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ABSTRACT

CHARACTERIZING DYNAMIC POWER AND DATA RATE POLICIES FOR

WIRELESSUSB NETWORKS

Jeffrey L. Barlow

Department of Computer Science

Master of Science

Wireless communication is increasingly ubiquitous. However, mobility de-

pends intrinsically on battery life. Power can be conserved at the Media Access Con-

trol (MAC) layer by intelligently adjusting transmission power level and data rate

encoding. WirelessUSB is a low-power, low-latency wireless technology developed by

Cypress Semiconductor Corporation for human interface devices such as keyboards

and mice. WirelessUSB devices conserve power by employing power-efficient hard-

ware, dynamic power level adjustment and dynamic data rate adjustment.

We characterize the effects on power consumption of dynamically adjusting

node power using two dynamic power negotiation techniques as well as two reac-

tive techniques. We also characterize the effects of dynamically adjusting data rate

using three rate adjustment techniques. We further characterize the effects of collab-

oratively adjusting both power and data rate. We validate our techniques through

simulation and find that such collaboration yields the greatest energy conservation

for a wide variety of conditions and usage models.
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Chapter 1

Introduction

1.1 Background

Wireless communication is increasingly ubiquitous. However, mobility de-

pends intrinsically on battery life. Power can be conserved at the physical layer via

efficient, adjustable hardware and at the Media Access Control (MAC) layer by in-

telligently adjusting transmission power levels. Power consumption is also dependent

on the rate of communication. If the time to transmit a given message is reduced,

energy is conserved because the transmitter is active for a shorter period of time [1].

Most modern wireless technologies specify multiple data rates and power levels.

However, few performance analysis studies have been conducted to determine the

optimal approach to managing these parameters.

Prior to this research, the precise interplay between power adjustment and

rate adjustment in power conservation for a WirelessUSB device was unknown. If

a transmission fails (due to interference or node movement) it was unknown what

should be adjusted to guarantee success on a subsequent transmission. Should the

rate be adjusted, the power increased, or both? These two important factors are

interrelated, and both are adjustable in a WirelessUSB device. We demonstrate that

optimum mechanisms for adjusting the transmission power and data rate can be

combined to produce even greater savings for WirelessUSB devices.

1



1.2 Thesis Statement

We characterize the power consumption effects of dynamically adjusting node

power and data rate within the WirelessUSB transceiver and protocol. This research

discovers the benefits and problems of various adjustment techniques within the con-

text of WirelessUSB.

We demonstrate that RSSI sensing and link quality assessment can effectively

control power usage; that beaconing, SNR Threshold Adaptation, and link quality

assessment can effectively control data rate; and that such algorithms can be combined

to further reduce power consumption for WirelessUSB devices.

1.3 Thesis Layout

This thesis comprises four stand-alone papers that build on each other to

collectively address the stated goal of this research.

Chapter 2 is a paper entitled Characterizing Dynamic Power Optimiza-

tion Policies for the WirelessUSB Protocol . The research results demonstrate

the effectiveness of employing power negotiation policies for various interface devices

and remote controls in reducing power consumption by up to 50%. These results

assume no interference nor loss of communication, and are in the context of one

single-hop connection.

Chapter 3 is a paper entitled Minimizing Power Consumption for Dense

WirelessUSB Networks . The research approach described in this paper relaxes in-

terference constraints and extends our previous work to many-to-one (N:1) single-hop

connections. These results demonstrate effectiveness in conserving energy through re-

active power policies.

Chapter 4 is a paper entitled Characterizing Dynamic Data Rate Poli-

cies for WirelessUSB Networks . The research described in this paper explores

dynamic data rate policies in the context of a constant power level. These results

demonstrate the effectiveness of several data rate adjustment techniques.

Chapter 5 is a technical report entitled Maximizing Battery Life of Wire-

lessUSB Devices Using Dynamic Power and Data Rate Policies in which

2



the optimal policies for power and data rate adjustment are combined in order to

further increase performance.

Appendix A provides an overview of the simulation model as well as selections

of source code written to facilitate the experiments in this thesis.

3
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Chapter 2

Characterizing Dynamic Power

Optimization Policies for the

WirelessUSB Protocol

The WirelessUSB1 protocol provides low-power wireless connectivity for pe-

ripheral devices and sensor applications. Dynamic policies for the WirelessUSB pro-

tocol enable devices to conserve power by operating at the lowest power level necessary

for communication. Simulation results show that a power savings of as much as 50%

can be achieved via dynamic power management policies.

2.1 Introduction

Wireless communication is increasingly ubiquitous, with mobility dependent

on battery life. Efficient power management is essential to the usefulness of wireless

devices.

This paper characterizes the benefits of employing power optimization policies,

using the WirelessUSB protocol as a case study. WirelessUSB is a low-power wireless

technology, employing both power-efficient hardware and dynamic power levels.

The rest of this paper is organized as follows. Section 2.2 discusses other low-

power wireless technologies and related research on power management. Section 2.3

1 WirelessUSB is a trademark of Cypress Semiconductor Corporation.
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discusses methods of power negotiation. Performance metrics used in the evaluation

of these methods are described in section 2.4 and theoretical savings are estimated in

section 2.5. Our simulation methodology is discussed in section 2.6, and the results

of our tests are presented and analyzed in sections 2.7 and 2.8.

2.2 Related Work

In this section we briefly describe Bluetooth and ZigBee, low-power wireless

technologies that are technically similar to WirelessUSB. We then review other pro-

posed power saving mechanisms that can be employed by low-power wireless tech-

nologies.

2.2.1 Bluetooth

Bluetooth is a low-cost, low-power, short-range radio technology for peripheral

devices. Output power of a Bluetooth device is divided into three classes: The output

power of class 1 is 100 mW (20 dBm); Class 2 is 2.5 mW (4 dBm); Class 3 is 1

mW (0 dBm) [2]. Power is controlled by measuring the Received Signal Strength

Indication (RSSI) and then employing Link Manager Protocol (LMP) commands

such as LMP incr power req and LMP decr power req to report the need to increase

or decrease transmission power.

2.2.2 ZigBee

ZigBee is intended for use in sensor and control networks (such as thermostats

and security sensors) that require power-sensitive devices with target battery life

measured in years.

ZigBee conserves power by implementing the 802.15.4 standard [3], designed

for low-power devices. Devices conserve power by spending most of their operational

life in a sleep state, periodically listening to the RF channel to determine whether a

message is pending.

Chips designed for ZigBee RF transceivers (such as the EM2420 [4] and CC

2420 [5]) divide output power into eight levels. Similar to Bluetooth and WirelessUSB,

6



ZigBee devices adjust output power among these eight levels according to the RSSI.

However, ZigBee’s physical layer also employs receiver energy detection (ED) and

link quality indication (LQI) to aid in power level adjustment [3].

2.2.3 Power Optimization Mechanisms

Self-Tuning Power Management (STPM) [6] is a dynamic power algorithm

that considers the “time and energy costs of changing power modes” to determine an

optimum energy saving solution. This algorithm adapts to the characteristics of the

network interface, mobile computer, and associated applications. Each application

discloses hints about its intended use of the wireless network, allowing STPM to

disable the network interface when it is not in use, thereby ensuring that application

delay constraints are satisfied.

Dynamic Voltage Scaling (DVS) is an algorithm that emphasizes graceful en-

ergy scalability as the key to wireless node longevity [7]. This approach defines

“knobs” that when tuned, allow energy to scale gracefully. Such knobs include the

amplifier’s transmission power, the convolutional code, and the processor’s voltage.

DVS describes a basic API, allowing an application to control the knobs, thereby

communicating the energy requirements of the application to the power management

system.

Varying transmission power at the physical layer has also been shown to yield

energy savings. A physical layer study in [8] proposes a mathematical model to

express the relationship between distance and transmission power. Based on this

model, simulations revealed that by varying transmission power at the physical layer,

a 40% energy savings can be achieved.

In [9], a general model is proposed in which power consumption can be esti-

mated based on the distance between two nodes. We use this model in section 2.5 to

mathematically estimate power savings.

STPM and DVS provide complex mechanisms for power management that

require information from the application level. The power saving strategy employed

by WirelessUSB is similar to [8] and [9] in that it analyzes the signal strength to

7



estimate the distance and adjust transmission power accordingly.

2.3 Power Negotiation

Battery power is lost unnecessarily when wireless devices transmit at a higher

signal strength than necessary. Wasteful transmissions are reduced by negotiating

transmission power. Optimal power negotiation entails minimizing negotiation over-

head while maximizing power savings.

As mentioned previously, WirelessUSB devices transmit at one of eight power

levels, 0 being the weakest, and 7 being the strongest. Table 2.1 illustrates the tradeoff

between power and range.

Table 2.1: Performance tradeoff between power and range for a WirelessUSB device.

PA Level Device Power Max Range

7 99.0 mW 132 m

6 72.6 mW 100 m

5 59.4 mW 47 m

4 52.8 mW 22 m

3 49.5 mW 12 m

2 49.5 mW 9 m

1 49.5 mW 5 m

0 49.5 mW 3 m

To understand the energy saved by employing the appropriate power level and

the overhead associated with negotiation, we compare two negotiation techniques

while using a non-negotiated approach as a control. In the following sections we

discuss these two negotiation techniques in detail.
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2.3.1 Incremental Negotiation

The WirelessUSB protocol uses an incremental power negotiation model in

which the receiver instructs the transmitter to increment or decrement its transmis-

sion power level. When a packet arrives, a received signal strength index (RSSI) is

calculated. Based on this value, if the receiver determines that the sender is trans-

mitting with a signal power greater than necessary, it sends back a negotiation packet

instructing the sender to decrement its power level by one. Likewise, if the receiver

detects that the signal power is below a certain threshold, the receiver sends a nego-

tiation packet requesting that the sender increment its power level by one.

Incremental negotiation may not be optimal. In a worst-case scenario the

receiver may instruct the sender to decrement 6 separate times to reduce the trans-

mission power from level 7 to level 1.

2.3.2 Single-Step Negotiation

The Single-Step power transmission policy requires that the receiver determine

and report the precise level the transmitter should adopt. This policy attempts to

determine the lowest power level suitable for effective communication, and transmits

that value to the sender. For example, the receiver may request that the sender jump

from a power level of 7 directly to 4, or from 3 directly to 7. This policy makes it

possible to jump to a more optimal power level more quickly, with less negotiation

overhead.

2.4 Performance Metrics

We employ two metrics to evaluate the various power optimization policies:

The total amount of energy used, and the number of negotiation packets. These

metrics are discussed in the sections that follow.
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2.4.1 Power

The amount of power consumed for a given topology and usage model is the

driving factor in estimating battery life. It is therefore important that power (mea-

sured in Joules) be minimized for any given workload. The total power conserved can

be found by comparing the power consumption of each policy and mobility model.

2.4.2 Number of Negotiation Packets

The energy overhead due to negotiating power levels is determined by the

number of messages sent. Each message sent and received requires a certain amount

of power, therefore, minimizing the number of messages sent leads to improved power

performance.

The total power consumed may increase due to frequent negotiation, however,

negotiating infrequently may lead to excessive power use—a reduction in messaging

may save on power used to transmit messages, but more packets may be transmitted

at higher than necessary power levels before a more optimal power level is established.

On the other hand, if sufficient negotiation is performed, more data packets can be

transmitted at an optimal power level, even though energy is expended in negotiation.

2.5 Mathematical Model

We estimate the reduction in power consumption due to power policies by ex-

ploiting the relationship between the transmission power level and the effective signal

strength at a desired range. Assuming the actual transmission power is proportional

to the distance, we employ the relationship u(d) ∝ (distance)n. The relationship

between distance and transmission power of an ad hoc network [9] is given by

u(d) = adα + c (2.1)

where a denotes the physical environment, u denotes the transmission power, d de-

notes distance, α (2 ≤ α ≤ 5) denotes the distance index and the constant factor c

denotes the total energy consumed.
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If we consider the influence of free space loss, however, we can modify this

formula to make it more accurate. Free space loss is ∝ d2, which is significantly

smaller when the distance is small than when the distance is large. Therefore, if the

distance exceeds a certain threshold, the required power may increase sharply. c is

generally assumed to be a constant, although theoretically when the distance reaches

a certain threshold, c starts to increase. Based on these considerations, we use an

enhanced model to more accurately model the characteristics of WirelessUSB:

u(d) = a1d
α + a2d

α−1 + .... + an−1d + an (2.2)

Figure 2.1: Comparison of energy usage between constant output power and the

enhanced model.

Based on the data in Table 2.1 and this enhanced model, the efficiency of

power adaptation in the WirelessUSB protocol can be estimated. Figure 2.1 shows

the comparison of energy usage between a constant output power (no power adjust-

ment) and the enhanced model. The straight line in Figure 2.1 indicates constant,

maximum power use and the curved line indicates the power use of the enhanced

model. Assuming there is an equal probability of transmitting at all distances, the

overall power usage is calculated by computing the area under each line. Power usage

for the constant model is 12,771 mJ and the power usage for the enhanced model
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is 8,388.34 mJ. Therefore, the enhanced model shows a 34.3% reduction in power

consumption.

2.6 Simulation Method

In this section we describe simulations that were performed to validate our

mathematical model. For each simulation, power levels 0-7 are used. In practice, a

power level lower than 3 would not be used because the power savings are negligible—

at power levels below 3 the constant microchip power draw is the only factor. The

only reason to switch to a lower power level is for co-location purposes.

2.6.1 ns-2

The protocol and mechanisms tested in this research were written and sim-

ulated in ns-2 [10], a reliable simulator with extensive libraries to facilitate wireless

simulations. ns-2 is a discrete event simulator with a reliable scheduler which ensures

that simulations are accurate. It also has a robust framework that is ideal for writing

and testing new protocols.

2.6.2 Usage Models

Target usage models for this study include wireless keyboards, mice and re-

mote controls. All of these devices are unilateral in their communication—they only

transmit data, and rarely receive data themselves.

The wireless mouse is the most demanding in terms of the frequency with

which data are sent. Constant use of a mouse necessitates the transmission of 10-

15 bytes of positional information every 8 ms. Wireless mice are somewhat mobile,

although less than a remote control.

The wireless keyboard is used in more intermittent bursts, but requires more

total data to be sent. If keyboard data are encrypted, constant keyboard use warrants

the transmission of as much as 15-20 bytes every 40 to 60 ms. A wireless keyboard

may move during use, although minimally and infrequently.
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Wireless remote controls are the least demanding in terms of the amount of

data that must be sent, but are the most interesting in terms of mobility. A remote

control for a home entertainment system may be used to control the TV, stereo

system or DVD player, at distances ranging from less than 1 m to another room at

the opposite end of a house. It may also be common to use such a device to control

outside speakers from the backyard.

In addition to these traditional usage models, WirelessUSB is also used to

operate radio controlled cars. In this model, the rate of transmission is similar to a

keyboard, transmitting accelerate, decelerate, and directional information every 40

ms. The demand for range is as great as the remote control, but the speed at which

distances are traveled is much greater, since high-power RC cars can accelerate from

0 to 30 mph in under two seconds.

2.6.3 Simulation Methodology

We employed simulations to test the power negotiation techniques in conjunc-

tion with these mobility models, further described in this section.

Topology

We consider two nodes communicating in varying proximity. For the purpose

of these simulations, the receiving node is assumed to be a fixed node attached to a

constant power source. The transmitting node is a mobile, power-sensitive node, and

as such, is the only node considered in all power calculations.

Mobility Models

One mobility scenario involves a wireless keyboard or mouse that is repeatedly

transported from a desk to a couch and back again every few minutes. We call this

mobility model “less-frequent close-range proximity fluctuation.” It is simulated by

moving the communicating node repeatedly back and forth from 0.1 meters to 10

meters, with pseudo-random time from 1 to 3 minutes between moves.
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Another usage scenario involves transporting a remote control from room to

room within a house, as well as into the backyard. The remote bearer may also be

walking or running. We call this a “random walk” employing distances from 0 to 130

m. We simulate this scenario by setting up a pseudo-random walk from 0 m to 130

m, while varying the movement speed.

A third usage scenario attempts to exploit a potential worst case in which the

user is stationary with a wireless keyboard or mouse at a range precisely between two

power levels. At this distance, the WirelessUSB device may constantly adjust power

levels due to mild intermittent interference. This interference may be caused by a

number of factors such as a person walking between the devices, or by a small tilt in

device orientation. For the purposes of this paper we deem this mobility model the

“borderline” model, which is simulated by moving the communicating node repeatedly

back and forth between 5 and 6 meters (or alternatively between 9 and 10 meters).

A fourth scenario involves a radio controlled car. This scenario has the same

throughput requirements as a wireless keyboard, but a significantly greater mobility

demand. The movement of an RC car produces rapid differences in location and

hence in proximity between devices. We call this a “random run,” and simulate it by

moving the communicating node rapidly through a broad proximity range (0 m to

130 m) in a pseudo-random manner, rarely stopping at any fixed location.

2.6.4 Negotiation Techniques

Three separate negotiation techniques are used in conjunction with each of

the four usage models. The maximum power transmission policy always transmits

packets at maximum power and is equivalent to not using any dynamic policy at

all. Hence, maximum power transmission constitutes a control that can be compared

with the Incremental and Single-Step power transmission policies.

2.7 Results

This section presents the NS-2 simulation results for each usage model. In

each of these simulations, data were collected for 60 seconds. The details of each
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simulated workload follows.

2.7.1 Power

A keyboard was simulated with a workload of 15 bytes every 60 ms. Figure

2.2 shows the results of this workload on the less-frequent close-range mobility model

as well as the borderline mobility model.

Figure 2.2: Power savings on the keyboard workload with both the less-frequent

close-range proximity fluctuation and borderline mobility models.

Both the Incremental and Single-Step power policies for the keyboard work-

loads produced a power savings of 49.8%. There is little difference between the Incre-

mental and Single-Step policies due to the nature of the usage model. The movement

is slow enough and the packet transmission high enough that the Single-Step policy

acted almost precisely like the Incremental policy, never jumping to a different power

level greater than one step away.

A mouse was simulated with a workload of 10 bytes every 8 ms. The results of

this workload on both the less-frequent, close-range and borderline mobility models

are similar to the keyboard. A power savings of 50.0% was obtained by either power

adaptation policy, with little variation.
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Surprisingly, the borderline simulations for both the keyboard and mouse

turned out to be fairly benign. The mouse workload produces a 3.1% increase in

the number of packets sent and the keyboard workload produces a surprising 23.2%

increase over the normal mobility model. However, since negotiation packets are

small, the borderline simulation only marginally increases the total power used.

It is also interesting to note that the amount of data transmitted does not

significantly effect the node’s ability to conserve power. Both the keyboard (sending

15 bytes every 40 ms) and the mouse (sending 10 bytes every 8 ms) achieved nearly

identical power savings.

Figure 2.3: Power savings on the remote control workload with both the Incremental

and Single-Step power policies.

A remote control was simulated with a workload of 15 bytes every 2 seconds.

Figure 2.3 shows the results of such a workload under the Random Walk mobility

model. The unique workload of the remote reveals the most significant difference

between power policies. The Incremental policy reduces power consumption by 18.4%

while the Single-Step policy reduces power consumption by 19.1%. Amortized over a

six month battery lifetime, this difference suggests an increase in longevity of 2 days.

A RC Car was simulated with a workload of 10 bytes every 40 ms. Figure 2.4
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Figure 2.4: Power savings on the RC Car workload with both the Incremental and

Single-Step power policies.

graphs the result of this workload under the Random Run mobility model. A 22.2%

reduction in power consumption is achieved by both power policies.

Figure 2.5 summarizes the power savings for all models using both the In-

cremental and Single-Step power policies compared to no policy. This suggests that

fewer savings are achieved with lower sending rates or faster node movement—greater

savings are achieved with slower node movements and higher sending rates.

2.7.2 Number of Packets

The number of packets increases with the use of any power adjustment policy

because both nodes must send negotiation packets to notify the other to change power

levels. An example of the number of packets transmitted in a given simulation is 7,375

packets for the borderline mouse simulation using no power adjustment, 7,617 packets

for Incremental, and 7,614 packets for the Single-Step power adjustment policy. This

reveals a 3.3% increase in the total number of packets transmitted during power

negotiation compared with no policy. There is a negligible difference in the number

of packets for Incremental vs. Single-Step, because in all usage models, power levels

are rarely skipped.

Negotiation packets add to the total power cost, but since these packets are
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Figure 2.5: Power savings for all models using both Incremental and Single-Step

power policies when compared against no policy.

extremely small, in order for their power draw to nullify the power saved, the number

of negotiation packets on average would have to be three times the number of data

packets. Figure 2.6 summarizes the packet increase for all models due to negotiation.

The number of negotiation packets never exceeds 30% for any model.

2.8 Conclusion

Low-power devices such as WirelessUSB can achieve significant power savings

by using power adaptation. Simulation demonstrated as much as a 50% decrease in

power consumption when either the Incremental or Single-Step policy is employed.

This is in line with our mathematical estimate since node positions in the simulation

were not evenly distributed. Nodes in our simulation models spent more time at

lower power levels, and thus achieved a a 20% greater savings over our mathematical

estimate.

The savings difference between Incremental and Single-Step is statistically

insignificant. A difference may only be seen in two cases: when the frequency of

transmitting is low or the movement is incredibly fast. Only in the remote simulation

was a small difference seen because the node had time to travel and jump power levels

before the next communication (every 2 seconds).
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Figure 2.6: An increase in the number of packets for all models using both the

Incremental and Single-Step power policies when compared against no policy.

For both power policies, the total number of packets never increased by more

than 30% due to negotiation. Even then, sending many negotiation packets did not

appear to make a significant difference in the total power consumed.

In order to save power, a low-power wireless device such as WirelessUSB should

employ a power management policy. For typical usage scenarios and mobility pat-

terns, it is advised that doing anything more complicated than a simple incremental

power policy is unnecessary.

2.9 Future Work

In this study, we assumed that all traffic is UDP-like, transferred in a “best-

effort” manner. If a packet is lost while transferring below maximum power, it may

be re-transmitted at a higher power level. Further studies will explore the negative

impact of such retransmissions on power consumption.

A study on packet loss will allow the exploration of other policies in which

nodes cannot communicate. When the transmitting node cannot communicate at its

current power level, it may either jump to maximum power and subsequently back off

as necessary, or increment its power level by a certain amount until communication

resumes. We plan on studying the power costs of such communication reestablishment
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policies.

The WirelessUSB protocol specifies that multiple peripherals in an N:1 topol-

ogy communicate to the base node at the same frequency. This increases collisions,

and consequently retransmissions. Future work will include studying the effects of

power optimization policies on such complex topologies.
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Chapter 3

Minimizing Power Consumption

for Dense WirelessUSB Networks

The WirelessUSB1 protocol provides low-power wireless connectivity for pe-

ripheral devices and sensor applications. Dynamic policies for the WirelessUSB pro-

tocol enable devices to conserve power by operating at the lowest power level necessary

for communication. This paper presents simulation results that show that even in

densely populated networks, power conservation can be achieved while maintaining

throughput via reactive power management policies.

3.1 Introduction

Achieving effective power adaptation in a dynamic, continuously evolving en-

vironment is a very difficult problem, exacerbated by high levels of contention in a

noisy, lossy medium such as RF. In such an environment, retransmissions increase as

more nodes join the same physical space and contend for the same spectrum resource.

The goal of this research is to characterize the effects of varying the transmission

power of a WirelessUSB device in a crowded environment in which retransmissions

are necessary.

