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Effects of solvent model flexibility on aqueous electrolyte behavior
between electrodes

Clint G. Guymon, Matthew L. Hunsaker, John N. Harb, Douglas Henderson,a)

and Richard L. Rowleyb)

Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602-4100

~Received 26 December 2002; accepted 10 March 2003!

Molecular dynamics simulations have been carried out for aqueous electrolyte solutions between
model electrode surfaces. The effect of solvent model flexibility on bulk and double layer properties
was observed for electrode surface charge densities of 0,60.1, and 60.2 C/m2 and ion
concentrations of 0, 0.5, and 1 M. Two flexible models were used to isolate the effects of flexibility
from the effects of a change in the condensed-phase dipole moment. Model flexibility increases the
pure water self-diffusion coefficient while a larger liquid dipole moment substantially decreases it.
There is an increase in ion contact adsorption and counter ion affinity with the flexible models,
suggesting that the ions are less tightly solvated. This conclusion is consistent with observed
enhancements of solvated ion densities near uncharged electrodes for the flexible water case. Mobile
ions in high concentration quickly damp out the electric field even at high electrode charge densities,
but for dilute ion concentrations the field may extend to the center of the cell or beyond. In these
cases it is more appropriate to integrate Poisson’s equation from the electrode surface outward
instead of the common method of assuming zero field at the center of the simulation cell. Using this
methodology, we determine the voltage drop across the half-cell for both the rigid and flexible
models. The half-cell voltage drop shows some dependence on ion concentration, but solvent
flexibility has little effect on that behavior. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1571056#

I. INTRODUCTION

The study of interfacial properties using molecular simu-
lations is becoming more widespread as computational capa-
bilities increase and more accurate descriptions of intermo-
lecular interaction potentials are developed. Molecular
simulations show increasing promise in helping to under-
stand interfacial/electrode behavior at a scale and for condi-
tions that are prohibitive for other probing techniques.1–7

Simulations have also enhanced understanding of fluid struc-
ture near the electrode surface and provided important results
for testing, improving, and extending theory. Recently, we
performed molecular dynamics simulations on a model aque-
ous electrolyte solution between two electrodes1 using a
rigid, nonpolarizable model for water. In that study, the po-
tential in the interfacial region exhibited an oscillatory be-
havior near the electrode owing to the discrete nature of the
molecular system. The simulated oscillations in the potential
cannot be predicted from theories that do not include such a
molecular description, but they are in qualitative agreement
with the interfacial fluid structure suggested by simulation6

and experimental8 studies of a mercury–water interface.
Several recent studies9–14 of bulk water and electrolyte

systems have used more sophisticated models that include
polarization of the solvent molecules, self-consistent with the
instantaneous molecular environment. Molecular polarizabil-

ity may impact the structure of the interfacial region near a
charged surface and affect the solvation energy of the ions in
the bulk. With this in mind, we have performed molecular
dynamics~MD! simulations on aqueous electrolyte solutions
confined between electrodes of varying applied charge using
a flexible model for water that allows angle bending and
bond vibrations. The resultant interfacial region structure and
ion solvation characteristics are compared to our previous
results for rigid water molecules with fixed dipole moments.
This comparison allows us to focus on solvent effects result-
ing directly from the flexibility of the solvent and the con-
comitant polarizability, or change in dipole moment, created
by this flexibility.

We also report the calculated electric field within the
confined aqueous electrolyte obtained by integrating the one-
dimensional Poisson equation. Commonly the integration is
performed from the center of the simulation cell, where the
potential and field are assumed to vanish, to the electrode
surface, but we find that for very dilute concentrations the
electric field damps out asymptotically from the electrode
surface and extends into the solution a long distance relative
to the simulation cell length. This electric field penetration
distance depends strongly on the concentration of mobile
charge carriers in solution and, at least relative to the size of
the simulation cell, approaches infinity in the limit of infinite
dilution. Consequently, we have chosen to calculate the field
by integrating Poisson’s equation from the electrode surface
outward by assuming a uniformly charged-sheet value for the
field at the electrode surface. While this assumption is not
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rigorous very near an electrode consisting of discretely
charged molecules, we show that deviations from a three-
dimensional solution are small. Using this procedure, we are
able to show the influence of ion concentration on the elec-
tric field and assess any limitations due to the computational
domain.

