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Abatroet-Reinforcement learning agents interacting in a a single environmFntal state exists, this approximation can 
common environment often fail to converge to optimal sys- be simplifi& to T ( ~ )  = 
tem behaviors even when the individual goals of the agents 
are fully compatible, Claus and have demon- Successive approximations of the target function are not 
strated that the use of joint action learning helps to over- guaranteed to converge for neural networks; nevertheless, 
come these dimculties for Q-learning systems. This paper this and similar approaches have proven fruitful in the past. 
studies an application of joint action learning to systems 
of neural N~~~~~ networks are a desirable candi- elnforcement learning neural networks have been success- 
date for such augmentations for two (I )  they may fully applied to such applications as simulated traffic light 

agents. preliminary indicate that nets beneflt Unfortunately, direct applications of reinforcement 

. 

he able to generalize more effectively than Q-learners, and 
(2) the network toPoloW used may improve the scalahil- 
ity ofjoint action learning to systems with large numbers of 

from joint action learning in the same way that 4-learners 
do. 

control [9], robotic hand reaching [SI, planning and land- 
mark navigation [I], and pole balancing tasks [7], [3]. 

learning algorithms to the multiagent domain are not al- 
ways successful. As each agent updates its utilities (and 
correspondingly, its behavior) the perceived environmental 
transitions and rewards experienced by the other agents 
may change. This creates a more challenging learning en- 

ing in which agents use numerical vironment. Additionally, if the respective tasks assigned to 
. environment to estimate the utility of each agent require a high level of inter-agent cooperation to 

cific =.ion in a given state. This differs from achieve, the agents may settle to suboptimal equilibrium 
machine learning algorithms such as KNN, the perceptron Points in the 
training rule, and Bayesian learners in that the reinforce- Proposed approaches to overcoming these difficulties in- 
merit learner is not with labeled training sets or clude allowing the agents to perceive each others' action 
error functions which associate a correct output with each the agents' ex- 

training instance. Instead, the agent explores its environ. ploration of the environment 121, and establishing social 
ment by trial and error and attempts to learn how to conventions IS]. However, most of this research has been 

imize its numerical rewards. performed within the context of dynamic programming 
This appro& to learning is advantageous because the and the Q-learning algorithm [lo]. Very little attention 

designer is spared the effort of solving (or partially solv. has been given to reinforcement learning neural networks. 
ing) the task in advance in order to obtain training data. This paper studies an application of joint action learn- 
Instead, Some objective task criteria is t,, create a ing 121 to neural networks. Preliminary results indicate 
reward function r (s ,a)  which returllS a reward for each that neural nets benetit from joint action learning in the 
action a executed by the agent in state S .  This reward Same way that Q-learners do- This is encouraging because 
function need not he deterministic. The agent then at- the neural net toPob3Y may scale Well to systems with 
tempts to learn a policy ~ ( s )  = a that maximizes future large "Ihers of agents: for a system of n agents with 
discounted reward. k possible actions each, the neural network joint action 

A gradient descent learning rule can he applied to rein- learners rewire only kn weights, whereas Q-learning joint 
forcement learning by defining the target function T ( s ,  a) action fear" must Store k" @values. 
to be the expected time-discounted reward attainable by 
executing action a in s ta tes .  This function cannot be cal- 
culated without a model of the environment, but it may 
be incrementally approximated by letting 

f ( s , a )  = r ( s , a )  +^jargmaz..T(s',a') (') 
where 0 = 7 < 1 is a discount factor and s' is the state 
transitioned to by executing action a in state s. When only 

I. INTRODUCTION 
Reinforcement learning is a sub-field of machine learn. 

by the 
a 

and/or rewards Izl, l41, 

11. JOINT ACTION LEARNING 
Joint action learners are agents that are able to perceive 

the action selections of other agents in the system, and are 
thus able to learn utilities for joint actions. Joint action 
learners can be contrasted with independent learners, who 
learn utilities only for their own actions, without regard to 
the action selections of the other agents in the system. Pre- 
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vious research has shown that agents who can perceive the 
joint action space often perform better than independent 
learners on coordination tasks [2], [4], 161. 

An interesting question that arises with joint action 
learning is how the agents should use their joint action 
utilities to determine which individual action should he ex- 
ecuted in the next time step. One approach to this problem 
is to use fictitious ploy, in which each agent maintains a 
history of the number of times each of the other agents in 
the system has executed each possible action. This history 
is then used to estimate the probability that a given agent 
will execute a specific action in the future based upon its 
past behavior. The net utility of an individual action can 
then he calculated as a weighted average of all of the joint 
actions it contributes to, with the probabilities used as the 
weighting factor. 

An alternative to fictitious play is to introduce an opti- 
mistic assumption into the system [5]. In this approach, 
each agent assumes that all of the agents in the system 
share the same rewards. Thus, if a joint action is desirable 
for one agent, it is equally desirable for all other agents in 
the system. In this case, the net utility of an individual ac- 
tion can he calculated as the utility of the hest joint action 
which the individual action contributes to. In essence, the 
agent performs a may operation on the joint actions rather 
than taking a weighted sum. In this paper, this method is 
referred to as optimistic action selection. 