In the following sections we describe related work on power adaptation in wire-

less environments. We then describe two fundamental power adaptation mechanisms

1 WirelessUSB is a trademark of Cypress Semiconductor Corporation.
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that are targets for this study. Next, we describe the performance metrics used to rate

these mechanisms. We then describe the simulation methodology used during this

research. Next we present our results. Finally, we offer conclusions and suggestions

for future research.

3.2 Related Work

In this section we discuss related technologies, negotiation techniques, and

power control mechanisms.

3.2.1 Related Technologies

Mobile wireless technologies, such as 802.11 [11], ZigBee [3], Bluetooth [2], and

WirelessUSB [12], operate under significant power constraints. However, there are

fundamental differences between WirelessUSB and these other technologies in their

approaches to power conservation. 802.11 devices tend to be less power-constrained

while ZigBee devices conserve power by using deep sleep techniques. Bluetooth is per-

haps the technology most similar to WirelessUSB as a cable-replacement technology.

Woodings and Pandey [13] demonstrate the superiority of the WirelessUSB proto-

col over Bluetooth in terms of capacity, interference immunity, latency, and power.

However, their study does not address node mobility.

3.2.2 Power Negotiation

Our preliminary research results (see Chapter 2) demonstrate the effective-

ness of employing power policies for various interface devices and remote controls in

reducing power consumption by up to 50% through simple negotiation techniques.

These negotiation techniques require that the bridge or master node communicate to

the transmitting node the need to increase or decrease its power level based on the

current receiver signal strength indicator (RSSI). However, these results assume no

interference nor loss of communication, and apply only to the context of a two-node

network.
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3.2.3 Transmission Power Control Mechanisms

One way to determine the appropriate power level is through location aware-

ness [8, 9, 14]. Since a high transmit power level is needed to transmit at significant

distances, a device can determine its position relative to its intended receiver, either

through the use of GPS [9] or triangulation [14], and set the appropriate power level.

Due to the low-cost nature of WirelessUSB, adding GPS capability to an

enabled device may not be feasible. The problem with triangulation is that it requires

either multiple antennae on the radio (increasing the cost per unit), or multiple nodes

in a network, and a WirelessUSB device must operate efficiently even when no other

devices are connected to the same network.

Another somewhat radical approach to power adjustment involves applying

game theory to wireless networks [15, 16, 17, 18]. The basic idea behind a game

theory approach is that all nodes are assumed to act rationally and maximize their

utility function (a preference level associated with performing a certain action). When

applied to power use, this utility is a function of the current cost associated with trans-

mitting at a given power level. A central node may act as a broker and dynamically

assign prices to power levels based on network conditions such as node density. In

some cases a Nash equilibrium [16, 17] can be achieved when all participating nodes

have no incentive to change power levels. Game theory, although potentially applica-

ble to this research, is impractical since not all nodes in an enclosed area participate

in the same communal network where incentive to change for the good of the whole

exists.

3.3 Power Adaptation Through Link Quality Assessment

This research follows a transmission power adjustment scheme that involves

monitoring link quality. In this approach, a device’s power level is increased or de-

creased based on packet success and failure. This method is promising for use in

WirelessUSB because no a priori environmental information is required, and each

device can act independently and react quickly to environmental changes.
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WirelessUSB devices transmit at one of eight power levels, 0 being the weakest,

and 7 being the strongest [12]. Table 2.1 illustrates the tradeoff between power and

range.

If a node transmits a packet and then fails to receive an acknowledgement

the node should act to ensure a successful retransmission. For the purpose of this

research, this action could involve either conservatively incrementing the power level,

or aggressively jumping to maximum power. In the following sections we describe

these two reactive techniques.

3.3.1 Incremental Reestablishment

Incremental reestablishment is a reactive power adaptation mechanism in

which the power level is incremented until successful communication is again achieved.

This approach may consume significant power and time since numerous power-stepping

attempts may be required before successful connection reestablishment.

3.3.2 Aggressive Reestablishment

Aggressive reestablishment is a reactive technique in which nodes retransmit

lost packets at maximum power and then execute a power level backoff once com-

munication resumes in order to achieve the most efficient power level necessary to

guarantee successful communication.

3.4 Performance Metrics

We employ four metrics to evaluate the various power optimization policies:

1) Energy per node; 2) Throughput per node; 3) Packet delivery ratio; and 4) Packet

latency. These metrics are discussed in the following sections.

3.4.1 Energy Per Node

The amount of power used for a given topology and usage model is the main

factor in determining battery life. It is therefore important that power consumption be

minimized for any given workload to extend battery life. Since we will be dealing with
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networks of more than one transmitting node, we use the average energy consumed

per participating node, which is more accurate and effective than the total power of

a given simulation.

In our simulation, we assume that all slave nodes are power-constrained de-

vices, but do not make the same assumption for master nodes. As a consequence,

power consumption of master nodes is not included in this metric.

3.4.2 Throughput Per Node

Throughput is defined as the average rate at which data flows through a sys-

tem. We model effective throughput (or “goodput”) from an application-level per-

spective. One of our goals is to minimize the potential negative impact of power

policies on throughput.

3.4.3 Packet Delivery Ratio

The ratio of lost or retransmitted packets to successful packets aids in deter-

mining the reliability and robustness of the protocol. It is anticipated that this ratio

may prove significant when packets are lost due to improper power settings.

3.4.4 Packet Latency

Packet latency is measured as user-perceived latency — if a packet takes 1 ms

to transmit, and has to be sent twice in order to be received successfully, then the user-

perceived latency would be 2 ms or more, depending on the time taken to determine

the need to retransmit. Measuring latency in this manner allows us to better gauge

the suitability of the proposed policies and the degree to which application-level

constraints can still be satisfied.

3.5 Simulation Method

In this section we describe the methods used in developing and executing the

simulations for this study.
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3.5.1 ns-2

The protocol and mechanisms tested in this research were written and sim-

ulated in ns-2 [10], a reliable simulator with extensive libraries to facilitate wireless

simulations. ns-2 is a discrete event simulator with a reliable scheduler that ensures

simulation accuracy. It also has a robust framework that is well-suited for writing

and testing new protocols.

For these studies, we modified the Berkeley Network Simulator to more accu-

rately sample individual node power. We adjusted the physical layer so that varia-

tion in the output power affects the transmission range. Also, the carrier sense signal

strength thresholds were modified and verified to accurately reflect the maximum the-

oretical ranges of WirelessUSB at each power level (see Table 2.1). The WirelessUSB

routing layer was also modified to handle intelligent power adaptation resulting from

transmission failures.

3.5.2 Simulation Methodology

We employed simulations to test the power adaptation techniques in conjunc-

tion with these mobility models. In each simulation, data were collected for 5 minutes.

Results of each simulation were averaged over 30 iterations of random topologies and

random node traffic start times.

Two separate negotiation techniques were used in conjunction with each of the

three usage models. The maximum power transmission policy (also referred to as the

constant power policy) always transmits packets at maximum power and is equivalent

to not using any dynamic policy at all. Hence, maximum power transmission consti-

tutes a control to which the Incremental and Aggressive power transmission policies

can be compared.

Topology

We consider various sizes of star topologies composed of many slave nodes

communicating in varying proximity to a master node. For the purpose of these

simulations, the master receiving node is assumed to be a fixed node attached to a
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constant power source. The transmitting nodes are mobile, power-constrained nodes,

and as such, are the only nodes considered in all power calculations.

The simulation environment is a 180 m × 180 m square room. The fixed,

non-power-constrained master node is placed in the center of the room, and all other

slave nodes are given a random starting location. This guarantees that all slave nodes

remain within the maximum power communication distance from the master at all

times (dmax =
√

(902 + 902) = 127.28m < 132m).

Results were obtained by varying the number of slave nodes from 1 to 30. The

random movement of all slave nodes is described as follows. All slave nodes relocate

at random times to random locations. The velocity of each node varies from 1 to 8

meters per second. Once nodes reach their destination, they remain stationary for

a random amount of time (between 1 to 5 seconds) before proceeding to move to

another random location at a random velocity.

Once we generate the random topologies, we store them and reuse them in all

subsequent experiments. This is vital to ensure that statistical differences in power

policies are not the result of differing topologies. The same random topologies are

used for each experiment while varying the power policy.

Workloads

We consider three relevant workloads based on typical usage models. The

workloads for each simulation are designed to accurately model normal utilization of

various devices such as keyboards, remote controls, and PDAs.

The first workload under study is referred to as the HID workload, character-

izing a human interface device, such as a mouse or keyboard. For the purpose of this

characteristic workload, a mouse is simulated using a workload of 4 bytes every 60

ms.

The second workload under consideration is referred to as the remote workload,

which characterizes a TV/stereo remote control. This is simulated using a workload

of 4 bytes every 5 seconds. Such a workload is characteristic of a typical channel-

surfer, who presses the channel up/down button on the remote approximately every
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five seconds.

The third workload under consideration is the file transfer workload, charac-

terized by the transfer of a file from one computing device to another. Many usage

scenarios apply this type of workload, such as a firmware update, a PDA synchro-

nization, or an image transfer from a digital camera. A file transfer maximizes the

available bandwidth of a WirelessUSB device, which, depending on the encoding em-

ployed, is about 250 Kbps. For the purpose of this research, a file transfer is simulated

with a workload of 32 bytes every 10 ms.

3.6 Results

This section presents the ns-2 simulation results for each usage model. First,

we describe the results of several preliminary studies performed to determine proper

settings of key parameters. Next, we present the results of each simulated workload.

Finally, we diagram the results of a static velocity study as described below.

3.6.1 Upgrade Backoff and Tolerance Studies

We first determine the values for two key parameters in any reactive power

policy: the manner in which upgrade attempts are performed, and the tolerance to

packet failures. Manipulation of the upgrade mechanism as well as the tolerance

threshold may lead to subtle improvements in the way these power policies operate,

and will thus be described and studied below.

A successful decrease in the transmission power level is considered an “up-

grade” as it allows the communicating node to further conserve energy. For the

purpose of this research, all power upgrades are considered a single decrement of the

transmitting node’s power level.

There are several ways to determine the rate of upgrade attempts. In a time-

based upgrade policy, a certain amount of time must transpire before a node attempts

another upgrade. We chose to use a packet-success approach where a node attempts

to upgrade after a certain number of successful packets at its current power level.
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In practice, tracking packet success on an inexpensive embedded system is easy to

implement whereas it is difficult to maintain an accurate timer.

There are also various forms of adapting such an upgrade strategy. The

simplest form involves no adaptation and uses a fixed upgrade threshold that is a

statically-assigned value based on prior knowledge or experience. We also explore

two forms of upgrade backoff in this research in which the upgrade attempt threshold

dynamically backs off in response to upgrade failures in either a linear or exponential

fashion. The purpose of any backoff strategy is to minimize energy waste due to too-

frequent upgrade attempts. If a more intelligent node can determine that upgrade

attempts are constantly failing, then that node should not attempt to upgrade as

frequently.

Figure 3.1 shows the results of a fixed upgrade threshold study in which net-

work size is held constant at 4 nodes and the threshold value is varied. Results show

that little is gained by increasing the static upgrade threshold except for a decrease

in delay. The delay is diminished with larger thresholds because of a decrease in the

need to retransmit packets due to failed upgrade attempts.

Notice also that the average node energy use increases as the threshold in-

creases. This is most likely due to the fact that a node’s ability to respond to more

favorable conditions diminishes. As an example, if a node must wait for 30 successful

packets instead of 10 before upgrading, then that node has potentially operated under

less-than-optimal conditions for a greater number of packets.

Figure 3.2 shows the results of varying the backoff mechanism. Fixed, linear,

and exponential backoff mechanisms were compared by rating each one’s ability to

conserve energy as compared to always transmitting at maximum power. Results

demonstrate a meager 0.2% to a maximum 4% increase in energy savings by moving

from a fixed upgrade mechanism to an exponential mechanism.

Although in this situation energy savings are minuscule, the exponential back-

off mechanism was found to reduce the delay by 16.04% (see Figure 3.3). Figure 3.3

shows the results obtained when using the Incremental power policy, although similar

results are obtained from the Aggressive power policy.
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(a) Energy (b) Delay

Figure 3.1: Fixed Upgrade Threshold Study (a) Energy and (b) Delay Results. This

study reveals that little is gained by increasing the static upgrade threshold except a

decrease in delay.

Figure 3.2: Backoff Mechanism Study Results: Meager 0.2 - 4 percent increase in

energy savings when using Linear or Exponential compared to no policy.
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Figure 3.3: Incremental Power Policy Delay Results for the Backoff Mechanism Study:

Less node movement improves delay performance when using a linear or exponential

upgrade backoff technique.

Tolerance refers to a node’s allowance of failed packets before reacting. In

the context of this research, a tolerance threshold refers to the number of failed

transmission attempts before a node reacts by increasing the power level as dictated

by the employed policy.

The tolerance threshold under which a WirelessUSB node should operate was

unknown prior to this study. Therefore, a tolerance threshold study was performed

on three network densities (low, medium, and high) using the HID workload. This

study reveals that energy consumption is not improved significantly by increasing

the tolerance level beyond 0 (no tolerance whatsoever or immediate reaction) for low

density networks. Any tolerance value above 0 increases delay dramatically.

However, as node density increases, tolerance becomes a factor, and significant

performance gains are achieved by increasing node tolerance from 0 to 3 with minimal

repercussion. This is due to the fact that more failures arise due to congestion than to

movement. In this case, it is more beneficial to attempt a retransmission at the same

power level in case the dropped packet was due to contention. If this retransmission

is successful without an increase in power level, then the node has conserved power.

Figure 3.4 summarizes the tolerance study results for the Incremental Power Policy

under the HID workload (other policies and workloads exhibit similar behavior). A
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tolerance of 3 in a dense network for example, provides an average energy savings

per node of 17.12% with a 45% increase in delay. Above a tolerance threshold of 5,

packet delivery and throughput are reduced considerably, and hence such thresholds

are never recommended.

Figure 3.4: Tolerance Study Results: Power savings increase with tolerance for denser

networks.

In light of our findings regarding upgrades and tolerance, all future studies

were performed using a fixed upgrade threshold of 10 and a tolerance of 0, unless

otherwise stated.
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3.6.2 HID Workload

(a) Energy (b) Delay

(c) Packet Delivery Ratio (d) Throughput

Figure 3.5: HID Workload (a) Energy, (b) Delay (c) Packet Delivery Ratio and (d)

Throughput Results.

The results of the HID workload (see Figure 3.5) show an initial energy savings

of 31% for the Incremental power policy versus no policy, and 30% for the Aggressive

power policy. These savings over no policy decrease gradually as the number of

nodes increases, until around 25 slave nodes when the delivery ratio plummets to an

unacceptable 50% (half of the transmitted packets do not succeed). At this point there

is so much contention that there is little difference between power policies because all
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nodes are forced to operate at maximum power to communicate. Thus we see that

for the HID workload, the network becomes saturated around 25 nodes.

The Incremental power policy has the worst delay (an increase over constant

by 63% on average), followed by the Aggressive power policy (an increase of 52% on

average). The constant power policy has the lowest latency.

It is interesting to note the increase in delay when any power policy is em-

ployed. This is evident in all workloads and represents a fundamental tradeoff between

energy consumption and packet delay. If delay were the only concern, then we would

do nothing more than always transmit at the highest power level possible. At that

point the only delay in transmission would be due to traffic collisions. However, since

we are interested in minimizing energy consumption, we are constantly adjusting the

power level, which introduces delay. This is caused by an increase in retransmissions

due to incorrect or insufficient power settings as a result of mobility, interference, or

upgrade attempts.

For this workload, all power policies have no significant effect on the packet

delivery ratio nor the throughput. All packets that can be delivered when using no

power policy are still deliverable when employing a power policy.

3.6.3 Remote Workload

Results of the remote workload (see Figure 3.6) also show the characteristic

tradeoff between energy and delay described previously. Average energy savings for

the Incremental power policy is 25.75%. Average energy savings for the Aggressive

power policy is 21.49%.

Remote workload delays remained consistent throughout all tests. The average

increase in delay when using the Incremental power policy is 58.96%, while the average

increase in delay for the Aggressive power policy is 45.44%.

This workload obviously does not saturate the network at around 25 nodes

like the HID workload, and can handle much greater node densities. Packet delivery

ratio remains at around 100% and throughput values stay consistent throughout all

tests and are therefore not shown. Due to constraints in ns-2, we were unable to
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(a) Energy (b) Delay

Figure 3.6: Remote Workload (a) Energy and (b) Delay Results.

saturate the network under this workload; however, it seems reasonable to assume it

is irrelevant because network densities above 30 slave nodes are unrealistic in practice.

3.6.4 File Transfer Workload

The file transfer workload (see Figure 3.7) saturates the network at 2 slave

nodes. Packet delivery ratio and throughput levels plummet when the number of

slave nodes is greater than 1. The average packet delay shows no significant difference

between all policies even though they show a linear increase with the number of slave

nodes.

The file transfer workload shows an average energy savings of 46.93% for the

Incremental power policy, and 40.16% for the Aggressive power policy. This workload

yields the greatest power savings because of the larger packet sizes which increase

transmission duration.

3.6.5 Velocity Study

In an effort to pinpoint the precise condition in which the Aggressive power

policy may be more cost effective in terms of power, a velocity study was also con-

ducted. The only situation in which the Aggressive power policy may be more cost
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(a) Energy (b) Delay

(c) Packet Delivery Ratio (d) Throughput

Figure 3.7: File Transfer Workload (a) Energy, (b) Delay (c) Packet Delivery Ratio

and (d) Throughput Results.
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effective is when a node travels at such a velocity between packet transmissions that

an increment of more than one would be necessary for successful transmission of the

next packet. We define Mobility per packet potential as the velocity (in m/s) over the

packet sending rate (p/s), which reduces to meters per packet (m/p).

This study is performed with a single transmitting node under a workload

of 1 packet per second. Node velocity is varied through 10 m/s yielding a mobility

per packet potential ranging from 1 to 10 m/p. Node movement consists of a node

starting 1 m from the master, and moving to a maximum transmission distance of 130

m and then back again twice. Because an increase in velocity decreases the amount

of time necessary to travel a fixed distance, the simulation time is also varied. Since

simulation times vary, savings at each velocity are compared.

Figure 3.8: Velocity Study Results.

The results of the velocity study are shown in Figure 3.8. In no case does the

Aggressive power policy conserve the greatest amount of energy because the effect of

jumping to maximum power during periods of low power needs (close range) negates

gains at other times due to the high cost of transmitting at maximum power. However,

the Increment by 2 power policy (included for completeness, as a slight variant of the

Increment power policy) does conserve more energy when node velocity is between 6
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and 8 meters per second.

3.7 Conclusion

At this point, the reasons for implementing a power policy that allows a trans-

mitting node to adjust its power level are clear. Nodes implementing a simple reactive

power policy that requires no negotiation overhead can save upwards of 60% for small

network sizes with no significant degradation in packet delivery ratio or throughput.

However, packet latency does increase with power adaptation.

A definite tradeoff exists between the energy conserved and the latency in-

curred when employing any kind of power adaptation policy. Both the Incremental

and Aggressive power policies have been shown to increase average packet latencies.

However, this negative effect can be reduced by employing an exponential upgrade

backoff technique.

The Aggressive reestablishment power policy in general delivers a nice balance

between the Incremental and constant policies. If power is the only concern, however,

there is no need to use any other policy other than Incremental. If delay is a concern,

and higher velocities are expected, then an increment by 2 power policy may be

beneficial.

Tolerance of packet failure becomes increasingly important as the number of

nodes in a network increases. Our results show that until a network is saturated,

no loss in power is incurred by having zero tolerance. However, when a network is

saturated (for example, around 25 slave nodes for the HID workload) then a tolerance

increase actually improves energy consumption, because packet failure increases due

to contention rather than node movement. Therefore, in these scenarios, nodes should

not be too quick to increase their power level.

Backoff mechanisms for reactive power policies show little, if any, improvement

over statically assigning the upgrade threshold. An upgrade threshold should be

chosen that balances both the energy and the delay needs of the transmitting node.
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3.8 Future Work

All simulations performed in this research were performed at a constant data

rate. Future work includes adjusting the data rate, which should have a similar affect

on communication range as varying the transmission power. Likewise, adjusting the

data rate also affects transmission duration, which directly affects power consumption.

Transmission duration may also affect contention in the spectrum in a multi-node

environment.

We believe that an investigation of the combinatory synergy of transmission

power and data rate adjustment will yield significant energy conservation for a wide

variety of conditions and usage models.
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Chapter 4

Characterizing Dynamic Data Rate

Policies for WirelessUSB Networks

The WirelessUSB1 protocol provides low-power wireless connectivity for pe-

ripheral devices and sensor applications. Dynamic data rate policies for the Wire-

lessUSB protocol enable devices to conserve power while operating at the highest data

rate possible. Our simulation results show that dynamic data rate policies increase

energy savings significantly while also minimizing delay and maintaining throughput

as network densities increase.

4.1 Introduction

Power-constrained mobile devices must conserve energy in order to maximize

their usefulness. Power conservation strategies for mobile devices have historically

focused on sleep state management and transmission power control. In this paper,

we approach power conservation for WirelessUSB [12] nodes from the perspective of

data rate management.

Network nodes generally adjust data rates with the primary goal of increasing

throughput. However, lowering the data rate may improve the robustness of a trans-

mission, as data encodings provide varying tolerance to bit errors. Lowering the data

rate may also extend the effective range of a wireless signal.

1 WirelessUSB is a trademark of Cypress Semiconductor Corporation.
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Dynamically adjusting data rate may be utilized to conserve power. Power

consumption is dependent on the rate of communication. If one reduces the time to

transmit a given message, energy is conserved because the transmitter remains active

for a shorter period of time [1]. Changes in transmission durations also affect collision

frequency in a multi-node environment.

In this paper we demonstrate the use of various data rate adaption policies

in minimizing energy consumption and optimizing latency and throughput in small

to medium sized homogeneous wireless networks. We use Cypress Semiconductor

Corporation’s WirelessUSB radio and protocol as a case study for this research.

The primary usage model for WirelessUSB involves the connection of multiple

devices to a single master device, forming a many-to-one (star) network, such as a

keyboard and a mouse connected to a PC. WirelessUSB devices encode packets in

such a way that the communicating data rate can be altered on a per-packet basis.

This provides an excellent venue for studying the effects of dynamically adjusting a

radio’s data rate. Table 4.1 lists all of the possible data rates at which WirelessUSB

packets may be sent.

Table 4.1: WirelessUSB Data Rates.

Name / Mode Data Rate Range Description

64-chip DDR 31.25 Kbps 130 m A pair of 64-chip PN codes using Dual Data Rate

Mode. Each 64-chip symbol represents two data

bits.

32-chip DDR 62.5 Kbps 68 m A pair of 32-chip PN codes using Dual Data Rate

Mode. Each 32-chip symbol represents two data

bits.

64-chip 8DR 125 Kbps 22 m A pair of 64-chip PN codes using 8DR Mode.

Each 64-chip symbol represents eight data bits.

32-chip 8DR 250 Kbps 7 m A pair of 32-chip PN codes using 8DR Mode.

Each 32-chip symbol represents eight data bits.

RAW 1 Mbps 1.5 m Raw data. Each chip represents one data bit.
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Prior research suggests that effective data rate adjustment techniques include

beaconing, channel quality assessment, threshold adaptation and game theory. We

apply beaconing, link quality assessment, and signal-to-noise ratio threshold tech-

niques to the WirelessUSB protocol, and study the results under three characteristic

workloads. We find that significant energy savings can be achieved without a com-

promise in throughput or latency by applying dynamic data rate policies.