II. SIMULATION SPECIFICS

We have used three different water models in our simu-
lations. In our previous studies, SPC/E15 water molecules
were simulated between two model electrodes.1,2 In the
SPC/E model, the dispersion interactions are treated with a
spherical Lennard-Jones~LJ! potential located at the center
of the oxygen atom. Polar interactions are included through
equivalent partial positive charges located at the hydrogen
nuclei, but the hydrogen atoms in this model do not have any
LJ potentials assigned to them. An equivalent negative
charge is also assigned to the oxygen atomic center. To ex-
amine the effects of polarization due to model flexibility,
without a full relaxation of the electron density distribution,
we have formulated a flexible SPC/E model, or SPC/E-F, in
which a harmonic potential,16,17 coupled with a multiple-
time-scale integrator, is used to determine intramolecular
motion. The equilibrium bond distances and bond angles for
the isolated SPC/E-F molecule are identical to those in the
SPC/E model. However, they are different for condensed-
phase simulations. To separate out flexibility effects from
induced dipole effects caused by changes in the equilibrium
geometry in the condensed phase, we performed simulations
using a third model, SPC/E-Fd, in which the equilibrium
bonds and angles in the liquid are fixed to produce the same
dipole moment at our simulation conditions as the rigid
SPC/E model. The bond and angle harmonic potential pa-
rameters for the flexible models are given in Table I.

As in our previous work,1,2 the model fluids were placed
between two electrodes comprised of fixed charged LJ
spheres. Simulations were performed at electrode charge
densities of 0,60.1, and60.2 C/m2 and ion concentrations
of 0, 0.5, and 1 M. The SPC/E-Fd model was used in simu-
lations at60.1 C/m2 electrode charge density and 1 M ion
concentration. The univalent ions were modeled as LJ
spheres with mass,s, and«/k values of 18.015, 78.178 K,
and 0.3169 nm, respectively, wheres and« are the LJ size
and energy parameters andk is Boltzmann’s constant. As in
our previous work with a rigid solvent, the cation and anion
are identical except for charge. The lengths of the cell in the
x, y, andz directions were 8.512, 2.55, and 2.55 nm, respec-
tively. The electrode surfaces were positioned at 0 and 4.256
nm so that half the cell was filled with fluid; the other half of
the cell was empty space to damp out long-range interactions
~see Ref. 18!. Each electrode was modeled with 289 LJ at-
oms distributed as a single layer of a bcc lattice, exposing the
@1 0 0# surface, having a lattice constant of 0.15 nm. The LJ
parameters for the electrode atoms weres50.15 nm and
«/k550 K. Lorentz–Berthelot combining rules were used to
approximate the cross fluid–fluid and fluid–solid interactions
between sites. Pairwise additivity of forces was also as-
sumed.

Ten simulations were performed at each condition. All
simulations were initiated from unique starting configura-
tions and included 105 ps of equilibration and 200 ps of data
collection. Results are an average of the ten runs performed
at each condition. Coulomb real-space and LJ interactions
were cut off at 1.0 nm. Long-range Coulombic interactions
were treated with the particle–particle–particle–mesh (P3M)
technique,19 using an alpha value of 3.007 nm21 and the Yeh
and Berkowitz correction term.18 The P3M mesh size was
64316316 in the x, y, and z directions, respectively. The

TABLE I. Molecular models used in this study.

SPC/E SPC/E-F SPC/E-Fd

r OH
o ~nm! Harmonic equilibrium OH bond distance 0.100a 0.100 0.099

,HOH
o ~rad! Harmonic equilibrium HOH bond angle 1.911a 1.911 1.978

r OH ~nm! Average OH bond distance 0.101~0.001! 0.102~0.006! 0.101~0.004!
,HOH ~rad! Average HOH bond angle 1.88~0.03! 1.82 ~0.17! 1.90 ~0.16!
kb (kJ/mol/nm2) Harmonic bond constantb

¯ 4.6383105 4.6383105

ka (kJ/mol/rad2) Harmonic angle constantb
¯ 384 384

Freq ~cm21! Vibration frequencies ¯ 1621, 3662, 3749 1621, 3663, 3736

aReference 15.
bReference 17.