111. JOINT ACTION LEARNING FOR NEURAL NETWORKS 

The potential benefits of joint action learning are clear. 
Agents that are capable of perceiving the complete joint 
action space are potentially able to solve problems that 
independent learners cannot. Even problems which inde- 
pendent learners are capable of solving may be solved more 
quickly if joint action learners can utilize their extra infor- 
mation. These potential benefits come with a price, how- 
ever. The size of the joint action space grows exponentially 
with the number of agents. In Q-learning systems with 
large numbers of agents, the joint action space representa- 
tion for each agent may quickly become intractable. 

One way to address this problem is to apply the joint ac- 
tion learning paradigm to a different learning architecture. 
Neural networks present themselves as a viable option b e  
cause their representation of the action space is parametric, 
and thus less susceptible to exponential growth in the face 
of large state and action spaces. However, neural networks 
are not guaranteed to converge to the true target function, 
and the task of convergence frequently becomes a length- 
ier and less certain process as the complexity of the model 
increases. Thus, a critical question arises: do the bene- 
fits of joint action learning in a system of neural networks 
outweigh the drawbacks of the necessary increase in model 
complexity? This paper presents empirical evidence that, 
at least in some cases, they do. 

Figure 1 presents two possible joint action learning 
topologies for neural networks, depicted for convenience 
and clarity as a twc-layer network in which two agents (A 
and B) each have two action options (-1 and 1). Only 

Fig. 1. Two possible topologies for agent A in a system consisting 
of two agents, A and B ,  tach of which has two possiblo actions, --I 
and 1. For simplicity and clarity, only a single environmental state 
is assumed and no hidden laycr is depicted. 

agent A’s possible topologies are shown, and joint actions 
are represented with agent A’s action listed first. When 
agent B’s action selection is variable, it is represented as 
XB. Thus the term u ( - l , X ~ )  represents the utility of 
agent A executing action 1 when agent B executes action 
Xg. Expansions of both topologies to include hidden lay- 
ers, more than two output actions, more than two interact- 
ing agents, or multiple environmental states are not shown 
here, hut are relatively easy to design. 

The network topology depicted on the left-hand side of 
Figure 1 is quite straightforward, but it is more like a non- 
parametric approximation method than a parametric one: 
each weight of the network will simply converge towards 
the utility of the corresponding joint action. This prevents 
much of the generalization one would hope to achieve by 
using a neural network. Not surprisingly, this topology 
also will not scale well to large numbers of agents: the 
number of weights required (excluding a hidden layer) is 
k“, where n is the number of agents in the system and k 
is the number of actions available to each agent. 

The network topology depicted on the right-hand side of 
Figure 1 has more potential. Here, agent B’s action selec- 
tion is modeled implicitly as an extra input node instead 
of being explicitly modeled in combination with agent A’s 
action selection. This allows the unique characteristics of 
neural networks to manifest themselves. This topology also 
scales more effectively to systems with large numbers of 
agents, requiring only kn weights. It is this topology which 
was utilized for the experiments in this paper. 

IV. AGENT IMPLEMENTATION 

This paper presents a comparison of the performance of 
three types of agents: independent learners, joint action 
learners using fictitious play, and joint action learners us- 
ing optimistic action selection. The independent learners 
are implemented as a twdayer network with a single bias 
input and two output nodes which represent the estimated 
utilities of performing actions -1 and 1, respectively. The 
joint action learning agents are implemented using the net- 
work topology shown on the right-hand side of Figure 1. 
The networks use a gradient descent training Nk with sig- 
moidal activation functions for the outputs. 
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Fig. 2. Joint rewards received 
joint action (a i ,b , )  in a simple coordination task. 

agents A and B for performing 

Training of the independent learners is fairly elementary. 
In each interaction, each agent selects an action for execu- 
tion, and each agent receives a reward r based on the joint 
action executed. The agent then uses r to calculate the 
error of the output node corresponding to its executed ac- 
tion. The error of the output node corresponding to the 
un-executed action is assumed to he 0. 

Because the joint action learning networks cannot pre- 
dict the actions of the other agents in advance, they must 
make a prediction ahout the behavior of the other agent 
based either on the fictitious play algorithm or the opti- 
mistic action selection algorithm. This prediction is used 
to select an action for execution. Once the interaction has 
taken place, the joint action learner can perceive the action 
that was actually taken hy the other agent. This is fed into 
the network as an input and the activations of the output 
nodes are calculated. These activations are then used to 
calculate errors baed on the rcward value 7 ,  just as was 
done for the independent learners. 

For all agents, action selection was based on a Boltz- 
mann exploration strategy. In Boltzmann exploration, the 
probability of selecting a given action is proportional to 
the estimated utility of that action, and the relative prob- 
ability of selecting the best action increases as the tem- 
perature value, T, is decreased. For consistency with the 
work of other researchers on Q-learning joint action l e a -  
ers, we used an initial Boltzmann temperature of T = 16 
and decayed the temperature by a multiplicative factor of 
0.9 after each interaction [2]. 