4.2 Data Rate Adjustment Techniques

In the following sections we present prior research on data rate adjustment

techniques including beaconing, link quality assessment, and signal-to-noise ratio

threshold.

4.2.1 Beaconing

Nodes may use beaconing [19] to determine the most effective data rate for a

given communication link. In the beaconing method (sometimes called sub-beaconing),

the host node broadcasts periodic beacons at all data rates starting from the high-

est and continuing down to the lowest. The first beacon that the receiving device

interprets successfully determines the data rate necessary for further communication.

This method allows the receiving node to use periodic cross-communication from the

master to gauge the quality of the transmission medium. If a device successfully

interprets a master’s beacon at a given data rate, then that device can theoretically

transmit to the master at that data rate.

Depending on the beaconing interval, this primitive rate-changing mechanism

may hinder a device’s ability to rapidly adapt to changing conditions. However,

the simplicity of its implementation makes it ideal for use in memory-constrained

WirelessUSB devices. In addition, its master-centric approach to handling beacon

transmissions is a good fit for use in star topology usage models.
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4.2.2 Link Quality Assessment

Nodes can adjust their data rates by monitoring channel quality [19, 20, 21,

22, 23]. In this method, nodes determine the appropriate data rate based on packet

success and failure. Kim and Bambos [22] determine the maximum allowable data

rate by adaptively probing the channel. Sheu, Lee, and Chen [19] propose a Hybrid

Handshake Protocol that monitors transmission status. If a transmission fails, the

protocol assumes that movement occurred and mandates that subsequent transmis-

sions employ a lower level modulation scheme (lower data rate).

Heusse et. al. [23] propose a method of determining channel quality, called

Idle Sense, an access method based on CSMA that senses the mean number of idle

slots between transmission attempts in order to control the contention window and

estimate the frame error rate requirements. Devices then utilize this information to

determine the appropriate data rate.

Lacage et. al. [20] propose a low-latency rate adaption mechanism called

Adaptive Auto Rate Fallback (AARF). In this mechanism, a device periodically at-

tempts to upgrade to a higher level modulation (higher data rate). If such an upgrade

fails, the device resumes transmission using the previous lower level modulation. Af-

ter a period of time expires, the device again attempts to upgrade. AARF adaptively

changes the upgrade attempt interval in an effort to minimize energy consumption

due to excessive upgrade attempts.

4.2.3 Signal-to-Noise Ratio Threshold

Another method of rate adjustment requires nodes to periodically calculate the

signal-to-noise ratio of the communication link [15]. Since each data rate tolerates a

certain bit error rate (BER), each data rate has a certain SNR threshold at which

communication becomes possible. Communicating nodes therefore determine their

appropriate data rate by calculating the current SNR at runtime, and then selecting

the data rate whose SNR threshold the current SNR does not exceed.

This method requires some initial analysis and a priori assumptions about the

propagation model of the transmission medium which may affect accuracy in practice.
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Likewise, fixed thresholds prevent communicating devices from adapting to changing

conditions at runtime. Also, the signal strength readings used to calculate the SNR

at runtime may vary as much as 5% between readings, making it difficult to ascertain

the correct data rate.

4.3 Dynamic Data Rate Techniques for WirelessUSB

In this study, we selected three representative techniques to implement in

the WirelessUSB protocol: 1) Beaconing; 2) Link Quality Assessment; and 3) SNR

Threshold Adaptation. In the following sections we discuss each of these within the

context of WirelessUSB, including specific implementation details.

4.3.1 Beaconing

In practice, WirelessUSB devices switch to a low-power idle mode when inac-

tive, and cannot remain in a costly receive mode to accept these periodic beacons.

Neither can tight synchronization with the master be guaranteed to allow them to

switch to receive mode during beacon periods. As such, the slaves themselves must

perform the beaconing. We refer to this policy as Slave Beaconing to differentiate it

from Host Beaconing, in which the host sends beacons. Although not practical for

WirelessUSB, we include Host Beaconing in all results for comparison.

4.3.2 Link Quality Assessment

The link quality assessment policy determines data rate based entirely on

packet success, measured by the receipt of acknowledgements. This policy mandates

that the transmission data rate drop to the next lower encoding after each unsuccessful

packet. This method attempts to exploit the fact that WirelessUSB devices can

change data rates on a per-packet basis by modifying the encoding. Such a policy

may facilitate a lower latency by placing priority on maintaining communication as

opposed to maintaining a high data rate.
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The link quality assessment policy attempts a data rate upgrade after 20 suc-

cessful packets at the current data rate. If this upgrade is unsuccessful, the device

immediately returns to the previous data rate.

4.3.3 Signal-to-Noise Ratio Threshold Adaptation

The signal-to-noise (SNR) ratio threshold policy employs pre-computed SNR

thresholds for each data rate. Devices compute the runtime signal-to-noise ratio each

time they receive an ACK from the master. They then determine the highest data

rate to employ based on which data rate threshold the current SNR exceeds.

Receiver Signal Strength Indicator (RSSI) readings occur in a WirelessUSB

radio at two distinct times. The first occurs when a radio receives a Start of Packet

(SOP) signal. The RSSI hardware engages, calculating the RSSI of the SOP. This,

for all intents and purposes, is the RSSI of the actual data being received. The second

time a WirelessUSB radio calculates an RSSI occurs when a radio is in receive mode

and the RSSI hardware engages, but does not receive an SOP signal. This results in

a background noise level RSSI. WirelessUSB devices can then compute the runtime

SNR by dividing the data RSSI reading by the latest noise RSSI reading.

This method of rate adjustment is similar to other pre-computed threshold rate

selection methods, except that the thresholds may change over time. This method

keeps track of the SNR and packet success for each data rate in order to adjust or

“adapt” to changing conditions.

4.4 Performance Metrics

We employ four metrics to evaluate the various data rate policies: 1) Energy

per node; 2) Throughput per node; 3) Packet delivery ratio; and 4) Packet latency.

These metrics are discussed in the following sections.

4.4.1 Energy Per Node

The amount of power used for a given topology and usage model is the main

factor in determining battery life. It is therefore important that power be minimized
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for any given workload to extend battery life. Since we deal with networks of more

than one transmitting node, we use the average energy consumed per participating

node, providing a more accurate and useful metric than the total simulation power.

In this study, we assume that all slave nodes are power-constrained devices,

but do not make the same assumption for master nodes. As a consequence, we do

not include power consumption of master nodes in this metric.

In addition, we do not include idle mode energy in this metric since its effect is

negligible (approximately 1 mA) during the constant transmission periods simulated

in this research.

4.4.2 Throughput Per Node

We model the average rate at which data flows through a system as effective

throughput (or “goodput”) as seen from an application-level perspective. This metric

empowers us to quantify the negative impact that dynamic power policies may have

on throughput.

4.4.3 Packet Delivery Ratio

The ratio of the number of successfully delivered packets to the total number of

packets transmitted aids in determining the reliability and robustness of the protocol.

This ratio proves significant when packets are lost due to incorrect data rate settings.

4.4.4 Packet Latency

Packet latency is measured as user-perceived latency — if a packet takes 1

ms to transmit, and has to be sent twice before successful reception, then the user-

perceived latency would be 2 ms or more, depending on the time taken to determine

the need to retransmit as well as any other random retransmission delays. Measuring

latency in this manner allows us to better gauge the suitability of the proposed policies

and the degree to which application-level constraints can still be satisfied.
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4.5 Simulation Method

In this section we describe the methods used in developing and executing the

simulations for this study.

4.5.1 ns-2

The protocol and mechanisms tested in this research are written and simu-

lated in ns-2 [10], a reliable simulator with extensive libraries to facilitate wireless

simulations. ns-2 is a discrete event simulator with a reliable scheduler that ensures

simulation accuracy. It also has a robust framework that is well-suited for writing

and testing new protocols.

For these studies, we modified the Berkeley Network Simulator to enable in-

dividual nodes to dynamically adjust their transmission data rate. We adjusted the

physical layer so that variation in the data rate affects the transmission range due

to bit errors. Also, the carrier sense and retransmission timeouts were modified to

account for much slower data rates than were employed in previous studies (see Table

4.1). The WirelessUSB routing layer was also modified to handle intelligent data rate

adaptation.

4.5.2 Simulation Methodology

We employed simulations to test these data rate adaptation techniques in con-

junction with the mobility models described in this section. We ran each simulation

for a duration of 5 minutes and obtained the final results by averaging the inter-

mediary results of 30 iterations of random topologies and random node traffic start

times.

The constant data rate policy (also referred to as “No Policy”) always trans-

mits packets at the lowest, most robust data rate and is equivalent to not using any

dynamic policy at all. No Policy, therefore, constitutes a control to which the other

dynamic data rate policies are compared.
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Topology

We consider various sizes of star topologies composed of slave nodes com-

municating in varying proximity to a master node. For each individual simulation,

however, the number of slave nodes remains constant. In other words, slave nodes do

not leave or join the network during a simulation.

The simulation environment is a 70 m × 70 m area. A fixed, non-power

constrained master node is placed in the center of the room, and all other slave nodes

are placed at a random starting location.

We vary network densities by repeating the simulations with a different number

of slave nodes, ranging from 1 to 30. The random movement of all slave nodes is

described as follows. All slave nodes relocate at random times to random locations.

The velocity of each node varies from 1 to 6 meters per second. Once nodes reach

their destination, they remain stationary for a random amount of time (between 1

to 5 seconds) before proceeding to move to another random location at a random

velocity.

Once we generate the random topologies, we store them and reuse them in all

subsequent experiments. This is vital to ensure that statistical differences in power

policies are not the result of differing topologies. The same random topologies are

used for each experiment while varying the data rate policy.

Workloads

We consider three relevant workloads based on characteristic usage models.

The workloads for each simulation are designed to accurately model normal utilization

of various devices such as keyboards, remote controls, and PDAs.

The first workload under study is referred to as the HID workload, character-

izing a human interface device, such as a mouse or keyboard. For the purpose of this

characteristic workload, we simulate a mouse using a workload of 6 bytes every 30

ms.

The second workload under consideration is referred to as the remote workload,

which characterizes a TV/stereo remote control. We simulate a remote control using
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a workload of 4 bytes every 2 seconds. Such a workload is characteristic of a typical

channel-surfer, who presses the channel up/down button on the remote approximately

every two seconds.

The third workload under consideration is the file transfer workload, charac-

terized by the transfer of a file from one computing device to another. Many usage

scenarios apply this type of workload, such as a firmware update, a PDA synchro-

nization, or an image transfer from a digital camera. A file transfer maximizes the

available bandwidth of a WirelessUSB device, which, depending on the encoding em-

ployed, is about 250 Kbps. For the purpose of this research, we simulate a file transfer

using a workload of 32 bytes every 20 ms.

4.6 Results

This section presents the ns-2 simulation results for each usage model. First,

we describe the results of several preliminary studies performed to determine proper

settings of key parameters. Finally, we present the results of each simulated workload.

Retransmission delay is a key parameter. If a communicating node does not

receive an ACK after a sufficient ACK timeout, the node must wait for a random

period of time, from one to X times the duration of a single packet transmission

before attempting a retransmission. Since transmission times vary depending on the

data rate employed, we must ascertain the appropriate timeout interval before a node

should attempt a retransmission. Figure 4.1 shows the results of varying the random

retransmission delay range from 1 to 2 packet transmission durations through 1 to 8

packet transmission durations.

Results of this study reveal that sufficient throughput is obtained by waiting

no longer than a random time between 1 to 4 packet transmission durations before

retransmitting a packet. Waiting any longer needlessly increases average packet delay,

and should not be considered.

The operation of both the Beaconing and Slave Beaconing data rate policies

requires the specification of a beacon interval, which is the time between successive

beacons. The precise value for the beacon interval was unknown prior to this research,
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Figure 4.1: Retransmission Delay Study for a 180 m × 180 m Area, 1-4 Transmitting

Nodes under the HID Workload.

and may vary considerably due to mobility. Frequent beaconing may lead to overuse

of the spectrum and increased power consumption. Infrequent beaconing may lead to

sub-optimal data rates for extended periods of time. If nodes remain stationary, and

network conditions remain constant, a long beacon interval is desirable. However, if

network conditions change, and mobility is present, then a short beacon interval is

desirable.

Figure 4.2 shows the results of the beacon interval study for a 70 m × 70 m

area, a maximum node velocity of 6 m/s, and a network size of 3 slave nodes operating

under HID workloads. These results show that shorter beacon intervals (around 10

to 20 seconds between beacons) produce the greatest energy savings and the lowest

latencies as maximum node velocities approach 6 m/s. The packet delivery ratio

remains close to 99% and throughput remains unaffected by beacon interval changes.

A final key parameter is packet tolerance, which refers to the number of un-

successful packets before reacting, or in this case, downgrading the data rate.

Figure 4.3 shows the results of the tolerance study for a 70 m × 70 m area, a

maximum node velocity of 6 m/s, and a network size of 3 slave nodes operating under

HID workloads. The throughput in all cases behaves similar to the packet delivery

ratio, and is therefore not shown. These results show that a tolerance of 1 actually
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(a) Energy (b) Delay

Figure 4.2: Beacon Interval Study for a 70 m × 70 m Area, 3 Transmitting Nodes

under the HID Workload.

reduces energy consumption and delay with no significant decrease in throughput for

beaconing policies. However, increasing the tolerance threshold for both the Link

Quality and SNR Threshold policies immediately produces an undesirable increase in

delay and decrease in throughput. However, as seen in previous power policy studies,

a tolerance of 1 may be desirable for dense networks, and thus we choose to proceed

with a tolerance threshold of 1 packet for all future studies.

In light of our findings regarding retransmission timeouts and beaconing, all

future studies are performed using a random timeout of 1 to 4 packet lengths and a

beacon period of 20 seconds, unless otherwise stated. Tolerance to packet failure is

fixed at 1 packet.

4.6.1 HID Workload

The results of the HID workload are shown in Figure 4.4. We observe that

overall the best performing data rate policy under this workload is SNR Threshold.

A close second is Link Quality, followed by Beaconing, then Slave Beaconing. Both

beaconing policies, however, provide superior latency for networks of fewer than 8

nodes. This is explained by their passive approach to data rate upgrades, which are
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Figure 4.3: Tolerance Study on a 70 m × 70 m Area, 3 Transmitting Nodes under

the HID Workload.

53



Figure 4.4: HID Study on a 70 m × 70 m Area.
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performed only when slave nodes successfully receive a beacon for a data rate higher

than their operating data rate, and only as often as the beacon interval permits. For

these results, this occurs every 20 seconds.

Also interesting to note is each policy’s capacity to support networks of varying

densities. For Slave Beaconing the packet delivery ratio begins to fall after 7 slave

nodes and does not perform any better than No Policy in this regard. However,

Beaconing is able to support 1 additional slave node (for a total of 8) before delivery

performance suffers. Link Quality is able to support 4 additional nodes (11 total),

and SNR Threshold is able to support 8 additional nodes (for a total of 15).

Another point of interest is the latency improvement over No Policy for all

other policies when the network size is greater than 4 slave nodes. This is the first

time we see not only the energy use for all policies remaining well under the values

obtained by No Policy, but also the delay and throughput. Prior research reveals

that when a node employs a power policy to conserve power, latency is compromised

(although policies generally attempt to minimize this negative effect). Here, we find

that because an increase in the data rate also reduces transmission time, we can

achieve a decrease in energy consumption without compromising other performance

metrics such as latency and throughput.

4.6.2 Remote Workload

The results of the remote workload study are shown in Figure 4.5. PDR and

throughput (not shown) remain high throughout all tests since this workload does

not begin to saturate the total available bandwidth. Unlike the HID workload, the

remote workload shows the characteristic tradeoff between energy savings and delay

that we observe in pure power studies. The SNR Threshold policy reduces power

consumption by an average of 54.88% but increases delay by 104.85%. Likewise, the

Link Quality Assessment policy reduces power consumption by 48.68% but increases

the average delay by 57.28%.

Both Beaconing and Slave Beaconing policies, however, reduce energy con-

sumption by 49.20% and 48.56% respectively, while also reducing average delay by
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(a) Energy (b) Delay

Figure 4.5: Remote Workload (a) Energy and (b) Delay Results.

13.98% and 13.86%. This result demonstrates that Slave Beaconing is the preferred

policy for the remote workload.

4.6.3 File Transfer Workload

The results of the file transfer workload study are shown in Figure 4.6. We

observe that the delivery ratio (and consequently the throughput) for No Policy using

this workload immediately drops for network densities greater than 1 transmitting

node. This is due to the increase in transmission duration when transmitting at the

lowest data rate.

Overall, the Link Quality policy saves the greatest amount of energy (43.22%).

However, the SNR Threshold policy provides comparable energy savings (39.01%)

while preserving a high packet delivery ratio and maintaining low latency for network

sizes greater than 2 slave nodes. Delay is reduced by an average of 54.37% by em-

ploying the SNR Threshold policy and only 42.26% for the Link Quality Assessment

policy. However, beaconing policies continue to provide the lowest latency under a

certain network size, as observed in the other workload studies. For the file transfer

workload, this threshold is 3 slave nodes.

The effectiveness of the SNR Threshold policy is due to its ability to react to
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Figure 4.6: File Transfer Study on a 70 m × 70 m Area.
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changing conditions without the need to generate retransmissions. The SNR Thresh-

old policy requires no negotiation overhead — instead of reacting to packet failures,

it reacts to changes in the RSSI readings each time a device receives an ACK from

the master.

The packet delivery ratio of the SNR Threshold policy never reaches 100%,

even for a single transmitting node. This is a result of RSSI jitter, causing retrans-

missions due to incorrect data rate settings. However, this shortcoming of the SNR

Threshold policy proves to be worthwhile for greater network densities.

4.7 Conclusion

This study demonstrates that using a data rate policy not only improves energy

consumption, but also delay and throughput.

Studying three characteristic workloads reveals that the best policy to use for

the remote workload is a beaconing policy, and for all other workloads, the SNR

Threshold policy. The reason beaconing policies outperform all others for the remote

workload may be due to the fact that the beacon interval relative to the transmit

interval is a factor of 10, whereas for all other workloads, this factor is closer to 1000.

Employing a dynamic data rate policy allows WirelessUSB devices to conserve

a significant amount of their energy over no data rate policy while also decreasing

latency and preserving throughput as network densities increase.

4.8 Future Work

For each simulation performed in this research, the power amplitude at each

node was held constant. We propose to further explore the combinatory synergy of

transmission power and data rate adjustment. We anticipate that this will yield the

greatest energy conservation for a wide variety of conditions and usage models.
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Chapter 5

Maximizing Battery Life of

WirelessUSB Devices Using

Dynamic Power and Data Rate

Policies

Dynamic power and data rate policies for the WirelessUSB protocol enable

devices to conserve power while operating at the highest data rate possible. Simulation

results show that even greater performance can be achieved by combining both power

and data rate policies.

5.1 Introduction

Power-constrained mobile devices must conserve energy in order to maximize

their usefulness. Both transmission power and data rate adjustment strategies con-

tribute to this end. In this paper we demonstrate the simultaneous use of various

power and data rate policies in further minimizing energy consumption and optimiz-

ing latency and throughput in small to medium sized homogeneous wireless networks.
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We employ Cypress Semiconductor Corporation’s WirelessUSB radio and pro-

tocol as a case study for this research. WirelessUSB devices may employ eight trans-

mission power levels, and five data rate encodings. Table 5.1 lists the maximum

theoretical transmission ranges at varying transmission power amplitude (PA) levels

and data rates.

Table 5.1: WirelessUSB Theoretical Transmission Ranges (meters).

31.25 kbps 1 Mbps

PA / Rate 0 1 2 3 4

Highest 7 130 68 22 7 2

6 108 42 12 4 1

5 76 23 7 2 0

4 42 12 4 1 0

3 23 7 2 0 0

2 12 4 1 0 0

1 7 2 0 0 0

Lowest 0 4 1 0 0 0

A WirelessUSB device has multiple options for transmitting at a given dis-

tance. For example a device has two options for transmitting a distance of 50 m; It

may transmit at either a PA of 5 and a data rate of 0, or a PA of 7 and a data rate

of 1. Which settings should the device utilize to maximize performance in terms of

energy, latency and throughput? In this paper we address these issues.

In the following sections we outline our simulation method, describe our com-

bined power and data rate policies, and then present results.
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5.2 Simulation Method

We modified ns-2 [10] to simulate the WirelessUSB protocol with random

topologies and random movement patterns in a 70 m × 70 m area (see Section 4.5.2).

We analyzed the effects of our proposed policies using the performance metrics de-

scribed in Section 4.4.

We analyze the results of each policy against 3 controls: No Policy, Power

Only (PA Only) and Data Rate Only (DR Only). The specific policies used for the

controls are optimal policies as described in the following paragraphs.

In Chapters 2 and 3 we demonstrated effective use of the eight transmission

power levels available in a WirelessUSB device (see Table 2.1). For all workloads, the

Incremental power policy demonstrated the best performance. We therefore use the

Incremental Reestablishment power policy (see Section 3.3.1) as the power adjustment

strategy in all combined policies.

In Chapter 4 we demonstrated effective use of the five data rates supported

by WirelessUSB (see Table 4.1). For both the HID and file transfer workloads, the

SNR Threshold Adaptation policy (see Section 4.3.3) performed best. We therefore

use the SNR Threshold Adaptation policy when we only adjust data rate. For the

same reason, the Slave Beaconing policy (see Section 4.3.1) is used as the Data Rate

Only policy for the remote workload.

5.3 Combined Techniques

For this study, we selected two representative techniques to implement in the

WirelessUSB protocol: 1) Link Quality - Data Rate First, and 2) Combined Incre-

mental and SNR Threshold Adaptation. In the following sections we discuss each of

these within the context of WirelessUSB, including specific implementation details.

5.3.1 Link Quality - Data Rate First (LQDRF)

This policy combines the reactive link quality assessment policies for both

power and data rate adjustment. This policy adjusts transmission power using the
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Incremental Reestablishment policy, and adjusts data rate using the Link Quality

Assessment policy.

Preliminary study of the relationship between power and data rate reveals

that it is more cost-effective in terms of energy consumption to reduce the data rate

than the transmission power level. For this reason, this policy coordinates power

and data rate adjustment by upgrading the data rate first, followed by upgrading

transmission power. Reaction to a failed transmission, therefore occurs in reverse

order. First this policy relaxes the transmission power level, followed by the data

rate until communication resumes.

5.3.2 Combined Incremental and SNR Threshold Adaptation (I+SNR)

This policy is a combination of the Incremental Reestablishment power policy

for transmission power control, and the SNR Threshold policy for data rate adjust-

ment. This policy does not require collaboration between the policies since the SNR

Threshold policy determines the optimal data rate upon receiving an ACK and the

Incremental policy determines the optimal transmission power based on link quality

assessment.

5.4 Results

This section presents the ns-2 simulation results for each workload.

5.4.1 HID Workload

The results of the HID workload are shown in Figure 5.1. For 1 to 9 slave nodes,

the LQDRF policy obtains the lowest latency and energy consumption. For 10 to 15

slave nodes, the Data Rate Only policy obtains the lowest latency. However, since

we are primarily interested in maximizing battery life, the I+SNR Threshold policy

exhibits similar latencies, maintains a high throughput and low energy consumption,

and therefore should be used for network sizes greater than 10 slave nodes. The lower

amount of energy consumed by the LQDRF policy for greater than 11 slave nodes is

due to a reduction in throughput and is not considered optimal.
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For network sizes up to 10 slave nodes, the LQDRF policy decreases energy

consumption over the previous best Data Rate Only policy by 13.22% on average,

while also decreasing the average latency by 10.09%. For network sizes above 10 slave

nodes, the I+SNR Threshold policy decreases energy consumption over the previous

best Data Rate Only policy by 12.80% on average, but incurs a latency increase of

18.10%.