TABLE II. Comparison of bulk properties obtained from the models used in this study to values obtained for
three additional flexible models: Teleman–Jo¨nsson–Engtrom~TJE!—Ref. 17, SPC/F—Ref. 16, and the modi-
fied Toukan–Rahman~SPC-mTR!—Ref. 25.

SPC/E SPC/E-F SPC/E-Fd TJE-F SPC/F SPC-mTR

T(K) 298 301 301 301 298 298
r(g/cm3) 1.08 1.08 1.08 1.00 0.996 0.998
U inter(kJ/mol) 248.6 ~0.3! 253.1 ~0.3! 248.0 ~0.3! 245.3 241.2 248.71
U intra(kJ/mol) ¯ 7.2 ~0.3! 6.8 ~0.1! 5.1 5.9 7.07
^m&~D! 2.41 ~0.06! 2.54 ~0.31! 2.39 ~0.27! 2.44 2.30 2.44
D(1025 cm2/s) 2.18~0.01! 1.75 ~0.01! 2.63 ~0.01! 6.1 4.6 2.70
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time step size was 2.5 fs. One-thousand mobile molecules
were in each simulation at a bulk density of 60 mol/L and a
temperature of 300 K. This density represents a relatively
high pressure, but it satisfactorily avoids proximity to satu-
ration where model inaccuracies could lead to the undesired
presence of two phases. A fifth-order-correct predictor-
corrector integrator was used in conjunction with Gaussian
constraints for the rigid SPC/E model; an rRESPA
algorithm20,21 was used for the flexible models in which ten
‘‘fast’’ steps were integrated for each long step.

III. RESULTS AND DISCUSSION

A. Differences in bulk properties
between the three models

To compare the differences between solvent models in
bulk phase properties, bulkNVT simulations with periodic
boundaries~no electrodes! were performed. In these cases,
1000 molecules were simulated in a cubic box of length
3.025 nm. The results for the SPC/E-F model in Table I show
that the introduction of flexibility increases the OH bond
lengths and compresses the HOH angles. The combination
results in a 5% increase in the condensed-phase dipole mo-
ment as shown in Table II. The potential energy of the sys-

tem is lower for the flexible model because of the increased
equilibrium dipole moment and resultant stronger hydrogen
bonds. The self-diffusion coefficient is also decreased, pre-
sumably by this same mechanism. Results for the SPC/E-Fd
model show that the decrease in potential energy for SPC/
E-F is due to the increased dipole moment as the potential
energy for SPC/E-Fd is nearly equal to that of the rigid
model. Interestingly, flexibility by itself~SPC/E-Fd! in-
creases the self-diffusion coefficient. This effect was also
observed by Tironiet al.16 and Teleman and Jo¨nsson.17 The
increase in the self-diffusion coefficient due solely to flex-
ibility may be due to increased mobility and reduced drag as
molecules can deform to move past one another. This expla-
nation is consistent with results from other simulations that
indicate that flexibility decreases viscosity.22,23 Table II also
compares bulk properties~intermolecular potential energy,
U inter, intramolecular potential energy,U intra, average dipole
moment̂ m&, and self-diffusion coefficient,D! obtained using
the models used in this study with values reported for other
flexible models already in the literature. The frequencies of
condensed phase bending and symmetric/asymmetric stretch
of the flexible models agree well with water vapor experi-
mental values24 ~1595, 3657, and 3756 cm21!. It is known

FIG. 1. Ion–O rdf for~a! cation and~b! anion using the SPC/E~—!, SPC/
E-F ~—!, and SPC/E-Fd~---! models.