V. A SIMPLE COORDINATION TASK 

Figure 2 shows the joint action payoff matrix for two 
agents learning a simple coordination task. When both 
agents select the same action index, they both receive a 
reward of 1. Otherwise, they both receive a reward of 0. 

It can be difficult for reinforcement learning agents to 
learn optimal solutions to this task because there is no 
clearly dominant action selection for either agent. Rather, 
the utility of performing a given action is directly depen- 
dent on the action selection of the other agent. When 
a Boltzmann exploration strategy is used, independently 
learning agents generally settle into one of the two optimal 
joint actions. The question is whether agents using a joint 
action learning strategy can settle into an optimal joint 
action more quickly. 

Experimental results are shown in Figure 3. Consistent 
with the results reported by Claw and Boutilier, joint ac- 
tion learning with fictitious play performs slightly better 
than independent learning [2]. However, the fictitious play 
algorithm essentially computes the same utility values as 

Fig. 3. Learning efficiency of independent lcamers (ILs), joint ac- 
tio& learnem with fictitious play (JALs with FP) and joint action 
learners with optimistic action selection (JALs with OAS) for the 
coordination task depicted in Figure 2. System payor was calculated 
by averaging the individual payoffs received by each agent. 

Fig. 4 .  Rewards received by agents A and B for performing joint 
action (oi,bj) in a utility distinction task.  Agent A’s reward is listed 
first. 

the independent learners, thus minimizing the joint action 
learners’ ability to capitalize on their extra knowledge. 

Joint action learners using the optimistic action selec- 
tion algorithm, in contrast, perform significantly better 
than botb other implementations. The difference in this 
case is caused by the optimistic assumption that all mem- 
bers of the system share the same joint action preferences. 
Although this assumption can be somewhat limiting, it ef- 
fectively permits the joint action learners to exploit their 
additional knowledge. 

VI. A UTILITY DISTINCTION TASK 
We now consider a task in which the payoffs received hy 

the agents are not always identical. Both agents receive 
a reward of 0.6 for performing action 1, regardless of the 
behavior of the other agent. But the reward for performing 
action -1 is dependent upon the other agent’s behavior: 
if the other agent also chose action -1, then a reward of 1 
is received. If not, a reward of 0 is received. This payoff 
structnre is depicted in Figure 4. 

This payoff structure is challenging for reinforcement 
learners because, during initial exploration, each agent re- 
ceives an average reward of 0.5 for performing action -1, 
while the average reward for performing action 1 is 0.6. 
Thus, action 1 appears to he the better option, even though 
increased rewards could be obtained if both agents selected 
action -1. 

Experimental results for this task are shown in Figure 5. 
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Fig. 5. Learning Efficiency of independent learnem (ILs), joint ac- 
tion learners with fictitious play (JALs with FP) and joint action 
learners with optimistic action ~ e l e ~ t i o n  (JALs with OAS) for the 
utility distinction task depicted in Figure 4. Payoff for the system 
was calculated by averaging the individual payoffs received by each 
agent. 

Again, joint action learners using the fictitious play algw 
rithm do not significantly out-perform individual learners. 
The reason is that fictitious play makes no assumptions 
about the goals of the other agent. While this approach 
is highly applicable in adversarial learning situations, it 
fails to find the optimal solution for the cooperative tasks 
studied in this paper. 

Joint action learning with optimistic action selection 
again outperforms both other algorithms. In this case, 
the optimistic assumption is particularly useful because it 
allows the agents to immediately concentrate on the max- 
imum possible reward provided by the problem structure. 
This ability to quickly converge to mutually desirable joint 
actions makes the optimistic action selection algorithm 
particularly applicable to distributed learning systems in 
which all agents share the same goals. 

VII. CONCLUDING REMARKS 

In $-learning systems, joint action learning has shown 
itself to be a potentially powerful tool for improving the 
coordination of multiagent systems. However, the t h e e  
retical applicability of this method to systems with large 
numbers of agents is limited by the exponential expansion 
of the joint action space as the number of agents in the 
system increases. Joint action learning neural networks 
may be less susceptible to this problem because they do 
not explicitly represent the entire joint action space. 

The objective of this research was to determine whether 
neural network architectures benefit from joint action 
learning in the same way that Q-learners do. Empirical 
results indicate that this is indeed the case. This is signifi- 
cant because it provides a foundation for the investigation 
of joint action learning neural networks applied to large 
distributed systems. In addition, empirical results indi- 
cate that if all agents in the system share a common goal, 

then optimistic action selection is a good method for deter- 
mining the utility of individual actions based on the joint 
action utilities. 

The next Step in this research is to apply the joint ac- 
tion learning neural network implementation to systems 
with large numbers of agents, thus determining whether 
the algorithm scales as well in practice as it does in theory. 
Evaluations of the joint action learning topology’s effec- 
tiveness for networks with hidden nodes, large numbers of 
possible agent actions, or multi-state environments would 
also be desirable. 
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