(a) Energy (b) Latency

(c) Packet Delivery Ratio (d) Throughput

Figure 5.1: HID Workload Results. (a) Energy, (b) Latency, (c) Packet Delivery

Ratio, and (d) Throughput.
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5.4.2 Remote Workload

The results of the remote workload study are shown in Figure 5.2. Packet

delivery ratio and throughput (not shown) remain high for all policies and are not

a factor. The LQDRF policy decreases energy consumption over the previous best

Data Rate Only policy by 23.46% while only increasing the average latency by 2.52%.

(a) Energy

(b) Latency (c) Packet Delivery Ratio

Figure 5.2: Remote Workload Results. (a) Energy, (b) Latency, and (c) Packet

Delivery Ratio.

The I+SNR Threshold policy decreases energy consumption over the previous

best Data Rate Only policy by 36.29% (an additional 5.92% beyond the LQDRF
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policy). Unfortunately, this policy increases latency by 112.54%.

5.4.3 File Transfer Workload

(a) Energy (b) Latency

(c) Packet Delivery Ratio (d) Throughput

Figure 5.3: File Transfer Workload Results. (a) Energy, (b) Latency, (c) Packet

Delivery Ratio, and (d) Throughput.

The results of the file transfer workload study are shown in Figure 5.3. The

intensity of this workload causes node throughput to plummet at 2 slave nodes, even

when no policy is in force. The LQDRF policy staves off this decline for a network of

2 slave nodes, but then begins to plummet as well. Both the I+SNR Threshold and
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the Data Rate Only policy manage to mitigate this negative effect for network sizes

up to 3 slave nodes.

We see a crossover in latency performance at 2 slave nodes. For network sizes

of 1 to 2 slave nodes, the LQDRF policy provides the lowest latency, decreasing overall

latency by 43.19%. The I+SNR Threshold and Data Rate Only policy provide the

lowest latency for network sizes above 2 slave nodes, decreasing overall latency when

compared against No Policy by 41.08% and 40.94% respectively.

The file transfer workload demonstrates that the LQDRF policy provides the

greatest energy conservation (40.63% over No Policy). The I+SNR Threshold policy

decreases energy consumption by 36.88%. The PA Only policy demonstrates the

lowest average energy consumption for a single slave node due to its lower packet

delivery ratio, and is therefore not considered optimal.

5.5 Conclusion

Employing a combined power and data rate policy yields improved energy

conservation over both a data rate only policy as well as a power only policy. In some

instances, latency is also improved.

The I+SNR Threshold policy is the best policy to use for dense networks. The

LQDRF policy provides maximum energy savings while also minimizing latency for

sparse networks.

We summarize the results of all workloads in Figure 5.4. These graphs show the

energy and latency savings over the optimal Data Rate Only policy. Similar results

are obtained when compared against the optimal Power Only policy. Overall, the

LQDRF policy is superior in performance in terms of these two metrics for both the

HID and remote workload. For the file transfer workload, there is no clear dominant

combinatory policy if we only observe energy and latency, since latency increases with

energy savings.

However, if latency is not a concern, and we are more interested in energy

efficiency, then the data-to-energy ratio summary found in Figure 5.5 demonstrates

that the I+SNR Threshold policy is the most energy efficient for both the HID and
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Figure 5.4: Workload Comparison of Energy and Latency Savings for Combined

Policies.

Figure 5.5: Data-to-Energy Ratio Comparison for all Workloads.
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remote workloads. The most energy efficient policy for the file transfer workload is

the Data Rate Only policy.

The combinatory synergy of transmission power and data rate adjustment

yields the greatest energy conservation for a wide variety of conditions and usage

models.

68



Appendix A

Simulation Model and Source Code

A.1 ns-2 Code Samples

Figure A.1 diagrams the ns-2 simulation model for WirelessUSB. We modified

the original WirelessUSB implementation by Woodings and Pandey [13] to include

intelligent power and data rate adjustment.

The protocol stack of the simulation model emulates the OSI protocol stack

using a separate class file for each layer. Implementation of the WirelessUSB protocol

requires customizing the operation of the lowest three layers, specifically, the network,

data link, and physical layers. Each layer’s code contains a recv() and send()

method in order to pass the current packet object up or down the protocol stack.

Some classes, such as wireless-phy.cc have helper methods, such as sendUp() and

sendDown() that specifically send the packet object up or down the protocol stack

respectively.

Section A.2 is an example ns-2 TCL script used to drive the simulations for

this research thesis. Power and data rate policies are set on the routing agent of each

node, which corresponds to the network layer.

Section A.3 contains source code samples from wu.h and wu.cc (located in the

/wu directory) which comprise the Network layer of the OSI stack for the WirelessUSB

protocol implementation. This layer is responsible for packet retransmissions and for

dynamically adjusting a node’s power level and data rate.
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Figure A.1: WirelessUSB Simulation Model.
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Section A.4 contains source code samples from mac-wu.cc and mac-wu.h (lo-

cated in the /mac directory), which comprise the MAC layer functionality for the

WirelessUSB protocol implementation. This layer is responsible for the accumulation

of energy totals and RSSI sensing.

Section A.5 contains source code samples from wireless-phy.cc (located in

the /mac directory), which comprises the physical layer functionality for the Wire-

lessUSB protocol implementation. This layer is responsible for determining whether

or not a packet can be received due to signal strength and bit errors.

Section A.6 contains the modifications made to packet.h (located in the

/common directory) for the WirelessUSB protocol implementation. These modifi-

cations include the addition of a data rate member variable to track the data rate at

which the packet was transmitted. The master then uses this information to transmit

acknowledgements at the same data rate.

Section A.7 contains additions to the collision model found in collision.cc

(also located in the /common directory) to facilitate calculating signal-to-noise ratios.

A.2 Example TCL Script

# WirelessUSB script for power and data rate policy experiments

# Copyright (c) 2006 JLB Software

# All rights reserved.

# ======================================================================

# Define Global Options

# ======================================================================

set val(chan) Channel/WirelessChannel

set val(prop) Propagation/TwoRayGround

set val(netif) Phy/WirelessPhy

set val(mac) Mac/MAC_WU

#set val(mac) Mac/802_11

set val(ifq) Queue/DropTail/PriQueue

set val(ll) LL

set val(ant) Antenna/OmniAntenna

set val(x) 70;

set val(y) 70;

set val(ifqlen) 50 ;#max packet in ifq

set val(seed) 30;

set val(adhocRouting) WU

#set val(adhocRouting) DSR

set val(nn) 16;

set val(cp) "cbr.in"

set val(sc) "dest.in"

set val(stop) 300;
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# =====================================================================

# Main Program

# =====================================================================

#

# Initialize Global Variables

#

# create simulator instance

set ns_ [new Simulator]

# setup topography object

set topo [new Topography]

# create trace object for ns and nam

set tracefd [open output.tr w]

set namtrace [open wireless-out.nam w]

$ns_ trace-all $tracefd

$ns_ namtrace-all-wireless $namtrace $val(x) $val(y)

# define topology

$topo load_flatgrid $val(x) $val(y)

#

# Create God

#

set god_ [create-god $val(nn)]

#

# define how nodes should be created

#

#global node setting

# ======================================================================

set numInterferingStations 0;

# Create channels (can be more than one with this new type. Not using -channelType)

set chan_1_ [new $val(chan)]

# ======================================================================

#Now, set up WU nodes.

# ======================================================================

$ns_ node-config -adhocRouting $val(adhocRouting) \

-llType $val(ll) \

-macType $val(mac) \

-ifqType $val(ifq) \

-ifqLen $val(ifqlen) \

-antType $val(ant) \

-propType $val(prop) \

-phyType $val(netif) \

-channel $chan_1_ \

-topoInstance $topo \

-agentTrace ON \

-routerTrace OFF \

-macTrace OFF

# Create the specified number of nodes [$val(nn)] and "attach" them

# to the channel.
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for {set i $numInterferingStations} {$i < $val(nn) } {incr i} {

set node_($i) [$ns_ node]

$node_($i) random-motion 0 ;# disable random motion

}

for {set i $numInterferingStations} {$i < $val(nn) } {incr i} {

set mac_($i) [$node_($i) getMac 0]

$mac_($i) hasBluetooth 0

$mac_($i) dataRate 0 31250 ;#250 kbps

# $mac_($i) dataRate 0 250000 ;#250 kbps

set rag_($i) [$node_($i) getRagent]

$rag_($i) base-channel-number 10

$rag_($i) node $node_($i); #Create a reference to routing agent in node

}

#Bind initiation: Both, master and slave, should, ideally, be initiated at

#the same time. Corresponds to pressing of a button manually by the user.

set numMasters 1;

set numSlaves 15;

#set the power policy to 0 = NONE, 1 = INCREMENTAL 2 = AGGRESSIVE 3 = INCREMENT BY 2

set powerPolicy 1;

#set the data rate policy to 0 = NONE, 1 = BEACONING 2 = SLAVE_BEACONING 3 = LINK_QUALITY 4 = SNR_THRESHOLD

set dataRatePolicy 4;

#set the combined power and data rate policy to 0 = NONE, 1 = LINK_QUALITY_DR_FIRST

set combinedPolicy 0;

#The The manner in which upgrades are backed off 0 = FIXED (uses BackoffValue), 1 = LINEAR, 2 = EXPONENTIAL

set dataRateUpgradeBackoffMechanism 0;

#The number of successfull packets in succession before adjusting power level down

set dataRateBackoffValue 10;

#The number of retransmissions before adjusting power level up

set dataRateTolerance 1;

set totNodesWu [expr {$numMasters} * [expr 1 + {$numSlaves}]]

puts "=============================================="

puts "Total number of active WirelessUSB nodes is $totNodesWu"

set masterNode $numInterferingStations

for {set i $numInterferingStations} {$i < [expr $numInterferingStations + $totNodesWu]} {incr i} {

# puts "i is $i"

if {$i == $masterNode} {

puts "Master node is $i"

$mac_($masterNode) isAMaster 0

$rag_($masterNode) isAMaster

$rag_($i) pnCode [expr 1001 + $i]

$rag_($i) beaconInterval_ 20

} else {

$rag_($masterNode) bind-initiate-time [expr 1.0 + [expr 0.1 * $i]]

$rag_($i) bind-initiate-time [expr 1.0 + [expr 0.1 * $i]]

#set the power policy, and data rate policy, and associated params

$rag_($i) combinedPolicy $combinedPolicy

$rag_($i) powerPolicy $powerPolicy

$rag_($i) dataRateBackoff_ $dataRateBackoffValue

$rag_($i) dataRateTolerance_ $dataRateTolerance

# Optional parameters to manually set the specific power level or data rate of a node
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# $mac_($i) powerLevel_ 7

# $mac_($i) dataRateLevel_ 2

}

#Settings for All nodes

$rag_($i) dataRatePolicy $dataRatePolicy

#enable / disable debugging at the router / mac level: (NEVER BOTH AT THE SAME TIME)

#$rag_($i) hasDebug 1 1.0

#$mac_($i) hasDebug 1 2 21.00

#$node_($i) dontPrintToTrace

#$node_($i) timeToHalt $val(stop)

}

# Define traffic model

puts "Loading traffic model ’$val(cp)’..."

source $val(cp)

# Define node movement model

puts "Loading mobility model ’$val(sc)’..."

source $val(sc)

# Define node initial position in nam

for {set i 0} {$i < $val(nn)} {incr i} {

# The function must be called after mobility model is defined

$ns_ initial_node_pos $node_($i) 20

}

# Tell nodes when the simulation ends

for {set i 0} {$i < $val(nn) } {incr i} {

#$ns_ at $val(stop).0 "$node_($i) reset";

}

# Optional display each node’s energy usage

for {set i 0} {$i < $val(nn)} {incr i} {

$ns_ at $val(stop).0001 "$mac_($i) energy"

}

$ns_ at $val(stop).0002 "puts \"NS EXITING...\n \" ; $ns_ halt"

puts $tracefd "M 0.0 nn $val(nn) x $val(x) y $val(y) rp $val(adhocRouting)"

puts $tracefd "M 0.0 sc $val(sc) cp $val(cp) seed $val(seed)"

puts $tracefd "M 0.0 prop $val(prop) ant $val(ant)"

puts "Starting Simulation..."

$ns_ run

A.3 WirelessUSB Network Layer

A.3.1 wu/wu.h

/*

Copyright (c) 2006 Cypress Semiconductor Corporation. All Rights Reserved.

*/

...
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#define RSSI_MIN_THRESHOLD -70.00

#define RSSI_MIN_SENSING_DBM -100.00

#define WU_RSSI_MAX 31 //Maximum RSSI value

...

#define WU_MAX_PA 7

#define WU_MIN_PA 0

#define POWER_POLICY_NONE 0

#define POWER_POLICY_INCREMENTAL 1

#define POWER_POLICY_AGGRESSIVE 2

#define POWER_POLICY_INCREMENTAL_PLUS_2 3

#define POWER_LEVEL_UPGRADE_FIXED 0

#define POWER_LEVEL_UPGRADE_LINEAR 1

#define POWER_LEVEL_UPGRADE_EXPONENTIAL 2

#define POWER_LEVEL_UPGRADE_BACKOFF_INCREMENT 3

#define MIN_POWER_LEVEL_UPGRADE_BACKOFF_VALUE 4

#define MAX_POWER_LEVEL_UPGRADE_BACKOFF_VALUE 64

#define WU_MAX_RATE_LEVEL 4

#define WU_MIN_RATE_LEVEL 0

#define WU_DATA_RATE_POLICY_NONE 0

#define WU_DATA_RATE_POLICY_BEACONING 1

#define WU_DATA_RATE_POLICY_SLAVE_BEACONING 2

#define WU_DATA_RATE_POLICY_LINK_QUALITY 3

#define WU_DATA_RATE_POLICY_SNR_THRESHOLD 4

#define WU_DATA_RATE_THRESHOLD_CONSTRAIN 0

#define WU_DATA_RATE_THRESHOLD_RELAX 1

#define WU_COMBINED_POLICY_NONE 0

#define WU_COMBINED_POLICY_DR_FIRST 1

#define WU_UPGRADE_POWER 1

#define WU_UPGRADE_DATA_RATE 2

///////////////////////////////////////////////////////////////////////////////////

...

// Timer definitions for beaconing approaches

class wuBeaconTimer: public TimerHandler {

public:

wuBeaconTimer(WU* a) : agent(a) {agent=a;}

void handle(Event*);

void expire(Event*);

WU *agent;

private:

Event intr;

};

class wuSubBeaconTimer: public TimerHandler {

public:

wuSubBeaconTimer(WU* a) : agent(a) {agent=a;}

void handle(Event*);

void expire(Event*);

WU *agent;
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private:

Event intr;

};

...

/*

The Routing Agent

*/

class WU: public Agent {

/*

* make some friends first

*/

...

friend class wuBeaconTimer;

friend class wuSubBeaconTimer;

public:

WU(nsaddr_t id);

void recv(Packet *p, Handler *);

void retransmit();

double getRetransmitTO(Packet *packet, bool addRandomness);

double getMaxRoundTripTxTime(double psz, double drt, bool addRandomness);

double getTxPowerValueFromMac();

double getTxPowerValue(int powerLevel);

double getTxDataRateValue(int dataRateLevel);

double getMACEnergyUsed();

inline int getDataRatePolicy() { return dataRatePolicy; };

int ifNeedToPrintWu(int);

...

int num_times_retx;

//Sub Beaconing variables

bool subBeaconSent[WU_MAX_RATE_LEVEL+1];

Packet * subBeaconPacket[WU_MAX_RATE_LEVEL+1];

protected:

int command(int, const char *const *);

void decideWhatDataRateToUseUsingSNR();

int powerPolicy;

int powerLevelBackoff_; //Backoff value for fixed upgrade backoff attempt. # of successful packets before attempting upgrade

int powerLevelTolerance_;

int powerLevelUpgradeBackoffMechanism; // Either FIXED (uses powerLevelBackoff_ value), LINEAR, or EXPONENTIAL

int dataRatePolicy;

int dataRateBackoff_; //Backoff value for fixed upgrade backoff attempt. # of successful packets before attempting upgrade

int dataRateTolerance_;

int dataRateUpgradeBackoffMechanism; // Either FIXED (uses powerLevelBackoff_ value), LINEAR, or EXPONENTIAL

int combinedPolicy; //Defines the manner in which both power and data rate policies should be combined

double beaconInterval_; //Time between successive beacons (for data rate adaptation)
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void send(Packet *p, double delay);

virtual void sendBeaconResponse(nsaddr_t ipdst);

void recvDataRateBeacon(Packet *p);

...

wuBeaconTimer beaconTimer;

wuSubBeaconTimer subBeaconTimer;

private:

int successfulPacketsAtCurrentTxPowerLevel;

int successfulPacketsAtCurrentTxDataRate;

bool attemptingToUpgradePowerLevel; // Will be set when there is an attempt to upgrade (decrease) power level

bool attemptingToUpgradeDataRate; // Will be set when there is an attempt to upgrade (increase) data rate

int beaconResponseDataRate;

int upgradePowerOrDataRate; //Should power or data rate be upgraded next?

};

A.3.2 wu/wu.cc

/*

Copyright (c) 2006 Cypress Semiconductor Corporation. All Rights Reserved.

@Manoj Pandey, Cypress Semiconductor Corp.

@Jeff Barlow, Cypress Semiconductor Corp.

*/

/*

* This is the routing layer module for WirelessUSB

*

*/

...

/* Constructor */

WU::WU(nsaddr_t id) : Agent(PT_WU), retxtimer(this), rptimer(this), rssitimer(this),

cstimer(this), bindtimer(this), gptimer(this), beaconTimer(this), subBeaconTimer(this)

{

index = id;

base_channel = 0;

calculateSubChannels(base_channel);

logtarget = 0;

ifqueue = 0;

isAMaster = 0;

pn_code = PN1;

masters_pn_code = PN1;

numBadRSSIChannelsBeforeDuringRegularDataMode = 0;

numBadRSSIChannelsBeforeDuringChannelSelect = 0;

numPingsSentOnThisChannel = 0;

numRoundsOfSubsetForPing = 0;

mac_ = 0;

node_ = 0;

need_to_send_ack = 0;

setMode(START_MODE);

setPktTxMode(WU_STATUS_IDLE);

hasDebug = 0;

debugStartTime = 0.0;
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hasTrace = 0;

pktTx_ = 0;

for (int i=0; i < MAX_SLAVES_SUPPORTED; i++) {

bind_times[i] = -1000.0;

}

gptimer.purpose = PURPOSE_INIT_BIND;

gptimer.resched(DELTA_AFTER_ZERO);

my_masters_network_id = -1; //Not bound to a master yet

//Power dynamics variables

powerPolicy = POWER_POLICY_NONE;

successfulPacketsAtCurrentTxPowerLevel = 0;

powerLevelBackoff_ = 10;

powerLevelTolerance_ = 0;

powerLevelUpgradeBackoffMechanism = POWER_LEVEL_UPGRADE_FIXED;

attemptingToUpgradePowerLevel = false;

//Data rate dynamics variables

dataRatePolicy = WU_DATA_RATE_POLICY_NONE;

successfulPacketsAtCurrentTxDataRate = 0;

dataRateBackoff_ = 10;

dataRateTolerance_ = 0;

dataRateUpgradeBackoffMechanism = POWER_LEVEL_UPGRADE_FIXED;

attemptingToUpgradeDataRate = false;

//Start the beacon

beaconInterval_ = 1.0;

double randomness = id * 0.1;

beaconTimer.resched(beaconInterval_ + randomness);

//Combined Power and Data rate policy

combinedPolicy = WU_COMBINED_POLICY_NONE;

upgradePowerOrDataRate = WU_UPGRADE_DATA_RATE; //Start with Data Rate

}

int WU::command(int argc, const char*const* argv)

{

...

else if (strcmp(argv[1], "powerPolicy") == 0) {

//Only Slave Nodes have power policies

if (!isAMaster)

powerPolicy = atoi(argv[2]);

//printf("wu.cc: node_(%d) The power policy is set to %d \n", index, powerPolicy);

return TCL_OK;

}

else if (strcmp(argv[1], "powerLevelBackoff_") == 0) {

powerLevelBackoff_ = atoi(argv[2]);

//printf("wu.cc: node_(%d) The power policy backoff is set to %d \n", index, powerLevelBackoff_);

return TCL_OK;

}

else if (strcmp(argv[1], "powerLevelTolerance_") == 0) {

powerLevelTolerance_ = atoi(argv[2]);
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//printf("wu.cc: node_(%d) The power policy tolerance is set to %d \n", index, powerLevelTolerance_);

return TCL_OK;

}

else if (strcmp(argv[1], "powerLevelUpgradeBackoffMechanism") == 0) {

powerLevelUpgradeBackoffMechanism = atoi(argv[2]);

//printf("wu.cc: node_(%d) The power policy upgrade backoff mechanism is set to %d \n", index, powerLevelUpgradeBackoffMechanism);

if (powerLevelUpgradeBackoffMechanism != POWER_LEVEL_UPGRADE_FIXED)

{

powerLevelBackoff_ = MIN_POWER_LEVEL_UPGRADE_BACKOFF_VALUE;

}

return TCL_OK;

}

else if (strcmp(argv[1], "dataRatePolicy") == 0) {

//Set the data rate policy

dataRatePolicy = atoi(argv[2]);

//Make sure the master never uses a data rate policy other than 0 or 1 (beaconing)

if (isAMaster && (dataRatePolicy != WU_DATA_RATE_POLICY_BEACONING))

{

dataRatePolicy = WU_DATA_RATE_POLICY_NONE;

// printf("wu.cc: node_(%d) setting data rate policy to none.\n", index);

}

// printf("wu.cc: node_(%d) The data rate policy is set to %d \n", index, dataRatePolicy);

return TCL_OK;

}

else if (strcmp(argv[1], "dataRateBackoff_") == 0) {

dataRateBackoff_ = atoi(argv[2]);

//printf("wu.cc: node_(%d) The data rate backoff is set to %d \n", index, powerLevelBackoff_);

return TCL_OK;

}

else if (strcmp(argv[1], "dataRateTolerance_") == 0) {

// if ((dataRatePolicy == WU_DATA_RATE_POLICY_BEACONING))

// dataRateTolerance_ = 1;

// else

dataRateTolerance_ = atoi(argv[2]);

//printf("wu.cc: node_(%d) The data rate tolerance is set to %d \n", index, powerLevelTolerance_);

return TCL_OK;

}

else if (strcmp(argv[1], "dataRateUpgradeBackoffMechanism") == 0) {

dataRateUpgradeBackoffMechanism = atoi(argv[2]);

//printf("wu.cc: node_(%d) The power policy upgrade backoff mechanism is set to %d \n", index, powerLevelUpgradeBackoffMechanism);

if (dataRateUpgradeBackoffMechanism != POWER_LEVEL_UPGRADE_FIXED)

{

dataRateBackoff_ = MIN_POWER_LEVEL_UPGRADE_BACKOFF_VALUE;

}

return TCL_OK;

}

else if (strcmp(argv[1], "beaconInterval_") == 0) {

beaconInterval_ = atoi(argv[2]);

// printf("wu.cc: node_(%d) The beacon interval is set to %.1f\n", index, beaconInterval_);

return TCL_OK;

}

else if (strcmp(argv[1], "combinedPolicy") == 0) {

//Only Slave Nodes have power policies

if (!isAMaster)
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combinedPolicy = atoi(argv[2]);

printf("wu.cc: node_(%d) The combined power & dr policy is set to %d \n", index, combinedPolicy);

return TCL_OK;

}

//This case provides a link to this routing layer at the node level - BarlowJ

else if (strcasecmp(argv[1], "node") == 0)

{

TclObject *obj;

if ( (obj = TclObject::lookup(argv[2])) == 0)

{

fprintf(stderr, "wu.cc: %s lookup of %s failed\n", argv[1], argv[2]);

return TCL_ERROR;

}

//printf("wu.cc: Setting node pointer in node to me!\n");

Node *nodePtr_;

nodePtr_ = (Node *) obj;

nodePtr_->routingLayer = this;

return TCL_OK;

}

...