FIG. 2. Ion–H rdf for~a! cation and~b! anion using the SPC/E~—!, SPC/
E-F ~—!, and SPC/E-Fd~---! models.
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that the IR absorbance for these same stretching modes de-
creases in the condensed-phase water; no density dependence
is observed here owing to the use of harmonic intramolecular
potentials.25

B. Ion hydration results in the absence of electrodes

A comparison of bulk solution structure characteristic of
the models was investigated by computing the ion–oxygen
radial distribution function~rdf!. Figure 1~a! shows a com-
parison of the cation–O rdf obtained for the various models
using an average of five independent runs at an ion concen-
tration of 0.063 M. Ion centers were excluded from the rdf
averages if an ion–ion distance was less than 2 nm so as to
compare the ion–O rdf functions without possible ion pair-
ing. Figure 1~b! shows a similar comparison for the anion–O
rdf. Flexibility is seen to increase the first peak height for
both ion models. While a similar effect is observed in Fig.
2~b! for the anion–H rdf, flexibility has little apparent effect
on the cation–H rdf shown in Fig. 2~a!. The increased dipole
moment of the SPC/E-F model does produce a slight in-
crease in the anion–H rdf with a minor shift to shorter dis-
tances in the second peak, but much of the increase in peak
height seems to be due to the flexibility itself. These first-
peak results suggest that the primary effect of the flexible
solvent is packing, i.e., slight deformation of the solvent
molecules permitting higher density in the first coordination

shell. Due to the asymmetry in the model water molecules,
the negative ion is more strongly hydrated as seen by the
location and magnitude of the first peak in the rdf plots. This
is because in this study the anion and cation are of equal size
and so the partial positive charge on the hydrogen sites can
get much closer to the charge center of the counter-charged
ion than can the partial negative charge at the center of the
oxygen site. Obviously, in real systems where the anion is
often significantly larger than the cation, this same charge-
separation explanation would suggest that the anion would
be less strongly hydrated.

C. Ion hydration in proximity to the electrode surface

Figure 3 shows the ion density distributions obtained
from the simulations for different charges on the electrodes
at a bulk ion concentration of 1 M~compare with Ref. 26!.
Results for the flexible model are shown at the right; results
for the rigid model are shown on the left. The results for the
SPC/E-Fd model at an electrode charge density of60.1
C/m2 are overlaid on the SPC/E-F plot in Fig. 3~b! and are
similar to those of the other flexible model. Close examina-
tion shows an additional anion peak close to the wall for the
SPC/E-Fd model and increased height in other peaks near the
wall indicating weaker hydration relative to the SPC/E-F
model. However, the differences between the SPC/E-Fd and
SPC/E-F results are small relative to the difference between

FIG. 3. Cation~—, black! and anion
~—, gray! average ion density profiles
as a function of distance away from
the positively charged electrode for 1
M bulk concentration. The negative
electrode is located at 4.256 nm. Elec-
trode charge densities are~a! 0.0, ~b!
60.1, and ~c! 60.2 C/m2. SPC/E
model results are on the left, SPC/E-F
on the right. In the case of60.1 C/m2

the SPC/E-Fd model cation~—, thin!
and anion~ , thin! results are
overlaid.

10198 J. Chem. Phys., Vol. 118, No. 22, 8 June 2003 Guymon et al.

Downloaded 16 Sep 2009 to 128.187.0.164. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



the results of either of these models and the rigid model. We
therefore show comparisons only between the SPC/E and
SPC/E-F models at the remaining conditions. Figure 3~a!
shows this comparison for uncharged electrodes. The pres-
ence of the primarily repulsive wall terminates the hydrogen-
bonding network within the solvent, and water molecules
have a preferred orientation at even an uncharged wall~com-
pare Fig. 5!. This orientation of the dipolar solvent creates a
small field. As can be seen in the left-hand plot of Fig. 3~a!
for SPC/E water, there is a small enhancement of the ion
densities in the so-called outer-Helmholtz plane~OHP! of
both electrodes due to this solvent orientation propensity.
However, the more tightly hydrated ions with the SPC/E
model do not permit as much orientation of the solvent at the
wall in response to the termination of the hydrogen bonding
as do the less-tightly bound ions hydrated with the SPC/E-F
model. The flexible model permits higher solvent orientation
at the walls in the presence of ions with a resultant larger ion
density enhancement at both neutral electrodes as shown on
the right-hand side of Fig. 3~a!. Evidence of the weaker hy-

