl are components of the permutation tensor, εe

jl,k the infinitesimal elastic strain 
gradient, and gjl,k the gradient in lattice orientation.  In the absence of long-range elastic stress 
fields, Nye’s original formulation of the dislocation tensor is retrieved [6]: 
 
 αij = eiklg jl,k          (3) 
 
Equation (3) then provides a direct relationship between the measured crystallographic 
orientation gradient and the dislocation tensor.  Nye’s work also highlighted a precise 
connection between the dislocation tensor and the local dislocation network: 
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where the sum is over all the dislocation types present in the material, ρk denotes the density 
of the dislocation of type k, and bk and z ˆ k  denote the Burger’s vector and unit line direction 
of the specific dislocation type.  Since Nye originally solved this relation for the trivial case 
of the dislocation systems of a simple cubic lattice, the mathematical problem posed was a 
system of nine linear equations with nine unknown densities.   
 
Since the face-centered lattice of Aluminum presents twelve unique { }110111 slip systems, 
each with three dislocations (1 screw and 2 edge), application of equation (4) to this crystal 
lattice alters the problem to one of an underdetermined set of nine equations with thirty-six 
unknown densities.  It is then evident that an appropriate method for solving this problem is 
needed. The next two subsections describe a previously illustrated method [3], which 
computationally relies on the simplex method of linear programming, as well as a more 
recently adapted method related to the Normal Equations. 
 
2.2. Lower-bound fcc deconstruction 
 
Since k in equation (4) describes the type of dislocation, and the term b  is simply the 

dyadic (which provides the geometric definition of k) we can then define the set ∆ 
that describes all the dislocations in the fcc lattice as follows: 
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Now, despite the underdetermined nature of the problem, we can consider only the set of nine 
dislocations, such that ∆∆ ⊂' , that yield a ‘lower bound’ solution by coupling equation (4) 
with the following condition: 
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where ρGND is the sum of all individual dislocation densities. To computationally determine 
the set ∆’, the Simplex method [7] is carried out with the sum of all the dislocation densities 
used as the objective function to be minimized, effectively integrating equation (4) with the 
constraints of (6). 
 
2.3. Normal equation lower bound 
 
For this calculation, we begin by mapping the dislocation tensor α into vector form: 
 
 lij αα = ,   i=1,3,  j=1,3,  and l=1,9     (7) 
 
such that each element of αl represents a unique element of αij. With this, we can express 
equation (4) in the standard form of a linear equation. 
 
 klkl A ρα =    l=1,9 and k=1,36      (8) 
 
where k represents the dislocation system, and each element of the matrix A represents the 
component (i,j) of the dyadic b  corresponding to the mapping of (7) from l to i and j.  
We shall hereafter omit the indices to rewrite relation (8) as 

kk ẑ⊗
α = Aρ .  Setting ρ = AT u , we 

then convert the system into a set of normal equations via the method of Kaczmarz [8]: 
 

   ρ = AT AAT( )−1
α       (9) 

 
Thus, solving for u sets up the direct solution for ρ.  Explicitly, (9) represents the set of 
normal equations for the least squares problem: 
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where ρ* represents any solution to the original underdetermined problem. Since by 
definitionρ = AT u , equation (10) then finds the set of dislocation densities ρ closest to ρ* in 
the 2-norm sense. The strength of this method is that it does not artificially limit the number 
of non-zero dislocation densities to nine as in the Simplex method, which indirectly indicates 
that only nine dislocations can be responsible for the observed dislocation tensor. Rather, it 
returns the dislocation densities of all thirty-six dislocations with the minimum total density, 
and as such is believed to be a more accurate representation of a lower-bound solution. 
 

3. Experimental 
 
Cylindrical samples were cut from a directionally solidified, high purity (5N) aluminum 
ingot. Wire Electrical Discharge Machining was used in order to minimize any deformation 
that could occur during machining. The samples were cut so their cylindrical axis was 
parallel to the solidification axis, and the resulting microstructure consisted of long, columnar 
grains with the <001> crystallographic axis parallel to the columnar direction and diameters 
between 1 and 3 mm.   
 
 



The columnar nature of the sample is critical to the experiment in that it permits the critical 
assumption that the lattice curvature into the characterized plane of the sample is negligible 
relative to the in-plane curvature: gjl,3≅ 0. The principal limitation being addressed with the 
preparation of columnar microstructures is the electron opacity of crystalline materials, and 
hence the lack of direct calculation of the in-plane curvature. Given that only components of 
the form gjl,1 and gjl,2 are experimentally accessible by electron diffraction, unless gjl,3 = 0 it is 
only possible to recover three of the nine components αij of the dislocation tensor.  
 
Deformation was carried out using uniaxial compression tests at set strain levels, with the 
compression axis parallel to the cylindrical axis of the sample (and columnar axis of the 
grains). Specimen preparation was performed on a Logitech PM5 with a 3µm Alumina lap 
followed by a 0.02µm Silica polish. Pressure on the sample was finely controlled in order to 
ensure that no added deformation was imparted to the sample during the preparation phase. 
 