}

...

void wuPktRetxTimer::handle(Event*)

{

if (agent->ifNeedToPrintWu(2)) {

printf("wu.cc: [%lf] node_(%d) is handling a retransmit timer to see if this packet needs to be retransmitted \n",

NOW, agent->index);

}

agent->retransmit();

return;

}

void wuPktRetxTimer::expire(Event*)

{

return;

}

void wuBeaconTimer::handle(Event*)

{

//Only masters send out beacons using regular beaconing mode

if ((agent->isAMaster) && (agent->dataRatePolicy == WU_DATA_RATE_POLICY_BEACONING))

{

if (agent->ifNeedToPrintWu(2)) {

printf("wu.cc(%d): node_(%d) is handling a beacon timer at time %f \n", __LINE__, agent->index, NOW);

}

if (NOW > 5.0) //CANNOT BEACON UNTIL ALL NODES ARE BOUND. Prevent any Beaconing until at least 5 seconds

//Send out a sub-beacon at each data rate

agent->prepareAndSendDataRateSubBeacons(IP_BROADCAST); //Send to All nodes on this frequency!)

}
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//Only slaves send out beacons in slave beaconing mode

if ((!agent->isAMaster) && (agent->dataRatePolicy == WU_DATA_RATE_POLICY_SLAVE_BEACONING))

{

if (agent->ifNeedToPrintWu(2)) {

printf("wu.cc(%d): Slave node_(%d) is handling a beacon timer at time %f \n", __LINE__, agent->index, NOW);

}

if (NOW > 5.0) //DON’T BEACON UPON INITIAL SETUP. WAIT FOR NEXT INTERVAL.

//Send out a sub-beacon at each data rate

agent->prepareAndSendDataRateSubBeacons(agent->my_masters_network_id);

}

//Mutual code

if ((agent->dataRatePolicy == WU_DATA_RATE_POLICY_BEACONING) ||

(agent->dataRatePolicy == WU_DATA_RATE_POLICY_SLAVE_BEACONING))

{

//Reschedule every beaconInterval_

if (NOW < 5.0) //DON’T BEACON UPON INITIAL SETUP. WAIT FOR NEXT INTERVAL.

agent->beaconTimer.resched(10.0);

if (NOW < 12.0) //DON’T BEACON UPON INITIAL SETUP. WAIT FOR NEXT INTERVAL.

agent->beaconTimer.resched(10.0);

else

agent->beaconTimer.resched(agent->beaconInterval_);

}

}

void wuSubBeaconTimer::handle(Event*)

{

//Only masters send out beacons using this mode and the data rate policy must warrant it

if ((agent->dataRatePolicy != WU_DATA_RATE_POLICY_BEACONING) &&

(agent->dataRatePolicy != WU_DATA_RATE_POLICY_SLAVE_BEACONING))

{

return;

}

if (agent->ifNeedToPrintWu(2)) {

printf("wu.cc(%d): node_(%d) is handling a sub beacon timer at time %f \n", __LINE__, agent->index, NOW);

}

double nextPossibleSendingTime = 0.0005;

bool haveSentAllSubBeacons = true;

//For Regular Master Node Beaconing

if (agent->isAMaster && (agent->dataRatePolicy == WU_DATA_RATE_POLICY_BEACONING))

{

for (int i = WU_MAX_RATE_LEVEL; i > 0; i--)

{

if (!agent->subBeaconSent[i])

{

haveSentAllSubBeacons = false; //We found one that hasn’t been sent

if (agent->mac_ && (agent->mac_->mode == WU_IDLE))

{

struct hdr_cmn *ch = HDR_CMN(agent->subBeaconPacket[i]);

ch->seq_no = agent->get_seq_no();

// printf("wu.cc: [%lf] SUBBEACON- Scheduling the transmission of beacon (seq: --, rate: %d) NOW!\n", NOW, i);

Scheduler::instance().schedule(agent->target_, agent->subBeaconPacket[i], 0.0);

agent->subBeaconSent[i] = true;

nextPossibleSendingTime = 0.001;
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}

else

{

// printf("wu.cc: [%lf] SUBBEACON- TRIED to schedule beacon %d but failed: MAC isn’t ready.\n", NOW, i);

}

break;

}

}

}

//For Slave Node Beaconing

else if (!agent->isAMaster && (agent->dataRatePolicy == WU_DATA_RATE_POLICY_SLAVE_BEACONING))

{

//Make sure we have a ref to mac

if (!agent->mac_)

{

printf("wu.cc(%d): [%lf] node_(%d) ERROR: CANNOT CONTINUE. No Reference to MAC layer in wu.cc.\n",

__LINE__, NOW, agent->index);

}

//Loop through data rate beacons, starting with one above that which we are on.

int nextPossibleDataRateLevel = agent->mac_->getDataRateLevel() + 1;

if (nextPossibleDataRateLevel > WU_MAX_RATE_LEVEL)

{

//Nothing to do. Already at max data rate.

// printf("wu.cc(): [%lf] node_(%d) SUBBEACON- No more data rates to try beaconing with\n", NOW, agent->index);

haveSentAllSubBeacons = true;

}

else //We’ve still got an acceptable range of beacons to send out

{

for (int i = nextPossibleDataRateLevel; i <= WU_MAX_RATE_LEVEL; i++) //Beacon from Lowest DR to Highest

// for (int i = WU_MAX_RATE_LEVEL; i >= nextPossibleDataRateLevel; i--) //Beacon from Highest DR to Lowest

{

if (!agent->subBeaconSent[i])

{

haveSentAllSubBeacons = false; //We found one that hasn’t been sent

if (agent->mac_ && (agent->mac_->mode == WU_IDLE))

{

struct hdr_cmn *ch = HDR_CMN(agent->subBeaconPacket[i]);

ch->seq_no = agent->get_seq_no();

// printf("wu.cc: [%lf] SUBBEACON- Transmitting beacon (seq: %d, rate: %d, rate: %d) NOW!\n",

// NOW, ch->seq_no, i, agent->subBeaconPacket[i]->data_rate);

Scheduler::instance().schedule(agent->target_, agent->subBeaconPacket[i], 0.0);

agent->subBeaconSent[i] = true;

// nextPossibleSendingTime = 0.001;

nextPossibleSendingTime = agent->getMaxRoundTripTxTime(1.0, agent->getTxDataRateValue(i), false);

// printf("\t\tnext possible sending time(1.0, %d): %lf in the future.\n", i, nextPossibleSendingTime);

}

else

{

// printf("wu.cc: [%lf] node_(%d) SUBBEACON- TRIED to schedule beacon %d but failed: MAC isn’t ready.\n",

// NOW, agent->index, i);

}

break;

}

else

{

// printf("wu.cc: [%lf] node_(%d) SUBBEACON- Beacon has already been sent at level %d\n", NOW, agent->index, i);

}

}
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}

}

//Reschedule if we still have more sub-beacons to send out!

if (!haveSentAllSubBeacons)

{

// printf("wu.cc: [%lf] node_(%d) SUBBEACON- Rescheduling for time %lf\n", NOW, agent->index, NOW+nextPossibleSendingTime);

agent->subBeaconTimer.resched(nextPossibleSendingTime);

}

else

{

// printf("wu.cc: [%lf] node_(%d) SUBBEACON- we’ve sent all subbeacons!\n", NOW, agent->index);

}

}

void wuBeaconTimer::expire(Event *) { return; }

void wuSubBeaconTimer::expire(Event *) { return; }

void WU::handle_ack_notification(int senderAddr)

{

//struct hdr_ip *ih = HDR_IP(p);

//Let us keep the 4th field as the current frequency.

if (hasTrace == 1)

printf("ANALYSIS-TRACE: %d %d %ld %d %d\n", IS_AN_AUTO_ACK, index, index, getChannelNumber(), int(NOW*1000));

if (isAMaster == 1)

{

if (current_mode == MASTER_BIND_WAIT_FOR_AUTO_ACK_AFTER_SENDING_RESPONSE_MODE)

{

setChannelCounter(previous_channel_counter);

changeToDataMode();

if (ifNeedToPrintWu(1)) {

printf("wu.cc: I am a master in _wait_for_auto_ack_after_sending_response_mode, Setting mode to DATA_MODE,

Channel to %d; return \n", getChannelNumber());

}

}

else if (current_mode == MASTER_CHANNEL_SELECT_MODE)

{

current_mode = MASTER_CHANNEL_SELECT_MODE_GOT_AN_ACK;

}

else if (current_mode == DATA_MODE)

{

if (ifNeedToPrintWu(1)) {

printf("wu.cc: I am a master in DATA_MODE, simply return \n");

}

}

return;

}

if (ifNeedToPrintWu(1)) {

printf("wu.cc: [%lf] node_(%d) Handling ack notification \n", NOW, index);

// printf("wu.cc: node_(%d) This is my own ping packet, which was sent to the node \n", index);

printf("\tCurrent mode is %d. (%d = Bind mode, %d = Data mode) \n", current_mode, BIND_MODE, DATA_MODE);

}

if (current_mode == DATA_MODE)

{

83



if (pkt_tx_mode == WAITING_FOR_ACK)

{

//setPktTxMode(WU_STATUS_IDLE);

if (ifNeedToPrintWu(1)) {

printf("wu.cc: [%lf] node_(%d) Was waiting for this DATA ack. Got it, hence return \n", NOW, index);

}

if (pktTx_ != 0) {

Packet *np = pktTx_;

Packet::free(np);

pktTx_ = 0; //Reset the packet to NULL

}

//Decide how to upgrade the power and or data rate

if (combinedPolicy != WU_COMBINED_POLICY_NONE)

{

//Are we using a link quality mechanism?

if (combinedPolicy == WU_COMBINED_POLICY_DR_FIRST)

{

//Make sure we’re using the link quality schemes for both power and data rate

if (upgradePowerOrDataRate == WU_UPGRADE_DATA_RATE) //Upgrade Data Rate

{

powerPolicy = POWER_POLICY_NONE;

dataRatePolicy = WU_DATA_RATE_POLICY_LINK_QUALITY;

}

else //Upgrade Power

{

powerPolicy = POWER_POLICY_INCREMENTAL;

dataRatePolicy = WU_DATA_RATE_POLICY_NONE;

}

}

}

//Upgrade power level if we are using a policy

if (powerPolicy != POWER_POLICY_NONE)

{

//Did we just succeed after an upgrade attempt?

if (attemptingToUpgradePowerLevel)

{

attemptingToUpgradePowerLevel = false;

if (powerLevelUpgradeBackoffMechanism != POWER_LEVEL_UPGRADE_FIXED)

{

powerLevelBackoff_ = MIN_POWER_LEVEL_UPGRADE_BACKOFF_VALUE;

}

//printf("wu.cc(%d): node_(%d) was successfull after a power upgrade attempt.

// Setting powerLevelBackoff_ back to: %d\n", __LINE__, index, powerLevelBackoff_);

}

//Increment the number of successful packets at this power level

successfulPacketsAtCurrentTxPowerLevel++;

//Decrement power level if we’re successful over X times

if (successfulPacketsAtCurrentTxPowerLevel > powerLevelBackoff_)

{

if (mac_)

{

//Attempt a power level UPGRADE by decrementing the power level

attemptingToUpgradePowerLevel = true;

84



//Reset success counter

successfulPacketsAtCurrentTxPowerLevel = 0;

int powerLevel = mac_->getPowerLevel();

if (powerLevel != 0)

{

//printf("wu.cc: node_(%d) is upgrading its PA from %d to %d \n", index, powerLevel, powerLevel-1);

powerLevel--;

mac_->setPowerLevel(powerLevel);

}

}

}

}

if (dataRatePolicy == WU_DATA_RATE_POLICY_SNR_THRESHOLD)

{

mac_->updateDataRateSNRThreshold(mac_->getDataRateLevel(), WU_DATA_RATE_THRESHOLD_RELAX);

decideWhatDataRateToUseUsingSNR();

}

//Upgrade data rate level if we are using a policy

else if (dataRatePolicy == WU_DATA_RATE_POLICY_LINK_QUALITY)

{

//Did we just succeed after an upgrade attempt?

if (attemptingToUpgradeDataRate)

{

attemptingToUpgradeDataRate = false;

if (dataRateUpgradeBackoffMechanism != POWER_LEVEL_UPGRADE_FIXED)

{

dataRateBackoff_ = MIN_POWER_LEVEL_UPGRADE_BACKOFF_VALUE;

}

//printf("wu.cc(%d): node_(%d) was successfull after a rate upgrade attempt.

// Setting dataRateBackoff_ back to: %d\n", __LINE__, index, dataRateBackoff_);

}

//Increment the number of successful packets at this data rate

successfulPacketsAtCurrentTxDataRate++;

//Decrement power level if we’re successful over X times

if (successfulPacketsAtCurrentTxDataRate > dataRateBackoff_)

{

if (mac_)

{

//Attempt a data rate UPGRADE by incrementing the data rate level

attemptingToUpgradeDataRate = true;

//Reset success counter

successfulPacketsAtCurrentTxDataRate = 0;

int dataRateLevel = mac_->getDataRateLevel();

if (dataRateLevel != WU_MAX_RATE_LEVEL)

{

//printf("wu.cc: node_(%d) is upgrading its Rate Level from %d to %d \n", index, dataRateLevel, dataRateLevel+1);

dataRateLevel++;

mac_->setDataRateLevel(dataRateLevel);

}

}

}
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}

setPktTxMode(RECEIVED_ACK);

return;

}

if (ifNeedToPrintWu(1)) {

printf("wu.cc: i am already bound, hence return \n");

}

return;

}

...

sendBindRequest(senderAddr);

setMode(SLAVE_BIND_WAIT_FOR_RESPONSE_AFTER_SENDING_REQUEST_MODE);

//Packet::free(p);

}

...

void WU::recv(Packet *p, Handler*)

{

struct hdr_cmn *ch = HDR_CMN(p);

struct hdr_ip *ih = HDR_IP(p);

if (ifNeedToPrintWu(1)) {

printf("wu.cc: [%lf] node_(%d) is receiving a packet here with wu_size as %d \n", NOW, index, ch->wu_size());

}

if (ch->ptype() == PT_WU) {

ih->ttl_ -= 1;

recvWU(p);

return;

}

/*

* Must be a packet I’m originating...

*/

if ((ih->saddr() == index) && (ch->num_forwards() == 0)) {

/*

* Add the IP Header

*/

// ch->size() += IP_HDR_LEN;

// ch->wu_size() += WU_NETWORK_HDR_LEN + WU_TRANSPORT_HDR_LEN;

ch->wu_size() += ch->size(); //Keep the same as the regular size!

// Added by Parag Dadhania && John Novatnack to handle broadcasting

if ( (u_int32_t)ih->daddr() != IP_BROADCAST)

ih->ttl_ = 1;

if (ifNeedToPrintWu(1)) {

printf("\tThis packet is being originated at application layer, must route/unicast this \n");

}

rt_resolve(p);

}
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else {

drop(p, DROP_RTR_TTL);

return;

}

}

void WU::recvWU(Packet *p)

{

struct hdr_wu *wh = HDR_WU(p);

struct hdr_ip *ih = HDR_IP(p);

assert(ih->sport() == RT_PORT);

assert(ih->dport() == RT_PORT);

/*

* Incoming Packets.

*/

switch(wh->wh_type) {

case WUTYPE_PING:

if (ifNeedToPrintWu(1)) {

printf("wu.cc: [%lf] node_(%d) is receiving a PING \n", NOW, index);

}

recvPing(p);

break;

case WUTYPE_BIND_REQUEST:

if (ifNeedToPrintWu(1)) {

printf("wu.cc: [%lf] node_(%d) is receiving a BIND REQUEST \n", NOW, index);

}

recvBindRequest(p);

break;

case WUTYPE_BIND_RESPONSE:

if (ifNeedToPrintWu(1)) {

printf("wu.cc: [%lf] node_(%d) is receiving a BIND RESPONSE \n", NOW, index);

}

recvBindResponse(p);

break;

case WUTYPE_CONNECT_REQUEST:

if (ifNeedToPrintWu(1)) {

printf("wu.cc: [%lf] node_(%d) is receiving a CONNECT REQUEST \n", NOW, index);

}

recvConnectRequest(p);

break;

case WUTYPE_CONNECT_RESPONSE:

if (ifNeedToPrintWu(1)) {

printf("wu.cc: [%lf] node_(%d) is receiving a CONNECT RESPONSE\n", NOW, index);

}

recvConnectResponse(p);

break;

case WUTYPE_DATA_RATE_BEACON:

if (ifNeedToPrintWu(1)) {
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printf("wu.cc: [%lf] node_(%d) is receiving a DATA RATE BEACON\n", NOW, index);

}

recvDataRateBeacon(p);

break;

default:

if (ifNeedToPrintWu(1)) {

printf("wu.cc: [%lf] node_(%d) is receiving a DEFAULT packet here \n", index);

fprintf(stderr, "Invalid WU type (%x)\n", wh->wh_type);

}

exit(1);

}

}

/** Gets the retransmit TimeOut value for packet */

double WU::getRetransmitTO(Packet *p, bool addRandomness)

{

double t_;

struct hdr_cmn *ch = HDR_CMN(p);

double drt = getTxDataRateValue(mac_->getDataRateLevel());

int psz = ch->wu_size();

t_ = getMaxRoundTripTxTime(psz, drt, addRandomness);

return t_;

}

/* Calculates the maximum round-trip tx time for packet of size "psz" bytes

* at rate "drt" bps, includes ack time and small random amount of increase for propigation delay.

*/

double WU::getMaxRoundTripTxTime(double psz, double drt, bool addRandomness)

{

double t_;

//Add time for which packet would be transmitted

t_ = (8 * (psz + CRC_SEED_LENGTH + LENGTH_FIELD))/(drt);

t_ += (8 * (NUMBER_STARTER_FRAMES * START_FRAME_SIZE))/(mac_->basicRate_);

//Add time for which ack would be transmitted

t_ += (8 * (MAC_WU_ACK_SIZE + CRC_SEED_LENGTH + LENGTH_FIELD))/(drt);

t_ += (8 * (NUMBER_STARTER_FRAMES * START_FRAME_SIZE))/(mac_->basicRate_);

//Adding a small value of ACK time to take care of propagation delay.

//This is not accurate, but would work, since the min time for the next

//ack to come would be ack_time, and here the field is 16th time smaller

//hence, it should be okay.

// printf("wu.cc(%d): node_(%d) Round-trip time prior to prop delay: %lf\n", __LINE__, index, t_);

double propigationDelay = (8 * MAC_WU_ACK_SIZE )/(16 * drt);

// printf("wu.cc(%d): node_(%d) Adding prop delay of: %lf\n", __LINE__, index, propigationDelay);

t_ += propigationDelay;

if (addRandomness)

{

//Add a random amount of time for uniqueness

// double randomness = ((Random::random()) % 9) / 10000.0f;

double packetLengthRandomness = ((Random::random() % 5)) * t_; //Add 0 - 4 times the current time

//Add small amount

double smallRandomness = ((Random::random() % 10000) * 0.0000001); //A small number of microseconds (from 0 to 1ms)

// printf("wu.cc(%d): node_(%d) Adding random time for pkt lngth and uniqueness (%lf + %lf) = %lf\n",
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// __LINE__, index, packetLengthRandomness, smallRandomness, packetLengthRandomness+ smallRandomness);

t_ += packetLengthRandomness + smallRandomness;

}

if (mac_->hasCarrierSensing) {

//Add possible back_offs and carrier_sensing_timings as well.

double carrierSenseBackoffTiming = MAC_MAX_BACK_OFF_LIMIT * (MAC_WU_CARRIER_SENSE_TIMEOUT + MAC_WU_MAX_BACK_OFF);

// printf("wu.cc(%d): node_(%d) Adding carrier-sense backoff timing of %lf\n", __LINE__, index, carrierSenseBackoffTiming);

t_ += carrierSenseBackoffTiming;

}

else {

if (ifNeedToPrintWu(1)) {

printf("wu.cc: since MAC has NO carrier sensing, let us NOT add backoff timings \n");

}

}

if (ifNeedToPrintWu(1)) {

printf("wu.cc: node_(%d) The total maximum round-trip TX time for this packet (at %d kbps) is %.09f \n", index, (int)drt, t_);

}

return t_;

}

/*

Packet Transmission Routines

*/

void WU::retransmit()

{

if (pkt_tx_mode == RECEIVED_ACK)

{

if (ifNeedToPrintWu(1)) {

printf("wu.cc: [%lf] node_(%d) has received an Ack. No need to retransmit the data \n", NOW, index);

}

if (pktTx_ != 0)

{

Packet *np = pktTx_;

Packet::free(np);

pktTx_ = 0;

}

setPktTxMode(WU_STATUS_IDLE);

return;

}

if (ifNeedToPrintWu(1))

{

printState();

}

if (current_mode == SLAVE_CHANNEL_SEARCH_AFTER_SUCCESSFUL_BIND)

{

if (ifNeedToPrintWu(1))

{

printf("wu.cc: node_(%d) is in channel_ search mode now. Do not retransmit. Ignore the timer.

Packet would be sent once channel search is done \n", index);

}

num_times_retx = 0;
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return;

}

struct hdr_cmn *ch = HDR_CMN(pktTx_);

if (ifNeedToPrintWu(1))

{

printf("wu.cc: node_(%d) RETRANSMITTING - number of times retransmitted is %d and the seq_no is %d \n",

index, num_times_retx, ch->seq_no);

}

num_times_retx++;

if (num_times_retx > MAXIMUM_PKT_RETX)

{

if (ifNeedToPrintWu(1))

{

printf("wu.cc(%d): [%lf] node_(%d) PROBLEM, did not receive ACK after sending %d retries. Start Channel Search now \n",

__LINE__, NOW, index, num_times_retx-1);

}

Packet *np = pktTx_;

Packet::free(np);

pktTx_ = 0;

//setPktTxMode(WU_STATUS_IDLE);

startChannelSearch();

return;

}

//COMBINED ADJUSTMENT - What should we adjust? Power or Data Rate?

bool shouldRelaxPower = false;

bool shouldRelaxDataRate = false;

if (combinedPolicy != WU_COMBINED_POLICY_NONE)

{

//Adjust power first, then Data Rate (relaxing performes the reverse of upgrading)

if (combinedPolicy == WU_COMBINED_POLICY_DR_FIRST)

{

int powerLevel = mac_->getPowerLevel();

//If not at max PA, relax power!

if (powerLevel != WU_MAX_PA)

shouldRelaxPower = true;

else

shouldRelaxDataRate = true;

}

}

//Adjust power level if we are using a policy

if ((powerPolicy != POWER_POLICY_NONE) || shouldRelaxPower)

{

//Did we just fail after an upgrade attempt?

if (attemptingToUpgradePowerLevel)

{

upgradePowerOrDataRate = WU_UPGRADE_DATA_RATE; //Upgrade Data Rate Next

//We failed, so backoff (if at all possible

//Have we backed off as far as we can go?

if (powerLevelBackoff_ < MAX_POWER_LEVEL_UPGRADE_BACKOFF_VALUE)

{

if (powerLevelUpgradeBackoffMechanism == POWER_LEVEL_UPGRADE_LINEAR)
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{

powerLevelBackoff_ += POWER_LEVEL_UPGRADE_BACKOFF_INCREMENT;

}

else if (powerLevelUpgradeBackoffMechanism == POWER_LEVEL_UPGRADE_EXPONENTIAL)

{

powerLevelBackoff_ *= 2;

}

}

//printf("wu.cc(%d): node_(%d) failed after a power upgrade attempt. Setting powerLevelBackoff_ to: %d\n",

// __LINE__, index, powerLevelBackoff_);

}

if (num_times_retx > powerLevelTolerance_) //How soon should we adjust the power level?