dration of the ion with SPC/E-F can also be seen by the
increased ion affinity in Fig. 3~a! ~right!, characterized by the
close proximity of paired counter-ion peaks near the elec-
trode surface not present for the rigid model. When the
charge on the wall is increased to60.1 C/m2, flexibility en-
hances the cation contact adsorption~the inner-Helmholtz
plane or IHP! which is not as pronounced with the SPC/E
model. Little effect is observed for the anion. Contact ad-
sorption is again enhanced by solvent flexibility at a charge
density of60.2 C/m2 shown in Fig. 3~c!. Contact adsorption
of both ions is significantly enhanced by the solvent’s flex-
ibility. Again note the ion affinity at these higher charges for
the flexible solvent. Figure 3~c! shows that, in comparison to
the rigid model and even in comparison to the flexible model
at 60.1 C/m2, some of the cations are pulled back toward the
positive electrode and some of the anions are pulled closer to
the negative electrode by their counter ions. The flexible ion
density plots are also seen to be rougher than their rigid
counterparts, though they represent averages over the same
time period, suggesting that the system with the flexible-

FIG. 4. Cation~—! and anion~—! average ion density profiles as a function of distance away from the positively charged electrode for 0.5 M bulk
concentration. The negative electrode is located at 4.256 nm. Electrode charge densities are~a! 0.0, ~b! 60.1, and~c! 60.2 C/m2. SPC/E model results are on
the left, SPC/E-F on the right.
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solvated ions tends to equilibrate more slowly. This de-
creased ion mobility may be due to an increase in ion–ion
interactions and a stronger water hydrogen-bond network,
both owing to the weaker ion–solvent interaction for the
flexible solvent.

Results at a lower ion concentration, 0.5 M, are shown in
Fig. 4. At this concentration, the effects of flexibility on the
IHP are less prominent. However, ion affinity is again seen to
be more dominant for the flexible solvent. Strong ion affinity
is seen with electrode charge densities of60.1 and60.2
C/m2.

The ion profiles that are plotted in Figs. 3 and 4 and,
indeed, the water molecule profiles that we have not plotted,
have appreciable maxima and minima~see also Refs. 1, 2,
and 27!. This is in pronounced contrast to the prediction of
monotonic profiles by the venerable Gouy–Chapman theory
that neglects the size of the ions and replaces the discrete
water molecules by a continuum. Such nonmonotonic pro-
files have been predicted by theory28 for nearly three decades
and have been seen in recent experiments.

D. Electrical properties of the double layer

The electric potential,f, at any pointx in the interfacial
region may be calculated by integrating the one-dimensional
Poisson equation from infinite distance from the electrode to
x,28 or

f~x!52
e

«0
(

i
zi Èx

~x2x8!r i~x8!dx8, ~1!

wherer i is the local density of sitei which has chargezi ,
and «0 is the permittivity of free space. In previous
studies1,18 it has been assumed that the MD simulation cell
size is large enough to apply Eq.~1! from the center of the
cell to x. The validity of this assumption of zero field,E
52df/dx50, at the center of the simulation cell depends
upon the relative sizes of the MD cell and the double layer;
the latter is a function of the electrode charge and the ion
concentration. Because orientation of the water molecules
constitutes a sensitive measure of the field in the cell, we
have examined the zero-field assumption in terms of the wa-
ter dipole distribution in Fig. 5. Water orientation in Fig. 5 is
characterized by the projection of the water dipole onto the
normal vector for each electrode, pointing into the cell, or
cosu. Shown are the distributions of cosu for the rigid
SPC/E model as a function of cell position for pure water at
electrode charge densities of 0@Fig. 5~a!# and 60.1 C/m2