Following the specimen preparation, spatial crystallographic orientation information was then 
obtained across high angle grain boundaries using an automated OIM system coupled to a 
FEGSEM. Orientation information was collected around grain boundaries in a square grid 
with 500nm steps.  Typical grid sizes were on the order of 200 x 200µm2. Using similar 
methods to those previously reported [9], the accuracy of orientation measurement was found 
to affect the results reported in the next section by approximately 5%. 

 
4. Results 

 
Datasets obtained from compressed samples were examined in the context described above, 
and both the lower-bound fcc deconstruction (LB) as well as the normal equation lower-
bound fcc deconstruction (NELB) calculations were performed and compared. Fig. 1 below 
represents a sample dataset across a high angle grain boundary, where the lighter the 
grayscale the closer the crystallographic <001> is to the surface normal. It is clear that 
orientation variations in the grain to the right of the boundary are more frequent and more 
abrupt. It is worth mentioning here that the diameter of the grain to the right of the boundary 
is approximately 2mm, while for the grain on the left it is double that at nearly 4mm, 
indicating that a size effect may come into play. 
 

 
 

Fig. 1. Crystal orientation plot. Lighter grayscale indicates orientation closer to crystallographic <001>. 
 
In order to calculate the orientation gradient, we first apply all 24 proper symmetry operators 
to each data point such that the misorientation angle between it and its neighbors is 



minimized. This calculation is performed in order to ensure that all the computed orientation 
gradients were not artificially inflated by taking into account all physically equivalent, yet 
computationally different, orientations that may arise. Once the orientation gradient, and 
hence the Nye tensor is calculated, we can plot this as shown in Fig. 2 to get a feel for where 
the gradients are strongest.  The L-2 norm is calculated for the tensor at each point, and the 
values are normalized such that all values fit between 0 and 1. The orientation gradient across 
the grain boundary is ignored in this calculation. By comparing Figs. 1 and 2, it is clear that 
areas with a large amount of lattice curvature seen in Fig. 1 correspond directly to the areas 
with high orientation gradient in Fig. 2. By applying the techniques described in Sections 
(2.1-3) to the computed gradient, we can now back out the GND densities 
 
 

 
 

Fig. 2. Normalized L-2 norm of the orientation gradient.  
 
The twelve systems used are defined following Reid [10], and their associated individual 
dislocations used as input into the LB and NELB calculations. The results of these 
calculations are shown in the grayscale plots of Fig. 3.  
 
 

 
 

Fig.3. (a) ρGND estimate using the lower-bound fcc deconstruction (LB) and,  
(b) ρGND estimate using the normal equation lower bound (NELB) 

 
 
The first apparent difference is in the value of the GND estimate, with the NELB method 
yielding a maximum ρGND one-fifth the magnitude of the LB calculation. The second 
difference is in the grayscale pattern that emerges. Examination shows that the result from the 



LB calculation tends to be more “noisy”, in that the magnitude of the dislocation densities 
does not vary as smoothly and on occasion is intermittent when crossing a region with high 
orientation gradient. In this regard, the NELB method correlates better when compared to the 
Nye tensor calculation in Fig. 2. 
 
Another important aspect of this comparison is the type of dislocations. Since both 
calculations return the density for individual dislocations, a correlation between the solutions 
of both methods can be constructed. The correlation used considers the five slip systems with 
the highest total dislocation density at each point of both solutions, so that the resultant 
systems from the LB solution are compared to those from the NELB solution, and a 
percentage overlap is recorded  (Note: the number of five systems is chosen for later 
comparison to the active systems as predicted by Taylor’s theory). Repeating this for the 
whole scan area has yielded a net overlap of 71%. This means that both methods tend to 
predict the same highly active systems 71% of the time, and the difference may be due to the 
intermittent quality of the LB solution as discussed above.  
 

5. Summary and Discussion 
 
The overarching trends in the observations of GND pileups near grain boundaries in <001> 
columnar Aluminum, deformed in compression, are similar to those reported for deformed 
Aluminum bicrystals [3]: (1) Curvature of the lattice, associated with geometrically-
necessary dislocations, tends to accumulate near grain boundaries over distances that extend a 
substantial fraction (~25%) of the crystallite size (grain size in the present study); and (2) 
these GND pileups are sensitive to the crystallographic parameters of grain boundary 
character, and they often present an asymmetrical aspect – with one side carrying much 
greater curvature than the other.   
 
Reconsideration of the LB methodology, applied in the original work, leads to the conclusion 
that previous estimates of the required GND densities were over-estimated, although the 
general trends and length scales remain as reported [3].  The application of normal equations 
to the recovery algorithm (NELB) has the effect of spreading the curvature over larger sets of 
GNDs, with the effect of relaxing the overall required densities by a factor of ~5 and thus 
providing what is believed to be a more representative lower bound ρGND estimate.  The exact 
nature of this relaxation is not well understood at this time, and in conjunction with other 
physical aspects of plastic deformation such as the Schmid and Taylor factors pertinent to the 
imposed deformation, is the subject of current study.  
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