{

if (mac_)

{

//Reset success counter

successfulPacketsAtCurrentTxPowerLevel = 0;

int powerLevel = mac_->getPowerLevel();

if (powerLevel != WU_MAX_PA)

{

//Increment power level - Or Aggressive after an upgrade attempt (acts like incremental)

if ((powerPolicy == POWER_POLICY_INCREMENTAL) || (attemptingToUpgradePowerLevel) || shouldRelaxPower)

{

//printf("wu.cc: node_(%d) is incrementing its PA from %d to %d \n", index, powerLevel, powerLevel+1);

powerLevel++;

}

else if (powerPolicy == POWER_POLICY_AGGRESSIVE)

{

//printf("wu.cc: node_(%d) is aggressively setting its PA from %d to %d \n", index, powerLevel, WU_MAX_PA);

powerLevel = WU_MAX_PA;

}

else if (powerPolicy == POWER_POLICY_INCREMENTAL_PLUS_2)

{

//printf("wu.cc: node_(%d) is incrementing (by 2) its PA from %d to %d \n", index, powerLevel, WU_MAX_PA);

powerLevel += 2;

//Make sure we haven’t gone over WU_MAX_PA

if (powerLevel > WU_MAX_PA)

powerLevel = WU_MAX_PA;

}

mac_->setPowerLevel(powerLevel);

//Reset backoff value if necessary

if ((attemptingToUpgradePowerLevel == false) &&

(powerLevelUpgradeBackoffMechanism != POWER_LEVEL_UPGRADE_FIXED))

{

powerLevelBackoff_ = MIN_POWER_LEVEL_UPGRADE_BACKOFF_VALUE;

}

}

}

}

if (attemptingToUpgradePowerLevel)

attemptingToUpgradePowerLevel = false;

}

//************ END OF POWER POLICY ADJUSTMENT ******************************************************************************/
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//Adjust rate if we are using a policy

if ((dataRatePolicy != WU_DATA_RATE_POLICY_NONE) || shouldRelaxDataRate)

{

//Did we just fail after an upgrade attempt?

if (attemptingToUpgradeDataRate)

{

upgradePowerOrDataRate = WU_UPGRADE_POWER; //Upgrade Power Next

//We failed, so backoff (if at all possible

//Have we backed off as far as we can go?

if (dataRateBackoff_ < MAX_POWER_LEVEL_UPGRADE_BACKOFF_VALUE)

{

if (dataRateUpgradeBackoffMechanism == POWER_LEVEL_UPGRADE_LINEAR)

{

dataRateBackoff_ += POWER_LEVEL_UPGRADE_BACKOFF_INCREMENT;

}

else if (dataRateUpgradeBackoffMechanism == POWER_LEVEL_UPGRADE_EXPONENTIAL)

{

dataRateBackoff_ *= 2;

}

}

//printf("wu.cc(%d): node_(%d) failed after a data rate upgrade attempt. Setting dataRateBackoff_ to: %d\n",

// __LINE__, index, dataRateBackoff_);

}

if (num_times_retx > dataRateTolerance_) //How soon should we adjust the power level?

{

if (mac_)

{

//Reset success counter

successfulPacketsAtCurrentTxDataRate = 0;

int dataRateLevel = mac_->getDataRateLevel();

if (dataRateLevel != 0)

{

//Decrement data rate level - Or Aggressive after an upgrade attempt (acts like incremental)

//if (ifNeedToPrintWu(1))

printf("wu.cc: [%lf] node_(%d) is decrementing its Data Rate from %d to %d \n",

NOW, index, dataRateLevel, dataRateLevel-1);

dataRateLevel--;

mac_->setDataRateLevel(dataRateLevel);

//Reset backoff value if necessary

if ((attemptingToUpgradeDataRate == false) &&

(dataRateUpgradeBackoffMechanism != POWER_LEVEL_UPGRADE_FIXED))

{

dataRateBackoff_ = MIN_POWER_LEVEL_UPGRADE_BACKOFF_VALUE;

}

}

}

}

if (attemptingToUpgradeDataRate)

attemptingToUpgradeDataRate = false;

}

// *********** END OF DATA RATE POLICY ADJUSTMENT *************************************************************************/
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double t_retx_ = getRetransmitTO(pktTx_, true);

if (ifNeedToPrintWu(1))

{

printf("wu.cc: Retransmitting after timeout value is %0.9f \n", t_retx_);

//printf("%s: retransmitting()\n", __FUNCTION__);

}

if (ifNeedToPrintWu(1))

{

printf("\t\t\tFrom retransmit at wu.cc \n");

pktTx_->print_header();

pktTx_->print_cmn_header();

}

retxtimer.resched(t_retx_); //this is based on pkt size.

if (hasTrace == 1)

printf("ANALYSIS-TRACE: %d %d %ld %d %d\n", IS_A_RETX, index, index, getChannelNumber(), int(NOW*1000));

Scheduler::instance().schedule(target_, pktTx_->copy(), 0); //Don’t use friggin copy method, try new Packet(pktTx_)

}

void WU::send(Packet *p, double delay)

{

struct hdr_cmn *ch = HDR_CMN(p);

struct hdr_ip *ih = HDR_IP(p);

if (hasTrace == 1)

printf("ANALYSIS-TRACE: %d %d %ld %d %d\n", IS_A_SOURCE, index, index, getChannelNumber(), int(NOW*1000));

if (ifNeedToPrintWu(1)) {

printf("wu.cc: [%lf] node_(%d) SENDING () a packet with seq_no as %d \n", NOW, index, ch->seq_no);

}

if (ch->ptype() != PT_WU && ch->direction() == hdr_cmn::UP &&

((u_int32_t)ih->daddr() == IP_BROADCAST)

|| ((u_int32_t)ih->daddr() == here_.addr_)) {

dmux_->recv(p,0);

return;

}

ch->next_hop_ = ih->daddr();

ch->addr_type() = NS_AF_WU;

ch->direction() = hdr_cmn::DOWN; //important: change the packet’s direction

if (ifNeedToPrintWu(1)) {

printf("wu.cc: [%lf] node_(%d) We have the RTF_UP and the next hop is %d \n", NOW, index, ch->next_hop_);

}

p->freq1 = p->freq2 = getChannelNumber();

p->pn_code = pn_code;

if (mac_)

p->data_rate = mac_->getDataRateLevel();

else

p->data_rate = 0;

if ((pkt_tx_mode != WU_STATUS_IDLE) && (pkt_tx_mode != RECEIVED_ACK)) {

if (ifNeedToPrintWu(1)) {
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printf("wu.cc: [%lf] node_(%d) The current mode is data mode, but tx mode is not idle,

hence drop the packet and return \n", NOW, index);

}

return;

}

pktTx_ = p->copy(); //new Packet(p);

//When you get an ack, you should see if there are more packets that need to be sent.

double t_retx_ = getRetransmitTO(p, false);

if (ifNeedToPrintWu(1)) {

printf("wu.cc: node_(%d) The timeout value is %0.9f \n", index, t_retx_);

}

retxtimer.resched(t_retx_); //This is based on pkt size + maximum number of retransmission at the MAC layer.

num_times_retx = 0;

setPktTxMode(WAITING_FOR_ACK);

if (delay > 0.0) {

Scheduler::instance().schedule(target_, p, delay);

}

else {

//Not a broadcast packet, no delay, send immediately

Scheduler::instance().schedule(target_, p, 0.0);

}

}

void WU::sendBeaconResponse(nsaddr_t ipdst)

{

Packet *p = Packet::alloc();

struct hdr_cmn *ch = HDR_CMN(p);

struct hdr_ip *ih = HDR_IP(p);

struct hdr_wu_beacon *wb = HDR_WU_BEACON(p);

p->freq1 = p->freq2 = getChannelNumber();

p->pn_code = pn_code;

ch->xmit_gotAnAck_ = wu_rt_gotAnAck_callback;

ch->xmit_failure_data_ = (void*) this;

wb->rp_type = WUTYPE_DATA_RATE_BEACON;

wb->rp_dst = ipdst;

wb->rp_src = index;

wb->pn_code = PN1;

wb->network_id = 0;

wb->data_rate = beaconResponseDataRate;

ch->ptype() = PT_WU;

ch->size() = IP_HDR_LEN + wb->size();

ch->wu_size() = CRC_SEED_LENGTH; //SIZE OF ONE FOR NOW

ch->iface() = -2;

ch->error() = 0;

ch->addr_type() = NS_AF_WU;

ch->next_hop_ = ipdst;

ch->prev_hop_ = index;

ch->direction() = hdr_cmn::DOWN;
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ch->seq_no = get_seq_no();

ih->saddr() = index;

ih->daddr() = ipdst;

ih->sport() = RT_PORT;

ih->dport() = RT_PORT;

ih->ttl_ = 10;

if (ifNeedToPrintWu(1)) {

printf("wu.cc(%d): [%lf] node_(%d) is sending a BEACON RESPONSE for data rate %d to node_(%d)

on channel number [%d-%d] with seq_no as %d \n",

__LINE__, NOW, index, wb->data_rate, ipdst, p->freq1, p->freq2, ch->seq_no);

}

Scheduler::instance().schedule(target_, p, 0.0);

}

void WU::recvDataRateBeacon(Packet *p)

{

struct hdr_cmn *ch = HDR_CMN(p);

struct hdr_ip *ih = HDR_IP(p);

struct hdr_wu_beacon *wb = HDR_WU_BEACON(p);

//Master needs to ack back the successful reception of this beacon (that originated from a slave)

if (isAMaster)

{

//Acknowledge beacon

beaconResponseDataRate = wb->data_rate; //Internal variable to know what to send the beacon response out at

waitForAckToFinishAtRadioLayer(wb->rp_src, PURPOSE_SEND_BEACON_RESPONSE);

}

else //Slave Nodes get Updated

{

if (mac_)

{

int newDR = wb->data_rate;

int oldDR = mac_->getDataRateLevel();

// printf("wu.cc(%d): [%lf] node_(%d) Rec’d DR Beacon - wb->data_rate is %d\n", __LINE__, NOW, index, newDR);

//Only Upgrade

if (newDR > oldDR)

{

mac_->setDataRateLevel(newDR);

if (ifNeedToPrintWu(1)) {

printf("wu.cc(%d): [%lf] node_(%d) Rec’d DR Beacon - Changing data_rate to %lf\n",

__LINE__, NOW, index, getTxDataRateValue(newDR));

}

}

}

}

Packet::free(p);

}

void WU::prepareAndSendDataRateSubBeacons(nsaddr_t ipdst)

{

Packet *p = Packet::alloc();

struct hdr_cmn *ch = HDR_CMN(p);

struct hdr_ip *ih = HDR_IP(p);

struct hdr_wu_beacon *wb = HDR_WU_BEACON(p);
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p->freq1 = p->freq2 = getChannelNumber();

p->pn_code = pn_code;

ch->xmit_gotAnAck_ = wu_rt_gotAnAck_callback;

ch->xmit_failure_data_ = (void*) this;

wb->rp_type = WUTYPE_DATA_RATE_BEACON;

wb->rp_dst = ipdst;

wb->rp_src = index;

wb->pn_code = PN1;

wb->network_id = 0;

wb->data_rate = -1; // WILL BE CHANGED

ch->ptype() = PT_WU;

ch->size() = IP_HDR_LEN + wb->size();

ch->wu_size() = CRC_SEED_LENGTH; //SIZE OF ONE FOR NOW

ch->iface() = -2;

ch->error() = 0;

ch->addr_type() = NS_AF_WU;

ch->next_hop_ = ipdst;

ch->prev_hop_ = index;

ch->direction() = hdr_cmn::DOWN;

ch->seq_no = -1; // WILL be changed before it is sent!!!

ih->saddr() = index;

ih->daddr() = ipdst;

ih->sport() = RT_PORT;

ih->dport() = RT_PORT;

ih->ttl_ = 10;

int beaconLevel = WU_MAX_RATE_LEVEL; //Start with the highest data rate

double delay = 0.0;

//Set up a beacon for each data rate except the last one (useless) (max - 1)

while (beaconLevel > 0)

{

Packet *newPacket = p->copy(); //new Packet(p);

struct hdr_wu_beacon *wb_new = HDR_WU_BEACON(newPacket);

wb_new->data_rate = beaconLevel; //OLD WAY USING CUSTOM BEACON HDR

newPacket->data_rate = beaconLevel;

// printf("wu.cc(%d): BEACON - node_(%d) is temporarily setting its data rate to level %d for sending beacon.\n",

// __LINE__, index, beaconLevel);

if (ifNeedToPrintWu(1)) {

printf("wu.cc: node_(%d) is scheduling the sending of a DATA RATE BEACON (#%d) on channel number [%d-%d]

at time %f with seq_no as --\n", index, beaconLevel, newPacket->freq1, newPacket->freq2, NOW);

}

//Save the packet for transfer later

subBeaconSent[beaconLevel] = false;

subBeaconPacket[beaconLevel] = newPacket;

beaconLevel--;

}

subBeaconTimer.resched(0.0); //Call the subBeacon Timer to send off these beacons!

}

/** This function gets the appropriate power value for use in phy-layer calculations when determining
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* the propagation range. Called from wireless-phy.cc.

*/

double WU::getTxPowerValueFromMac()

{

int powerLevel = -1;

double powerValue = 0.0; //To be returned

//Query the mac layer to find out what power level it is currently operating at

if (mac_)

{

powerLevel = mac_->getPowerLevel();

}

//Get the mWatt value

powerValue = getTxPowerValue(powerLevel);

//Adjust for more realistic conditions (Lower by two orders of magnitude)

//Since this is purely for range issues at the phy layer, this is the same as changing the rx thresholds

//I chose to keep the thresholds the same, and modify this Pt_ value. -BarlowJ

powerValue = powerValue / 100.0f;

//Adjust for DATA RATE

powerValue = powerValue / pow(10, mac_->getDataRateLevel()); //Each data rate reduces the power level by an order of magnitude

// printf("wu.cc: getTxPowerValueFromMac() - node_(%d) Power Level is %d; returning powerValue %e\n",

// index, powerLevel, powerValue);

return powerValue;

}

/** This function returns the appropriate power value in mWatts for use in energy calculations.

*/

double WU::getTxPowerValue(int powerLevel)

{

double powerValue = 0.0; //To be returned

//Just as a reference: pow(10, 2.45) * 1e-3; // 24.5 dbm, ~ 281.8mw

switch (powerLevel)

{

case (0) :

powerValue = pow(10, -3.00); // .001 (-30dBm)

break;

case (1) :

powerValue = pow(10, -2.50); // .0031623 (-25dBm)

break;

case (2) :

powerValue = pow(10, -2.00); // .01 (-20dBm)

break;

case (3) :

powerValue = pow(10, -1.50); // .031623 (-15dBm)

break;

case (4) :

powerValue = pow(10, -1.00); // .1 (-10dBm)

break;

case (5) :

powerValue = pow(10, -0.50); // .31623 (-5dBm)

break;

case (6) :

powerValue = pow(10, 0.00); // 1.00 (0dBm)

break;
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case (7) :

powerValue = pow(10, 0.40); // 2.51189 (4dBm)

break;

default :

powerValue = 0.00;

}

return powerValue;

}

/** This function returns the appropriate power value in mWatts for use in energy calculations.

*/

double WU::getTxDataRateValue(int dataRateLevel)

{

double dataRate = 0.0; //To be returned

switch (dataRateLevel)

{

case (0) :

dataRate = 31250.0;

break;

case (1) :

dataRate = 62500.0;

break;

case (2) :

dataRate = 125000.0;

break;

case (3) :

dataRate = 250000.0;

break;

case (4) :

dataRate = 1000000.0;

break;

default :

dataRate = 0.00;

}

// printf("wu.cc(%d): Node(%d) data rate level is %d, returning value of: %f\n", __LINE__, index, dataRateLevel, dataRate);

return dataRate;

}

double WU::getMACEnergyUsed()

{

//Query the mac layer to find out what power level it is currently operating at

if (mac_)

{

return mac_->debugTxEnergy + mac_->debugRxEnergy;

}

return -1;

}

void WU::decideWhatDataRateToUseUsingSNR()

{

//What data rate can we use based upon this reading?

int highestDataRate = mac_->getHighestDataRateBasedOnSNR(mac_->getLastSNR());

int currentDataRate = mac_->getDataRateLevel();

printf("mac-wu.cc(%d): [%lf] node_(%d) SNR of (%lf) can use a data rate of %d.\n",

__LINE__, NOW, addr(), mac_->getLastSNR(), highestDataRate);

if (highestDataRate > currentDataRate)

{

printf("mac-wu.cc: [%lf] node_(%d) is upgrading its data rate level to %d\n", NOW, addr(), highestDataRate);

mac_->setDataRateLevel(highestDataRate);
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}

}

A.4 WirelessUSB MAC Layer

A.4.1 mac/mac-wu.h

/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*-

Write Copyright (c) info here

@Manoj Pandey, Cypress Semiconductor.

@Jeff Barlow, Cypress Semiconductor.

*/

...

/* ======================================================================

Frame Formats

====================================================================== */

...

#define WU_RADIUS 100.0 //All nodes outside of this radius are not considered for collisions. Set high!

#define POWER_WU_RX 2.52 //mWatts -- This value is slightly higher than the highest mWatt for PA7

...

//The network layer sets a timeout based on this value.

#define MAC_WU_CARRIER_SENSE_TIMEOUT 0.000005 //50 us

#define MAC_WU_MAX_BACK_OFF 0.001224 //5 32kbps packets

#define MAC_WU_MAX_BACK_OFF 0.000600 //600 us

#define MAC_MAX_BACK_OFF_LIMIT 10 //300 us

...

/* ======================================================================

The actual WirelessUSB (WU) MAC class.

====================================================================== */

class Mac_WU : public Mac {

...

public:

Mac_WU();

void recv(Packet *p, Handler *h);

void handle_tx_rx_timer();

...

inline int getPowerLevel() { return powerLevel_; }

inline int getDataRateLevel() { return dataRateLevel_; }

inline void setPowerLevel(int newPA) { powerLevel_ = newPA; }

void setDataRateLevel(int newDataRate);

void printDataRateSNRThresholds();

double txtime(double psz, double drt);

double txtime(double psz); //Helper function that wraps above function so you don’t have to specify the rate

void updateDataRateSNRThreshold(int dataRateLevel, int relaxOrConstrain);

int getHighestDataRateBasedOnSNR(double snrValue);

inline double getLastSNR() { return lastSNR; };

...
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int need_to_send_an_ack_to;

int ack_data_rate_level;

...

Packet *pktRx_;

WU *networkLayer;

double dataRate_;

double basicRate_;

double debugTxEnergy;

double debugRxEnergy;

private:

int command(int argc, const char*const* argv);

/*

* Packet Transmission Functions.

*/

void sendACK(int dst, int ackDataRatelLevel);

void send(Packet *p, Handler *h);

void doCarrierSensingBeforeSendingDATA(Packet *p);

void sendDATAasCarrierSensingIsSuccessful(Packet *p);

/*

* Packet Reception Functions.

*/

void recvACK();

void recvDATA();

void collision(Packet *p);

...

protected:

...

int powerLevel_; //For power adjustment (WUSB has 8 different PA levels, 0 - 7)

int dataRateLevel_; //For power adjustment (WUSB has 5 different Data Rate levels, 0 - 4)

double dataRateSNRThresholds[4+1]; //WU_MAX_RATE_LEVEL <--- SHOULD GO HERE!

double lastSNR; //The last or latest Signal To Noise Ratio Reading

};

A.4.2 mac/mac-wu.cc

/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*-

@Manoj Pandey, Cypress Semiconductor.

@Jeff Barlow, Cypress Semiconductor.

*/

...

void tx_rx_timer_class::expire(Event *) {

return;

}

void tx_rx_timer_class::handle(Event *) {
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agent->handle_tx_rx_timer();

}

void Mac_WU::handle_tx_rx_timer() {

if (ifNeedToPrint(2))

printf("mac-wu.cc: node_(%d) is handling a tx_rx timer at %0.9f and mode %d \n",

addr(), NOW, mode);

//Set mode to idle now!

if (mode == WU_TX) {

if (ifNeedToPrint(2))

printf("mac-wu.cc: node_(%d) has finished transmitting the packet at time %0.9f with pkt_rx_ as %d \n",

addr(), NOW, pktRx_);

setMode(WU_IDLE);

return;

}

else if (mode == WU_RX) {

if (ifNeedToPrint(2))

printf("mac-wu.cc: node_(%d) has finished receiving the packet at time %0.9f \n", addr(), NOW);

setMode(WU_IDLE);

if (pktRx_->isCorrupt == 1)

{

if (ifNeedToPrint(2))

printf("mac-wu.cc: node_(%d) PROBLEM, sorry the DATA received is corrupted. Simply return \n", addr());

if (pktRx_ != 0)

{

// if (ifNeedToPrint(2))

// printf("mac-wu.cc: loc4 node_(%d) is freeing the message here. pkt is corrput \n", addr());

Packet *np = pktRx_;

Packet::free(np);

pktRx_ = 0;

}

return;

}

struct hdr_cmn *ch = HDR_CMN(pktRx_);

hdr_mac_wu *mh = HDR_MAC_WU(pktRx_);

u_int32_t src = ETHER_ADDR(mh->dh_ta);

if (seq_no_counter[src] >= ch->seq_no)

{

if (ifNeedToPrint(2))

{

printf("mac-wu.cc: [%lf] IS A DUPLICATE from %d, seq: %d as my counter is at %d. Packet is out of order or

has already been received.\n", NOW, src, ch->seq_no, seq_no_counter[src]);

}

//if (pktRx_ != 0) {

//printf("mac-wu.cc: loc5 node_(%d) is freeing the message here \n", addr());

//Packet *np = pktRx_;

//free(np);
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//pktRx_ = 0;

//}

return;

}

seq_no_counter[src] = ch->seq_no;

Packet *newP = pktRx_->copy(); //new Packet(pktRx_);

struct hdr_cmn *chNew = HDR_CMN(newP);

chNew->ptype() = PT_WU;

chNew->energyForTrace = debugTxEnergy + debugRxEnergy;

uptarget_->recv(newP, this); //this calls recv() of the next layer up

backoff_counter = 0;

//if (pktRx_ != 0) {

// if (ifNeedToPrint(2))

// printf("mac-wu.cc: loc6 node_(%d) is freeing the message here. pkt has been received \n", addr());

Packet *np = pktRx_;

Packet::free(np);

pktRx_ = 0;

//}

if (need_to_send_ack == 1)

{

// if (ifNeedToPrint(2))

// printf("mac-wu.cc: [%lf] node_(%d) is sending an ack to node_(%d) \n", NOW, addr(), need_to_send_an_ack_to);

sendACK(need_to_send_an_ack_to, ack_data_rate_level);

}

else{

if (ifNeedToPrint(2))

printf("mac-wu.cc: NEED_TO_SEND_ACK flag is not set. NO need to send Ack. Return \n");

}

}

else

{

// printf("mac-wu.cc: node_(%d) WHY ARE WE HERE with mode %d \n", addr(), mode);

}

}

/* ======================================================================

Mac Class Functions

====================================================================== */

//Constructor

Mac_WU::Mac_WU() :

Mac(), phymib_(this), tx_rx_timer(this), ack_timer(this), cs_timer(this), bo_timer(this), debug_timer(this) {

//dataPacket_ = 0;

et_ = new EventTrace();

//cache_ = 0;

//cache_node_count_ = 0;
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Tcl& tcl = Tcl::instance();

tcl.evalf("Mac/MAC_WU set basicRate_");

if (strcmp(tcl.result(), "0") != 0)

bind_bw("basicRate_", &basicRate_);

else

basicRate_ = bandwidth_;

tcl.evalf("Mac/MAC_WU set dataRate_");

if (strcmp(tcl.result(), "0") != 0)

bind_bw("dataRate_", &dataRate_);

else

dataRate_ = bandwidth_;

powerLevel_ = 7; //set by default to +4dBm (also, so the master is always at 7. Slaves can decrement.)

dataRateLevel_ = 0; //set by default to 31.25kbps (also, so the master is always at 0. Slaves can increment it.)