@Fig. 5~b!# and for a nominal concentration of 1 M ions
added with an electrode charge density of60.1 C/m2 @Fig.
5~c!#. Note that by referencingu to each electrode, there is a
sign reversal at the center of the simulation cell for cosu in
Fig. 5. In Fig. 5~a!, a preferred orientation of water mol-
ecules at the electrode walls produces a net dipole near the
wall that damps out quickly with distance from the surface.
Hence, the assumption of zero field at the midpoint of the
cell is valid for the conditions shown in Fig. 5~a!. However,
in Fig. 5~b! the dipolar solvent cannot damp out the field
because there are no mobile charges present. In Fig. 5~c!, the
addition of ions eliminates most of the field, but there is yet

a small field at the center of the cell as evidenced by the
slight bump in the profile. The diffuse layer in which there is
still a small field present is quite large because of the de-
creasing diffusional response of the ions to the diminishing
field further out from the electrode surface. The assumption
of a zero field at the center of the cell may be problematic in
this case. Polarizability in the SPC/E-F model enhances the
dipole orientations at the electrode surface and shields the
field to a greater degree. This also enhances the possibility of
counter ion affinity as previously noted.

FIG. 5. ~Color! Dipole orientation surfaces for SPC/E model water at an
electrode charge density and ion concentration of~a! 0.0 C/m2 and 0 M,~b!
60.1 C/m2 and 0 M, and~c! 60.1 C/m2 and 1 M. The positively charged
electrode is located at 0 with the negative electrode at 4.256 nm.
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As an alternative to finding the potential from Eq.~1!,
one can integrate Poisson’s equation from the electrode sur-
face tox, thereby avoiding the possibility of finite cell size
problems. In so doing, the field at the electrode surface (x
50) is obtained from the applied external field. In this work,
we have assumed the field present at the electrode is equal to
the uniformly charged sheet value,q/«0 , to obtain

f~x!52
e

«0
(

i
ziE

0

x

~x2x8!r i~x8!dx82
q

«0
x1f~0!

~2!

for the potential distribution, whereq is the charge density at
the electrode surface (x50), andf~0! is a constant at the
electrode surface.

Because our model electrodes are molecular in nature
with a body-centered-cubic distribution of charges in theyz
plane, the one-dimensional Poisson equation with a charged
sheet boundary condition is not rigorous very near the elec-
trode surface. To test deviations of the field near our molecu-
lar electrode from that of a charged plate, test charges were
used to probe the field~with no solution present! as a func-
tion of distance from the electrode. Figure 6 shows the aver-
age electric field divided by the charged plate value,ECP,
obtained from the test charges using an Ewald sum with a
convergence parameter of 2.87 nm21. As can be seen from
the average value and the one-sigma confidence interval
plotted in Fig. 6, the approximation of replacingE with ECP

at the electrode produces an average or systematic error of
less than 3%~though deviations from the homogeneous field
assumption for individual ions can be larger! in the field at
the distance of closest approach~as obtained from the simu-
lations and shown by the vertical line in Fig. 6! of a charged
site. The error introduced by this assumption is seen to be
even smaller elsewhere in the double layer.

Figure 7 shows voltage versus cell position~for the
SPC/E model with an electrode charge density of60.2
C/m2! calculated from Eq.~2!. The observed nonmonotonic
behavior of the potential drop mirrors very well the results
obtained by Philpott and Glosli29 and Spohr30 for NaCl so-
lutions. It is also evident that increasing charge carrier con-
centration better shields the electric field produced by the

charge density in the electrodes. Note that the constant in Eq.
~2!, f~0!, was fixed to give a value of zero for the voltage at
the center of the simulation cell. The flexible counterpart of
Fig. 7 possesses the same shape with slightly different half-
cell voltage drops.

We note that the potential profiles of Figs. 6 and 7 reflect
the nonmonotonic density profiles of the ions and water mol-
ecules. The potential profiles predicted by the Gouy–
Chapman theory are monotonic. Thus, the Gouy–Chapman
profiles are qualitatively and quantitatively in error. Quanti-
tative errors in the Gouy–Chapman potentials are usually
overcome by semiempirical adjustment of parameters; how-
ever, no amount of parameter adjustment can overcome the
observed qualitative errors.