EOTtarget_ = 0;

bss_id_ = IBSS_ID;

has_bt_ = 0;

need_to_send_ack = 1;

hasCarrierSensing = 1;

hasDebug = 0;

debugStartTime = 0.0;

timeCounter = 0;

debugTxEnergy = 0.0;

debugRxEnergy = 0.0;

for (int i=0; i < MAX_NODES_ALLOWED; i++)

seq_no_counter[i] = -1000; //Set it to -ve value so that a pkt with

// printf("mac-wu.cc: dataRate is %f and basicRate is %f \n", dataRate_, basicRate_);

setMode(WU_IDLE);

need_to_send_an_ack_to = 0;

ack_data_rate_level = 0;

debug_timer.purpose = PURPOSE_CHECK_MAC_STATE;

// debug_timer.resched(21.006505);

//Initialize Data Rate SNR Thresholds

/* //FOR RSSI INDEX THRESHOLDS

dataRateSNRThresholds[0] = 0.0;

dataRateSNRThresholds[1] = 10.0;

dataRateSNRThresholds[2] = 13.0;

dataRateSNRThresholds[3] = 17.0;

dataRateSNRThresholds[4] = 21.0;

*/

//For DBm Thresholds

dataRateSNRThresholds[0] = 100.0;

dataRateSNRThresholds[1] = 0.6437;

dataRateSNRThresholds[2] = 0.543;

dataRateSNRThresholds[3] = 0.444;

dataRateSNRThresholds[4] = 0.343;

// printDataRateSNRThresholds();

lastSNR = -1;

}
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int Mac_WU::command(int argc, const char*const* argv)

{

...

else if (strcmp(argv[1], "powerLevel_") == 0) {

powerLevel_ = atoi(argv[2]);

printf("wu.cc: node_(%d) The power level is set to %d \n", addr(), powerLevel_);

return TCL_OK;

}

else if (strcmp(argv[1], "dataRateLevel_") == 0) {

dataRateLevel_ = atoi(argv[2]);

printf("wu.cc: node_(%d) The data rate level is set to %d \n", addr(), dataRateLevel_);

return TCL_OK;

}

}

...

return Mac::command(argc, argv);

}

/* ======================================================================

Misc Routines

====================================================================== */

/** All ACK’s are sent back to transmitting node at the transmitting node’s data rate. Therefore, pass in data rate level */

void Mac_WU::sendACK(int dst, int ackDataRateLevel)

{

Packet *p = Packet::alloc();

hdr_cmn* ch = HDR_CMN(p);

int myAddr = addr();

struct wu_ack_frame *af = (struct wu_ack_frame*)p->access(hdr_mac::offset_);

if (networkLayer->hasTrace)

printf("ANALYSIS-TRACE: %d %d %ld %d %d\n", IS_AN_AUTO_ACK, addr(),

addr(), freq1, int(NOW*1000));

if (ifNeedToPrint(1))

printf("mac-wu.cc: [%lf] node_(%d) sending ACK to node %d at data rate %d with pktRx_ as %d \n",

NOW, addr(), dst, ackDataRateLevel, pktRx_);

ch->uid() = 0;

ch->ptype() = PT_MAC;

ch->size() = phymib_.getACKlen();

ch->wu_size() = MAC_WU_ACK_SIZE;

ch->iface() = -2;

ch->error() = 0;

bzero(af, MAC_HDR_LEN);

af->af_fc.fc_protocol_version = MAC_ProtocolVersion;

af->af_fc.fc_type = MAC_Type_Control;

af->af_fc.fc_subtype = MAC_Subtype_ACK;

STORE4BYTE(&dst, (af->af_ra));

STORE4BYTE(&myAddr, (af->af_ta));

//Make sure ack data rate level is a valid level

if ((ackDataRateLevel < 0) || (ackDataRateLevel > WU_MAX_RATE_LEVEL))

ackDataRateLevel = 0;
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//Calculate the data rate

double drt;

drt = networkLayer->getTxDataRateValue(ackDataRateLevel);

/* calculate ack duration */

ch->txtime() = txtime(ch->wu_size(), drt);

// printf("mac-wu.cc(%d): node_(%d) - Sending ACK back to node %d at rate %d (txtime: %lf)\n",

// __LINE__, addr(), dst, ackDataRateLevel, ch->txtime());

/* store ack tx time */

af->af_duration = (u_int16_t) ch->txtime();

p->freq1 = freq1;

p->freq2 = freq2;

p->pn_code = pn_code;

p->data_rate = ackDataRateLevel;

netif_->node()->collision_container.add_entry_to_collision_table(netif_->node(), NOW, NOW + ch->txtime(),

freq1, freq2, pn_code, networkLayer->getTxPowerValue(powerLevel_), WU_RADIUS, dst);

setMode(WU_TX);

tx_rx_timer.resched(ch->txtime());

double addToEnergy = networkLayer->getTxPowerValue(powerLevel_) * ch->txtime();

debugTxEnergy += addToEnergy;

if (ifNeedToPrint(2))

{

printf("mac_wu_for_debug: node_(%d) is adding to the TX_energy [%0.6f, tot: %0.5f], sending ACK \n",

addr(), addToEnergy, debugTxEnergy);

}

downtarget_->recv(p, this); //this calls recv() of the wireless-phy.cc, memcheck - manoj

Packet::free(p);

if (isAMaster) {

if ((int(NOW))/10 > timeCounter ) {

timeCounter++;

// printf("mac-wu.cc: Time is %f \n", NOW);

}

}

}

void Mac_WU::sendDATAasCarrierSensingIsSuccessful(Packet *p)

{

hdr_cmn* ch = HDR_CMN(p);

struct hdr_mac_wu* dh = HDR_MAC_WU(p);

int dst = ETHER_ADDR(dh->dh_ra);

int src = ETHER_ADDR(dh->dh_ta);

int macBroadcast = MAC_BROADCAST;

if (ifNeedToPrint(1))

printf("mac-wu.cc: node_(%d) sending a frame at time %0.9f with dst as %d and src as %d and mac_broadcast as %d with wu_size as %d \n",

addr(), NOW, dst, src, macBroadcast, ch->wu_size());
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// if (ifNeedToPrint(1))

// printf("mac-wu.cc: node_(%d) - Actual packet size is: %d \n",

// addr(), ch->size());

// HUGE HACK FOR BEACONING -- Save old Data Rate to restore later

int oldDataRateLevel = getDataRateLevel();

if (ch->ptype() == PT_WU)

{

struct hdr_wu_beacon *wb = HDR_WU_BEACON(p);

if (wb->rp_type == WUTYPE_DATA_RATE_BEACON)

{

int newDataRateLevel = wb->data_rate;

// printf("mac-wu.cc(%d): [%lf] node_(%d) is temporarily setting data rate to level %d\n",

// __LINE__, NOW, addr(), newDataRateLevel);

setDataRateLevel(newDataRateLevel);

}

}

/*

* Update the MAC header

*/

ch->size() += phymib_.getHdrLenWu();

// struct hdr_cmn *chNew = HDR_CMN(newP);

// chNew->ptype() = PT_WU;

if (ifNeedToPrint(1))

printf("mac-wu.cc: node_(%d) - Actual packet size after adjusted: %d \n",

addr(), ch->size());

dh->dh_fc.fc_protocol_version = MAC_ProtocolVersion;

dh->dh_fc.fc_type = MAC_Type_Data;

dh->dh_fc.fc_subtype = MAC_Subtype_Data;

/* store data tx time */

ch->txtime() = txtime(ch->wu_size());

dh->dh_duration = (u_int16_t) ch->txtime();

netif_->node()->collision_container.add_entry_to_collision_table(netif_->node(), NOW, NOW + ch->txtime(),

freq1, freq2, pn_code, networkLayer->getTxPowerValue(powerLevel_), WU_RADIUS, dst);

setMode(WU_TX);

double addToEnergy = networkLayer->getTxPowerValue(powerLevel_) * ch->txtime();

debugTxEnergy += addToEnergy;

if (ifNeedToPrint(2))

printf("mac_wu_for_debug: node_(%d) is adding to the TX_energy [%0.6f, tot: %0.5f], sending DATA \n", addr(), addToEnergy, debugTxEnergy);

tx_rx_timer.resched(ch->txtime());

//Change the TX Power

// double oldPower = p->txinfo_.getTxPr();

// p->txinfo_.stamp(p->txinfo_.getNode(), p->txinfo_.getAntenna(), 0.111, p->txinfo_.getLambda());

// printf("mac-wu.cc: Previous power level of packet: %e. New power level: %e \n", oldPower, p->txinfo_.getTxPr());
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//printf("mac_wu_for_debug: %0.9f \t %d \n", NOW, p->freq1);

downtarget_->recv(p, this); //this calls recv() of the phy.cc. memcheck -manoj

Packet::free(p);

//HUGE BEACONING HACK -- Restore old data rate

setDataRateLevel(oldDataRateLevel);

}

/* ======================================================================

Incoming Packet Routines

====================================================================== */

void Mac_WU::send(Packet *p, Handler *h)

{

double rTime;

struct hdr_mac_wu* dh = HDR_MAC_WU(p);

EnergyModel *em = netif_->node()->energy_model();

if (em && em->sleep()) {

em->set_node_sleep(0);

em->set_node_state(EnergyModel::INROUTE);

}

if (ifNeedToPrint(1)) {

struct hdr_cmn *hdr = HDR_CMN(p);

printf("mac-wu.cc(%d): node_(%d) is initiating the process of sending a data packet to node_(%d). carrier sensing

flag is %d with seq_no as %d \n", __LINE__, addr(), ETHER_ADDR(dh->dh_ra), hasCarrierSensing, hdr->seq_no);

}

callback_ = h;

backoff_counter = 0;

if (hasCarrierSensing == 1) {

//setMode(WU_CS);

doCarrierSensingBeforeSendingDATA(p);

}

else{

sendDATAasCarrierSensingIsSuccessful(p);

}

}

void Mac_WU::doCarrierSensingBeforeSendingDATA(Packet *p)

{

if (ifNeedToPrint(1))

printf("mac-wu.cc: node_(%d) is starting carrier sensing for data node at time %0.9f \n",

addr(), NOW);

double rssi = netif_->node()->collision_container.getRSSI(netif_->node(), freq1, freq2, addr(), pn_code);

if (rssi > RSSI_MIN_THRESHOLD)

{

if (networkLayer->hasTrace)

printf("ANALYSIS-TRACE: %d %d %ld %d %d\n", IS_A_BO, addr(), addr(), freq1, int(NOW*1000));

backoff_counter++;

if (ifNeedToPrint(2))

{
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printf("mac-wu.cc: node_(%d) is starting carrier sensing at %0.9f. RSSI %f is still high. back_counter is

increased to %d and freq is %d \n", addr(), NOW, rssi, backoff_counter, freq1);

}

if (backoff_counter == MAC_MAX_BACK_OFF_LIMIT) {

printf("mac-wu.cc: [%lf] node_(%d) Hit max backoff counter limit at %d (doCarrier)\n", NOW, addr(), backoff_counter);

//if (isAMaster == 0) { //Let network take care of it.

//networkLayer->startChannelSearch();

//}

setMode(WU_IDLE);

Packet::free(p); //desp

return;

}

//srand((unsigned)time(NULL));

float random_val = (float)(rand())/RAND_MAX;

if (ifNeedToPrint(2))

printf("mac-wu.cc: random_val is %f \n", random_val);

bo_timer.pktToTx_ = p;

if (ifNeedToPrint(2))

{

printf("mac-wu.cc: [%lf] node_(%d) BACKOFF TIMER SET TO: %lf in dCarrier-\n",

NOW, addr(), MAC_WU_MIN_BACK_OFF+random_val*MAC_WU_MAX_BACK_OFF);

}

bo_timer.resched(MAC_WU_MIN_BACK_OFF+random_val*MAC_WU_MAX_BACK_OFF);

return;

}

else {

if (ifNeedToPrint(2))

printf("mac-wu.cc: for node_(%d) RSSI is %f and is acceptable \n", addr(), rssi);

}

cs_timer.pktToTx_ = p;

cs_timer.resched(MAC_WU_CARRIER_SENSE_TIMEOUT);

}

void Mac_WU::recv(Packet *p, Handler *h)

{

struct hdr_cmn *hdr = HDR_CMN(p);

hdr_mac_wu *mh = HDR_MAC_WU(p);

u_int32_t src = ETHER_ADDR(mh->dh_ta);

u_int32_t rcv = ETHER_ADDR(mh->dh_ra);

if (ifNeedToPrint(2))

{

printf("mac-wu.cc: node_(%d) is starting to receive a frame from node_(%d) with seq_no %d and is intended for

node %d with addressType %d at time %0.9f \n", addr(), src, hdr->seq_no, rcv, hdr->addr_type_, NOW);

printState();

}

if (hdr->addr_type_ == NS_AF_LOCAL_LOOPBACK) {

if (ifNeedToPrint(1))

printf("mac-wu.cc: This packet is a special packet for function update \n");

networkLayer = (WU*)hdr->genPtr;

xmit_update_node_pointer = hdr->xmit_update_node_pointer;

update_node_pointer = hdr->xmit_failure_data_;

xmit_update_node_pointer(update_node_pointer, netif_->node(), this);
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if (ifNeedToPrint(1))

networkLayer->printState();

// if (ifNeedToPrint(2))

// printf("mac-wu.cc: loc7 node_(%d) is freeing the message here. ns_af_local_loopback \n", addr());

Packet::free(p);

return;

}

if (mode == WU_TX) { //Since the radio is sending now, there is no way I can send another frame here!!

//I am already sending a frame. I can’t handle a new frame either from higher layers or from lower layers

if (ifNeedToPrint(2))

printf("mac-wu.cc: node_(%d) is already sending a frame. Can’t handle a new frame from higher layers nor lower layers\n",

addr());

// if (ifNeedToPrint(2))

// printf("mac-wu.cc: loc8 node_(%d) is freeing the message here. I am transmitting the packet here \n", addr());

Packet::free(p);

return;

}

//else if (mode == WU_CS) { //Since the radio is doing carrier sensing. Let it do so.

//if (ifNeedToPrint(2))

//printf("mac-wu.cc: node_(%d) is doing a carrier sensing. No new frames can be accepted.\n",

//addr());

//Packet::free(p);

//return;

//}

/*

* Handle outgoing packets.

*/

if (hdr->direction() == hdr_cmn::DOWN) {

//if (mode == WU_RX) {

//printf("mac-wu.cc: node_(%d) is RECEIVING. MAJOR_PROBLEM. It cannot send any data now. \n",

//addr());

//Packet::free(p);

//return;

//}

send(p, h);

return;

}

/*

* Handle incoming packets.

*

* We just received the 1st bit of a packet on the network

* interface.

*

*/

/* double addToEnergy = POWER_WU_RX * hdr->txtime();

debugRxEnergy += addToEnergy;

if (ifNeedToPrint(2))

printf("mac-wu.cc: node_(%d) is adding to the RX_energy [%0.6f, tot: %0.5f], receiving DATA \n", addr(), addToEnergy, debugRxEnergy);

*/

//Check if there were any bit errors
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if (hdr->error())

{

if (ifNeedToPrint(2))

printf("mac-wu.cc: The packet is corrupt (has bit errors). Hence node_(%d) is dropping packet at MAC layer \n", addr());

Packet::free(p);

return;

}

if ((freq1 == p->freq1) && (freq2 == p->freq2))

{

if (ifNeedToPrint(2))

printf("mac-wu.cc: Since the channel is same. Let me node_(%d) check for collision \n", addr());

int if_collision = netif_->node()->collision_container.check_if_there_is_a_collision(netif_->node(), freq1, freq2, src);

if (if_collision == 1)

{

if (ifNeedToPrint(2))

printf("mac-wu.cc: node_(%d) PROBLEM, there is a collision \n", addr());

if (networkLayer->hasTrace)

printf("ANALYSIS-TRACE: %d %d %ld %d %d\n", IS_A_COLLISION, addr(), addr(), freq1, int(NOW*1000));

if (ifNeedToPrint(1))

printState();

if (mode == WU_RX) {

//Simply corrupt the packet being received. In this way, when

//it would be sent upwards, it would be detected and dropped.

if (ifNeedToPrint(2)) {

printf("mac-wu.cc: node_(%d) PROBLEM, sorry, I am already receiving \n", addr());

printf("\tSimply corrupt the packet being received. In this way, when it is sent upwards, it will be detected and dropped. \n");

}

if (pktRx_ != 0)

pktRx_->isCorrupt = 1;

//ack_timer.expire();

//printf("mac-wu.cc: loc9 node_(%d) is freeing the message here \n", addr());

//Packet::free(p);

return;

}

// if (ifNeedToPrint(2))

// printf("mac-wu.cc: loc10 node_(%d) is freeing the message here. A collision has occurred \n", addr());

Packet::free(p);

}

}

else

{

if (ifNeedToPrint(2))

printf("mac-wu.cc: the frequency is not same. Hence node_(%d) is dropping packet at MAC layer \n", addr());

// if (ifNeedToPrint(2))

// printf("mac-wu.cc: loc11 node_(%d) is freeing the message here. outside the frequency range. \n", addr());

Packet::free(p);

return;

}
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//Beyond this point, everyone has to listen to this packet now!

if (ifNeedToPrint(2))

printf("mac-wu.cc: This is an incoming packet with size %d and frequency width [%d-%d] and PN code %d \n",

hdr->size(), p->freq1, p->freq2, p->pn_code);

if (pn_code != p->pn_code)

{ //if isRecevingAValidFrame == 1, then that means you are listening to a valid frame. Do not bother

//to add noise here.

if (ifNeedToPrint(2))

printf("mac-wu.cc: PN codes do not match. node_(%d) would drop after receiving it \n", addr());

//setMode(WU_RX);

//pktRx_ = p->copy();

//tx_rx_timer.purpose = PURPOSE_WAS_RECEIVING_NOISE_DROP_THE_PACKET;

//tx_rx_timer.resched(hdr->txtime());

// if (ifNeedToPrint(2))

// printf("mac-wu.cc: loc12 node_(%d) is freeing the message here. pn_codes are not same \n", addr());

Packet::free(p);

return;

}

u_int8_t subtype = mh->dh_fc.fc_subtype;

if (subtype == MAC_Subtype_ACK) {

if (ifNeedToPrint(1))

printf("mac-wu.cc: This is an ack with freq range [%d-%d], pn_code: %d \n", p->freq1, p->freq2, p->pn_code);

//if ((dataPacket_ && isAMaster != 1 ) || (dataPacket_ && rcv == addr())) {

if (rcv == addr()) {

setMode(WU_RX);

//pktRx_ = p->copy();

pktRx_ = p;

recvACK();

//Packet::free(p);

return;

}

// if (ifNeedToPrint(2))

// printf("mac-wu.cc: loc13 node_(%d) is freeing the message here. ACK. But is not for me \n", addr());

Packet::free(p);

}

else {

if (ifNeedToPrint(1))

printf("mac-wu.cc: This is NOT an ack with freq range [%d-%d], pn_code: %d \n", p->freq1, p->freq2, p->pn_code);

if (isAMaster == 1) {

if (ifNeedToPrint(1))

printf("mac-wu.cc: However, I am a master and so can send an ACK as a reply to node %d \n", src);

setMode(WU_RX);

//pktRx_ = p->copy();

pktRx_ = p;

recvDATA();

//Packet::free(p);

return;

}
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else if ((rcv == addr()) || (rcv == IP_BROADCAST)) {

if (ifNeedToPrint(1))

printf("mac-wu.cc: Though I am not a master, this frame is for me. Must respond with freq range [%d-%d], pn_code: %d \n",

p->freq1, p->freq2, p->pn_code);

setMode(WU_RX);

//pktRx_ = p->copy();

pktRx_ = p;

recvDATA();

//Packet::free(p);

return;

}

else {

Packet::free(p);

return;

}

}

//printf("mac-wu.cc: loc13 node_(%d) is freeing the message here \n", addr());

//Packet:free(p);

}

/*

* txtime() - calculate tx time for packet of size "psz" bytes

* at rate "drt" bps

*/

double Mac_WU::txtime(double psz)

{

double drt = dataRate_;

//If possible, grab data rate from the network layer

if (networkLayer)

drt = networkLayer->getTxDataRateValue(dataRateLevel_);

return txtime(psz, drt);

}

/*

* txtime() - calculate tx time for packet of size "psz" bytes

* at rate "drt" bps

*/

double Mac_WU::txtime(double psz, double drt)

{

if (drt == 0.0)

printf("mac-wu.cc(%d): ERROR: DATA RATE IS ZERO! CANNOT DIVIDE HERE!\n", __LINE__);

if (basicRate_ == 0.0)

printf("mac-wu.cc(%d): ERROR: BASIC DATA RATE IS ZERO! CANNOT DIVIDE HERE!\n", __LINE__);

double t = 8 * psz/drt;

t += 8 * (CRC_SEED_LENGTH + LENGTH_FIELD)/drt;

t += 8 * (NUMBER_STARTER_FRAMES * START_FRAME_SIZE)/basicRate_;

if (ifNeedToPrint(1)) {

printf("mac-wu.cc: + node_(%d) - Calculating txtime - size is %d and data rate is %d kbps; basicRate_ is %d kbps \n",

addr(), (int)psz, (int)drt, (int)basicRate_);

printf("mac-wu.cc: txTime is %f \n", t);

}

return(t);

}
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void Mac_WU::recvDATA()

{

struct hdr_mac_wu *dh = HDR_MAC_WU(pktRx_);

u_int32_t dst, src, size;

struct hdr_cmn *ch = HDR_CMN(pktRx_);

if (ifNeedToPrint(2))

printf("mac-wu.cc: [%lf] node_(%d) is receiving data... \n", NOW, addr());

dst = ETHER_ADDR(dh->dh_ra);

src = ETHER_ADDR(dh->dh_ta);

size = ch->size();