Figure 8 shows the half-cell voltage drop versus the
electrode charge density for the SPC/E-F model; results for
SPC/E are not shown but are visually indistinguishable. The
voltage drop is approximately linear with charge density. It is
of interest to note that the slope of this relationship is smaller
for negative electrode charges. Likewise, the experimental
curves are not symmetric. The voltage is a measure of the
charge separation. Thus, the asymmetry in Fig. 8 agrees with

FIG. 6. Average electric field deviations~111! from the uniformly
charged plate value as a function of distance from the bcc@1 0 0# point-
charged electrode surface with a lattice constant of 0.15 nm. The dashed
lines represent a one standard deviation range and the vertical line represents
the distance of closest approach of any charge in our MD simulations.

FIG. 7. Voltage drop profile for SPC/E water at an electrode charge density
of 60.2 C/m2 with an ion concentration of 0~—!, 0.5 ~—!, and 1~1111!
M. Voltage set to zero at cell center.

FIG. 8. Half-cell potential drop as a function of electrode charge for 0.5
~3!, and 1 M~h! ion concentrations as obtained from the SPC/E-F model.
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the results in Figs. 3 and 4 where on average the cations are
closer to the negatively charged electrode than are the anions
to the positively charged electrode. The water molecules re-
inforce this effect. Geometrically, the positively charged hy-
drogen atoms in the water molecules can approach closer to
the electrode than can the oxygen atoms. A smaller charge
separation next to the negative electrode results in a smaller
potential difference for a given magnitude of the electrode
charge.

The asymmetry seen in Fig. 8 is a feature of the model
parameters employed here, in particular the equal ion size for
anions and cations. Generally, anions are larger in diameter
and, more importantly, less fully hydrated than are cations. It
is anticipated that this ion size effect, plus any asymmetry in
the response of electrons of the electrode to the electrode
charge, could easily shift the asymmetry so that it is the slope
of the potential difference for positive electrode charge that
is smaller as is seen in most experiments.

Values of the electric field calculated at the center of the
simulation cell for the various conditions are shown in Table
III. They suggest that the thickness of the interfacial region is
increased by solvent flexibility. This result may be due to the
decreased ability of the mobile charge carriers to shield the
field because of the enhanced counter ion affinity.

IV. CONCLUSIONS

Introducing flexibility into the SPC/E model causes sig-
nificant changes in solvent properties. We have used two
flexible models, SPC/E-F and SPC/E-Fd, to distinguish ef-
fects due to a flexible geometry from those that result from
the changed dipole moment in the condensed phase. Both
effects appear to impact the diffusion coefficient of the pure
solvent while the model effect on total energy is due prima-
rily to the dipole moment change. Both effects tend to in-
crease the height of the first oxygen and hydrogen ion rdf
peaks. The increase in rdf peak height appears to be mainly
due to geometrical packing considerations as evidenced by
detailed density profiles that suggest the hydration strength
of the ions is smaller for the flexible solvent models. Ion
density profiles show that contact adsorption at electrode sur-
faces is enhanced with solvent flexibility. Ion affinity is also
enhanced when the ions are solvated with flexible water mol-
ecules.

We have also shown that care must be taken when using
finite-sized cells with low concentrations of ions in a strong
externally applied field. Although the mobile charges

dampen out most of the field rather quickly, a small solvent
dipole orientation may persist for a significant distance into
the diffuse layer. In such cases, a good alternative to assum-
ing an infinite cell length, or zero field at the center of the
simulation cell, is integrating Poisson’s equation from the
electrode surface outward. We have shown that this can be
done with good accuracy by usingECP for the field at the
electrode surface even when the electrode is modeled with
fixed molecular centers and these discrete centers constitute
the loci of any added electrode charges. Using this method
for calculating the field, we found that the half-cell voltage
drop is a function of the electrode charge and bulk ion con-
centration.
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