/*

* Adjust the MAC packet size - ie; strip

* off the mac header

*/

ch->size() -= phymib_.getHdrLenWu();

ch->num_forwards() += 1;

if (ifNeedToPrint(2))

printf("mac-wu.cc: [%lf] node_(%d) has started receiving the packet with seq_no %d \n", NOW, addr(), ch->seq_no);

setMode(WU_RX);

need_to_send_an_ack_to = src;

ack_data_rate_level = pktRx_->data_rate;

// printf("mac-wu.cc: [%lf] node_(%d) is saving need_to_send_an_ack_to %d, ack_data_rate_level %d for pkt (seq: %d) will finish at %lf\n",

// NOW, addr(), need_to_send_an_ack_to, ack_data_rate_level, ch->seq_no, NOW+ch->txtime());

double addToEnergy = POWER_WU_RX * ch->txtime();

debugRxEnergy += addToEnergy;

if (ifNeedToPrint(2))

printf("mac_wu_for_debug: node_(%d) is adding to the RX_energy [%0.6f, tot: %0.5f], receiving DATA \n",

addr(), addToEnergy, debugRxEnergy);

pktRx_->isCorrupt = 0;

tx_rx_timer.resched(ch->txtime());

}

void Mac_WU::recvACK() {

struct hdr_cmn *ch = HDR_CMN(pktRx_);

struct hdr_mac_wu *dh = HDR_MAC_WU(pktRx_);

int senderNode = ETHER_ADDR(dh->dh_ta);

int rcv = ETHER_ADDR(dh->dh_ra);

if (ifNeedToPrint(1))

printf("mac-wu.cc: node_(%d) got an ACK from node_(%d) at time %0.9f, and is destined to %d \n",

addr(), senderNode, NOW, rcv);

//if ((dataPacket_ && isAMaster != 1 ) || (dataPacket_ && rcv == addr())) {

if (ifNeedToPrint(2))

printf("wu.cc: Let us listen to this ack for duration %0.9f \n", ch->txtime());

//struct hdr_mac_wu* dh2 = HDR_MAC_WU(dataPacket_);

pktRx_->isCorrupt = 0;

setMode(WU_RX);
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double addToEnergy = POWER_WU_RX * ch->txtime();

debugRxEnergy += addToEnergy;

if (ifNeedToPrint(2))

printf("mac_wu_for_debug: node_(%d) is adding to the RX_energy [%0.6f, tot: %0.05f], receiving ACK \n",

addr(), addToEnergy, debugRxEnergy);

//If we have a dynamic policy that requires RSSI values, sniff the air now during receive

if (!networkLayer->isAMaster && (networkLayer->getDataRatePolicy() == WU_DATA_RATE_POLICY_SNR_THRESHOLD))

{

//Check the RSSI during the start of the RECEIVE

// netif_->node()->collision_container.print_collision_table(addr());

double dataRSSI = netif_->node()->collision_container.getDataRSSI(netif_->node(), freq1,

freq2, addr(), pn_code);

double noiseRSSI = netif_->node()->collision_container.getNoiseRSSI(netif_->node(), freq1,

freq2, addr(), pn_code);

//Calculate the SNR

double snrValue = 0.0;

if (noiseRSSI == 0)

{

// noiseRSSI = 1; //Noise can never be zero

noiseRSSI = -1;

}

if (noiseRSSI < RSSI_MIN_SENSING_DBM)

{

noiseRSSI = RSSI_MIN_SENSING_DBM;

}

snrValue = ((double)dataRSSI / (double)noiseRSSI);

printf("mac-wu.cc(%d): [%lf] node_(%d) is receiving data with RSSI of %.03f (noise RSSI is %.03f, ratio: %.04f)\n",

__LINE__, NOW, addr(), dataRSSI, noiseRSSI, snrValue);

lastSNR = snrValue;

}

ack_timer.senderNode = senderNode;

//ack_timer.dataPacketPtr_ = dataPacket_->copy();

ack_timer.resched(ch->txtime());

//}

//Packet *np = dataPacket_;

//if (ifNeedToPrint(2))

//printf("mac-wu.cc: loc14 node_(%d) is freeing the message here at recv ack\n", addr());

//free(np);

//dataPacket_ = 0;

}

/** This function returns the int value of the highest data rate possible based on current snr thresholds.

* @param double snrValue The Signal To Noise Ratio

* @return int data rate level

*/

int Mac_WU::getHighestDataRateBasedOnSNR(double snrValue)

{

int highestDataRate = 0;

//FOR RSSI INDEX

/* for (int i = WU_MAX_RATE_LEVEL; i >= 0; i--) //Start from Highest DR to Lowest

{
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if (snrValue > dataRateSNRThresholds[i])

{

highestDataRate = i;

break;

}

}

*/

//FOR DBm

for (int i = WU_MAX_RATE_LEVEL; i >= 0; i--) //Start from Highest DR to Lowest

{

if (snrValue < dataRateSNRThresholds[i])

{

highestDataRate = i;

break;

}

}

return highestDataRate;

}

/** This function updates a SNR threshold by relaxing it or constraining it based upon success or failure at that rate.

* @prarm int dataRateLevel The data rate level

* @param int relaxOrConstrain (0 = CONSTRAIN, 1 = RELAX)

*/

void Mac_WU::updateDataRateSNRThreshold(int dataRateLevel, int relaxOrConstrain)

{

//The percent to increase or decrease

double increment = 0.25;

if ((dataRateLevel < 0) || (dataRateLevel > WU_MAX_RATE_LEVEL) ||

((relaxOrConstrain != WU_DATA_RATE_THRESHOLD_RELAX) && (relaxOrConstrain != WU_DATA_RATE_THRESHOLD_CONSTRAIN)))

{

printf("mac-wu.cc(%d): ERROR - Cannot update Data Rate SNR Threshold. Bad values passed in (dataRateLevel %d, relaxOrConstrain %d)\n",

__LINE__, dataRateLevel, relaxOrConstrain);

return;

}

if (relaxOrConstrain == WU_DATA_RATE_THRESHOLD_RELAX)

{

printf("\t\trelaxing...\n");

// dataRateSNRThresholds[dataRateLevel] -= increment * (dataRateSNRThresholds[dataRateLevel]); //Decrease by this percent

}

else if (relaxOrConstrain == WU_DATA_RATE_THRESHOLD_CONSTRAIN)

{

printf("\t\tconstraining...\n");

// dataRateSNRThresholds[dataRateLevel] += increment * (dataRateSNRThresholds[dataRateLevel]); //Decrease by this percent

}

printf("mac-wu.cc: Data Rate Threshold level %d updated (relaxed or constrained? %d) to:\n", dataRateLevel, relaxOrConstrain);

printDataRateSNRThresholds();

return;

}

void Mac_WU::printDataRateSNRThresholds()

{

printf("=== [%lf] === node_(%d) DR Thresholds ===\n", NOW, addr());

printf("\tRate\t|\tThreshold\t\n");

for (int i = 0; i <= WU_MAX_RATE_LEVEL; i++)

{

printf("\t%d\t|\t%lf\t\n", i, dataRateSNRThresholds[i]);
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}

printf("=============================================\n");

}

void Mac_WU::setDataRateLevel(int newDataRate)

{

// printf("mac-wu.cc: [%lf] node_(%d) is setting its data rate level to %d\n", NOW, addr(), newDataRate);

dataRateLevel_ = newDataRate;

}

A.5 WirelessUSB PHY Layer

/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*-

* wireless-phy.cc

*/

...

/* ======================================================================

WirelessPhy Interface

====================================================================== */

static class WirelessPhyClass: public TclClass {

public:

WirelessPhyClass() : TclClass("Phy/WirelessPhy") {}

TclObject* create(int, const char*const*) {

return (new WirelessPhy);

}

} class_WirelessPhy;

WirelessPhy::WirelessPhy() : Phy(), idle_timer_(this), status_(IDLE)

{

/*

* It sounds like 10db should be the capture threshold.

*

* If a node is presently receiving a packet a a power level

* Pa, and a packet at power level Pb arrives, the following

* comparion must be made to determine whether or not capture

* occurs:

*

* 10 * log(Pa) - 10 * log(Pb) > 10db

*

* OR equivalently

*

* Pa/Pb > 10.

*

*/

bind("CPThresh_", &CPThresh_);

bind("CSThresh_", &CSThresh_);

bind("RXThresh_", &RXThresh_);

//bind("bandwidth_", &bandwidth_);

bind("Pt_", &Pt_);

bind("freq_", &freq_);

bind("L_", &L_);

lambda_ = SPEED_OF_LIGHT / freq_;

node_ = 0;

ant_ = 0;

propagation_ = 0;
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modulation_ = 0;

// Assume AT&T’s Wavelan PCMCIA card -- Chalermek

// Pt_ = 8.5872e-4; // For 40m transmission range.

// Pt_ = 7.214e-3; // For 100m transmission range.

// Pt_ = 0.2818; // For 250m transmission range.

// Pt_ = pow(10, 2.45) * 1e-3; // 24.5 dbm, ~ 281.8mw

Pt_consume_ = 0.660; // 1.6 W drained power for transmission

Pr_consume_ = 0.395; // 1.2 W drained power for reception

// P_idle_ = 0.035; // 1.15 W drained power for idle

P_idle_ = 0.0;

channel_idle_time_ = NOW;

update_energy_time_ = NOW;

last_send_time_ = NOW;

idle_timer_.resched(1.0);

}

int WirelessPhy::sendUp(Packet *p)

{

/*

* Sanity Check

*/

assert(initialized());

hdr_cmn *ch = HDR_CMN(p);

#ifdef PRINT_ENERGY

printf("wireless_phy_debug: node_%d at sendup , rx_energy %f, tx_energy %f \n",

node()->address(), debugRxEnergy, debugTxEnergy);

#endif

PacketStamp s;

double Pr;

int pkt_recvd = 0;

// if the node is in sleeping mode, drop the packet simply

if (em())

if (em()->sleep() || (em()->node_on() != true)) {

pkt_recvd = 0;

goto DONE;

}

// if the energy goes to ZERO, drop the packet simply

if (em()) {

if (em()->energy() <= 0) {

pkt_recvd = 0;

goto DONE;

}

}

if (propagation_) {

s.stamp((MobileNode*)node(), ant_, 0, lambda_);

Pr = propagation_->Pr(&p->txinfo_, &s, this);

//printf("wireless-phy.cc: receiving packet (sq: %d) - txPower: %lf rcvPower: %e \n", ch->seq_no, p->txinfo_.getTxPr(), Pr);

//printf("wireless-phy.cc: CSThresh_ is: %e RXThresh_ is: %e \n", CSThresh_, RXThresh_);

#ifdef DEBUG
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printf("wireless-phy.cc here in wireless-phy rcvPower: %lf \n", Pr);

#endif

if (Pr < CSThresh_) {

//printf("wireless-phy.cc: node_(%d) Can’t even hear packet. Discarding at rcvPower %e\n", node()->address(), Pr);

pkt_recvd = 0;

goto DONE;

}

if (Pr < RXThresh_) {

//printf("wireless-phy.cc: node_(%d) Can hear packet, but can’t discern it. Discarding at rcvPower %e\n", node()->address(), Pr);

/*

* We can detect, but not successfully receive

* this packet.

*/

hdr_cmn *hdr = HDR_CMN(p);

hdr->error() = 1;

#if DEBUG > 3

printf("SM %f.9 _%d_ drop pkt from %d low POWER %e/%e\n",

Scheduler::instance().clock(), node()->index(),

p->txinfo_.getNode()->index(),

Pr,RXThresh);

#endif

}

}

if (modulation_) {

hdr_cmn *hdr = HDR_CMN(p);

hdr->error() = modulation_->BitError(Pr);

}

//printf("wireless-phy.cc: node_(%d) Received Packet successfullly at rcvPower %e ...\n", node()->address(), Pr);

/*

* The MAC layer must be notified of the packet reception

* now - ie; when the first bit has been detected - so that

* it can properly do Collision Avoidance / Detection.

*/

pkt_recvd = 1;

DONE:

p->txinfo_.getAntenna()->release();

/* WILD HACK: The following two variables are a wild hack.

They will go away in the next release...

They’re used by the mac-802_11 object to determine

capture. This will be moved into the net-if family of

objects in the future. */

p->txinfo_.RxPr = Pr;

p->txinfo_.CPThresh = CPThresh_;

/*

* Decrease energy if packet successfully received

*/

if (pkt_recvd && em()) {

//double rcvtime = (8. * hdr_cmn::access(p)->size())/bandwidth_;

double rcvtime = hdr_cmn::access(p)->txtime();

// no way to reach here if the energy level < 0

/*

node()->add_rcvtime(rcvtime);

em()->DecrRcvEnergy(rcvtime,Pr_consume_);

*/
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double start_time = MAX(channel_idle_time_, NOW);

double end_time = MAX(channel_idle_time_, NOW+rcvtime);

double actual_rcvtime = end_time-start_time;

if (start_time > update_energy_time_) {

em()->DecrIdleEnergy(start_time-update_energy_time_,

P_idle_);

update_energy_time_ = start_time;

debugIdleEnergy += (start_time-update_energy_time_)* P_idle_;

}

em()->DecrRcvEnergy(actual_rcvtime,Pr_consume_);

debugRxEnergy += actual_rcvtime * Pt_consume_;

if (end_time > channel_idle_time_) {

status_ = RECV;

}

channel_idle_time_ = end_time;

update_energy_time_ = end_time;

/*

hdr_diff *dfh = HDR_DIFF(p);

printf("Node %d receives (%d, %d, %d) energy %lf.\n",

node()->address(), dfh->sender_id.addr_,

dfh->sender_id.port_, dfh->pk_num, node()->energy());

*/

if (em()->energy() <= 0) {

// saying node died

em()->setenergy(0);

((MobileNode*)node())->log_energy(0);

}

}

//Randomly corrupt one in 10,000 of the packets

// float random_val = (float)(rand())/700;

// printf(" random value: %lf\n", random_val);

/* if ((rand() % 10000) == 0)

{

hdr_cmn *hdr = HDR_CMN(p);

hdr->error() = 1;

printf("%s(%d): randomly corrupting a received packet!\n", __FILE__, __LINE__);

}

*/

ch->energyForTrace = debugRxEnergy + debugTxEnergy;

// printf("wireless-phy.cc(%d): node_(%d) - Setting energyForTrace to: %lf\n", __LINE__, node()->address(), ch->energyForTrace);

return pkt_recvd;

}

...

void WirelessPhy::UpdateIdleEnergy()

{

if (em() == NULL) {

return;

}

if (NOW > update_energy_time_ && em()->node_on()) {

em()-> DecrIdleEnergy(NOW-update_energy_time_,
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P_idle_);

update_energy_time_ = NOW;

debugIdleEnergy += (NOW - update_energy_time_)* P_idle_;

}

// log node energy

if (em()->energy() > 0) {

((MobileNode *)node_)->log_energy(1);

}

else {

((MobileNode *)node_)->log_energy(0);

}

idle_timer_.resched(10.0);

}

double WirelessPhy::getDist(double Pr, double Pt, double Gt, double Gr,

double hr, double ht, double L, double lambda)

{

if (propagation_) {

return propagation_->getDist(Pr, Pt, Gt, Gr, hr, ht, L,

lambda);

}

return 0;

}

A.6 WirelessUSB common/packet.h

/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*- */

class Packet : public Event {

...

public:

...

//Copy Constructor

Packet(Packet *p) : bits_(0), data_(0), ref_count_(0), next_(0) {

bits_ = new unsigned char[hdrlen_];

if (p->bits())

memcpy(bits_, p->bits(), hdrlen_);

if (p->data_)

data_ = p->data_->copy();

txinfo_.init(&p->txinfo_);

freq1 = p->freq1;

//p->for_srp_random_toplogy = for_srp_random_toplogy; // type of next_hop_ addr

freq2 = p->freq2;

pn_code = p->pn_code;

data_rate = p->data_rate;

}

private:

...

// the pkt stamp carries all info about how/where the pkt

// was sent needed for a receiver to determine if it correctly
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// receives the pkt

PacketStamp txinfo_;

short freq1;

short freq2; //Two frequencies occupied by the packet.

short pn_code;

short data_rate; //The rate at which this packet was sent (0 - MAX Data Rate)

short isCorrupt;

//Frequency spread is essentially freq2-freq1.

/*

* According to cmu code:

* This flag is set by the MAC layer on an incoming packet

* and is cleared by the link layer. It is an ugly hack, but

* there’s really no other way because NS always calls

* the recv() function of an object.

*

*/

u_int8_t incoming;

//monarch extns end;

};

struct hdr_cmn

{

...

double energyForTrace;

...

int seq_no; //For WU

int freq1; //For internal messaging inside the WU

int freq2; //For internal messaging inside the WU

int pn_code; //For internal messaging inside the WU

int data_rate; //For internal messaging inside the WU

...

};

...

inline Packet* Packet::copy() const

{

Packet* p = alloc();

memcpy(p->bits(), bits_, hdrlen_);

if (data_)

p->data_ = data_->copy();

p->txinfo_.init(&txinfo_);

p->freq1 = freq1;

//p->for_srp_random_toplogy = for_srp_random_toplogy; // type of next_hop_ addr

p->freq2 = freq2;

p->pn_code = pn_code;

p->data_rate = data_rate;

return (p);

}

...
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A.7 WirelessUSB common/collision.cc

...

/** This function currently returns the current RSSI for a given frequency */

double collision::getNoiseRSSI(Node *node_, int freq1, int freq2, int address_, int pn_code)

{

int rssi = 0;

int jitterPercent = 7; //7 = 7%, 5 = 5%, etc.

int i = 0;

double rssiDBm = -10e3;

int entryFound = 0;

//printf("===================================================\n");

MobileNode *mn = (MobileNode *) node_;

double x = mn->X();

double y = mn->Y();

int address = node_->address();

double gainAntennaTx = 1.0;

double gainAntennaRx = 1.0;

double PI = 3.14159;

double M, distance;

double SPEED_OF_LIGHT = 3e+8;

double FREQ = 914e+6;

double lambda_ = SPEED_OF_LIGHT/FREQ;

double originalPower = 0.0;

double rxPower = 0.0;

//printf("node.cc: printing collision table for node_%d with x:%f and y:%f\n", address, x, y);

//print_collision_table(node_->address());

for (i=i; i < TOTAL_COLLISION_ENTRY; i++)

{

if ((collision_container[i].endTime >= (NOW-.01))

&& (collision_container[i].nodeid != address)

&& (collision_container[i].freq1 <= freq1)

&& (collision_container[i].freq2 >= freq2))

{

if (((collision_container[i].receiver == address) || (collision_container[i].receiver == IP_BROADCAST))

&& (collision_container[i].pn_code == pn_code)){

//printf("node.cc: This entry is for me, and with the same pn_code, must NOT add as a noise \n");

continue;

}

distance = sqrt((collision_container[i].x - x)*(collision_container[i].x - x) +

(collision_container[i].y - y)*(collision_container[i].y - y));

if (distance == 0.0)

{

distance = 1.0;

}

//printf("The nodes are %d and me %d \n", collision_container[i].nodeid, address_);

M = lambda_ / (4 * PI * distance);

//Not correct: - BarlowJ, using 2nd line because txpower is already converted from dbm to mWatts

//originalPower = pow(10, (collision_container[i].txpower)/10);

originalPower = collision_container[i].txpower;

rxPower += originalPower * (gainAntennaTx * gainAntennaRx * (M * M))/1.0;
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//Add all the noise in mWatts to rxPower. Later on convert the sum

//into decibels. You can’t add decibels directly!

}

}

//printf("===================================================\n");

if (rxPower != 0.0)

{

//printf("collision.cc: Total RxPowerMw:%f \n", rxPower);

rssiDBm = 10 * log10(rxPower);

//printf("collision.cc: Total RxPowerDb or rssi is %f \n", rssi);

}

//Add Jitter?

if (jitterPercent > 0)

{

double percentToJitter = (rand() % (jitterPercent*10)) * 0.001;

if ((rand() % 2) == 0) //50/50 chance of being negative or positive

percentToJitter = (1.0 - percentToJitter);

else

percentToJitter = (1.0 + percentToJitter);

printf("collision.cc: adding JITTER to reading. Percent Jitter = %lf\n", percentToJitter);

rssiDBm = rssiDBm * percentToJitter;

}

return rssiDBm;

}

/** This function currently returns the current RSSI for a given frequency during a receive

* (doesn’t use any other noise) */

double collision::getDataRSSI(Node *node_, int freq1, int freq2, int address_, int pn_code)

{

int i = 0;

int jitterPercent = 5; //7 = 7%, 5 = 5%, etc.

int rssi = 0; //To be returned

double rssiDBm = -10e3;

int entryFound = 0;

//printf("======================================\n");

MobileNode *mn = (MobileNode *) node_;

double x = mn->X();

double y = mn->Y();

int address = node_->address();

double gainAntennaTx = 1.0;

double gainAntennaRx = 1.0;

double PI = 3.14159;

double M, distance;

double SPEED_OF_LIGHT = 3e+8;

double FREQ = 914e+6;

double lambda_ = SPEED_OF_LIGHT/FREQ;

double originalPower = 0.0;

double rxPower = 0.0;

//printf("node.cc: printing collision table for node_%d with x:%f and y:%f\n", address, x, y);

//print_collision_table(node_->address());
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for (i=i; i < TOTAL_COLLISION_ENTRY; i++)

{

if ((collision_container[i].endTime >= NOW)

&& (collision_container[i].nodeid != address)

&& (collision_container[i].freq1 <= freq1)

&& (collision_container[i].freq2 >= freq2))

{

if (((collision_container[i].receiver != address) && (collision_container[i].receiver != IP_BROADCAST))

|| (collision_container[i].pn_code != pn_code)) {

//printf("node.cc: This entry is not for me, must NOT add as signal strength during receive \n");

continue;

}

distance = sqrt((collision_container[i].x - x)*(collision_container[i].x - x) +

(collision_container[i].y - y)*(collision_container[i].y - y));

printf("collision.cc: [%lf] node_(%d) is at distance %lf\n", NOW, address, distance);

if (distance == 0.0)

{

distance = 1.0;

}

//printf("The nodes are %d and me %d \n", collision_container[i].nodeid, address_);

M = lambda_ / (4 * PI * distance);

//Not correct: - BarlowJ, using 2nd line because txpower is already converted from dbm to mWatts

//originalPower = pow(10, (collision_container[i].txpower)/10);

originalPower = collision_container[i].txpower;

rxPower += originalPower * (gainAntennaTx * gainAntennaRx * (M * M))/1.0;

//Add all the noise in mWatts to rxPower. Later on convert the sum

//into decibels. You can’t add decibels directly!

//printf("collision.cc: TxPowerMw:%f, RxPowerMw:%f \n", originalPower, rxPower);

//rxPower = collision_container[i].txpower + 10 * log10((gainAntennaTx * gainAntennaRx * (M * M))/1.0);

}

}

//printf("======================================\n");

if (rxPower != 0.0)

{

//printf("collision.cc: Total RxPowerMw:%f \n", rxPower);

rssiDBm = 10 * log10(rxPower);

//printf("collision.cc: Total RxPowerDb or rssi is %f \n", rssi);

}

//Add Jitter?

if (jitterPercent > 0)

{

double percentToJitter = (rand() % (jitterPercent*10)) * 0.001;

if ((rand() % 2) == 0) //50/50 chance of being negative or positive

percentToJitter = (1.0 - percentToJitter);

else

percentToJitter = (1.0 + percentToJitter);

printf("collision.cc: adding JITTER to reading. Percent Jitter = %lf\n", percentToJitter);

rssiDBm = rssiDBm * percentToJitter;

}
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return rssiDBm;

}
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